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Abstract

We determine the real counting function N(q) (q ∈ [1, ∞)) for the hypothetical ‘curve’
C = Spec Z over F1, whose corresponding zeta function is the complete Riemann zeta
function. We show that such a counting function exists as a distribution, is positive on
(1, ∞) and takes the value −∞ at q = 1 as expected from the infinite genus of C. Then,
we develop a theory of functorial F1-schemes which reconciles the previous attempts
by Soulé and Deitmar. Our construction fits with the geometry of monoids of Kato, is
no longer limited to toric varieties and it covers the case of schemes associated with
Chevalley groups. Finally we show, using the monoid of adèle classes over an arbitrary
global field, how to apply our functorial theory of Mo-schemes to interpret conceptually
the spectral realization of zeros of L-functions.

1. Introduction

In this paper we develop three correlated aspects pertaining to the broad theory of F1. The
appearance, in the printed literature, of some explicit remarks related to this (hypothetical)
degenerate algebraic structure is due to Tits, who proposed its existence to explain the limit
case of the algebraic structure underlying the geometry of a Chevalley group over a finite field
Fq, as q tends to 1 (cf. [Tit57, § 13] and [CC08]). A suggestive comment pointing out to a finite
geometry inherent to the limit case q = 1 is also contained in an earlier paper by Steinberg (cf.
[Ste51, p. 279]), in relation to a geometric study of the representation theory of the general linear
group over a finite field.

In more recent years, the classical point of view that adjoining roots of unity is analogous to
producing extensions of a base field has also been applied in the process of developing a suitable
arithmetic theory over F1. This idea leads to the introduction of the notion of algebraic field
extensions F1n of F1 which are not defined per se, but are described by the following equation
(cf. Kapranov and Smirnov [KS] and Soulé [Sou04, § 2.4])

F1n ⊗F1 Z := Z[T ]/(Tn − 1), n ∈ N.

The need for the ‘absolute point’ Spec F1 has also emerged in Arakelov’s geometry, especially

in the context of an absolute motivic interpretation of the zeros of zeta and L-functions (cf.
Manin [Man95, § 1.5]). In [Sou04, § 6], Soulé introduced the zeta function of a variety X over F1

by considering the polynomial integer counting function of the associated functor X.
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A. Connes and C. Consani

In this paper we take up the following central question formulated in [Man95] which originally
motivated the development of the study of the arithmetic over F1.

Question. Can one find a ‘curve’ C = Spec Z over F1 (defined in a suitable sense) whose zeta
function ζC(s) is the complete Riemann zeta function ζQ(s) = π−s/2Γ(s/2)ζ(s)?

After transforming the limit definition (for q → 1) of the zeta function given in [Sou04] into
an integral formula, which is more suitable in the cases of general types of counting functions and
distributions, we show how to determine the real counting distribution NC(q) =N(q), q ∈ [1, ∞),
associated with the hypothetical curve C over F1.

A convincing solution to this problem is a fundamental preliminary test for any arithmetic
theory over F1. The difficulty inherent to the above question can be easily understood by
considering the following facts. First of all, note that the value N(1) is conjectured to take
the meaning of the Euler characteristic of the curve C = Spec Z. Since one expects C to be of
infinite genus (cf. [Man95]), N(1) is supposed to take the value −∞, thus precluding any easy
use of the limit definition of the zeta and a naive approach to the definition of C, by generalizing
the constructions of [Sou04]. On the other hand, the counting function N(q) is also supposed
to be positive for q real, q > 1, since it should detect the cardinality of the set of points of C
defined over various ‘field extensions’ of F1. This requirement creates an apparent contradiction
with the earlier condition N(1) = −∞.

The precise statement of our result (cf. Theorem 2.2 and Remark 2.3) is as follows.

Theorem 1.1.

(1) The counting function N(q) satisfying the above requirements exists as a distribution and
is given by the formula

N(q) = q − d

dq

(

∑

ρ∈Z

order(ρ)
qρ+1

ρ+ 1

)

+ 1 (1)

where Z is the set of non-trivial zeros of the Riemann zeta function and the derivative is
taken in the sense of distributions.

(2) The function N(q) is positive (as a distribution) for q > 1.

(3) The value N(1) is equal to −∞ and reflects precisely the distribution of the zeros of zeta
in E log E.1

This result supplies a strong indication on the coherence of the quest for an arithmetic theory
over F1. For an irreducible, smooth and projective algebraic curve X over a prime field Fp, the
counting function is of the form

#X(Fq) =N(q) = q −
∑

α

αr + 1, q = pr,

where the α are the complex roots of the characteristic polynomial of the Frobenius acting on
the étale cohomology H1(X ⊗ F̄p,Qℓ) of the curve (ℓ 6= p). By writing these roots in the form
α= pρ, for ρ a zero of the Hasse–Weil zeta function of X, the above equality reads as

#X(Fq) =N(q) = q −
∑

ρ

order(ρ)qρ + 1. (2)

1 Here E = 1/ǫ, ǫ > 0, appears when taking the derivative limǫ→0((J(1 + ǫ) − J(1))/ǫ) of the primitive J of N(q).

1384

https://doi.org/10.1112/S0010437X09004692 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004692


Schemes over F1 and zeta functions

Equations (1) and (2) are now completely identical, except for the fact that in (2) the values of q
are restricted to the discrete set of powers of p and that (2) involves only a finite sum, which
allows one to differentiate term by term.

Equation (1) is a typical application of the Riemann–Weil explicit formulae. These formulae
become natural when lifted to the idèle class group. This fact supports the expectation that,
even if a definition of the hypothetical curve C is at this time still out of reach, its counterpart,
through the application of the class-field theory isomorphism, can be realized by a space
of adelic nature and this is in agreement with earlier constructions of Connes et al. (cf.
[CCM07, CCM08, CCM09]).

A second topic that we develop in this paper is centered on the definition of a suitable
geometric theory of algebraic schemes over F1. The viewpoint that we introduce in this article is
an attempt at unifying the theories developed on the one side in [Sou04] and in our paper [CC08],
and on the other side by Deitmar in [Dei05, Dei08] (following Kurokawa et al. [KOW03]),
by Kato in [Kat94] (with the geometry of logarithmic structures) and by Töen and Vaquié
in [TV09].

