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Abstract

The widespread adoption of XML holds out the
promise that document structure can be ex-
ploited to specify precise database queries. How-
ever, the user may have only a limited knowledge
of the XML structure, and hence may be unable
to produce a correct XQuery, especially in the
context of a heterogeneous information collec-
tion. The default is to use keyword-based search
and we are all too familiar with how difficult
it is to obtain precise answers by these means.
We seek to address these problems by introduc-
ing the notion of Meaningful Lowest Common
Ancestor Structure (MLCAS) for finding related
nodes within an XML document. By automat-
ically computing MLCAS and expanding am-
biguous tag names, we add new functionality to
XQuery and enable users to take full advantage
of XQuery in querying XML data precisely and
efficiently without requiring (perfect) knowledge
of the document structure. Such a Schema-Free
XQuery is potentially of value not just to casual
users with partial knowledge of schema, but also
to experts working in a data integration or data
evolution context. In such a context, a schema-
free query, once written, can be applied univer-
sally to multiple data sources that supply simi-
lar content under different schemas, and applied
“forever” as these schemas evolve. Our experi-
mental evaluation found that it was possible to
express a wide variety of queries in a schema-
free manner and have them return correct re-
sults over a broad diversity of schemas. Fur-
thermore, the evaluation of a schema-free query
is not expensive using a novel stack-based algo-
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rithm we develop for computing MLCAS: from
1 to 4 times the execution time of an equivalent
schema-aware query.

1 Introduction

XML is gradually becoming the standard in exchanging
and representing data. Not surprisingly, effective and ef-
ficient querying of XML data has become an increasingly
important issue. Traditionally, research work in this
area has been following one of the two paths: the struc-
tured query approach and the keyword-based approach.
XQuery [9] is the generally acknowledged standard of
the former, while the latter class has several recent sug-
gestions, including XKeyword [17] and XSEarch [11].
Both approaches have their advantages and disadvan-
tages. Fully structured query (e.g., XQuery) works effec-
tively with the structure, can convey complex semantic
meaning in the query, and therefore can retrieve precisely
the desired results. However, if the user does not know
the (full) structure, it is difficult to write the right query.
Even if the user does know the schemas, when data is
to be amalgamated from multiple sources with different
schemas, it typically will not be possible to write a single
query applicable to all sources; rather, multiple queries
will have to be written (or at least generated through
translation), a process that is complex and error-prone.
Keyword-based query can overcome the problems with
unknown schema or multiple schemas because knowl-
edge of structure is not required for the query. However,
this absence of structure leads to two serious drawbacks.
First, it is often difficult and sometimes impossible to
convey semantic knowledge in pure keyword queries. Sec-
ond, the user cannot specify exactly how much of the
database should be included in the result.

Consider the example in Figure 1 showing the same
bibliography data arranged in two different formats: A
organizes publications based on the year of publication
and B organizes publications according to their type
(book or article). Let’s first look at Query 1, which is
a simple query asking for some information (title and
year) on a publication given a certain condition (author
is “Mary”). To construct an XQuery to represent this
simple query, the user faces two challenges: first, she
has to know that “publication” in the schema is actually
presented as book and article in both schemas; second,
she has to know that title and author are the child el-
ements of “publication”, while year could be either a
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Query 1: Find title and year of the publications, of
which Mary is an author.
Query 2: Find additional author of the publications,
of which Mary is an author.
Query 3: Find year and author of the publications with
similar titles to a publication of which Mary is an author.

Figure 1: Querying XML data with multiple schemas.

child or a sibling. Depending on the schema, the result-
ing XQuery expression is non-trivial even for this simple
query in this very small example. The keyword based
approach, on the other hand, often returns results that
include too many irrelevant answers. Query 1 (with the
underlined keywords) on data in A may return the bib
node 2, which contains not just the desired article node
7, but also the unwanted book node 4. Queries 2 and 3
pose even greater challenges for the keyword-based ap-
proach. Keywords cannot distinguish the two different
authors in Query 2 and will simply return node 10 whose
content is “Mary”. Query 3 involves two logical struc-
tures linked together through a value join–it even shares
the same set of keywords with Query 1! Therefore it is
hard to imagine how the limited semantic capacity of a
keyword search specification could capture user intent.

In this paper, we developed a framework that enables
users to query XML data exploiting whatever partial
knowledge of the schema they have. If they know the
full schema, they can write regular XQuery. If they do
not know the schema at all, they can just specify key-
words. Most importantly, they can be somewhere in be-
tween, in which case the system will respect whatever
specifications are given.

The notion of Lowest Common Ancestor (LCA) (of
individual term/tag matches) has been suggested (e.g.
Meet [22]) as an effective mechanism to identify seg-
ments of the database of interest to a pure keyword query.
While this intuition is reasonable, we show that LCA can
frequently be too inclusive. We refine LCA and define

the concept of a Meaningful Lowest Common Ancestor
Structure (MLCAS). Each MLCAS is an XML fragment
that meaningfully relates together the nodes correspond-
ing to the relevant variables in the XQuery expression.
In Section 2, we show how this structure, and its root
node, can be referenced and manipulated in an XQuery
expression with embedded mlcas functions.

An mlcas function precisely specifies a particular non-
trivial computation. We may prefer to hide this from a
novice user. Furthermore, users may lack knowledge not
only about the structure, but also about the specific tag
names in the structure. In Section 3, we propose Schema-
Free XQuery to address these two issues. Ordinary users
are thus able to write simplistic XQuery expressions,
specifying keywords and/or tag names and/or structural
restrictions, ranging all the way from an open-ended IR-
style keyword specification to a completely specified full-
fledged XQuery expression.

MLCAS computation is a core part of Schema-Free
XQuery evaluation. In Section 4, we show how to accom-
plish this using standard XQuery evaluation operators.
We then introduce a novel stack-based algorithm to com-
pute MLCAS more efficiently, in a manner reminiscent
of containment join.

In Section 5, we present an experimental evaluation
of our proposal, in terms of both the quality of the re-
sults produced and the time taken to produce them.
Over both XMark, a standard XML Benchmark, and
a wide variety of autonomously created schemas in a
well-circumscribed domain (publication lists) we found
that Schema-Free XQuery almost always produced ex-
actly the desired results. Moreover, the time taken to do
so was only somewhat greater than an equivalent schema-
specific query would require.

Finally, we discuss related work in Section 6 and con-
clude in Section 7.

2 MLCAS

In this section, we describe the concept of MLCAS and
present the mlcas function as an addition to standard
XQuery. The resulting mlcas-embedded XQuery gives a
user the full expressive power of XQuery while forgiving
incompleteness in schema specification.

We begin first with a description of the XML data
model that we employ. An XML document is a rooted,
ordered, and labeled tree. Nodes in this rooted tree cor-
respond to elements in the XML document.

