
SCHEMA TRANSFORMATION TECHNIQUES FOR

DATABASE REVERSE ENGINEERING

J-L. Hainaut, C. Tonneau, M. Joris, M. Chandelonl,

ABSTRACT - The paper presents a DBMS-independent database reverse engineering (DBRE) methodology
based on a generic process model and on transformation techniques. DBRE is proposed as a two-phase process
consisting in recovering the DBMS-dependent data structures (data structure extraction) then in recovering their
semantics (data structure conceptualization). The second phase, that is strongly linked with the logical design phase
of current database design methodologies, can be performed by application of a selected set of standard schema
restructuring techniques, or schema transformations. The paper illustrates the methodology by applying it to
various DBRE processes : removing optimization structures, untransfating Relational, COBOL, CODASYL,
TOTAL/IMAGE and IMS database as well as file structures, and finally conceptual normalization.

KEY WORDS : database design, dabase reverse engineering, schema transformation, schema equivalence

1. INTRODUCTION
Reverse engineering a piece of software consists, among others, in recovering or reconstructing its functional and
technical specifications, starting mainly from the source text of the programs [17] [16]. Recovering these
specifications is generally intended to redocument, convert, restructure, maintain or extend old applications. It is
also required when developing a Data Administration function that has to know and record the description of all the
data existing in the organization The problem is particularly complex with existing, ill-designed applications. In
this case, not only no decent documentation (if any) can be relied on, but the lack of systematic methodologies for
designing and maintaining them have led to tricky and obscure code. Therefore, RE has long been recognized as a
complex, painful and prone-to-failure activity, in such a way that it is simply not undertaken most of the time,
leaving huge amounts of invaluable knowledge buried in the programs, and therefore definitely lost.
In duta-oriented applications, the complexity can be broken down by considering that the files or databases can be
reverse engineered (almost) independently of the procedural parts. This proposition to split the problem in this way
can be supported by the following arguments :
- the semantic distance between the so-called conceptual specifications and the physical implementation is most

often narrower for data than for procedural parts;
- the data are genetally the most stable part of applications;
- even in very old applications, the semantic structure that underlies the file structures is mainly procedure-

independent (though their physical structure is highly procedure-dependent);
- reverse engineering the procedural part of an application is generally easier when the semantic structure of the

data has been elicited.
Therefore, concentrating on reverse engineering the data components of the application first is most often more
successful than trying to cope with the whole application. Though RE data structures still is a complex task, it
appears that the current state of the art provides us with sufficiently powerful concepts and techniques to make this
enterprise more realistic.
The literature proposes systematic approaches for database schema recovering, but not as many as could be
expected when considering the current needs in industry. Let us mention [2], [25], [4] for standard files, [231, [341
for IMS databases, [l] for CODASYL databases and [3], [23], [5], [30], [7], [26] for relational databases. Even
some recent popular text books include sections dedicated to DBRE [11.
Most of these studies, however, appear to be limited in scope, and are generally based on assumptions on the
quality and completeness of the source data structures to reverse engineer that cannot be relied on in many practical
situations. For instance, they often suppose that,
- all the conceptual specifications have been translated into data structures and constraints,
- the translation is rather straightforward (no tricky representations); 1261 is one of the only proposals that process

some non trivial representations;
- the schema has not been deeply restructured for performance objectives or for any other requirements,
- a complete physical schema of the data is available,
- names have been chosen rationally (e.g. a foreign key and the referenced primary key have the same name).
In many proposals, it appears that the only databases processable are those that have been obtained by a rigourous
database design method. This condition cannot be assumed for many operational databases, particularly for the

lInstitut d’Inforrnatique, Univ. of Namur, rue Grandgagnage, 21, B-5000 Namur (Belgium) - jlhainaut@info.fundp.ac.be
353

oldest ones. Moreover, these proposals are most often dedicated to one data model and do not attempt to elaborate
techniques and reasonings common to several models, leaving the question of a general DBRE approach still
unanswered.
Concerning the CASE tools, an increasing number of products offer DBRE functionalities (let us only mention the
Bachman re-engineering toolset). Though they ignore many of the most difficult aspects of the problem, these tools
provide their users with invaluable help to carry out DBRE more effectively [28].
This paper presents some aspects of a rigourous framework in which DBRE can be studied with greater generality.
In particular, this framework encompasses all the standard database models currently in use and it can cope with
empirically designed databases. First, the paper develop a schema specification model that is able to describe both
conceptual and technical data structures (Section 2). Section 3 analyses the concept of schema transformation and
describes some representative techniques. Section 4 proposes to revisit the database design activity as a sequence
of transformations in order to understand how a conceptual schema can be translated into executable descriptions.
In section 5, a generic model of database reverse engineering is proposed. This model relies heavily on schema
transformation techniques. Then the paper describes schema transformations to cope with optimization of data
structures (section 6). Section 7 examines how conceptual structures can be translated according to the specific
model of a data management system (DMS2) and proposes techniques to recover the origin structures from
relational, COBOL, CODASYL, TOTAL/IMAGE and IMS schemas. Section 8 proposes schema transformations
dedicated to conceptual normalization.

2. SCHEMA SPECIFICATION MODEL
Database design and reverse engineering are concerned with building, converting and transforming database
schemas at different levels of abstraction. Elaborating DMS-independent and even methodology-independent
techniques and reasonings that support these activities requires the availability of a set of models to express all these
schemas. Due to the transformational approach adopted in this presentation, and due to the large scope of the
proposal that encompasses all the traditional levels of abstraction, it has been found essential to base it on a unique
schema specification model. This model and its transformational operators are intended,
l to support forward as well as reverse engineering,
l to express conceptual, logical and physical schemas, as well as their manipulation,
l to support any DMS model and the production and manipulation of their schemas.
In short, conceptual schemas as well as physical schemas are expressed into a unique, generic, extended entity-
relationship model. To make the presentation clearer, we shall distinguish two layers of features in the model,
comprising the conceptual and technical features respectively. Here follows a brief description of the concepts of
the model. A more comprehensive specification can be found in [131; formal foundations of most aspects of the
model are proposed in [lo].
The conceptual layer consists of the features of the standard entity-relationship model with some extensions. It
includes the following concepts, most of them being illustrated in Fig. 2.1 :
l entity type, comprising any number (including zero) of attributes;
l IS-A hierarchy (Fig. 8.3),
l relationship type (called rel-type from now on), comprising two or more roles and any number of attributes; a

role is taken by one or several entity types (multi-ET role), and is given a cardinality constraint [min-max] that
states the minimum and maximum number of relationships in which any entity takes this role;

l an attribute is either atomic or compound; an atomic attribute has a domain of values; each attribute is given a
cardinality constraint3 [min-max] stating how many values can be associated with its parent object (i.e. entity
type, rel-type, compoud attribute); a multivalued attribute (cardinality max > 1) can be pure (set of values), bag
(multiset of values) or list (indexed set or multiset);

l an entity type can have any number of (candidate) identifiers, including zero; an identifier is made of attributes
and/or roles (i.e. connected entity types)4; one of the identifiers can be declared ptimary;

l a t&type has at least one identifier made of roles and/or attributes; any role with cardinality [min-11 is an
identifier; when no identifier is specified or can be deduced, then all the roles of the rel-type form its identifier,

2 A DMS can be either a File Management System (EMS) or a Database Management System (DBMS).
3 Note that this constraint allows for the specification of optional/mandatory attributes as well as single-valued/ multivalued
attributes. In addition using this constraint for both roles and attributes stresses their duality and simplifies greatly many
transformations.
4 In [11, identifiers are called internal when they comprise attributes only, external when they include roles only, and mixed
when they are made of both.