In [CC08], we introduced a refinement of the original notion (cf. [Sou04]) of an affine variety
over F1, and following this path we proved that Chevalley group schemes are examples of
affine varieties defined over the field extension F12 . While in the process of assembling this
construction, we realized that the functors (from finite abelian groups to graded sets) describing
these affine schemes fulfill stronger properties than those required in [Sou04]. In this paper
we develop this approach and show that the functors underlying the structure of the most
common examples of schemes (of finite type) over F1 extend from (finite) abelian groups to a
larger category obtained by gluing together the category Mo of commutative monoids (used
in [Dei05, Kat94, KOW03, TV09]) with the category Ring of commutative rings. This process
uses a natural pair of adjoint functors relating Mo to Ring and follows an idea we learnt from
P. Cartier. The resulting category MR (cf. § 4 for details) defines an ideal framework in which
the above two approaches are combined together to determine a very natural notion of variety
(and of scheme) X over F1. In particular, the conditions imposed in the original definition of a
variety over F1 in [Sou04] are now applied to a covariant functor X : MR → Sets to the category
of sets. Such a functor determines a scheme (of finite type) over F1 if it also fulfills the following
three properties (cf. Definition 4.7).

(i) The restriction XZ of X to Ring is a scheme in the sense of [DG70].

(ii) The restriction X of X to Mo is locally representable.

(iii) The natural transformation connecting X to XZ, when applied to a field, yields a bijection
(of sets).

The category Ab of abelian groups embeds as a full subcategory in Mo. This fact allows one,
in particular, to restrict a covariant functor from Mo to sets to the subcategory (isomorphic to)
Ab. In § 3.7 we prove that if the Mo-functor is locally representable, then the restriction to Ab

yields a functor to graded sets. This result shows that the grading structure that we assumed
in [CC08] is now derived as a byproduct of this new refined approach.

In particular, we deduce that Chevalley groups are F12-schemes in our new sense; the group
law exists on the set of points of lowest degree and is given by Tits’ functorial construction of
the normalizer of a maximal split torus.
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As an arithmetic application of our new theory of F1-schemes, we compute the zeta function
of a Noetherian F1-scheme X . Theorem 4.13 extends Theorem 1 of [Dei06] beyond the toric case2

and states the following results.

Theorem 1.2. Let X be a Noetherian F1-scheme which is locally torsion free.

(a) There exists a polynomial N(x+ 1) with positive integral coefficients such that

#X(F1n) =N(n+ 1) for all n ∈ N.

(b) For each finite field Fq, the cardinality of the set of points of the Z-scheme XZ which are
rational over Fq is equal to N(q).

(c) The zeta function of X in the sense of [Sou04] is given by

ζX (s) =
∏

x∈X

1

(1 − (1/s))⊗n(x)
.

Here, the ⊗-product is the Kurokawa tensor product and n(x) denotes the local dimension
at the point x ∈ X of the geometric realization of X (cf. Definition 3.23).

The study of the zeta function of an arbitrary Noetherian F1-scheme, i.e. when the ‘no torsion’
hypothesis is removed is developed in our forthcoming paper [CC09].

The geometric theory of schemes over F1 that we have developed in §§ 3 and 4 also reveals
the importance to replace, when necessary, an abelian group H by a naturally associated
commutative monoid M (with a zero element), so that H =M× is interpreted as the group
of invertible elements in the monoid. This idea applies, in particular, to the idèle class group
CK of a global field K, since by construction CK is the group of invertible elements in the
multiplicative monoid of the adèle classes

M = AK/K
×, K× = GL1(K). (3)

This application of the theory of Mo-schemes to the study of geometric objects pertinent to the
realm of non-commutative geometry determines the third aspect of the theory of F1 that we have
developed in this paper. In our previous work, the adèle class space has been considered mostly
as a non-commutative space and its algebraic structure as a monoid did not play any role. One
of the goals of the present paper is to promote this additional structure by pointing out how and
where it provides a precious guide.

In § 5, we consider the particular case of the Mo-scheme P1
F1

describing a projective line
over F1. It turns out that this scheme provides a perfect geometric framework to understand,
simultaneously and at a conceptual level, the spectral realization of zeros of L-functions, the
functional equation and the explicit formulae. All of these statements are deduced by simply
computing the cohomology of a natural sheaf Ω of functions on the set P1

F1
(M): the projective

adèles class space. The sheaf Ω is a sheaf of complex vector spaces over the geometric realization
P1

F1
of the Mo-scheme P1

F1
. To define this sheaf, we use a specific property of an Mo-scheme,

namely the existence, for each monoid M , of a natural projection πM :X(M) → X, connecting
the Mo-scheme X (understood as a functor from the category Mo of monoids to sets) to its
associated geometric space X, that is, its geometric realization. For the Mo-scheme P1

F1
the

geometric realization P1
F1

is a very simple space [Dei05] which consists of three points

P1
F1

= {0, u, ∞}, {0} = {0}, {u} = P1
F1
, {∞} = {∞}.

2 The affine varieties underlying Chevalley groups (e.g. SL(2)) are not toric varieties in general.
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A striking fact is that in spite of the apparent simplicity of this space, the computation of
H0(P1

F1
, Ω) already yields the graph of the Fourier transform (Lemma 5.3). Thus, while the

singularity of the operation x 7→ x−1 on the space of adèles prevents one from obtaining any
interesting global function on the projective space of the adèles, this difficulty disappears at the
level of the quotient space M of the adèle classes. In fact, the Fourier transform at the level of
the adèles depends upon the choice of a basic character, but this dependence disappears at the
level of the quotient space M of adèle classes, that is, for its action on the space S(AK)/{f − fq }
of coinvariants for the action of K× on S(AK). Finally, the first cohomology group H1(P1

F1
, Ω) of

the sheaf Ω over P1
F1

of complex valued functions on P1
F1

(M), provides the space of the
spectral realization of the zeros of L-functions (Theorem 5.5). The complete result is stated
as follows.

Theorem 1.3. The cohomology H0(P1
F1
, Ω) is given, up to a finite-dimensional space, by the

graph of the Fourier transform acting on coinvariants.

The spectrum of the natural action of the idèle class group CK on the cohomology H1(P1
F1
, Ω)

gives the spectral realization of zeros of Hecke L-functions.

The symmetry associated with the functional equation is derived as a simple consequence
of the inversion x 7→ x−1 holding on P1

F1
. Finally, we want to stress the point that the most

interesting aspect of this final result does not rely on its technical part, since for instance
the aforementioned spectral realization is identical to that obtained in several earlier works
(cf. [CCM07, CM08, Mey05]) and initiated in [Con99]. The novelty of our statement is that of
proposing a new conceptual explanation for some fundamental constructions of non-commutative
arithmetic geometry, in a way that the Fourier transform, the Poisson formula and the cokernel of
the restriction map to the idèles all appear in an effortless and natural manner on the projective
line P1

F1
(M), M = AK/K

×.