Definition 2.1 (Descendant-Or-Self) Tree node nd

is said to have a descendant-or-self relationship with na

if it is a descendant of na or is equal to na, denoted as
descendant-or-self(nd, na) = true.
Definition 2.2 (LCA) Let the set of nodes in an XML
document be N . For d1, d2 ∈ N , a ∈ N is the LCA of
d1 and d2 if and only if:
• descendant-or-self(d1, a) = true, and
• descendant-or-self(d2, a) = true, and
• ∀ a′ ∈ N , if descendant-or-self(d1, a

′) = true and
descendant-or-self(d2, a

′) = true, then descendant-
or-self(a, a′) = true.

a is denoted as LCA(d1, d2).
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2.1 Motivation for MLCAS

An XML query typically involves one or more sets of
structurally related XML elements that are the process-
ing context used by the query (either to evaluate con-
ditions or to return results). If a user knows the doc-
ument structure, she can write a meaningful query in
XQuery specifying exactly how the nodes involved in the
query are structurally related with each other. Without
knowledge of the structural relationships, as long as the
user knows the element tag names, she can still write
an XQuery specifying only the tag names of elements in-
volved in the query. Figure 2 shows one such expansion
for Query 1 in Figure 1. A literal evaluation of this ex-
pansion will retrieve many meaningless results because
the default context is too general (i.e., all of bib.xml).

Given the structured nature of XML, it is natural to
find the LCA of the set of nodes specified, and treat the
subtree rooted at this node as the context for query eval-
uation. In fact, this idea has been employed in several
previously proposed systems [11, 17] and works well in
certain cases. For example, consider nodes 8 (title) and
10 (author) in Figure 1. The LCA of these two nodes is
node 7 (article) and the subtree rooted at node 7 does
make a good context: the title, author, and article nodes
form a logical entity together. However, blindly comput-
ing the LCA can bring together unrelated nodes. For
example, consider a different pair of nodes in Figure 1:
nodes 5 (title) and 10 (author). Their LCA is node 2
(bib), whose subtree contains many books and articles
and is clearly not an appropriate context for the query
evaluation. We address this problem by introducing the
notion of MLCAS, and using it as the refined context for
query evaluation.

2.2 MLCA

A node in an XML document, along with its entire sub-
tree, typically represents a real-world entity. The tag
name usually identifies the type of the entity (called en-
tity type to distinguish it from the data type used by
XML Schema [25]).

Definition 2.3 (ENTITY TYPE) An entity type (or
simply type) of a node n in an XML tree is defined as
the tag name (label) of n. Two nodes n1 and n2 are of
the same entity type T if and only if they have the same
tag name.

In the presence of ontology (i.e. type hierarchy), nodes
with different tag names may still be regarded as of the
same type. For example, book and article nodes can
be deemed as of the same super-type P (Publication).
For the simplicity of presentation, we do not consider
ontology-guided type matching here.

for $a in doc(“bib.xml”)//author,
$b in doc(“bib.xml”)//title,
$c in doc(“bib.xml”)//year

where $a/text() = “Mary”
return <result> { $b, $c } </result>

Figure 2: Query 1 in XQuery within no structural knowledge

We now describe, through the diagrams in Figure 3,
what it means intuitively when we say two nodes are
meaningfully related to each other. Let node n1 repre-
sent an entity of type A, and node n2 represent an entity
of type B. First, suppose that n1 is an ancestor node
of n2 (shown in Figure 3(a)), we believe n1 and n2 are
meaningfully related to each other. Second, consider the
situation where two nodes have no hierarchical relation-
ship with each other. Suppose the LCA of n1 and n2 is n
(shown in Figure 3(b)), we can regard both entities rep-
resented by n1 and n2, respectively, belong to the entity
represented by n. Therefore, nodes n1 and n2, regardless
of their types, are related to each other by belonging to
the same entity represented by n, which is regarded as
the Meaningful Lowest Common Ancestor(MLCA) of n1

and n2. However, there is an exception to this second
case. As demonstrated by Figure 3(c), let there be a
node n′2 of the same type as node n2, and the LCA of n1

and n′2 be n′. If n is an ancestor node of n′, we should
then conclude that nodes n1 and n2 are not meaning-
fully related to each other because node n′2, which is of
the same type as n2, is more related to n1 under the node
n′, which is actually the MLCA of n′2 and n1.

Consider the previously mentioned example of nodes
5 and 10 in Figure 1, their LCA is node 2. However,
it is not their MLCA, because it is an ancestor of node
7, which is an MLCA of nodes 8 and 10, and node 8
is of the same type as node 5 (both are titles). In fact,
the entities title and article are related to each other by
belonging to the same “publication” (book or article).
Nodes 5 and 10 are not related (i.e., not in the same
MLCAS) because they belong to different publications.

We now formalize this idea. First of all, given two
sets of nodes, where nodes within each set are of the
same type, we define how to find pairs of nodes that are
meaningfully related to each other from these two sets.

Definition 2.4 (MLCA of two nodes) Let the set of
nodes in an XML document be N . Given A,B ⊆ N ,
where A is comprised of nodes of type A, and B is com-
prised of nodes of type B, the Meaningful Lowest Com-
mon Ancestors Set C ⊆ N of A and B satisfies the fol-
lowing conditions:

• ∀ ck ∈ C, ∃ ai ∈ A, bj ∈ B, such that ck =
LCA(ai,bj). ck is denoted as MLCA(ai, bj).

• ∀ ai ∈ A, bj ∈ B, if dij = LCA(ai, bj) and dij /∈ C,
then ∃ ck ∈ C, descendant(ck, dij) = true.

The set C is denoted as MLCASET(A, B).

A pair of nodes (a, b), where a is of type A in set A
and b is of type B in set B, are regarded as meaningfully
related to each other if and only if c, the LCA of a and

n2

(a) (b) (c)

n1 n

n1

n

n'2 n2n1
n2

n'

Figure 3: Structural relationships among nodes
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b, belongs to C, where C is MLCASET(A,B). This re-
striction ensures that only the most specific results are re-
turned. If an element’s subelement is returned, then the
element would not be returned, because its subelement
has a closer relationship between the entities represented
by nodes in A and B respectively. Given multiple sets of
nodes, where nodes within each set are of the same type,
we can easily extend Definition 2.4 to define the MLCA
of multiple nodes:

Definition 2.5 (MLCA of multiple nodes) Let the
set of nodes in an XML document be N . Given A1, A2,
. . . , Am ⊆ N , where ∀ j, aij ∈ Ai is of type Ai (i ∈
[1,. . . , m]), a Meaningful Lowest Common Ancestor c =
MLCA(a1,. . . ,am), where ai ∈ Ai (i ∈ [1,. . . ,m]), satis-
fies the following conditions:

• ∀j,k ∈ [1,. . . ,m] (j 6= k), ∃ m = MLCA(aj, ak), m
6= null and descendant-or-self(m,c) = true.

• ∃j,k ∈ [1,. . . ,m] (j 6= k), c = MLCA(aj, ak).