354

l a pure or list multivalued attribute can be given an identifier which is a subset of its (grand-) children components;
l integrity constraints can be associated with these constructs; let us mention inclusion constraint (Fig. 3.7),

referential constraint5 (Fig. 3.8), redundancy constraint (Fig. 6.1), exclusion constraint, coexistence group (A
group of attributes and/or roles of an entity type whose values are simultaneously present or absent.) (Fig. 8.4)
and functional/multivalued dependency (Fig. 3.2 and 3.6).

Cardinality (a DISTRICT entity participates in
0 to N FROM t+ionships)

Relattonship type (with degree 2. or bhmy)

Role (taken by an entity type)

CUfFI-OMER .----- Enttty type

C-ID: nulnl2 Entity attrtbutes and domains:

NAME : chpr30 .------ - atomic, mandatoty. single-valued
MAlDEWNAME [O..l]: cher3@ - atomic, optional, single-valued
CHR-NAME [1..4]: charl+--l---------- atomic, mandatory, multivalued
ADDRESS [1..2]& compound, mandatory. multivalued

STREET: chel-35 component, atomic, mandatory, single-valued
CITYZ char35

PHONE W.11: char30 ---- axnponent. atomic, optional, single-valued

Relationship type (with degree 3)

Relattonship type attributes

Enttty type identifiers (underlined or
explicitly expresses)

id(CUSTOMER):DISTRICT,C-ID

id(ORDER): CUSTOMFX,PRODUCT,DATF&-- Relationship type identifier

Figure 2.1 Graphical representation of some conceptual constructs.

The technical layer includes constructs that pertain to the description of logical and physical data structures
(Figure 2.2). These features are additions to the conceptual layer described hereabove. Some of them are described
brieflv.

a fiie is a repository of entities; at this level, an entity is the abstraction of a record, segment or row;
an access key is a goup of attributes with which an access mechanism is associated; it is the abstraction of value-
based access mechanisms such as indexes, hash files, etc;
an access path is an access mechanism allowing the navigation through rel-types; it allows to specify set types
(CODASYL) and parent-child relationships (IMS) for instance;
the entities in a file, the entities linked with an entity through a rel-type and list multivalued attribute values can be
ordered according to insertion time or to a sort-key;
an attribute has a physical length, depending on its encoding scheme, and a physical position in its parent object.
Two attributes can sham the same physical position.

Access path

SUPPLY.SUP-NAMEls-in SUPPLlJZR.NAME key(SUPPLIER): NAME

) LIZZLtraint (here a

key(PART): P-ID
key(PART): NAME

referential constraint)

Figure 2.2 Graphical representation of some technical constructs together with inclusion constraints

5 This is a special case of inclusion constraint that is not based on the concept of primary key; it only requires the presence
of a (candidate) identifier in the target entity type. This allows a greater simplicity in the reverse engineering untranslation
algorithms as compared with proposals such as [23] and [7].

355

This model must be considered as a generic specification model that can be specialized into a great variety of
submodels, for instance according to the design levels or design product classes of a standard or user-defined
multilevel design method, or according to the target DBMS. Specializing the generic model into a specific
submodel can be done by stating the set of rules the schema must satisfy. Some examples can be found in [133,
including the rule sets that defines standard ER model and ORACLE v.5 model.

3. SCHEMA TRANSFORMATION

3.1 PRINCIPLES
Schema transformation is a ubiquitous concept in database design. Proving the equivalence of schemas [19],
refining a conceptual schema [l] [24], integrating two partial schemas [11, producing a DBMS-compliant schema
from a conceptual schema [27], restructuring a physical schema [22] [l], DB reverse engineering [121 [14], are
basic design activities that can be carried out by carefully chosen schema transformations . However, it has not
been often studied as an design tool of its own. Let’s only mention [193, [20], [29], [1 l] as some proposals in this
direction. However, things seem to change at the practice level, for instance in text books. [l] is one of the first
popular references that present schema transformation as a basic concept in database design. In the NIAM world,
[24] includes a chapter on conceptual schema transformations. Though developing this concept and its
formalization is beyond the scope of this document, we shall summarize the material presented in [111 to sketch the
main definitions and properties that will be important from the methodological viewpoint.

A transformation C consists of mappings T and t :
l T is a structural mapping that replaces source construct C in schema S by construct C’; C’ is the target of C

through T, and is noted C’ = T(C). In fact, C and c’ are classes of constructs that can be defined by structural
predicates. T is therefore defined by a minimal precondition P that any construct C must satisfy in order to be
transformed by T, and a maximal postcondition Q that T(C) satisfies. T can therefore be written T = cP,Q>. P
and Q are pattern-matching predicates that identify the components and the properties of C and T(C), and more
specifically : the components of C that are preserved in T(C), the components of C that are discarded from T(C),
the components of T(C) that do not exist in C. T is the syntax of the transformation.

l t is an instance mapping that states how to produce the T(C) instance that corresponds to any instance of C. If c
is an instance of C, then c’ is the corresponding instance of T(C), noted c’ = t(c). t is the semantics of the
transformation.

According to the context, C will be noted either cT,t> or cP,Q,t>.

3.2 REVERSIBILITY
The notion of reversibility is an important characteristic of a transformation. If a transformation is reversible, then
the source and the target schemas have the same descriptive power, and describe the same universe of discourse,
although with a different presentation (syntax). Reversible transformations are also called semantics-preserving.

A transformation Cl = <Pl,Ql, tl> = <T 1, t 1~ is reversible, i# there exists a transformation X2 =
CP2, Q2, t2> = <T2, t2> such that, for any construct C, and any instance c of C,

Pi(C) 3 [T2(Tl(C))=C]and[t2(tl(c)=c]

X2 is the inverse of El, but not conversely. For instance, an arbitrary instance c ’ of T (C) may not satisfy the
property c ’ =t 1 (t 2 (c 1)) . All the transformations that will be presented and discussed in this paper are
reversible.

If X2 is reversible as well, then Xl (as well as C2) is called symmetrically reversible. In this case, Z2 =

<P 1, Ql , t 2> , and both transformations can be defined through the unique notation X = <PI Q, t 1, t 2>. E is
called an SR-transformation. This is the most desirable form of transformations, and most techniques that will be
described in this paper have this SR-property 6. However, in database design, and particularly at the
implementation level, non fully reversible transformations are often used due to the unavailability of SR-
transformations. There exist two ways to degrade an SR-transformation into a simply reversible one :

6 [11 gives another definition of reversibility in terms of information equivalence of source and target schemas : “schemas
S 1 and S2 have the same information content (or are equivalent) if for each query Q that can he be expressed on Sl, there is a
query Q’ that can be expressed on S2 giving the same answer, and vice versa.” It is easy to prove that SR-transformations am
mappings between schemas that have the same information content according to this definition.

356

generalization and specialization. Generalization consists in choosing a target construct that describes more general
instances than those allowed by the source schema. Representing a one-to-one rel-type by a one-to-many ml-type
is common practice in CODASYL and IMS schemas for example. Specialization consists in choosing a target
construct that offers more properties than required by the source construct. For instance, a multivalued attribute
will generally be represented by a list attribute in COBOL and CODASYL data structures (Fig. 7.5).

3.3 NOTATION
A PROLOG-like expression of P and Q is suggested in [131. However, we shall use a more readable expression of
the transformation in which generic versions of C and T(C) are represented through ER graphical convention.

id(R) : A,B

Figure 3.1 Representation of structural mapping TI & T2 of a typical SR-transformation.