2. Zeta functions over F1 and C = Spec Z

In [Sou04] (cf. § 6), Soulé introduced the zeta function of a variety X over F1 using the
polynomial counting function N(x) ∈ Z[x] of the associated functor X. After correcting a sign
misprint (which is also reproduced in [Dei06]), the precise definition of the zeta function is
as follows

ζX(s) := lim
q→1

Z(X, q−s)(q − 1)N(1), s ∈ R, (4)

where Z(X, q−s) denotes the evaluation at T = q−s of the Hasse–Weil exponential series

Z(X, T ) := exp

(

∑

r>1

N(qr)
T r

r

)

. (5)

Note, incidentally, that the function ζX(s) as in (4) fulfills the properties of an absolute motivic
zeta function as predicted by Manin in [Man95] (cf. § 1.5).

In this section we first transform the limit (4) into an integral formula, since this latter
description is more suitable when one works with general counting functions and distributions.
Then, we shall determine a precise formula for the counting function associated to the
hypothetical curve C = Spec (Z).
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2.1 An integral formula for ∂sζN(s)/ζN(s)

Let N(q) be a real-valued continuous function on [1, ∞) satisfying a polynomial bound |N(q)| 6

Cqk, for some finite positive integer k and a fixed positive constant C. Then, the corresponding
generating function takes the following form

Z(q, T ) = exp

(

∑

r>1

N(qr)
T r

r

)

and one knows that the power series Z(q, q−s) converges for ℜ(s)> k. The zeta function over F1

associated with N(q) is defined as follows

ζN (s) := lim
q→1

Z(q, q−s)(q − 1)χ, χ=N(1).

This definition requires some care to ensure its convergence. To eliminate the ambiguity in the
extraction of the finite part, one works with the logarithmic derivative

∂sζN (s)

ζN (s)
= −lim

q→1
F (q, s), (6)

where

F (q, s) = −∂s

∑

r>1

N(qr)
q−rs

r
. (7)

Lemma 2.1. With the above notation and for ℜ(s)> k, one has

lim
q→1

F (q, s) =

∫ ∞

1
N(u)u−s d∗u, d∗u= du/u (8)

and

∂sζN (s)

ζN (s)
= −

∫ ∞

1
N(u)u−s d∗u. (9)

Proof. The proof follows immediately by noting that

F (q, s) =
∑

r>1

N(qr) q−rs log q

is a Riemann sum for the integral
∫ ∞

1 N(u)u−s d∗u. ✷

Let us now assume that N(q) is smooth at the point q = 1. Then, if N(1) = 0 we integrate
in s and we obtain the following expression (c is a constant of integration)

log(ζN (s)) =

∫ ∞

1

N(u)

log u
u−s d∗u+ c. (10)

If N(1) 6= 0, one has to choose a principal value in the expression (10) near u= 1, since the term
N(u)/ log u is singular. The normalization used in [Sou04] corresponds to the principal value

log(ζN (s)) = lim
ǫ→0

(
∫ ∞

1+ǫ

N(u)

log u
u−s d∗u+N(1) log ǫ

)

. (11)

Note that this choice does not alter (9). This fact is quite important since we use (9) to investigate
the analytic nature of ζN (s).
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2.2 The counting function of C = Spec Z

It is natural to wonder about the existence of a ‘curve’ C = Spec Z suitably defined over F1,
whose zeta function ζC(s) is the complete Riemann zeta function ζQ(s) = π−s/2Γ(s/2)ζ(s) (cf.
also [Man95]). In this section, we prove that the integral equation (9) produces a precise formula
for the counting function NC(q) =N(q) associated with C. In fact, (9) shows in this case that

∂sζQ(s)

ζQ(s)
= −

∫ ∞

1
N(u)u−s d∗u. (12)

This integral formula appears in the Riemann–Weil explicit formulae and when ℜ(s)> 1, one
derives that

−∂sζQ(s)

ζQ(s)
=

∞
∑

n=1

Λ(n)n−s +

∫ ∞

1
κ(u)u−s d∗u. (13)

Here, Λ(n) is the von-Mangoldt function3 and κ(u) is the distribution which is defined, for any
test function f , by

∫ ∞

1
κ(u)f(u) d∗u=

∫ ∞

1

u2f(u) − f(1)

u2 − 1
d∗u+ cf(1), c=

1

2
(log π + γ)

where γ = −Γ′(1) is the Euler constant. This distribution is positive on (1, ∞) by construction.
Hence, we derive the consequence that the counting function N(q) of the hypothetical curve C
over F1, is the distribution given by the sum of κ(q) with the discrete term equal to the derivative
dϕ(q)/dq, taken in the sense of distributions, of the function4

ϕ(u) =
∑

n<u

nΛ(n). (14)

Indeed, since d∗u= du/u, one has for any test function f ,
∫ ∞

1
f(u)

(

d

du
ϕ(u)

)

d∗u=

∫ ∞

1

f(u)

u
dϕ(u) =

∑

Λ(n)f(n).

Thus, one can write (13) as

−∂sζQ(s)

ζQ(s)
=

∫ ∞

1

(

d

du
ϕ(u) + κ(u)

)

u−s d∗u. (15)

If one compares (15) and (12), one derives the following formula for N(u)

N(u) =
d

du
ϕ(u) + κ(u). (16)

The above expression encloses in a very subtle and intrinsic form some fundamental information
on the description of the counting function as a geometric ‘trace type’ formula. To substantiate
this statement, we recall the well-known equation (cf. [Ing90, ch. IV, Theorems 28 and 29]
and use ϕ(u) = uψ0(u) − ψ1(u), where ψ0(u) is the Chebyshev function ψ0(u) =

∑

n<u Λ(n) and
ψ1(u) =

∫ u
0 ψ0(x) dx is its primitive) valid for u > 1 (and not a prime power)

ϕ(u) =
u2

2
−

∑

ρ∈Z

order(ρ)
uρ+1

ρ+ 1
+ a(u). (17)

3 With value log p for powers pℓ of primes and zero otherwise.
4 The value at the points of discontinuity does not affect the distribution.
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Here, one sets

a(u) = ArcTanh

(

1

u

)

− ζ ′(−1)

ζ(−1)
(18)

and Z denotes the set of non-trivial zeros of the Riemann zeta function. Note that the sum
over Z in (17) has to be taken in a symmetric manner to ensure convergence, i.e. as a limit of
the partial sums over the symmetric set Zm of first 2m zeros. When one differentiates (17) in a
formal way, the term in a(u) gives

d

du
a(u) =

1

1 − u2
.

Hence, at the formal level (i.e. disregarding the principal value), one obtains

d

du
a(u) + κ(u) = 1.

Thus, after a formal differentiation of (17), one obtains

N(u) =
d

du
ϕ(u) + κ(u) ∼ u −

∑

ρ∈Z

order(ρ)uρ + 1. (19)

This formula for the counting function is now formally similar to formula (2) describing the
counting function of the number of points of an irreducible, smooth and projective curve C over
a finite field.