2.3 MLCAS

We have seen above how to find MLCA for multiple
nodes. However, this in itself is not enough since the
same node could be the meaningful lowest common an-
cestor to many different sets of nodes. For instance, given
a book with two authors, the same book node can be the
MLCA for the title node and each of the author nodes,
separately. Consider the query in Figure 2 against the
data in schema A in Figure 1. Simply computing the
MLCA of nodes (author,title,year) involved in the query
will regard the subtrees rooted at nodes 2 and 11 as the
context for query evaluation. Although they do contain
the desired result, they often include too much irrelevant
information. A user must read the results returned and
manually discover the desired answer. This could require
a significant amount of work in a large database. Even
worse, the system may return additional (incorrect) an-
swers. In this particular example, the user requests the
nodes year and title, answers (3,5) and (3,8) will be re-
turned. The former is a wrong answer because only the
latter title is the desired result. We resolve this ambigu-
ity by identifying not just the MLCA itself, but rather
an entire structure, MLCAS, for each such established
relationship.

Definition 2.6 (MLCAS) Let the set of nodes in an
XML document be N . Given A1, A2, . . . , Am ⊆ N ,
where ∀ i, aij ∈ Aj is of type Aj (j ∈ [1,. . . , m]), the
Meaningful Lowest Common Ancestor Structure Set S =
{(r, a1,. . . ,am) | r ∈ N , ai ∈ Ai (i ∈ [1, . . . , m]), r =
MLCA(a1,. . . ,am) }. Each element of this set is denoted
as MLCAS(a1,. . . ,am), with r as its root.

Each MLCAS is a refined context for query evalu-
ation, and contains only the nodes that are meaning-
fully related to one another. If an MLCAS satisfies the
search conditions, it is unlikely to contain a wrong an-
swer. For example, for the running example Query 1 in
Figure 1, expressed as shown in Figure 2, we obtain sev-
eral MLCASs, including (2,10,8,3) and (11,15,14,12).
The only MLCAS satisfying the original search condition

$a/text()=“Mary” is (2,10,8,3). Hence,the result is (ti-
tle=“XML”,year=“1999”), which is exactly the desired
result.

Finally, we would like to point out the differences be-
tween the concept of MLCAS and the concept of inter-
connected nodes employed by the XSEarch system [11].
Both concepts are designed to capture the meaningful
substructure of the XML document based on both the
tag names and the keywords provided in a query. Inter-
connected nodes are the set of connected nodes with a
root node, where no two internal nodes are of the same
type (i.e., having the same tag name) and the root node
is the LCA of leaf nodes. This concept works well for
simple XML data where logically equivalent entities al-
ways have the same tag name. However, it does not
recognize meaningful structure when those entities (e.g.,
book and article in the previous example) have differ-
ent tag names. In addition, it does not work well on
XML data with more than one logical hierarchy. Con-
sider evaluating running example Query 1 against the
data in Figure 4, the unrelated title:Streaming will be
returned by XSEarch. Due to the fact that no two nodes
have the same tag name along the path, XSEarch fails
to recognize that this title is actually more meaningfully
associated with author:John under ref. Search based on
MLCAS, on the other hand, can easily recognize this fact
and therefore avoid returning the incorrect result.

2.4 Adding mlcas Function to XQuery

In this section, we introduce a new language construct,
mlcas function, to the standard XQuery language:

Definition 2.7 (mlcas Function) mlcas(a1,. . . ,an)is
a function that returns (i) root node of MLCAS(a1,
. . . ,an), if it exists, (ii) null otherwise.

Figure 5 shows how each of the three running queries
presented in Figure 1 can be expressed in the XQuery
enriched with the mlcas function. Each query will re-
trieve precisely the desired result, when executed against
either example schema in the figure.

Query 1 is the most straightforward. Given
the tag names of individual nodes, the condition
exists mlcas($a, $b, $c) defines the context for evaluation
to be the MLCAS of those nodes and filters out any node
that cannot be part of any MLCAS. The query is flex-
ible since it does not require user to know the exact

article(1)

title(2) author(3)

XML
Mary

content(4)

intro(5)
sec(6)

reference(8)

ref(9)

sec(7)

author(11)title(10)

JohnStreaming

Figure 4: XML data with multiple hierarchies
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Query 1:
for $a in doc(“bib.xml”)//author,

$b in doc(“bib.xml”)//title,
$c in doc(“bib.xml”)//year

where $a/text() = “Mary”
and exists mlcas($a,$b,$c)

return <result> {$b, $c} </result>

Query 2:
for $a in doc(“bib.xml”)//author,

$b in doc(“bib.xml”)//author,
where $a/text() = “Mary” and $a != $b

and exists mlcas($a,$b)
return $b

Query 3:
for $y in doc(“bib.xml”)//year,

$a1 in doc(“bib.xml”)//author,
$t1 in doc(“bib.xml”)//title,
$t2 in {
for $a in doc(“bib.xml”)//author,

$t in doc(“doc.xml”)//title
where $a/text() = “Mary”

and exists mlcas($a,$t)
return $t }

let $m := mlcas($y,$a1,$t1)
where $t1 ≈ $t2 and exists $m
return <result> {$y, $a1} </result>

Figure 5: Example XQueries with mlcas function

relationships between nodes of the three types. Query
2 shows another aspect of the flexibility in the mlcas
function: the individual nodes do not have to be of dif-
ferent types. By combining the conditions $a! = $b and
exists mlcas($a, $b), the only MLCASs retained are pub-
lications with at least two different authors. Query 3
shows a more complex example. It contains two contexts
for evaluation: one in the outer query, which contains
year, author, and title; the other in the inner query, which
contains author and title. The two contexts are linked to-
gether through the similarity join $t1 ≈ $t2. This query
is difficult to express in any keyword based approach sim-
ply because the keyword to be used to match the content
of title is only known during the runtime. Although the
binding of the result of mlcas function to a variable $m is
not necessary, it is shown here to illustrate that the root
of the MLCAS can be manipulated just like any other
regular elements in the XML document. If we evaluate
this query against data in schema A of Figure 1, the only
MLCAS satisfying the conditions in the inner query will
be (7,10,8), and the only title to be returned is “XML”.
The outer query, without considering the similarity join,
will have several MLCASs, including (2,3,6,5), (2,3,9,8),
(2,3,10,8), (11,12,15,14), and (11,12,18,17). Only the
first three have title similar to “XML” and are the final
MLCASs when we consider the similarity join. The final
results to be returned are therefore (year = “1999”, au-
thor = “Bob”), (year = “1999”, author = “Joe”), and
(year = “1999”, author = “Mary”).