Figure 3.1 illustrates this representation by describing how a many-to-many rel-type that has attributes (i.e. the C
construct) can be replaced by a new entity type that inherits these attributes, by two one-to-many t&types, and by
an identifier (i.e. construct T(C)). The schema shows how all the constructs and properties of the source schema
are precisely defined : names and cardinality constraints for instance. It identifies also the constructs that are kept
(entity types A,B), that are discarded (&type R and its attributes), and that are new (entity type R, rel-types Rl
and Rl, attributes Al and A2) (ee [111 for more details). This transformation is generic since names A, R, Al, ..,
A2, Rl, R2,11, Jl, 12,J2 must be replaced by actual values (CUSTOMER, ORDER,QTY,.., 0, 1) in order to get
a specific transformation on an actual schema. Expression of instance mapping t depends on the model in which the
schemas are expressed. In the relational model, algebraic or calculus expressions will be used. In ER models, we
could use ad hoc algebra or ER-SQL. In DMS models, procedural expression will be adequate. From now on, we
shall ignore the t part of the transformations.
More precisely, the notation will be as follows.
C*C’ : describes how construct C is transformed into construct C = T(C). Transformation a,..> is

reversible, but its inverse is not.
Ce=C : describes how construct c’ is transformed into construct C = T(C), and therefore how c’ may be

(without garantee) the target of C. Transformation CT,..> is reversible, but its inverse is not. Replacing C by
c’ will be carried out in heuristics but should be done very carefully since C’ is more constrainted (i.e. bears
more semantics) than C.

C-C’: describes how construct C is transformed into construct C = T(C). Transformation <T,..> is
symmetrically reversible. The preferred reading of this notation is from left to right. When reading from right
to left is meant,, we shall use the qualifier reverse.

3.4 EXAMPLES OF PRACTICAL SR-TRANSFORMATIONS
It can be proved that most schema transformations that are used in practical design activities (including DBRE)
derive from three generic transformations, namely Project-Join, Extension and Identifier substitution that are
described in [ll] and [15]. They will be discussed informally through some of their most useful ER
specializations, presented as neutral techniques independently of the objectives they may satisfy and of lthe activities
in which they may be useful : forward/reverse, conceptual/logical/physical. Their axiomatization will be presented
in a future paper.

Project-Join transformations
The relational project-join decomposition [ULLMAN,88] can be applied to ER structures as well. Indeed, they can
be given a relational expression that allows them to inherit the concepts and reasonings of the relational theory [lo].
Here follows an example of the P/J transformation applied to an unnormalized rel-type (3.2) The attribute/role
components (El, El, E3, Al, A2, A3) of R are decomposed into the two subsets (El, ES, Al) and
(El, E3, E2, A2, A3) following the functional dependency El,E3 + Al. The first subset produces imel-type Rl

357

while the second one produces rel-type R2.

R: El,E3 + Al

/ Rl \

Al

O-N O-N

a i(-jlE1 ’ ’

E2 E3

i2-j2 i3-j3

w
Rl.(El,E3) = R2.(El,E3)

Figure 3.2 - Project-Join tramformation of an unnormalized rel-type

Extension transformations
This transformation, which has been described in [1 l] has a very broad field of application. Grossly speaking, the
extension transformation consists in extracting a subset of attributes and/or roles of a rel-type or of an entity type,
and in replacing them by a new surrogate entity type. This new entity type is linked to the components it replaces.
In 3.3, rel-type R has components7 (Al, A2, A3, El, E2, E3). Let us consider the subset (E2, E3, A2), extract
them from R, and replace them by new entity type X (R becomes S). Entity type X is linked to El (via Tl), E2 (via
T2) and A2 (as a proper attribute).

id(X) : E2,E3,A2

Figure 3.3 - Extension transformation of a rel-type by explicit representation of some of its components

Representing a M-type with an entity type is a popular version of this transformation (3.4). It can be applied to N-
ary, many-to-many, one-to-many, one-to-one or recursive rel-types as well. Rel-type R disappears since it is
completely represented by x.

El E2 E3

il-jl i2-j2 i3-j3

l-l - l-l
Al

A2
A3

id(X) : El,E2,E3
Figure 3.4 - Extension transformation of a rel-type by explicit representation of all its components

Transforming an attribute into an entity type is another standard application. It comes in two flavours, namely
instance representation (3.5(a)), in which each instance of A2 in each E entity is represented by an EA2 entity,
and value representation (3.5(b)), in which each value of A2, whatever the number of E entities in which it
appears, is represented by an EA2 entity.

7 The components of a rel-type comprise its roles and its attributes.
358

E

Al q
@

A2 [i-j]
A3 e :, i-j

(b>
A3

Figure 3.5 - Extension transformation of an entity type by (a) explicit representation of the instances
of one of its attributes, and (b) explicit representation of the values of one of its attributes.

A last example is the normalization of an entity type (3.6). Components (Rl . A, B2, B3)8 are extracted from entity
type B.

A B C

O-N Bl 0-N

FF

Rl B2 R2
B3

l-l B4 1-l
B2

B: A, B2+B3 l-l
-B2

B3

id(B2) : A, B2

Figure 3.4 - Extension transformation of an unnormalized entity type

Identifier substitution

A role of a M-type is replaced by an identifier of the participating entity type [9]. In 3.7, role SC9 has been
replaced by the identifier of C, namely A and B. S can be further transformed through a P/J transformation, leading
to the technique proposed in 7.12. A more general version, developed in [151 allows S to be many-to-many or N-
arY*

A B

D
D

id(C) : A,B

id(C) : A,B Sl.(A,B) in RloR2

Figure 3.7 - Role S.C is replaced by the identifier (A,B) of C.

The best known application of identifier substitution is that of the foreign key (34, which can be either multivalued
(cardinality J > 1) or single-valued (cardinality J = 1).

8 The components of an entity type are its attributes and the other roles of binary rel-types in which it takes a role with
cardinality i- 1.

g I.e. role C of rel-type S. The default name of a role is that of the participating entity type.
359

Figure 3.8 - The traditional representation of a rel-type by a foreign key : role R.B is replaced by id Bl of B.

4. DATABASE DESIGN REVISITED
Database design is a process that transforms users requirements (as well as technical requirements) into, ao.,
database schemas. Traditionally, database design has been described as made up of a sequence of four specific
processeslO,namely C~NCEPTUALDESIGN,L~GICALDESIGN,PHYSICALDESIGN and VIEWDESIGN [31]
[Il.

l The CONCEPTUAL DESIGN process is aimed at producing the conceptual schema, a computer-independent
representation of the database. Among others, this representation is to be given such desirable qualities as
normality, minimality, clarity, that can be considered as provided through a specific sub-process called
CONCEPTUALNORMALIZATION.

l Through the LOGICAL DESIGN process, the conceptual schema is transformed into a DMS-compliant optimized
logical schema with the following two characteristics : (1) it follows the data model of the chosen DMS, (2) it
satisfies operational criteria such as space and time performance 1 l. This process can be considered as being
refined, at least conceptually, into three subprocesses : schema simplification, schema optimization and DMS -
translation.
- SCHEMA SIMPLIFICATION replaces advanced constructs such as IS-A hierarchies, N-at-y rel-types by

equivalent basic constructs. The Bachman Data Structure Diagram is a popular target model of this
subprocess. The simplified conceptual schema is perceived as an adequate medium for logical reasonings
when traditional DMS are considered.

- SCHEMA OPTIMIZATION modifies the schema in order to give it better performances. Three families of
techniques are commonly used, namely unnormalization, structural redundancy and restmcturation (e.g.
vertical and horizontal fragmentation).