Note that in the above formal computations we have neglected to consider the principal value
for the distribution κ(u). By taking this into account, we obtain the following more precise result
(cf. also Figure 1).

Theorem 2.2. The tempered distribution N(u) satisfying the equation

−∂sζQ(s)

ζQ(s)
=

∫ ∞

1
N(u)u−s d∗u,

is positive on (1, ∞) and is given on [1, ∞) by

N(u) = u − d

du

(

∑

ρ∈Z

order(ρ)
uρ+1

ρ+ 1

)

+ 1 (20)

where the derivative is taken in the sense of distributions, and the value at u= 1 of the term
ω(u) =

∑

ρ∈Z order(ρ)uρ+1/(ρ+ 1) is given by

ω(1) =
1

2
+
γ

2
+

log 4π

2
− ζ ′(−1)

ζ(−1)
. (21)

Proof. The function ϕ(u) is non-decreasing and the positivity of the distribution N(u) on (1, ∞)
follows from (16). For u > 1 we define

ω(u) =
∑

ρ∈Z

order(ρ)
uρ+1

ρ+ 1
. (22)

By (17) one has (for u > 1)

ω(u) = −ϕ(u) +
u2

2
+ a(u). (23)

In a neighborhood of 1 one has ϕ(u) = 0 and a(u) ∼ −(1/2) log(u − 1) when u → 1+. Thus, ω(u)
diverges when u → 1 although it is locally integrable and defines a distribution. Since [1, ∞) has
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Figure 1. Primitive J(u) of N(u) and approximation using the symmetric set Zm of first 2m
zeros, by Jm(u) = u2/2 − ∑

Zm
order(ρ)uρ+1/(ρ+ 1) + u. Note that J(u) → −∞ when u → 1+.

a boundary, the derivative of the distribution depends on its boundary value and is defined, for f
smooth and of fast enough decay at ∞, as

〈

d

du
ω(u), f(u)

〉

= −
∫ ∞

1
ω(u)

d

du
f(u) du − ω(1)f(1). (24)

We apply this to the function f(u) = u−s−1, for ℜ(s)> 1. One has −df(u)/du= (s+ 1)u−s−2

and one obtains
〈

d

du
ω(u), f(u)

〉

= (s+ 1)

∫ ∞

1

(

−ϕ(u) +
u2

2
+ a(u)

)

u−s−2 du − ω(1).

By applying some results from [Ing90] (cf. ch. I, (17): use ϕ(u) = uψ0(u) − ψ1(u), ψ
′(u) = ψ0(u)),

one deduces that

−∂sζ(s)

ζ(s)
= (s+ 1)

∫ ∞

1
ϕ(u)u−s−2 du (25)

and by using
∫ ∞

1
(u+ 1)f(u) du=

1

s
+

1

s − 1
, −(s+ 1)

∫ ∞

1

u2

2
u−s−2 du= − 1

2
− 1

s − 1

one concludes that
〈(

u − d

du
ω(u) + 1

)

, f(u)

〉

=
1

s
− 1

2
− ∂sζ(s)

ζ(s)
+ ω(1) − (s+ 1)

∫ ∞

1
a(u)u−s−2 du.

Finally, we claim that the following equation holds

1

s
− (s+ 1)

∫ ∞

1
a(u)u−s−2 du= −∂sΓ(s/2)

Γ(s/2)
+
ζ ′(−1)

ζ(−1)
− log 2 − γ

2
.

Indeed, using a process of integration by parts one has

−(s+ 1)

∫ ∞

1+ǫ

(

ArcTanh

(

1

u

)

− u

)

u−s−2 du=

∫ ∞

1+ǫ

u−s+1

u2 − 1
du+ b(ǫ)
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with

b(ǫ) = −
(

ArcTanh

(

1

1 + ǫ

)

− (1 + ǫ)

)

(1 + ǫ)−s−1 = −
∫ ∞

1+ǫ

u−1

u2 − 1
du+ c+O(ǫ log(1/ǫ))

and c= 1 − log 2. Moreover, a simple change of variables in the Gauss formula for the logarithmic
derivative Γ′(s)/Γ(s) of the Gamma function gives

∂sΓ(s/2)

Γ(s/2)
= −γ

2
+

∫ ∞

1

u−1 − u−s+1

u2 − 1
du.

Thus, one obtains
〈(

u − d

du
ω(u) + 1

)

, f(u)

〉

= −∂sζQ(s)

ζQ(s)
,

provided that

ω(1) =
1

2
+
γ

2
+

log 4π

2
− ζ ′(−1)

ζ(−1)
. (26)

To check this latter equality one cannot use the explicit formula (17) which is not valid at u= 1,
since the term ArcTanh(1/u) is infinite, thus displaying the discontinuity of the function ω(u)
at u= 1. To verify (26), we use instead the following formula (taken from [Ing90]; cf. III, (26))

ζ ′(s)

ζ(s)
+

1

s − 1
=

∑

Z

(

1

s − ρ
+

1

ρ

)

− 1

2

Γ′

Γ

(

s

2
+ 1

)

+ log(2π) − 1 − γ

2

when s → 1. We note that the left-hand side of the above formula tends to γ while the right-hand
side, using the symmetry ρ → 1 − ρ of the zeros (and a symmetric summation and the formula
Γ′/Γ(3/2) = 2 − γ − 2 log 2) tends to

2
∑

Z

1

ρ
− 2 + log(4π).

Thus, one obtains
∑

Z

1

ρ
=
γ

2
+ 1 − 1

2
log(4π).

One then concludes by using the equalities (cf. [Ing90, IV, Theorem 28])

∑

Z

1

ρ(ρ+ 1)
=

1

2
− log(4π) +

ζ ′(−1)

ζ(−1)

and the formula (using a symmetric summation)
∑

Z

1

ρ+ 1
=

∑

Z

1

ρ
−

∑

Z

1

ρ(ρ+ 1)
. ✷

Remark 2.3. In agreement with [Sou04], the value N(1) should be thought of as the Euler
characteristic of the hypothetical curve C over F1. Since C is expected to have infinite genus,
one would deduce that N(1) = −∞, in apparent conflict with the expected positivity of N(q) for
q > 1. This apparent contradiction is resolved in the proof of Theorem 2.2, since the distribution
N(q) is positive for q > 1 but its value at q = 1 is formally given by

N(1) = 2 − lim
ǫ→0

ω(1 + ǫ) − ω(1)