3 Schema-Free XQuery

To achieve true flexibility in the query (i.e., Schema-Free
XQuery), one first needs to address the issue of structure
ambiguity, where the relationship among elements is un-
clear. While the use of mlcas function inside XQuery, as
described in Section 2.4, effectively deals with the struc-
ture ambiguity, adding one more language construct to
the already complex XQuery will likely prevent ordinary
users from adopting it: we would like to allow users to
write XQuery using the standard syntax as much as pos-
sible and have the system automatically figure out what
to do. We present our solution to this through the use
of mlcas keyword in Section 3.1. The second issue is tag
name ambiguity, where the exact tag name of a partic-
ular element is unknown (although the user should have
a rough idea what the tag name is in general) and we
address this issue in Section 3.2. As we will show in this
section, a Schema-Free XQuery is underspecified: our
task is to derive a completely specified query that best
captures the user’s intent.

3.1 MLCAS Transformation

Toward the goal of allowing user to take advantage of ml-
cas-embedded XQuery while maintaining the simplicity
of XQuery, we propose adding a simple mlcas keyword to
the standard XQuery. The keyword is used to ask the
system to transform the original simplistic XQuery into
an XQuery with mlcas function, which then resolves the
structure ambiguity automatically. The following query
illustrates a simple mlcas-enhanced XQuery representing
Query 1 in Figure 1.

for $a in mlcas doc(“bib.xml”)//author,
$b in mlcas doc(“bib.xml”)//title,
$c in mlcas doc(“bib.xml”)//year

where $a/text() = “Mary”
return <result> { $b, $c } </result>

This query can be automatically transformed into
Query 1 in Figure 5 through a simple transformation
algorithm, which will be briefly discussed later. One re-
striction we put on the semantics of the mlcas-enhanced
XQuery is to have all mlcas marked variables within one
FLWOR block belonging to the same MLCAS: we believe
this is the intention for most queries and it simplifies the
construction of the query for the user. However, nested
queries will have separate MLCASs. For example:

for $y in mlcas doc(“bib.xml”)//year,
$a1 in mlcas doc(”bib.xml”//author,
$t1 in mlcas doc(”bib.xml”)//title,
$t2 in {

for $a in mlcas doc(“bib.xml”)//author,
$t in mlcas doc(“bib.xml”)//title

where $a/text() = “Mary”
return $t

}
where $t1 ≈ $t2
return <result>{$y, $a1}</result>

As shown in this example, the MLCAS is designed
to have a scope that is local to the query. Hence, the
MLCAS formed from the mlcas marked variables in the
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subquery is different from the MLCAS formed from the
mlcas marked variables in the parent query. The two
MLCASs are linked together by a similarity value join
and our system will transform this query into Query 3
in Figure 5. Furthermore, the mlcas marked variables do
not always have to represent descendant elements with
respect to the document root. If the user has a better un-
derstanding of the document structure, she can explicitly
specify the part that she knows and leaves the part that
she doesn’t know to the system. Consider the query:

for $r in doc(“bib.xml”)//bib[1],
$a in mlcas $r//author,
$b in mlcas $r//author

where $a/text() = “Mary”and $a != $b
return $b

The user here explicitly wants the two authors to be
within the first bib element, she does so by associating
the first bib element with the variable $r, and marking
the relationship between $r and the two authors with
mlcas. The system will then take all authors that are
descendants of the first bib element and try to compute
MLCASs from those nodes only. The transformed query
is not shown, and is similar to Query 2 in Figure 5: it is
slightly different on account of the additional $r binding.

Transformation algorithm: Here we describe the
algorithm that accomplishes the above transformations
in a brief outline, not the complete presentation, due to
the space limitation. The algorithm begins by taking
an arbitrary expression (XQuery, XPath, binary condi-
tion, etc.) as its input. If the expression does not have
any XQuery (i.e. FLWOR block) inside, it is simply re-
turned as it is. Otherwise, the algorithm extracts all
mlcas marked variables within the XQuery at the current
nesting level into a mlcas function in the where clause of
the mlcas-embedded XQuery to be returned. The pro-
cedure repeats for each nested XQuery it recursively ex-
tracts from the input expression. As a result, each nested
query with mlcas keyword will have one and at most one
single mlcas condition, which is consistent with our in-
tention that all mlcas marked variables in a single query
block belong to the same MLCAS.

3.2 Term Expansion

While mlcas-enhanced XQuery addresses the issue of
structure ambiguity, it still relies on the correctness of
element tag names in a given query. For example, in
the queries shown in Section 3.1, if the document be-
ing queried upon uses au instead of author to denote
the concept of author, none of the queries will be able
to generate the correct results. In an ad hoc informa-
tion retrieval task, a casual user is as unlikely to have
perfect knowledge of those tag names as to have the per-
fect knowledge of the structure relationships. We call
this issue tag name ambiguity : the discrepancy between
a query term and its actual tag name counterpart in the
document. According to [14], less than 20% of people
choose the same term for a single well-known object. Al-
though the statistics with regard to the tag name usage
in XML data is not available, we expect the same issue
will be common. In fact, in the real data we collected

from the web, people use different names–“paper”, “pub-
lication”, “pub”–to mean the same concept. Apparently,
mlcas-enhanced XQuery is still not schema-free. To re-
solve this problem, we propose to add a simple function
expand to standard XQuery, indicating the user’s lack of
knowledge of the exact tag name. The system will then
expand the particular tag name to match its equivalents
in the XML document based on a domain-specific the-
saurus1. For example,

for $a in mlcas doc(“bib.xml”)//expand(author),
$b in mlcas doc(“bib.xml”)//title

where $a/text() = “Mary”
return $b

The tag name author in the query is indicated by the
expand function as not exact, and can be matched to au
by the system if au is recognized as the synonym of au-
thor based on the domain-specific thesaurus. The tag
name title, however, is not marked (the user is sure of
the exact spelling) and will not be expanded. This re-
flects the principle of Schema-Free XQuery: helping the
user construct meaningful query when the knowledge of
schema (in terms of both structure and tag name ambi-
guity) is missing, while giving the user power to express
the exact meaning when the knowledge of the schema is
present. In addition to domain-specific synonyms, an
ontology-driven hierarchical thesaurus can be applied.
For example, in Figure 1, both book and article can be
regarded as a kind of publication. Therefore, a query
tag name of publication can be expanded to match both
book and article even though they are not considered
as the same concept. Incorporating this ontology-driven
term expansion into our framework raises some interest-
ing issues (e.g., how to efficiently determine one term is
contained in another) and is the subject of our future
work. In the next paragraph, we describe our approach
of implementing domain-specific synonym expansion.