- SCHEMA TRANSLATION converts the schema into data structures that are compliant with the model of the
DMS. The result consists into two complementary parts : the DMS constructs, that can be controlled by the
DMS, and the non-DMS constructs, most often integrity constraints, that will be ignored by the DMS.

l The PHYSICAL DES I GN process translates the DMS constructs of this schema into a DMS-DDL text, and the
non-DMS constructs into, e.g., procedural sections or local variables of the application programs. In addition,
through physical tuning, technical parameters are set and physical constructs are built, such as indexes and
clusters.

l The VIEW DESIGN process builds the external views required by users and programs, and translates them in
DMS-DDL and application programs fragments in the same way as for the global schema.

Most of these processes can be in turn refined, directly or indirectly, into lower-level processes or operators that are
primitive schema transformations as defined in section 3 12. As an illustration, the following procedure, based on
semantics-preserving transformations, can be a simply strategy for the SCHEMA TRANSLATION instantiated for
standard relational structures.

I. for each non-jiinctional ret-type R, do : transform R into an entity type (apply 3.4);
2. while compound or multivalued attributes exist, do :

for each attribute A that is both single-valued and compound, and that depends directly on an enthy
type, do : disaggregate A (apply 7.6 (reverse));
for each attribute A that is multivalued, and that depends directly on an entity type, do : transform A
by instance representation (apply 3.5(a));

3. until no rel-type can be transformed, do :
for each rel-type R, do : if 3.8 is applicable, then transform R into reference attribute (apply 3.8);

lo A process/product model for database design description has been proposed in [133.
1 1 There are other operational requirements such as privacy, modularity or stability against future evolution. However, the
latter criteria will he ignored in this paper for simplicity.
l2 This transformational top-down refinement model is explicitly advocated in [l], [9], [133 and [29] for instance.

360

4. until no rel-types remain, repeat : for each rel-type R, do :
add an artificial attribute A to E, and mak.e A the ident@er of E;
do3;

5.
6.

make each ia!entij?er and each foreign key an access key;
remOve each access key that is a prefix of another access key;

Conclusion. Most of the processes that have been described above can be ultimately defined as sequences of
schema transformations. Since the logical and physical design processes are intended to preserve the contents of
the conceptual schema, they are themselves semantics-preserving. Therefore, they must be based on SR-
transformations. This conclusion is important when considering the DBRE problem. Indeed, the schema
transformations on which DB design relies can be used as a sound basis for reverse engineering.

5. DATABASE REVERSE ENGINEERING
Described as a design process, DBRE transforms input products, that mainly consist of source code texts, into
schemas of the database. Two schemas are of particular interest, namely the logical schema of the database
according to the DMS model, and a possible conceptual schema. Concerning the final objective of DBRE, one or
both of these schemas may be needed. The conceptual schema provides a high level description of the information
contents needed for DMS conversion, interoperability or data administration for instance. The DMS schema is
necessary for accessing or converting the data. The main input products consist in DMS-DDL description of the
global schema and of the views, either in text format, or as data dictionary contents. Essential infonnation, for
instance on untranslated integrity constraints, can be found in the source text of the application programs (procedure
and data structures), in screen layout and procedural components of the user interface and in database checking
procedures (e.g. triggers, check clauses). The physical schema may yield useful hints concerning the logical
schema (indexes suggesting foreign keys, join-based clusters, etc). File/database contents analysis may provide
strong hints, or validate hypotheses, on the presence of such constructs as identifiers, foreign keys, field layout and
value domains.
In [18] and [14], a general two-step procedure is proposed for reverse engineering any database or file collection.
It will be briefly summarized in this section. The procedure suggests that DBRE be conducted as the execution of
two processes (figure 5.1), namely DATA STRUCTURE EXTRACTION and DATASTRUCTURE
CONCEPTUALIZATION. This organization is strongly advocated by three observations. First, each process
yields one of the output schemas of DBRE, secondly they are the exact reverse of DB design processes, namely
PHYSICAL DESIGN and LOGICAL DESIGN and thirdly, they are supported by different concepts, reasonings and
techniques

l DATA STRUCTURE EXTRACTION produces a complete description of the data structures according to the model
of the DMS, e.g. COBOL file structures, CODASYL schema, relational schema, etc. In addition, the non-DMS
parts of the schema have been elicited from, a.o. the procedural parts of the applications or database contents.
According to the DMS, the process can be more or less easy. For instance, the DMS part of COBOL data
structures can be difficult to discover while CODASYL or relational schemas can be analysed quite easily. DATA
STRUCTURE EXTRACTION appears as the inverse of the PHYSICAL DESIGN forward process. Due to the
scope of this paper, we shall not develop this process any further (see [121 [181 or [141).

. DATA STRUCTURE CONCEPTUALIZATION tries to make the semantics of the logical schema explicit by
recovering the intention of the optimized DMS data structures. This process is the reverse of the LOGICAL
DES I GN forward process, and can be decomposed into three subprocesses, namely schema de-optimization,
DMS-untranslation and conceptual normalization.
- SCHEMA DE-OPTIMIZATION detects and removes the non-semantic constructs from the logical schema, and

particu-larly the optimization structures. This process appears as the inverse of the SCHEMA OPTIMIZATION
forward process.

- DMS-UNTRANSLATION detects DMS-compliant constructs and replaces them by their DMS-independent
equivalent. This process appears as the inverse of the SCHEMA TRANSLATION forward process.

- CONCEPTUAL NORMALIZATION has the same objectives as its forward engineering counterpart such as
minimality and clarity. In particular, it is intended to recover the high-level structures transformed by the
SCHEMASIMPLIFICATION.

According to this approach, each DBRE process is either a forward process or the inverse of a forward process.
Consequently, they can be based on basic schema transformations that are either forward transformations or the
inverse thereof. 361

DATA STRUCTURE
CONCEPTUALIZATION z COilCeptud

schema

Figure 5.1 - A global strategy for database reverse engineering.

The following sections propose a collection of reversible schema transformations that can form the kernel of a
database reverse engineering toolset. Chapter 6 examines how to discard and transform optimization constructs.
Chapter 7 proposes some techniques to untranslate COBOL structures, relational schemas, CODASYL schemas,
TOTAL/IMAGE schemas and IMS schemas. Chapter 8 discusses some conceptual normalization techniques. The
problem of how to apply these transformations in each of these processes, i.e. the process strategies, is not
adressed in this paper.

6. DE-OPTIMIZATION TRANSFORMATIONS
Both DMS-dependent and DMS-independent optimization processes will be considered as a whole, since they make
use of the same set of transformations, though possibly through different strategies. There are three major families
of optimization techniques based on schema transformations, namely unnormulization, structural redundancy and
restructuration. They must be precisely understood in order to reverse their effect on a schema.
of them are more specifically fitted for some DMS than for others.

In particular, some

6.1 UNNORMALIZATION REVERSE TRANSFORMATIONS

The most common unnonnalization technique consists in merging two entity types linked by a one-to-many rel-type
into a single entity type. This technique allows obtaining the information of both entity types in one logical access,
thereby decreasing the access time. On the other hand, it induces redundancies. An unnormalized structure is
detected in entity type B by the fact that the determinant of a dependency F is not an identifier of B13. Reversing
this transformation consists in normalizing the entity type by segregating its components according to 3.6. This
technique has been discussed in [111.

6.2 STRUCTURAL REDUNDANCY REVERSE TRANSFORMATIONS

Structural redundancy techniques consist in adding new constructs in a schema such that their instances can be
computed from instances of other constructs. Attribute duplication, rel-type composition and agregate
representation are some examples of common optimization structural redundancies. These transformations are
(trivially) symmetrically reversible since they merely add derivable constructs without modifying the source
constructs. The reverse transformation consists in removing the redundant constructs. The main problem is to
detect the redundancy constraint that states the equivalence of construct. Figure 6.1 depicts the elimination of a
composed &-type and of a duplicate attribute.