ǫ
∼ − 1

2
E log E, E =

1

ǫ

also reflecting, when ǫ → 0, the density of the zeros.
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Remark 2.4. One may wonder how to extend Theorem 2.2 to Hecke L-functions with
Grössencharakters. For individual L-functions, the positivity of the distribution N(u) no longer
holds: L-functions of non-trivial characters provide a first example. However, the positivity of
N(u) is restored when one combines together all Hecke L-functions with Grössencharakters.
The distribution N(u) can then be lifted to the idèle class group CK of a global field K.
Formula (17), which is an essential component in the proof of Theorem 2.2, is a typical
application of the Riemann–Weil explicit formulae. These formulae become natural once they
are lifted to the idèle class group. It seems therefore natural to expect that also the hypothetical
curve C = Spec(Z) should be of adèlic nature and possessing an action of the idèle class
group. This speculation is in agreement with the interpretation of the explicit formulae as a
trace formula, by using the non-commutative geometric formalism of the adèle class space (cf.
[Con99, CCM07, CCM08, CCM09, Mey05]). Using this interpretation of the explicit formulae,
one can show that the counting distribution N(u), once lifted to the idèle class group CK, is
simply given by the distributional trace of the natural representation of CK on functions on the
adèle class space. We shall return on this adèlic interpretation of C in § 5 of this paper.

3. Mo-schemes

In this section we describe, following a functorial approach similar to that of [DG70], a
generalization of the theory of Z-functors and schemes which is obtained by enlarging the category
of rings to that of commutative monoids. This functorial construction will be applied in § 4.3, after
gluing together the categories of monoids and rings, to derive a new notion of F1-schemes and
associated zeta functions. Our construction has evident connections with the theory of schemes
over F1 developed by Deitmar in [Dei05, Dei08], with the theory of logarithmic structures of
Kato in [Kat94], with the arithmetic theory over F1 described by Kurokawa et al. in [KOW03],
and with the algebro-topological approach followed by Töen and Vaquié in [TV09].

3.1 Monoids: the category Mo

Throughout the paper we denote by Sets, Ab and Ring the categories of sets, abelian groups
and commutative rings with unit, respectively.

We let Mo be the category of commutative monoids M denoted multiplicatively, with a
neutral element 1 (i.e. unit) and an absorbing element 0 (0 · x= x · 0 = 0, for all x ∈ M). For
a monoid M , we write M× for the group of its invertible elements.

A homomorphism ϕ :M → N in Mo is unital (i.e. ϕ(1) = 1) and satisfying ϕ(0) = 0.

Remark 3.1. Given a commutative group H in Ab, we set

F1[H] =H ∪ {0} (0 · h= h · 0 = 0, ∀h ∈ H).

Following the analogy with the category of rings, one sees that in Mo a monoid of the form
F1[H] corresponds to a field F (F = F× ∪ {0}) in Ring. The collection of monoids like F1[H],
for H ∈ Obj(Ab), forms a full subcategory of Mo isomorphic to the category of abelian groups
(cf. Proposition 3.21).

Definition 3.2. An Mo-functor F is a covariant functor from the category Mo to Sets.

To a monoid M in Mo one associates the covariant functor specM defined as follows

specM : Mo → Sets, N 7→ specM(N) = HomM o (M, N). (27)
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Note that by applying Yoneda’s lemma, a morphism of functors (natural transformation)
ϕ : specM → F , with F : Mo → Sets is completely determined by the element ϕ(idM ) ∈ F (M),
moreover any such element gives rise to a morphism specM → F . By applying this fact to the
functor F = specN , for N ∈ Obj(Mo), one obtains an inclusion of Mo as a full subcategory of
the category of Mo-functors.

Morphisms in the category of Mo-functors are natural transformations.

An ideal I of a monoid M is a subset I ⊂ M such that 0 ∈ I and x ∈ I =⇒ xy ∈ I, for all
y ∈ M (cf. [Gil80]). As for rings, an ideal I ⊂ M defines an interesting subfunctorD(I) ⊂ specM :

D(I) : Mo → Sets, D(I)(N) = {ρ ∈ spec(M)(N) | ρ(I)N =N}. (28)

We recall that an ideal p ⊂ M is said to be prime if 1 /∈ p and its complement pc =M\p is a
multiplicative subset of M i.e.

x /∈ p, y /∈ p =⇒ xy /∈ p.

For an ideal I ⊂ M , one denotes by D(I) the set of prime ideals p ⊂ M which do not contain I.
These subsets are the open sets for the natural topology on the set X = Spec(M) of prime
ideals of M (cf. [Kat94]). The smallest ideal containing a collection of ideals {Iα}α∈A (A an
index set) of a monoid M is just the union I =

⋃

α∈A Iα and the corresponding open subset
D(I) ⊂ Spec(M) = {p ⊂ M | p prime ideal} satisfies the property D(

⋃

α∈A Iα) =
⋃

α∈A D(Iα). It
is a standard fact that the inverse image of a prime ideal by a morphism of monoids is a prime
ideal. Moreover, it is also straightforward to verify that the complement of the set of invertible
elements in a monoid M , pM = (M×)c, is a prime ideal in M which contains all other prime
ideals of the monoid.

3.2 Automatic locality

An interesting property fulfilled by any Mo-functor is that of being local. Locality is not
automatically satisfied by Z-functors, essentially it corresponds to state the exactness, on an
open (finite) covering of an affine scheme Spec(R) =

⋃

i∈I D(fi) (fi ∈ R, I index set) of sequences
such as (29) below. On the other hand, we shall see that an Mo-functor is local by construction.
We recall the following result (cf. [Dei05])

Lemma 3.3. Let M be an object in Mo and let {Wα}α∈A (A an index set) be a (finite) open
cover of the topological space X = Spec(M). Then Wα = Spec(M), for some index α ∈ A.

Proof. The point pM = (M×)c ∈ Spec(M) must be contained in at least one Wα, for some index
α ∈ A. One has Wα =D(Iα) for some ideal Iα ⊂ M , hence pM ∈ D(Iα), for some α ∈ A and this
means Iα ∩ M× 6= ∅, that is, Iα =M . ✷

Let M be an object of Mo. For S ⊂ M a multiplicative subset we recall that the monoid
S−1M is the quotient of the set made by all expressions a/s= (a, s) ∈ A × S, by the following
equivalence relation

a/s ∼ b/t ⇔ ∃u ∈ S uta= usb.

One checks that the product a/s.b/t= ab/st is well-defined on the quotient S−1M . For f ∈ M
and S = {fn; n ∈ Z>0} one denotes S−1M by Mf .
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For any Mo-functor F and any monoid M one defines a sequence of maps of sets (I an index
set)

F (M)
u−→

∏

i∈I

F (Mfi
)

w
//

v
//

∏

(i,j)∈I ×I

F (Mfifj
) (29)

which is obtained by using the (finite) open covering of Spec(M) made by the open sets D(fiM)
(fi ∈ M), the natural morphisms M → Mfi

and the functoriality of F .