Given the thesaurus, a naive implementation of term
expansion is to issue multiple queries, each with the to-
be-expanded tag name replaced by one of its synonyms
in the thesaurus. However, the time cost is proportional
to the total number of synonyms of all the expand marked
tag names in the query. This is very expensive especially
when the query evaluation cost is high. Here, we propose
a more efficient approach using term normalization. For
each set of synonyms within the thesaurus, one of them is
designated as the standard (or normalized) form. When
building tag name index on the XML document, two in-
dices are built: one is the regular tag name index with
the tag name as it is in the document as the key; the
other is the normalized tag name index, where only the
normalized form is used as the key. Whenever an element
with a non-standard tag name is to be added to the nor-
malized index, the standard tag name is fetched and the
element is added to the position keyed by the standard
tag name. At query time, if a tag name marked with the

1If the actual schema for the document(s) is available, the the-
saurus can be derived from the actual schema. Otherwise, such a
domain-specific thesaurus can be developed either by domain ex-
perts or through some standard information retrieval techniques
like bootstrapping. In the worst case, a universal thesaurus like
WordNet [2] can be used.
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StackNode  {

NodeType  head; //an input node

int maxID;

ListNode EList[m];// m: total  number of input lists

bitset relBits [m];}

ListNode {

NodeType  node;

int min;}

Figure 6: Data structure of stack node

expand function in the query is non-standard, the stan-
dard name will be fetched and used as the key to the
normalized tag name index. Using this approach, with
some space overhead of storing the normalized tag name
index (the index is built only once when the document
is loaded and updated independent of queries, therefore
its time cost has no impact on the query time), only one
user query (with all expand marked tag names normal-
ized) needs to be evaluated, the result is a faster query
response time. We note that term expansion works only
when query terms that are semantically close to the tag
names in the XML data are provided: we expect this to
be a reasonable assumption.

3.3 Summary

Marking structurally ambiguous elements with mlcas key-
word and ambiguous tag names with expand function en-
ables a user to query XML documents without perfect
knowledge of either the structural relationship among
the elements or their tag names. XQuery equipped with
these two features has effectively become schema-free:
the user only needs minimal knowledge of the schema to
issue a query that is far more meaningful than a keyword
query and far more flexible than the standard XQuery.

4 Computing MLCAS

MLCAS computation is central to Schema-Free XQuery
evaluation. In Section 4.1, we show how MLCAS can be
evaluated as a composition of standard access methods
likely to be available in most XQuery engines. In Sec-
tion 4.2, we present a more efficient algorithm for com-
puting MLCAS directly.

In the ensuing discussion, for a Schema-Free XQuery
with an embedded function mlcas(e1, e2,. . . , em), where
ei are the elements involved in the MLCAS, we use
IList[i] = {a11, a12, . . . , a1ni} ⊆ N , to represent a
list of nodes matching ei (1 ≤ i ≤ m) in the XML data.

4.1 Basic Implementation

Computing MLCAS can easily be implemented using the
existing query standard operators. The basic idea is to
find all the ancestors for each node in the ILists, and join
nodes sharing common ancestors into trees such that the
“leaf level” contains exactly one node from each IList,
and each leaf node has descendant-or-self relationship
with the root. For any pair of trees, we eliminate the
one whose root is an ancestor (in the database tree) of
the root of the other, as it conflicts with the definition
of MLCAS (Definition 2.6). The remaining trees are re-
turned as the MLCASs.

Theorem 4.1 The time complexity of the straightfor-
ward implementation is O(hm

∏m
i=1 ni), where h is the

height of the XML data tree.

MLCAS (I1, I2, . . . , Im):
0.let the set of input nodes from I1, I2, . . . , Im be I
1.while (unprocessed input or stack is not empty)
2. let tmin(from Iindex)be the node with smallest StartPos in I
3. while (stack is not empty &&
4. tmin is not a descendant of current stack top)
5. /* pop the top element in the stack */
6. popped = stack→Pop(), top = stack→Top()
7. if (popped and its Elists contain MLCASs)
8. output popped /*no more MLCAS on current stack*/
9. while (stack is not Empty) stack→Pop()
10. /* popped will not be a root of any MLCAS*/
11. else if (popped→head is a child of top→head)
12. mark all the non-empty Elists of popped as Related
13. /* if popped qualified to be part of an MLCAS */
14. if (for any i, popped→Elist[i] or top→Elist[i] is empty)
15. top→AppendLists(popped→GetLists()
16. else if(for any i,j(i 6=j),if top→ElistsRelated(i,j)=true
17. then popped→ElistsRelated(i,j) = true)
18. if(exists i,j(i 6=j) that top→ElistsRelated(i,j)=false
19. && popped→ElistsRelated(i,j)=true)
20. /*delete nodes unqualified to be in an MLCAS*/
21. delete all nodes from top→Elist[i], top→Elist[j]
22. top→AppendLists(popped→GetLists())
23. else let pt = popped→head→GetParent()
24. mark all the non-empty Elists of popped as Related
25. popped→ReplaceHead(pt) /*replace with parent*/
26. stack→Push(popped)
27. if (stack is empty)
28. stack→Push(tmin), top = stack→Top()
29. top→SetMaxID(0)
30. /*set min of newnode be 0*/
31. newnode=NewListNode(tmin, 0)
32. top→Elist[index]→AppendNode(newnode)
33. else
34. oldtop = stack→Top(),stack→Push(tmin)
35. top = stack→Top()
36. top→SetMaxID(oldtop→GetMaxID())
37. /*assign min to distinguish nodes of different MLCASs*/
38. if (oldtop→Elist[index] is empty)
39. newnode=NewListNode(tmin, oldtop→GetMaxID()
40. else if(oldtop→Elist[index] not Related with other Elists)
41. newnode=NewListNode(tmin,oldtop→GetMaxID())
42. else
43. top→SetMaxID(oldtop→GetMaxID()+1)
44. newnode=NewListNode(tmin,top→GetMaxID())
45. top→Elist[index]→AppendNode(newnode)
46. read I for the next tmin

Figure 7: Algorithm MLCAS: it finds all MLCASs for the
input nodes, and returns the root node for each MLCAS. Each
input list Ik (1 ≤ k ≤ m) is a set of nodes of the same entity
type, sorted by StartPos.

The maximum number of ancestors each input node
may have is h − 1; the number of combination possi-
ble of one node from each Ilist is

∏m
i=1 ni. During the

node merging process, for each node (a node from an
IList or one of its ancestors), we attempt to join it with
all the nodes from other ILists and their ancestors; for
each such merge, one pass is made over the entire set
of nodes and ancestors, excluding other nodes from the
same IList and their ancestors. The time complexity for
the merge process thus is O(hm

∏m
i=1 ni). The remaining

operations are in proportion to the number of trees gen-
erated from the merge process, which is O(hm

∏m
i=1 ni).

Hence, the total time complexity of this approach is
O(hm

∏m
i=1 ni).

4.2 Efficiently Computing MLCAS

Computing MLCAS using the standard operators, as de-
scribed above, is simple, but expensive. To efficiently
compute MLCASs, we developed a new operator specif-
ically for this purpose, and an evaluation method tai-
lored for it. Our algorithm is inspired by the stack-based
family of algorithms for structural join [6, 7, 8, 10], and
is limited to XQuery implementations that can support
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stack-based structural joins.
Let the position of a node in the XML tree be rep-

resented as (DocID, StartPos, EndPos, Level)2, and
let each IList be sorted by (DocID, StartPos). The basic
idea is to perform one single merge pass over the nodes
in ILists, in the order of their (start) position in the
database tree, and conceptually merge them into rooted
trees containing MLCASs. Within each such tree, the
root is an MLCA of the inputs, and the leaf level con-
tains all the nodes from different MLCASs sharing the
same root. Identification numbers are then used to dis-
tinguish nodes from different MLCASs. Each node may
have many ancestors: they are not looked up until re-
quired. Furthermore, a node is retrieved only once even
if it is an ancestor of multiple nodes in the ILists.