6.3 RESTRUCTURATION REVERSE TRANSFORMATIONS
Restructuration consists in replacing a construct by other constructs in such a way that the resulting schema yield
better performance. These techniques introduce no redundancy.
Four popular techniques are vertical partitioning and horizontal partitioning of entity types as well as their inverse.
Horizontal partitioning consists in replacing entity type A by entity types Al and A2 of identical structure in

l3 Discovering this abnormal FD pertains to the DATA STRUCTURE EXTRACTION process.

362

such a way that the population of A is partitioned into those of Al and A2. This technique yield smaller data sets,
smaller indexes and allows for better space allocation and management (e.g. backup and distribution). Its inverse,
i.e. horizontal merging, decreases the number of entity types and makes physical clustering easier. Vertical
partitioning of entity type A partitions its attribute/role components into two (or more) entity types Al and A2,
linked by a one-to-one rel-type. This partitioning is driven by processing considerations : components that are used
simultaneously are grouped into a specific entity type. This decreases the physical length of A entities, and
improves access time. Vertical merging is the inverse technique (8.1). It merges two entity types that are linked
by a one-to-one rel-type (possibly recovered from a foreign key) in order to avoid double access to get related
entities. Horizontal partitioning can be applied to &types as well. For instance the population of many-to-many
r&type R can be split into one-to-many rel-type Rl that collects selected instances, while many-to-many rel-type
R2 collects the others. The implementation of Rl will be more efficient than that of R2.
Another frequent restructuration consists in replacing some one-to-many rel-types by foreign keys, even in DBMS
supporting such rel-types (IMS, CODASYL). The argument can be to physically split the database into
independent fragments that are easier to distribute, to recover, to backup.

A.A2 = A.RI.B.BZ

R3=RloR2

Figure 6.1- A2 has been recognized (typically in the DATA STRUCTURE EXTRACTIONphase) as a duplicate
attribute and R3 as the composition of RI and R2. They are removed.

7. DMS-UNTRANSLATION TRANSFORMATIONS
This is the process that is the most dependent on the DMS. Consequently, the transformations will be classified
according to the most popular DMS, namely standard file managers (e.g. COBOL), Relational DBMS, CODASYL
DBMS, TOTAL/IMAGE DBMS and IMS DBMS. Not all the possible, nor even all the useful transformations can
be described in this paper (see [15] for instance). Therefore only some of the most needed techniques will be
discussed. As will be shown, transformations used for recovering some DBMS schemas can be used for other
models as well. Though these techniques (and some other specific ones) can be used to process object-oriented
structures, this topic has been discarded in this paper.
The reader will probably be surprised that processing of some popular constructs have been ignored in this section.
Such is the case for many-to-many rel-types, N-ary (N > 2) rel-types, attribute entity-types and IS-A hierarchies,
that are generally considered in most proposals. In fact these problems have been discarded since they are common
to all DMS and there is no general agreement on whether they must be recovered or not. Therefore they will be
addmssedinthe CONCEPTUALNORMALIZATION process.
Due to their SR-property, most transformations that will be presented can be read from left to right, in which case
they provide reverse engineering techniques, and from right to left, in which case they represent their forward
design counterpart.

7.1 COBOL file structures untranslation
The COBOL data model imposes few constraints on attribute structures. The most important one concerns
multivalued attributes, which can be represented through list attributes only. However, some programmers adopt
relational-oriented representations such as concatenation or instantiation; addressed in figures 7.3 and 7.4. In
addition, optional attributes are not explicitly represented except as multivalued attributes (.. occurs 1
depending . ..). This being said, attribute representation will be ignored.
The absence of explicit rel-type representation is a more challenging constraint that can be coped with through
techniques such as the following. The most popular representation is through foreign keys14, that can be

l4 Representing a many-to-many rel-type by a relationship record type is not explicitly mentioned. Indeed, this structure
can be recovered in two steps, first replacing the two foreign keys by one-to-many rel-types, as proposed in 7.1 and 7.7, then

363

multivalued (7.1). The referential constraint is a precondition that can prove difficult to assert in the Data strcture
extraction phase when the DMS ignores it. Detecting it will require a careful analysis of the procedural sections of
the programs, of the screen definitions or of the file contents. A useful evidence is that many foreign keys are
secondary indexes (alternate keys) as well.
identifier of B, be it primary or candidate.

In is worth to notice that the transformation requires Bl being an
Most current proposals are limited to primary identifiers.

pJ Ei e3 >

A.A3[*] in B.Bl

Figure 7.1 - Representation of a foreign key (A3) by a rel-type.

Another technique consists in implementing a one-to-many rel-type R between entity types A and B by integrating B
entities as instances of a multivalued, compound, attribute of A. Recovering the origin constructs R and B can be
done by applying transformation 3.5(a), where attribute A2 (possibly compound) of E is transformed into entity
type EA2.
Finally, a one-to-many rel-type can be represented by a sorted multi-record-type, sequential or indexed file (7.2).
The keys are structured in such a way that an A instance is followed by its associated B instances in the file
sequence. The transformation is not reversible unless a referential constraint from B.B 1 .B 11 to A.Al .A1 1 can be
proved, for instance by file contents examination. However, this physical pattern is sufficiently frequent to make
its r&type origin strongly probable.

id(B) : A, B12

type(A.Al.All) = type(B.Bl.Bll) ;d/$~l;~-~~” B1) ordw(R1.B) : sorted(B12)

typa(A.Al.Al2) = type(B.Bl.Bl2)
id(A,B) : Al ,A2

Figure 7.2 - Interpretation of a multi-record-type file as a rel-type.

7.2 RELATIONAL schema untranslation
As far as data structures are concerned, the relational model is particularly poor : single-valued and atomic
attributes, no rel-types. Therefore, the main problem is to detect representations of multivalued attributes,
compound attributes and rel-types.
A multivalued attribute can be represented by a distinct table including a foreign key referencing the main table.
This pattern is processed by first resolving the foreign key (7.7), then by conceptual restructuring (3.5(a), reverse).
Two other representation techniques are also frequent, though less elegant, namely instantiation and concatenation.
The trace of an instantiation transformation can be detected by a structure of serial attributes, i.e. a sequence of
attributes with the same type and length, and whose names present syntactical (EXPl, EXP2, etc) or semantical
(JANUARY, FEBRUARY, etc) similarities. Figure 7.3 illustrates a simple transformation that is adequate for
syntactical name similarity. When the uniqueness of their values can be proved, A2 should be declared a
multivalued attribute.

dom(A2i) = dom(A2j). 1 < ij S 4

Figure 7.3 - Representation of homogeneous serial attributes by a multivalued list attribute.

applying a conceptual restructuration such as proposed in 3.1 if needed.
364

The concatenation representation of a multivalued attribute consists in replacing the set of values by their
concatenation, expressed as a single-valued attribute. Its domain appears as possibly made of a repeated simple
domain (7.4).
table contents.

Its detection generally requires the analysis of the procedural code, of the screens layouts or of the

pi e Fi

dom(E.AZ) = X 5 dcm(E.A22) = X

Figure 7.4 - Representation of a concatenated attribute by a multivalued attribute.

List attributes may be considered undesirable, and pertaining to the implementation level. Therefore transformation
7.5 can be applied when possible. Unfortunately, it is not reversible since a list structure does not enforce
uniqueness and it adds an order relation to the set of values.

Fj e pi

Figure 7.5 - In some cases, a list attribute can be the representation of a multivalued attribute.

A compound attribute can be represented by concatenation (in a way similar to 7.4), by attribute extraction
(3.5(a) or 3.5(b)), or by ungrouping, to mention the most frequent techniques. Ungrouping can be detected by the
presence of a sequence of heterogeneous attributes whose names suggest a semantic correlation, for instance
through a common prefix. Recovering this gouping is straightforward (7.6).

m&-qfq .