The following lemma shows that any Mo-functor is local.

Lemma 3.4. For any Mo-functor F and any monoid M , the sequence (29) is exact.

Proof. By Lemma 3.3, there exists an index i= i0 ∈ I such that fi ∈ M×. Then, the map
ρi0 :M → Mfi0

is invertible, thus u is injective. Let (xi) ∈ ∏

i∈I F (Mfi
) be a family, with

xi ∈ F (Mfi
) such that (xi)fj

= (xj)fi
, for all i, j ∈ I. This gives in particular the equality

between the image of xi ∈ F (Mfi
) under the isomorphism F (ρii0) : F (Mfi

) → F (Mfifi0
) and

F (ρi0i)(x1) ∈ F (Mfi0
fi

) = F (Mfifi0
). By writing xi0 = ρi0(x) one finds that u(x) is equal to the

family (xi). ✷

3.3 Open Mo-subfunctors

In analogy with the theory of Z-schemes, we introduce the notion of an open subfunctor of an
Mo-functor and describe a few relevant examples.

Definition 3.5. A subfunctor G ⊂ F of an Mo-functor F is open if for any object M of Mo

and any morphism of Mo-functors ϕ : specM → F , there exists an ideal I ⊂ M satisfying the
following property: for any object N of Mo and for any ρ ∈ specM(N) = HomM o (M, N):

ϕ(ρ) ∈ G(N) ⊂ F (N) ⇔ ρ(I)N =N. (30)

To clarify the meaning of this definition we develop a few examples.

Example 3.6. The functor

G : Mo → Sets, N → G(N) =N×

is an open subfunctor of the (identity) functor D1

D1 : Mo → Sets, N → D1(N) =N.

In fact, let M be a monoid, then by Yoneda’s lemma a morphism of functors ϕ : specM → D1

is determined by an element z ∈ D1(M) =M . For any monoid N and ρ ∈ Hom(M, N), one has
ϕ(ρ) = ρ(z) ∈ D1(N) =N , thus the condition ϕ(ρ) ∈ G(N) =N× means that ρ(z) ∈ N×. One
takes for I the ideal generated by z in M : I = zM . Then it is straightforward to check that (30)
is fulfilled.

Example 3.7. Let I ⊂ M be an ideal of a monoidM and consider the subfunctorD(I) ⊂ spec(M)
as defined in (28). Then, D(I) is an open subfunctor of specM .

Indeed, for any object A of Mo and ϕ : specA → specM one has ϕ(idA) = η ∈ spec(M)(A) =
HomM o (M, A). One takes in A the ideal J = η(I)A. This ideal fulfills the condition (30) for
any object N of Mo and ρ ∈ HomM o (A, N). In fact, one has ϕ(ρ) = ρ ◦ η ∈ HomM o (M, N) and
ϕ(ρ) ∈ D(I)(N) means that ρ(η(I))N =N . This latter equality holds if and only if ρ(J)N =N .
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3.4 Open covering by Mo-subfunctors

The next task is to introduce the notion of an open cover in the category of Mo-functors. We
use the fact (cf. Proposition 3.21) that the category Ab of abelian groups embeds as a full
subcategory of Mo, by means of the functor H → F1[H].

Definition 3.8. Let F be an Mo-functor and let {Fα}α∈S be a family of open subfunctors
of F . Then one says that {Fα}α∈S (with S an index set) is an open cover of F if

F (F1[H]) =
⋃

α∈S

Fα(F1[H]) for all H ∈ Obj(Ab). (31)

Since commutative groups (with 0 added) replace fields in Mo, the above definition is the
natural transposition of the definition of open covers as in [DG70] within the category of Mo-
functors. The following proposition gives a precise characterization of the open covers of an
Mo-functor.

Proposition 3.9. Let F be an Mo-functor and let {Fα}α∈S be a family of open subfunctors
of F . Then, the family {Fα}α∈S forms an open cover of F if and only if

F (M) =
⋃

α∈S

Fα(M) for all M ∈ Obj(Mo).

Proof. The condition is obviously sufficient. To show the converse, we assume that (31) holds.
Let M be a monoid and let ξ ∈ F (M), one needs to show that ξ ∈ Fα(M) for some α ∈ S. Let ϕ
be the morphism of functors from specM to F such that ϕ(idM ) = ξ. Since each Fα is an open
subfunctor of F , one can find ideals Iα ⊂ M such that for any object N of Mo and for any
ρ ∈ specM(N) = HomM o (M, N) one has

ϕ(ρ) ∈ Fα(N) ⊂ F (N) ⇔ ρ(Iα)N =N. (32)

One applies this to the morphism ǫM :M → F1[M
×] = κ given by

M
ǫ→ F1[M

×], ǫM (y) =

{

0 for all y /∈ M×,

y for all y ∈ M×.
(33)

One has ǫM ∈ spec(M)(κ) and ϕ(ǫM ) ∈ F (κ) =
⋃

α∈S Fα(κ). Thus, there exists α such that
ϕ(ǫM ) ∈ Fα(κ). By (32) one has ǫM (Iα)κ= κ and Iα ∩ M× 6= ∅, hence Iα =M . Then applying
(32) to ρ= idM one obtains ξ ∈ Fα(M) as required. ✷

3.5 Mo-schemes

In view of the fact that any Mo-functor is local, the definition of an Mo-scheme simply involves
the condition of local representability.

Definition 3.10. An Mo-scheme is an Mo-functor which admits an open cover by representable
subfunctors.

We consider several elementary examples of Mo-schemes.

Example 3.11 (The affine spaces Dn). For a fixed n ∈ N, we consider the following Mo-functor

Dn : Mo → Sets, Dn(M) =Mn.

This functor is representable since it is described by

Dn(M) = HomM o (F1[T1, . . . , Tn], M),
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where

F1[T1, . . . , Tn] := {0} ∪ {T a1
1 · · · T an

n | aj ∈ Z>0} (34)

is the union of {0} with the semi-group generated by the Tj .

Example 3.12. The projective line P1. We consider the Mo-functor P1 which associates to an
object M of Mo the set P1(M) of complemented submodules E of rank one in M2, where the
rank is defined locally. By definition, a complemented submodule is the range of an idempotent
matrix e ∈ M2(M) (i.e. e2 = e) with each line having at most5 one non-zero entry. To a morphism
ρ :M → N one associates the following map P1(ρ)

E → N ⊗M E ⊂ N2,

which replaces e ∈ M2(M) by ρ(e) ∈ M2(N). Let ǫp be the morphism from M to F1[M
×
p ] (where

Mp = S−1M , with S = pc) given by

ǫp (y) =

{

0 for all y ∈ p,

y for all y /∈ p.
(35)

The condition of rank one means that for any prime ideal p ∈ SpecM the matrix ǫp (e) obtained
by applying ǫp to each matrix element, fulfills ǫp (e) /∈ {0, 1} (i.e. ǫp (e) is neither the zero nor
the unit matrix).