The main data structure of the algorithm is a stack,
with the head of each stack node being a descendant
of the head of the stack node below it. Details of the
data structure of the stack node are shown in Figure 6.
Each stack node is also associated with lists of elements
(Elists); each element from Elist[i] comes from the cor-
responding input list Ilist[i] (1 ≤ i ≤ m), and has
descendant-or-self relationship with the head. Some
Elists may be marked as Related with each other, in-
dicating that the MLCA(s) of nodes from these lists are
descendant of the head3. Intuitively, one may view a
stack node as a tree, with the head being the root, and
the elements in the Elists being the leaf nodes.

The full algorithm is shown Figure 7. Here, we walk
through it using an example. Consider the XML doc-
ument in schema A in Figure 1 and Query 3 in Fig-
ure 5. For the function mlcas($y, $a1, $t1), the input
lists are IList[1]={3,12}, IList[2]={6,9,10,15,18}, and
IList[3]={5,8,14,17}, matching elements year, author,
and title, respectively (we ignore term expansion here for
the simplicity of illustration). Inputs (nodes) are fetched
in ascending order of their StartPos and the first input
being read is element 3 (a year), which is simply pushed
onto the empty stack (lines 27-32) (Figure 8(a)).

The algorithm then reads in the next element with
smallest StartPos, 5 (a title), which is not a descendant
of the stack top. The current stack top 3 is therefore
replaced with its parent 2 (lines 23-26) and added to the
ELists of 2. 5 is now a descendant of the new stack top
2, and is pushed onto the stack (Figure 8(b)). Similarly,
when 6 is read in, we replace 5 with its parent 4, and
then push 6 onto the stack (Figure 8(c)). Note that this
is a subtle, yet important, optimization to the algorithm:
we access an ancestor node only when it is needed to
compute MLCASs.

Element 8 is read in next and it is again not a de-
scendant of the stack top 6. However, at this time, each
stack node is a child (not just descendant) of the stack

2DocID: the identifier of the document; StartPos/EndPos: gen-
erated by counting word numbers from the beginning of the doc-
ument until the start of the element and the end of the element,
respectively; Level: the nesting depth of the element. Notice that
a node can be identified by the pair (DocID, StartPos).

3Bitset array relBits is used to denote which lists are related
with each other at a level lower than that of the head node. Due
to space limitation, we use the simple notion of marking lists as
Related, and will not discuss the details of how to manipulate
relBits in this paper.
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Figure 8: State of stack during evaluation of ml-
cas($y, $a1, $t1). Each square bracket contains the min value
used to distinguish nodes from different MLCASs.

node below it. The stack top and its Elists are therefore
recursively appended to the stack node below it (lines
11-22)4. Note that a node is retrieved only once even
if it is an ancestor of multiple nodes. Such optimiza-
tion reduces unnecessary index access and contributes to
computational saving. With 2 now being the stack top,
8 is pushed onto the stack (Figure 8(d)). Note that the
min value assigned to 8 is different from that of 5. The
meaning and usage of min will be discussed later.

The process of adding 9 and 10 is similar to that of
adding 5 and 6 (Figure 8(e) and (f)). When 12 is read in,
as what happens with 8, the stack top and the associated
Elists are recursively appended to the node below it. Fi-
nally, stack top 2 is found to contain no empty Elists
(indicating that it contains MLCASs), and popped as
output. It is guaranteed that all the MLCASs sharing
2 as the root have been found (in the Elists). We then
push 12 onto the empty stack (Figure 8(g)). The algo-
rithm continues until there is no input element and the
stack is empty.

Identification numbers [min,max] are used to distin-
guish different MLCASs. min is assigned for each input
element when it is added to the stack (lines 34-45), while
max equals min(nextMin−1,∞), where nextMin refers
to the min value of the next element in the same list. El-
ements from Related Elists with compatible identifica-
tion numbers, i.e., the intersection of their identification
numbers is non-empty, belong to the same MLCAS(s),
while element from not Related Elists may belong to the
same MLCAS(s), regardless of their identification num-
bers. When a node is popped from the stack with asso-
ciated ELists, such numbers are used to identify nodes
(in Elists) belonging to the same MLCAS and construct
MLCASs.

Theorem 4.2 The time complexity of the stack-based
MLCAS algorithm is O(h

∑m
i=1 ni +

∏m
i=1 ni), where h

denotes the height of the XML data tree.

The intuition is as follows. Each input element, and
its ancestors, may be pushed onto the stack at most once,
and when on the stack, be popped from stack, appended
to, or deleted from an Elist associated with another node
at most once (the ELists are implemented as linked lists,
with start and end pointers; appending or deletion can

4First add 6 and its Elists to 4; then add 4 and its Elists to
2; finally, 4 is removed since it does not belong to any IList.
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be performed in unit time). Since each stack operation
falls into the one of those constant time operations, the
time complexity is O(h

∑m
i=1 ni). Finally, the time re-

quired for merging MLCASs from the output trees is lin-
ear in the output size. In the worst case, all MLCASs
share the same root and each node in a list is meaning-
fully related with every node from other lists. In such
a case, the time required for the merge process will be
O(

∏m
i=1 ni). Putting all together, we get a time com-

plexity of O(h
∑m

i=1 ni +
∏m

i=1 ni) for our stack-based
algorithm. Clearly, no competing algorithm that has the
same input lists, and is required to compute the same
output, could have better asymptotic complexity, since
each input has to be read and each output has to be
computed.

5 Experimental Evaluation

We implemented Schema-Free XQuery using the Timber
native XML database [1, 19] and evaluated the system
on two aspects: 1) search quality, which is evaluated us-
ing both a standard XML benchmark (Section 5.1) and
a heterogeneous data collection (Section 5.2); 2) search
performance, where we measure the overhead caused by
evaluating schema-free query versus the schema-aware
query (Section 5.3).

Throughout this section, the quality of a search tech-
nique was measured in terms of accuracy and complete-
ness using standard precision and recall metrics, where
the correct results are the answers returned by the cor-
responding schema-aware XQuery. Precision measures
accuracy, indicating the fraction of results in the ap-
proximate answer that are correct, while recall measures
completeness, indicating the fraction of all correct results
actually captured in the approximate answer.

We note here that information retrieval systems can
usually trade off precision against recall by choosing a
different threshold value for a scoring function used to
evaluate candidate results. A high threshold will return
results only with a high score, giving good precision at
the expense of recall. A low threshold will have the op-
posite effect. Evaluation of IR systems usually includes a
precision-recall curve representing this tradeoff. Schema-
free XQuery is still a database query language, and does
not use any scoring functions in its evaluation. As such,
there is no possibility of returning more or fewer results,
and so no possibility of establishing a precision-recall
curve.