Figure 7.4 - Representation of heterogeneous serial attributes by a compound attribute.

Most one-to-many rel-types (and one-to-one as well) are represented by single-valued foreign keys (7.7).
Some RDBMS provide an explicit representation of them through the foreign key clause. Their validation and
management through check clauses and trigger mechanisms are less straightforward but still easy to detect, at
least visually. Sometimes, there is no declarative hints, and the situation is similar to that of COBOL files. For
instance, a common heuristics is that many foreign keys are supported by indexes, or are used to defined join-based
views.

A.A3 in B.Bl

Figure 7.7 - Representation of a single-valued foreign key by a one-to-many rel-type.

7.3 CODASYL schema untranslation
Among the logical models considered in this paper, the CODASYL DBTG model is the closest to the ER model.
As far as conceptual structures are concerned, the main restrictions apply on rel-types (one-to-many and non-
recursive) and on identifiers (one absolute id through locat ion talc; one relative id per rel-type through
duplicates not in the member clause). Therefore, non-binary ml-types, many-to-many rel-types, one-to-one
rel-types, recursive n&types, secondary absolute identifiers, identifiers with more than one role, have been
transformed. Non-binary and many-to-many rel-types will be considered as the target of conceptual
normalization (3.1 and 3.4, reverse), and will be ignored in this section. A one-to-one rel-type is implemented

365

either by a one-to-many rel-type, or by a foreign key. Evidence of the first technique can be found through
procedural code analysis and data analysis. Processing the second technique is similar to what has been suggested
for COBOL and relational models. A recursive rel-type can be represented by an entity type and two one-to-
many or one-to-one rel-types. Recovering such a rel-type falls in the conceptual restructuring techniques (3.1). It
can also be represented by a foreign key, as for COBOL and relational models (7.1 and 7.7).

id(A) : A3, SYSTEM

Figure 7.8 - Recovering a secondary all-attributes identifier.

An entity type with K all-attributes identifiers will be inserted into (K-l) SYSTEM rel-types, i.e. rel-types
whose (O-N) role is played by the SYSTEM entity type. Each of the (K-l) secondary identifiers is declared local
within one of each such SYSTEM rel-type (7.8). Another technique consists in extracting the attributes of the
identifier to transform them into an entity type, linked to the main entity type through a one-to-one rel-type. This
technique can be detected as an attribute entity type in the Conceptual Normalization process (3.5(a) and 3.5(b)).

id(A) : Al, B, C

id(A) : Al, B, Cl

A.Cl = A.R2.C.C1

Figure 7.9 - Recovering a complex identifier (with more than one role component).

External and mixed identifiers that include more than one r&e component cannot be expressed as such. Either
this identifier is discarded from the schema, and processed by procedural sections, or all the role components but
one are replaced by foreign keys. The latter technique can,be reversed as proposed in 7.9. Elicitating the referential
constraint requires procedural text or database contents analysis. The schema may keep the source rel-type,
according to the principles of non-information bearing sets as proposed in the 70’s [21]. In such situations, some
DBMS offer a trick (an option of the set selection clause) through which the referential constraint is automatically
maintained.
IDS-l (Honeywell-Bull), that uses a popular variant of the CODASYL model (in fact it is the pre-CODASYL
model), requires similar rules, with additional constraints. The same can be said of MDBS-3 and 4 (MDBS) and
SIBAS (Norsk-Data). ADABAS (Software AG) structures are often assimilated to CODASYL model [321.
However, this similarity is rather loose, and this model requires specific translation rules that are out of the scope of
this paper.

7.4 TOTAL/IMAGE schema untranslation
The TOTAL DBMS (CINCOM), and its clone IMAGE (HP), propose a logical model that is generally classified as
network [32]. However, it seems to fit best as a variant of the hierarchical model as far as design techniques are
concerned. This model offers two kinds of entity types, namely the parent entity types (master data set), and the
child entity types (variable entry data set). In addition one-to-many rel-types can be defined between entity types;
each rel-type defines access-paths from the parent entities to chidren entities. A parent has single-valued, mandatory
and atomic attributes, one of them being its identifier and access key; it can be origin (one side) of a rel-type. A
child is the target (many side) of at least one rel-type. A child entity is the target of at least one rel-type instance (the

366

others can be optional). Among its attributes, there is a copy of the identifier value of each of its parent. These
copies behave like redundantforeign keys that allow accessing the parent entities. A child has no identifier. A
TOTAL/IMAGE schema is a two-level hierarchy - sometimes called a shallow structure - in which level 1 comprises
parents only while level 2 is made of children only. In this model, the problems that occur when translating ER to
TOTAL/IMAGE are numerous : expressing complex attributes, non-functional rel-types, one-to-one rel-types,
recursive rel-types, parents that are target of some rel-types, children that are source of some &types (and in
particular hierarchies with more than two levels and non-hierarchical schemas), entity types with more than one
identifier or with secondary access keys (IMAGE has a feature for the latter), just to mention the most important.
Systematic translation of some of these constructs has been proposed in [9].
In reverse engineering TOTAL/IMAGE schemas, the redundant foreign keys are detected without problem since
they are explicitly declared; they can be discarded without loss. Compound attributes are most often processed
the same way as in relational schema& A multivalued attribute can be detected either the same way as in
relational schemas or as a single-attribute, single-patent, child entity type (7.10).

E

w 2: [i-j] q A3

id(EA2) : E.A2

Figure 7.10 - Recovering a multivalued attribute. If the id(EA2) precondition can be dropped, then A2 is a bag
attribute.

One-to-one rel-types can be processed as in CODASYL schemas. Non-compliant one-to-many rel-types,
for instance recursive rel-types or rel-types between two parent entity types, are most often expressed as
relationship entity types (7.11). They can be recovered provided Rl can be proved one-to-one, by analyzing either
the procedural code of the programs or the database contents. Note that some one-to-many rel-types may be
expressed implicitely as foreign keys, just like in relational schemas, and are therefore more difficult to detect. As
before, recovering many-to-many or higher-degree rel-types is considered as of conceptual normalization concern.

qRgYsF&T

Figure 7.11 - Recovering a one-to-many ret-type.

The 24eveZ hierarchy constraint implies eliminating (1) non-hierarchical constructs, such as circuits, and (2)
deep hierarchies. Technique 7.11 (reverse) is often used to move A one level up w.r.t. B (R is a common child
of A and B, which are therefore at the same level). Conversely, interpreting child entity type R as a one-to-many
rel-type between A and B will automatically recover the origin B-A hierarchy. However, other techniques can be
used, such as that which is described in 7.12, based on the identifier substitution transformation (3.7). It requires
detecting the inclusion constraint that states that any (A, B) instance obtained from a D entity must identify a C entity
(the notation S 1 o S 2 expresses the relational composition of S 1 and S2). One-to-many rel-type elimination
through foreign key and entity type merging techniques are also often observed.

l-l l-1

id(C) : A,B

Slo S2 in RloR2 id(C) : A,B

Figure 7.12 - Recovering a 3-level hierarchy from a 2-level hierarchy.