Now, we compare P1 with the following Mo-functor

P(M) =M ⊔M × M (36)

where the gluing map is given by x → x−1. In other words, we define on the disjoint unionM ⊔ M
an equivalence relation given by (using the identification M × {1, 2} =M ⊔ M)

(x, 1) ∼ (x−1, 2) for all x ∈ M×.

We define a natural transformation e from P to P1 by observing that the matrices

e1(a) =

(

1 0
a 0

)

, e2(b) =

(

0 b
0 1

)

, a, b ∈ M

are idempotent (e2 = e) and their ranges also fulfill the following property

Im e1(a) = Im e2(b) ⇐⇒ ab= 1.

Lemma 3.13. The natural transformation e is an isomorphism, that is,

P(M) =M ⊔M × M ∼= P1(M).

Moreover, the two copies of M define an open cover of P1 by representable sub-functors D1.

Proof. We show that an idempotent matrix e ∈ M2(M) of rank one, with each line having at
most one non-zero entry is of the form ej(a) for some j ∈ {1, 2}. First we claim that one of the
matrix elements of

e=

(

a b
c d

)

must be invertible. Otherwise, by localizing M at the prime ideal pM = (M×)c one would obtain
the zero matrix which contradicts the hypothesis of rank one. Assume first that a is invertible.
Then b= 0, and from the idempotency condition on e one gets that a2 = a and hence a= 1.

5 Note that we need the 0-element to state this condition.
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Now we show that d= 0. Again from the condition e2 = e one gets d2 = d. Then, if d 6= 0 there
exists a prime ideal p ⊂ M such that d /∈ p. This is because the intersection of all prime ideals is
the set of nilpotent elements. More generally, one knows [Gil80] that given an ideal I ⊂ M , the
intersection of the prime ideals p ⊂ M with p ⊃ I coincides with the radical of I

⋂

p ⊃I

p =
√
I := {x ∈ M | ∃n ∈ N, xn ∈ I}.

Thus, by localizing M at p one obtains that e is the unit matrix at p which contradicts the
hypothesis of rank one. Thus, d= 0 and e= e1(c).

If b is invertible, then a= 0, bd= b so that d= 1 and c= 0, thus e= e2(b).

The two other cases are treated in a similar manner. The functor P admits by construction
two copies of the functor D1 embedded in it as a subfunctor. We need to show that these two
subfunctors are open in P1: we prove it for the first copy of D1. Let N be an object of Mo. A
morphism spec(N) → P1 (in the category of Mo-functors) is determined by an element z ∈ P1(N).
If z belongs to the first copy of N , it follows that for any ρ ∈ HomM o (N,M), ρ(z) is in the first
copy of D1(M). In this case one can take I =N . Otherwise, z belongs to the second copy of N
and in this case, likewise in the above Example 3.6, one takes I = zN . The local representability
follows since D1 is representable. ✷

Example 3.14. Let M be a monoid and let I ⊂ M be an ideal. Consider the Mo-functor D(I)
of Example 3.7. The next proposition states that this is an Mo-scheme.

Proposition 3.15.

(1) Let f ∈ M and I = fM . Then the subfunctor D(I) ⊂ specM is represented by Mf .

(2) For any ideal I ⊂ M , the Mo-functor D(I) is an Mo-scheme.

The proof is straightforward.

3.6 Geometric realization

As in the case of Z-schemes (and following similar set-theoretic precautions to those stated in
the preliminary chapter of [DG70]), it can be shown that any Mo-scheme X can be represented
in the form

X(N) = Hom(Spec(N), X), N ∈ Obj(Mo), (37)

where X is the associated geometric space, that is, the geometric realization of X. In this
framework, a geometric space is properly defined by:

– a topological space X;

– a sheaf OX of monoids on X.

For details on the properties of the geometric spaces which are locally of the form Spec(M)
we refer to [Dei05, Dei08, Kat94]. Note that there is no need to require that the stalks of
the structural sheaf of a geometric space are ‘local’ since any monoid already has a local
algebraic structure. We recall only a few concepts from the basic terminology and we refer
to [Dei05, Dei08, DG70, Kat94] for details. A homomorphism ρ :M1 → M2 of monoids is said to
be local if ρ−1(M×

2 ) =M×
1 . A morphism ϕ :X → Y between two geometric spaces is given by a

pair (ϕ, ϕ♯) of a continuous map ϕ and a local morphism of sheaves of monoids

Γ(V, OY )
ϕ♯

→ Γ(ϕ−1(V ), OX)

that is, the map of stalks OY,ϕ(x)
ϕ♯

→ OX,x is a local homomorphism of monoids.
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The sheaf of monoids associated with the prime spectrum Spec(M) satisfies the following
properties.

– The stalk at p ∈ Spec(M) is Op = S−1M , with S = pc.

– For any f ∈ M , the map ϕ :Mf → Γ(D(fM), O) defined by

ϕ(x)(p) = a/fn ∈ Op for all p ∈ D(fM), for all x= a/fn ∈ Mf

is an isomorphism.

– On an open set U ⊂ Spec(M), a section s ∈ Γ(U, O) is an element of
∏

p ∈U Op such that on
any open set D(f) ⊂ U its restriction agrees with an element in Mf .

For any geometric space (X, OX), one defines (as in [DG70]) a canonical morphism ψX :X →
Spec(O(X)).

Definition 3.16. A geometric space (X, OX) is a prime spectrum if the morphism ψX is an
isomorphism. (X, OX) is a geometric Mo-scheme if X admits an open covering by prime spectra.

The terminology is justified since the Mo-functor X(M) = Hom(SpecM, X) associated to a
geometric Mo-scheme X is an Mo-scheme in the sense of Definition 3.10. We can now state the
following proposition.

Proposition 3.17. Under the same set-theoretic conditions as in [DG70], any Mo-scheme X
can be represented in the form

X(N) = Hom(Spec(N), X), N ∈ Obj(Mo) (38)

for a geometric Mo-scheme X which is unique up to isomorphism.

The proof of this proposition follows the lines of that for Z-schemes exposed in [DG70].