5.1 Search Quality: XMark

XMark: XMark is a popular benchmark and its queries
pose a wide range of challenges: from stressing the tex-
tual content of the document to ad-hoc data analysis [3].
We generated the XMark data set using a factor of 0.45,
which had 1.45 millions of nodes and occupied 179 MB
when loaded into our database. Indices with a total size
of 106MB were also built.

To evaluate the relative strength of Schema-Free
XQuery, we compared it with two techniques that sup-
port search over XML documents without knowledge of
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Figure 9: Precision and recall of different search strategies
on XMark. Missing bars indicate a value of zero.

XML schema: Meet [22] and XSEarch [11]. Meet pro-
poses to find the LCA for the set of keywords given in
the query and return the subtree rooted at the LCA
as the answer to the query. XSEarch is considered su-
perior to a pure keyword based approach as it distin-
guishes tag names from textual content and has a bet-
ter way of determining meaningful relationships among
nodes based on the document structure (for our compari-
son, we adopted the all-pairs strategy of XSEarch, which
is more competitive in search quality).

We expanded each original natural language query
into a keyword search query, an XSEarch query, and a
Schema-Free XQuery. We also wrote a schema-aware
XQuery for each query and each XML document (differ-
ent documents have different schema and a schema-aware
XQuery has to be constructed for each of them). We ob-
tained the correct answers by running the schema-aware
XQuery and additionally verified correctness manually.

Result: Figure 9 presents the precision and recall
of the three techniques for XMark. Schema-free XQuery
(MLCAS) achieved perfect precision and recall for all the
queries (i.e., all the results returned by mlcas-embedded
XQuery were correct and all the possible correct results
were returned). In contrast, Meet and XSEarch per-
formed poorly on many of the queries, especially those
with dynamic search conditions, or requiring complex
manipulations such as ordering or grouping (Queries 5,
6, etc.). In particular, the root of the structure returned
by Meet is on average 3 levels higher than the root of
the correct structure: this observation indicates that a
simple subtree rooted at LCA of the keywords, although
usually covers the correct segments of interest, too often
includes much irrelevant information, and cannot be eas-
ily manipulated to generate correct answers. Even for
queries with simple constant search conditions and re-
quiring no further manipulation (Queries 1, 4, etc.), Meet
and XSEarch often produce results that are correct but
too inclusive (we have counted those as correct answers
in the Figure 9): unrelated elements are returned along
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with the meaningful ones.

5.2 Search Quality: Publication Collection

In working with XMark, we certainly knew its schema.
We tried not to let this influence our specification of
Schema-Free XQuery, and believe that we were success-
ful in this. Nevertheless, a skeptic may have reason to be
suspicious of our results. One way to address this con-
cern is to work with heterogenous schema. But now we
face the problem that there is no standard heterogeneous
XML benchmark, so we decided to focus on a set of mean-
ingful queries and search for a collection of heterogeneous
data set to accommodate them. Queries from XMark
were considered first, but unfortunately, real-world auc-
tion data required by XMark were not publicly available.
We noticed, however, that “XMP,” a comprehensive set
of queries from XQuery use case [24], were largely based
on bibliography documents, which were relatively easy
to collect from the web. We therefore decided to use the
11 queries5 from “XMP,” plus an example query (also
based on bibliography data) from XSEarch [11] for this
part of evaluation.

Publication collection: We manually collected per-
sonal publication lists from 300 faculty personal home-
pages in a large research university6 to serve as the
data set for the “XMP” queries. Those publication lists,
while obtained from the real world, are semantically close
enough to the bibliography data such that our “XMP”
query set can be applied with only minor changes (e.g.,
tag name year is used to replace price, which is not in the
data set but has similar characteristics). These publica-
tion lists, despite the similarity in their semantics, vary
greatly in terms of structure and normalization rules. In
fact, if we rewrite them into XML documents, a total of
72 distinct schemas are found. However, many of these
schemas either have equivalent structures or only differ
from each other in minor details (e.g., a few include ab-
stracts while most do not). If we group the lists based
on their structural similarity, the union of the schemas of
the lists within each group can then be used to represent
all the lists in the same group. We refer to each group
as a schema family. Schemas within a schema family are
similar and therefore tend to have similar effects on the
search quality for different search techniques. We identi-
fied six schema families for the 300 personal publication
lists collected, and present results for one representative
document from each.

Result: Figure 10 shows the average7 precision and
recall of the three techniques over the set of “XMP”
queries against the publication collection. For all the
queries, Schema-Free XQuery achieved perfect precision
and recall, while Meet and XSEarch had poor precision
and recall for many queries. This result demonstrates
the robustness of Schema-Free XQuery against changes
in document schema, considering that for each original

5Q12 is not included since set comparison is not yet supported
in Timber.

6This includes all the personal homepages from four depart-
ments (123 in all), and a few randomly chosen personal homepages
from 21 other departments (177 in all).

7Over the six representative documents
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Figure 10: Average precision/recall of different search strate-
gies for publication collection with term expansion. Missing
bars indicate a value of zero.

natural language query, we ran exactly the same schema-
free query on all the publication lists.

Although Schema-Free XQuery achieved 100% preci-
sion and recall for all of our queries, it does not imply
that Schema-Free XQuery guarantees such perfect search
quality for any dataset and/or any query. For instance,
if we change the XML document shown in Figure 1(A)
such that author node 6 and title node 8 are removed,
for Query 1 in Figure 1, Schema-Free XQuery will return
(5,3) as the result, while the correct answer should be
(empty,3). Our extensive experimental evaluation sug-
gests that such instances are uncommon.

Term expansion was employed for all the three strate-
gies investigated in this comparison. The absence of term
expansion reduced the average precision and recall of
about half of the queries for all three strategies (Fig-
ure 11). It is not a surprise to see that a mismatch on
even one single tag name could reduce the search quality
significantly. If no nodes with the correct tag name can
be found, one can obviously not find MLCAS, all-pair R
answer, or LCA.

5.3 Search Performance

We measure the performance of Schema-Free XQuery in
terms of simplicity and efficiency. To evaluate simplicity,
we compare the number of operators in the evaluation
plan generated for the mlcas-embedded XQuery and the
corresponding XQuery, with mlcas computation being
considered a single operator. To evaluate efficiency, we
compare the time cost of evaluating an mlcas-embedded
XQuery, with both the basic and the stack-based imple-
mentation of MLCAS computation, with that of evalu-
ating a schema-aware, fully specified XQuery. For these
experiments, the XMark data set worked fine, but the
heterogeneous publication collection was too small to be
interesting. Instead, we used the DBLP data set [20],
which was of sufficient size to show non-trivial running
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Figure 11: Average precision/recall of different search tech-
niques for publication collection without term expansion.

time while still within the bibliography domain such that
the queries evaluated in the experiments above could ap-
ply. This data set comprised nearly 86 millions nodes,
and occupied 957 MB for the data and 437 MB for the
indices when loaded into our database.