367

7.5 IMS schema untranslation
The IMS (DL/l) model proposes to structure a schema as a collection of entity types (segment types) linked by one-
to-many rel-types, that fall into two classes, physical and logical [6]. The one side of a rel-type is a physical or
logical parent while the many side is a physical or logical child.Ignoring logical rel-types, the schema reduces to a
forest, i.e. a collection of arborescences (or physical DB’s). The root of each arborescence is called a root entity
type (root segment). Each root can have one identifier, that is an access-key and can be a sort key as well. It
consists of one attribute. Each rel-type defines an access path, from the parent to the child only. A child entity type
can have an identifier made of its parent + one local attribute. This identifier is not an access key. Attributes are
mandatory, single-valued and atomic. However, compound attributes can be simulated by defining overlapping
attributes through common physical positions.
Most IMS schemas are built with the latter constructs l5. However, two additional features can be used, namely
logical rel-types and secondary indexes. A logical rel-type represents an access-path from a (logical) child entity
type to a parent one. A logical &type can be defined between any two entity types provided some constraints are
satisfied : an entity type can have only one logical parent, a logical chid must be a physical child, a logical child
cannot be a logical parent, the physical parent of a logical child cannot be a logical child, etc. When bi-directional
access paths are needed, IMS proposes to define two, inverse, logical rel-type structures (the pairing technique). A
secondary index is an access key based on any attribute of the database, whatever its entity type. Surprisingly
enough, logical ml-types and secondary indexes are considered in the IMS world as intimidating constructs which
are difficult and dangerous to use. Even recent references [8], though insisting on their harmlessness, suggest to
avoid them whenever possible, for instance by replacing rel-types by foreign keys controlled manually. These
constraints define clearly the problems that will appear when translating an ER schema into an IMS structure :
compound and multivalued attributes, entity types with several identifiers, one-to-one, many-to-many or recursive
rel-types, circuits, entity types with more than two parents, complex identifiers, etc.
be solved when no logical r&types are used.

Additional problems have to

Most of these problems have already been discussed and solved in the TOTAL/IMAGE section, or can be
considered as relevant to conceptual normalization (e.g. many-to-many rel-types). We shall concentrate on
recovering non-compliant one-to-many rel-types. Such a rel-type can be transformed, for instance, into a
foreign key (manually controlled) as in relational schemas, by merging its entity types (producing a possibly
unnormalized structure), or into a relationship entity type. Recovering the source ml-type from application of latter
technique is described in 7.11. However, to make the process clearer, processing a typical IMS substructure is
depicted in 7.13, where entity types F and G have been considered as one-to-many rel-type representations. Once
again, the main difficulty is to detect the one-ro-one cardinal@ of R5 and R7. R6 and R8 (or R5 and R7) can be
replaced by foreign keys, possibly supported by secondary indexes.

E

Figure 7.13 - Recovering one-to-many rel-types.

Note that duplicate structures resulting from pairing can be resolved easily since they are explicitly declared in the
DL/l schema. The redundant logical children can be merged in a preliminary step.

8. CONCEPTUAL NORMALIZATION TRANSFORMATIONS
These transformations are aimed to make higher-level semantic constructs explicit. Whether such expressions are
desirable is a matter of methodological standard and of personal taste. For instance, a method that is based on a
binary, functional ER model (e.g. the Bachman’s model) will accept the conceptual schema obtained so far. More
powerful models will require the expression of e.g. IS-A relations when relevant. In addition, the final conceptual
schema is supposed to be as readable and concise as possible, though these properties basically are subjective. We

l5 As well as SYSTEM-2000 databases (MRI / SAS) and FOCUS files (Information Builders)
368

shall mention some standard transformations that are of interest when refining a conceptual schema. This list is of
cotuse far from complete.
A relationship entity type, i.e. an entity type whose aim obviously is to relate two or more entity types, will be
transformed into a &type (3.1 reverse and 3.4 reverse). This technique typically produces many-to-many and N-
ary rel-types, and ml-types with attributes.
An attribute entity type has one attribute only, and is linked to one other entity type A only. It can be interpreted
as nothing more than an attribute of A, possibly multivalued (3.5(a) reverse and 3.5(b) reverse).
A one-to-one rel-type may express the connection between fragments Bl and B2 of a unique entity type B
(vertical partitioning). These fragments can be merged into this entity type (8.1).

B2
O-N

-B2

B3

Figure 8.1 - Merging ET. If the cardinality of R3.BI is [O-I], constraint”coexist (B) : B2, B3, Rl . B”must
be added to B.

Conversely, an entity type that appears as comprising too many attributes and roles can suggest a decomposition
into fragments linked by one-to-one rel-types (Figure 8.1 reverse).
A N-ary rel-type that has a role with cardinality l-l can be decomposed into binary, one-to-many M-types
through a P/J transformation (8.2).

Figure 8.2 - Decomposition of a rel-type through a [I-I] role. ProcessGf a [O-l] role
thecoexistenceconstraint”coexist(E1) :Al,A2,A3,Rl.El,R2.E1”.

would induce

Entity types that seem to have some attributes and roles in common can be made the subtypes of a common
supertype that inherits the common characteristics (8.3).

Figure 8.3 - Defining a super-type. In fact, the transformation is a bit more complex since it requires
conditions on the semantic equivalence of (RI ,R2), (B.Al ,C.AI) and (B.A2,C.A2)

An entity type that has subsets of optional, coexistent, attributes and roles can be given subtypes, each of
them inheriting one of these subsets (8.4). An entity type that has one subset of optional attributes and roles can
also be examined for such a transformation.

369

coexist(A):Bl ,I32

coexist(A):Cl,C2 Bl Cl

B2 c2

Figure 8.4 - Defining subtypes from optional, coexistent, subsets of attributeslroles.

One or several one-to-one rel-typesI that concern a common entity type A may also express a
relation in which A is the supertype. These rel-types are replaced by IS-A relations (8.5).

I _ ,0-N- ,-ID

specialization

f$jm mm
Figure 8.5 - Defining IS-A relations.

Note that the last three techniques derive from the three basic expressions of an IS-A hierarchy into the plain ER
model (see [l] for instance). They can be specialized in order to make them cover the situations of total and/or
exclusive subtypes.

9. CONCLUSIONS
The principles that have been presented in this paper form the baselines on which flexible, DMS-independent DBRE
methodologies can be built. Indeed, it appears from the analysis developed so far that, (1) all database schemas can
be expressed within the unique schema representation model, whetever their underlying data model and their
abstraction level; (2) recovering the schemas of a database requires performing the same processes, whatever the
DMS; (3) all the DMS-specific processes can be based on the same toolset of transformation techniques.
Considering the limited scope of this paper, only some theoretical aspects of DBRE have be presented. Practicing
DBRE on actual applications shows that this formal framework provides invaluable guidelines in an otherwise
highly unstructured process. On the other hand, practical experiments also shows that this framework must be
made more flexible, and that support for less formal processes have to be provided as well. Let us mention some
examples.
l In some cases, the precondition of a transformation cannot be completely recovered. For instance, proving the

inclusion constraint of a foreign key can be complex, if not impossible, in some standard file manager or older
RDBMS. Therefore, the probable R-transformation will be used instead of the deterministic SR-transformation.
This results in replacing deterministic reasonings by heuristics, therefore introducing an uncertainty factor.

l Ideally, an construct found in a schema has been introduced in order to satisfy functional or most probably
technical requirements. Today, ignoring these requirements and the rationales underlying this introduction,
makes it difficult to interprete this construct, and to discover the semantics (or absence thereof) it may represent.
In particular, an observed data construct can often be the target of more than one source construct through
different transformations. Determining which one must be considered is not always that easy.

l In complex applications, the whole process cannot be as linear as suggested in section 5. It appears instead as an
iterative process strongly based on learning mechanisms. Having recovered some conceptual structures may
suggest going back to the source texts to search them for additional information. A consequence is that a database

l6 It is worth noting that a one-to-one rel-type can have three interpretations : true one-to-one rel-type, IS-A relation
representation and vertical splitting.

370

schema in a DBRE process generally is not as homogeneous as in forward engineering. Indeed, some parts of a
schema can be already conceptualized, while others still contain technical constructs to be conceptualized.