The experiments were carried out on a Pentium III
PC machine (800 MHz CPU, 512MB RAM, 120GB hard
drive) running Windows 2000 Professional. The Timber
buffer size was set to 64KB. We excluded the time for
query parsing and evaluation plan generation in all the
cases. Each query was run five times for each XML doc-
ument with a cold operating system cache. The average
running time was used in the performance evaluation.
Note that for COMPOSE (the basic implementation for
computing MLCAS previously discussed in Section 4.1),
the execution time for some queries is marked as DNF,
which means that the execution was killed when it did
not finish within 7 hours.

Results: Figure 12 shows that evaluation plans gen-
erated by mlcas-embedded XQuery for the “XMP”
queries on DBLP data are usually simpler than those of
XQuery, with 2 fewer operators on average, an approx-
imately 25% savings in plan generation. Furthermore,
unlike the schema-aware XQuery, the same evaluation
plan can be generated once and used over multiple doc-
uments with different schemas.

Table 1 reports the actual execution time of ml-
cas-embedded XQuery, both the stack-based algorithm
(MLCAS) and the basic algorithm (COMPOSE), and
schema-aware XQuery (XQuery) for the “XMP” queries
on DBLP data. Our stack-based MLCAS algorithm
speeds up the processing of mlcas-embedded XQuery
by approximately 16 times, often reducing the execution
time from more than 7 hours to less than 30 minutes.
The capability of Schema-Free XQuery does not require
expensive cost in performance. The overhead of ml-
cas-embedded XQuery using MLCAS algorithm is be-
tween 100% and 300%, with the exception of Q8 and
Q9. There is no overhead for these two because they
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Figure 12: Average number of operators in evaluation plans
generated by schema-aware XQuery (XQuery) and mlcas-
embedded XQuery (MLCAS) for “XMP” queries on DBLP.

Query XQuery MLCAS COMPOSE
1 530 1533 25621
2 290 1173 DNF
3 527 1421 DNF
4 479 1665 26591
5 1132 2518 DNF
6 371 1116 DNF
7 552 1469 24590
8 240 243 241
9 237 240 240
10 367 1456 24536
11 511 1321 DNF
12 473 1088 DNF

Table 1: Performance (seconds) of XQuery, MLCAS, and
COMPOSE for the “XMP” queries on DBLP.

involve only one tag name, and thus no computation of
MLCASs is needed. The existence of such overhead is
expected. mlcas-embedded XQuery usually has to pro-
cess more data than its schema-aware counterpart: the
filtering of results according to the search conditions is
done after the computation of MLCASs, while in schema-
aware XQuery, most such filtering is done at data fetch-
ing time. In our future work, we will exploit optimization
techniques to reduce such overhead.

Results for XMark are similar: over 20 different query
types, the geometric mean of the running time of mlcas-
embedded XQuery is 26.2 seconds, while that of schema-
aware XQuery is 12.3 seconds. We cannot compute the
geometric mean of the running time for COMPOSE,
as 11 out of 20 queries failed to finish within 7 hours.
The overhead for mlcas-embedded XQuery, compared
to schema-aware XQuery varied from 0% to 250%.

6 Related Work

Extensive research has been done on structured declar-
ative queries as well as on keyword based text search.
In recent years, there has been interests in techniques
that merge the two. BANKS [4], DBXplorer [5], and
DISCOVER [18] attempt to apply keyword search on re-
lational database. In those studies, a database is viewed
as a graph with objects/tuples as nodes and relationship
as edges, and sub-graphs of the database are returned
as answers to the original keyword query. Similar ap-
proach has also been taken to apply keyword search in
XML documents (e.g., XKeyword [17] and XRANK [15]).
Ranking mechanisms have been applied to the search re-
sults such that results with perceived higher relevance
are returned to the user first. All such keyword search
approaches suffer from two drawbacks: (1) they do not
distinguish tag name from textual content; (2) they can-
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not express complex query semantics.
A number of attempts have also been made to sup-

port information retrieval style search by expanding
XQuery [9] or other structured query languages (e.g.,
XXL [23], XIRQL [13], and [12]). These approaches re-
quire a user to learn the query semantics and in cases
where a user is unaware of the document structure,
they do not exploit any document structure. Other ap-
proaches (e.g., LOREL [21] and Meet [22]) created query
languages to enable keyword search in XML documents
and exploit some structural information that is not spec-
ified in the query. The differences between those ap-
proaches and ours are that we eliminate any requirement
for path expressions, and we exploit the document struc-
ture better to identify results that are more meaningful.

A recent closely related work is XSEarch [11], which
attempts to return meaningful results based on query as
well as document structure using a heuristic called in-
terconnection relationship. In XSEarch, two nodes are
considered to be semantically related if and only if there
are no two distinct nodes with the same tag name on the
path between these two nodes (excluding the two nodes
themselves). Queries are allowed to specify tag names
and attribute value pairs. However, interconnection does
not work when two unrelated entities are present in en-
tities of different types. For example, two author nodes
may be considered as interconnected, even though one of
them belongs to an article node and the other belongs
to a book node. Moreover, due to the simple query se-
mantics used, XSEarch suffers from drawbacks similar
to keyword search methods: difficulty to express com-
plex knowledge semantics. The MLCAS operator, on the
other hand, takes full advantage of well-defined XQuery,
and enables the user to take more control of the search
results without knowing the document structure.

Finally, the REVERE system allows query answer-
ing across schemas by deploying schema mapping and
query rewriting techniques [16]. Users are still required
to have extensive knowledge of at least one schema to
pose queries. No experimental evaluation on the effec-
tiveness of the system has been reported.

7 Conclusion

The main contribution of this paper is to show that a
simple, novel XML document search technique, namely
Schema-Free XQuery, can enable users to take full ad-
vantage of XQuery in querying XML data precisely and
efficiently without requiring full knowledge of the docu-
ment schema. At the same time, any partial knowledge
available to the user can be exploited to advantage. We
have shown that it is possible to express a wide vari-
ety of queries in a schema-free manner and have them
return correct results over a broad diversity of schema.
Given its robustness against schema changes, Schema-
Free XQuery is potentially of value in a data integra-
tion or data evolution context where one would like a
query written once to apply “universally” and “forever”.
We also devised a stack-based algorithm for the MLCAS
computation at the heart of schema-free query. Exper-
iments showed that this algorithm was up to 16 times
faster than a basic MLCAS computation using standard

operators. Schema-free queries evaluated with this stack-
based algorithm incurred an overhead no more than 3
times the execution time of an equivalent schema-aware
query. Future directions for research include ontology-
driven term expansion and further optimization of query
processing by exploiting possibilities of pushing MLCAS
calculation further down in the evaluation plan. We also
intend to investigate techniques for applying MLCAS to
queries involving attributes and references. Finally, we
intend to use more sophisticated IR techniques where
appropriate in schema-free queries.
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