’ l Data structure extraction is more complex that generally presented in the literature, and requires processes and
techniques that are completely ignored in current CASE technology. Let us mention three specific problems only.
- structure hiding is a common programming practice that consists in implementing parts of the logical data

structures in local variables structures of the application programs instead with DMS constructs. Compound
field, or list of contiguous fields, represented as a large anonymous field in the DDL schema Cfiller in COBOL)
is a popular example that can make the recovering process very difficult, since it requires a semantic analysis of
the procedural parts of the programs [141.

- parts of the schema, mainly untranslatable integrity constraints, have not been translated into the DDL schema.
Here too, a semantic analysis of the procedural parts of the programs is needed [141.

- m standard data structures, such as COBOL files, each application program does not include the description of
the files, but a view of them. The complete description of the files is generally unavailable, and must be rebuilt
from the collection of such views through schema integration techniques that differ significantly from traditional
techniques [183.

Anyway, the transformational approach is considered as a favorable framework for software production
automation. Indeed, the transformation techniques can be completely formalized, and therefore translated into
restructuration algorithms that can be the kernel of a generic CASE tool [131. For instance, two CASE tools have
been built on transformational toolboxes that implement the techniques presented in this paper, namely
TRAMISFlaster [HAINAUT,92c] for database forward engineering and PHENIX [181 for database reverse
engineering. In addition, expressing schema transformations in a predicative way allows logic-based processing of
important engineering activities. For instance, it is fairly straighforward to design heuristics for both forward and
reverse engineering that make use of the precondition part of the transformations.
in [13].

This approach has been sketched

10. REFERENCES
111 Batini, C., Ceri, S., Navathe, S., B., Conceptual Database Design, Benjamin/Cummings, 1992
121 Casanova, M., Arnarel de Sa, J., Designing Entity Relationship Schemus for Conventional Information Systems, in

Proc. of Entity-Relationship Approach, pp. 265278, 1983
131 Casanova, M., A., Amaral De Sa, Mapping uninterpreted Schemes into Entity-Relationship diagrams : two

applications to conceptual schema design, in IBM J. Res. & Develop., Vol. 28, No 1, January, 1984
141 Davis, K., H., Adarsh, K., A., A Methodology for Translating a Conventional File System into an Entity-

Relationship Model, in Proc. of Entity-Relationship Approach, Gctobre, 1985
151 Davis, K., H., Arora, A., K., Converting a Relational Database model to an Entity Relationship Model, in Proc. of

Entity-Relationship Approach : a Bridge to the User, 1988
16 I Elmasri, R.. Navathe, S., Fundamentals of Dutubuse Systems, Benjami~Cummings, 1989
[71 Fonkarn, M., M., Gray, W., A., An approach to Eliciting the Semantics of Relational Databases, in Proc. of 4th Int.

Conf. on Advance Information Systems Engineering - CAiSE’92, pp. 463-480, Springer-Verlag, 1992
18 1 Geller, J., R., IMS, Administration, Programming and Data Base Design, Wiley, 1989
[91 Hainaut, J-L., Theoretical undpructicul tools for data base design, in Proc. of the Very Large Databases Conf., pp. 216-

224, September, 1981
[lo] Hainaut, J.-L., A Generic Entity-Relationship Model, in Proc. of the IFIP WG 8.1 Conf. on Information System

Concepts: un in-depth analysis, North-Holland, 1989
1111 Hainaut, J-L., Entity-generating Schema Trun@ormution for Entity-Relationship Models, in Proc. of the 10th Entity-

Relationship Approach, San Mateo (CA), 1991
[121 Hainaut, J-L, Database Reverse Engineering, Models, Techniques and Strategies, in Preproc. of the 10th Conf. on

Entity-Relationship Approach, San Mate0 (CA), 1991
[131 Hainaut, J-L., Cadelli, M., Decuyper, B., Marchand, O., Database CASE Tool Architecture : Principles for Flexible

Design Strategies, in Proc. of the 4th Int. Conf. on Advanced Information System Engineering (CAiSE-92),
Manchester, May 1992, Springer-Verlag, LNCS, 1992

[141 Hainaut, J-L., Chandelon M., Tonneau C., Joris M., Contribution to u Theory of Database Reverse Engineering, in
Proc. of the IEEE Working Conf. on Reverse Engineering, Baltimore, May 1993

1151 Hainaut, J-L, Schema Transformation for Database Engineering
d’Informatique, FUNDP, Namur, May, 1993

- Theoretical Elements, Research report, Institut

[161 Software Reuse and Reverse Engineering in Practice, Hall, P., A., V. (Ed.), Chapman&Hall, 1992
371

[171 Special issue on Reverse Engineering, IEEE Software, January, 1990
[181 Joris. M., Van Hoe, R., Hainaut, J-L., Chandelon M., Tonneau C., Bodart F. et al., PHENIX : methods and tools for

database reverse engineering, in hoc. 5th Int. Conf. on Soft. Eng. and Applications, Toulouse, 7-l 1 Dec., 1992
[19 I Kobayashi, I., Losslessness and Semantic Correctness of Database Schema Transformation : another look of Schema

Equivalence, in Information Systems, Vol. 11, No 1, pp. 41-59, January, 1986
[2 01 Kozaczynsky, Lilien, An extended Entity-Relationship (E2R) database specification and its automatic verification and

trar@ormation, in Proc. of Entity-Relationship Approach, 1987
12 1] Metaxides, A., “information bearing” and “non-information bearing” sets, in Data Base Description, IFIP TC2 Work.

Conf., Douqut & Nijssen (Ed.), ~~363-368, North-Holland, 1975
[221 Navathe, S., B., Schema Analysis for Database Restructuring, in ACM TODS, Vo1.5, No.2, June 1980
[231 Navathe, S., B., Awong, A., Abstracting Relational and Hierarchical Data with a Semantic Data Model, in Proc. of

Entity-Relationship Approach : a Bridge to the User, 1988
[241 Nijssen, G., M., Halpin, T., A., Conceptual Schema and Relational Database Design, Prentice-Hall, 1989
[251 Nilsson,E., G., The Translation of COBOL Data Structure to an Entity-Rel-type Conceptual Schema, in P~oc. of

Entity-Relationship Approach, October, 1985
[261 Premerlani, W., J., Blaha, M.R., An Approach for Reverse Engineering of Relational Databases, in Proc. of the IEEE

Working Conf. on Reverse Engineering, Baltimore, May 1993
[27] Reiner, D., Brown, G., Friedell, M., Lehman, J., McKee, R., Rheingans, P., Rosenthal, A., A Database Designer’s

Worbench, in Proc. of Entity-Relationship Approach, 1986
[281 Rock-Evans, R., Reverse Engineering : Markets, Methods and Tools, OVUM report, 1990
[29] Rosenthal, A., Reiner, D., Theoretically sound transformations for practical database design, in Proc. of Entity-

Relationship Approach, 1988
[301 Springsteel, F., N., Kou, C., Reverse Data Engineering of E-R designed Relational schemas, in Proc. of Databases,

Parallel Architectures and their Applications, March, 1990
[3 1 I Teorey, T. J., Database Modeling and Design, Morgan Kaufmann, 1990
[321 Tsichritzis, D., C., Lochovsky, F., H., Data Base Management Systems, Academic Press, 1977

[33] Ullman, J., D., Principles of Data- and Knowledge-base Systems, Computer Science Press, 1989
[34] Winans, J., Davis, K., H., Software Reverse Engineering from a Currently Existing IMS Database to an Entity-

Relationship Model, in Proc. of Entity-Relationship Approach, pp. 345-360, Oct., 1990

372