Remark 3.18. The geometric realization |F | makes sense for any Mo-functor F and is defined
as an inductive limit of prime spectra: cf. Proposition 4.1 of [DG70]. The existence of a final
object in the full subcategory Ab yields a canonical identification of |F | with the set F (F1)
endowed with a suitable topology (whose open sets U correspond to open subfunctors FU of F )
and the sheaf of monoids given by the morphisms to the Mo-functor D, that is, the affine line.
Proposition 3.9 ensures that the natural map from Hom(Spec(N), X) to X(N) is surjective. We
refer to [CC09] for a detailed proof.

For any Mo-scheme X and any monoid M , there is a natural map of sets connecting X(M)
to the set underlying the geometric realization of the scheme X. This map has no analogue in
the theory of Z-schemes.

Definition 3.19. Let X be an Mo-scheme and let X be its geometric realization. For any
monoid M we define the canonical map of sets

πM : X(M) → X, πM (φ) = φ(pM ), φ ∈ Hom(Spec(M), X). (39)

An important property of the map πM is described by the following.

Proposition 3.20. Let X be an Mo-scheme and let X be its geometric realization. Let U be
an open subset of X and let U ⊂ X be the associated open subfunctor. Then

U(M) = π−1
M (U) ⊂ X(M). (40)
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Proof. Since U is open, for any φ ∈ X(M) = Hom(Spec(M), X), it follows from the locality of
the theory of Mo-schemes that

πM (φ) = φ(pM ) ∈ U ⇐⇒ φ−1(U) = Spec(M). ✷

3.7 Restriction to abelian groups

In this section we describe the functor obtained by restricting Mo-schemes to the category Ab

of abelian groups. We first recall the definition of the natural functor-inclusion of Ab in Mo.

Proposition 3.21. The covariant functor

F1[ · ] : Ab → Mo, H 7→ F1[H]

embeds the category of abelian groups as a full subcategory of the category of commutative
monoids.

Proof. We show that the group homomorphism

HomAb (H, K) −→ HomM o (F1[H], F1[K]), φ → F1[φ]

is bijective. It is injective by restriction to H ⊂ F1[H]. Moreover, any unital monoid
homomorphism in HomM o (F1[H], F1[K]) preserves the absorbing elements and sends invertible
elements to invertible elements since it is unital. Thus, it arises from a group homomorphism. ✷

We identify Ab with this full subcategory of Mo. Of course, any Mo-functor X : Mo → Sets

can be restricted to Ab and it gives rise to a functor taking values in Sets.

In fact, there is a pair of adjoint functors, Ab → Mo, H 7→ F1[H] and Mo → Ab, M 7→ M×;
these two functors are linked by the isomorphism

HomM o (F1[H], M) ∼= HomAb (H,M×).

Moreover, for a monoid M , the Weil restriction of the functor specM , is defined by

Ab → Sets, H → HomM o (M, F1[H]). (41)

The next proposition shows that the restriction to Ab of an Mo-scheme is a direct sum of
representable functors.

Proposition 3.22. Let X be an Mo-scheme and X its geometric realization. Then the
(restriction) functor

X : Ab → Sets, H 7→ Hom(Spec F1[H], X) =X(F1[H])

is the disjoint union

X(F1[H]) =
⊔

x∈X

Xx(H), Xx(H) = HomAb (O ×
X,x, H). (42)

Proof. Let ϕ ∈ Hom(Spec F1[H], X). The unique point p ∈ Spec F1[H] corresponds to the ideal
(0). Let ϕ(p) = x ∈ X be its image; there is a corresponding map of the stalks

ϕ# : Oϕ(p) → Op = F1[H].

This homomorphism is local by hypothesis: this means that the inverse image of (0) by
ϕ# is the maximal ideal of Oϕ(p) = OX,x. Therefore, the map ϕ# is entirely determined

by the group homomorphism ρ ∈ HomAb (O ×
X,x, H) obtained as the restriction of ϕ#.
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Thus, ϕ ∈ Hom(Spec F1[H], X) is entirely specified by a point x ∈ X and a group homomorphism
ρ ∈ HomAb (O ×

X,x, H). ✷

Proposition 3.22 is the analogue of the description given in [DG70, I, §§ 1 and 4] of the
restriction of a Z-functor to the category of fields. The further restriction of an Mo-scheme X to
the category of finite abelian groups corresponds to Soulé’s construction in [Sou04]. We denote
by X(F1n) the evaluation of X on the cyclic group Z/nZ, and in particular we use the notation
F1n = F1[Z/nZ].

In algebraic geometry, given an algebraic variety X one knows that the degree of
transcendence of the residue field κ(x) of a point x ∈ X measures the dimension of the closure
{x} ⊂ X. For an Mo-scheme one has the following corresponding (local) notion.

Definition 3.23. Let X be a geometric Mo-scheme and let x ∈ X be a point. The local
dimension n(x) of x is the rank of the abelian group O ×

X,x.

The local dimension determines a natural grading on the restriction of an Mo-scheme X to
Ab by assigning the degree n(x) to the subset Xx(H) ⊂ X(F1[H]) in the decomposition (42).

Proposition 3.24. The restriction of the following Mo-schemes X to Ab coincides, as a functor
to Z>0-graded sets, with the functors defined in [CC08].

(1) Spectra of fields in Mo (cf. Remark 3.1) of type: X = spec(F1[H]), H finite abelian group.

(2) Tori Gn
m: X = spec(F1[Z

n]).

(3) Affine space Dn: X = spec(F1[T1, . . . , Tn]).

(4) Projective line: X = P1
F1

.

Proof.

(1) The space Spec(F1[H]) has a single point and the local dimension is zero which agrees
with [CC08, Example 3.1].

(2) For n ∈ N, the space Spec(F1[Z
n]) consists of a single point and the local dimension is n

which agrees with [CC08, Example 3.2].

(3) Let M = F1[T1, . . . , Tn] = {0} ∪ {T a1
1 · · · T an

n | aj ∈ Z>0}. A prime ideal p of M is of the
form p =

⋃

i∈J TiM , where J ⊆ {1, . . . , n}. One has O ×
X,p ≃ ZJc

, with Jc = {1, . . . , n}\J ,
generated by the Tj , with j ∈ Jc. Thus, the local dimension of Spec(M) at p is the cardinality
of Jc and this agrees with [CC08, Example 3.3].

(4) The geometric realization P1
F1

is obtained by gluing two affine lines (cf. [Dei05] and § 3)
and consists of three points, that is, P1

F1
= {0, u, ∞}, where n(0) = 0 = n(∞) and n(u) = 1.

This agrees with [CC08, Example 3.4]. ✷

4. The category MR and F1-schemes

As we already remarked in [CC08] (cf. § 4), the definition of the (affine) variety over F1 for
a Chevalley group is inclusive of the datum given by a covariant functor to the category Sets

of sets, fulfilling much stronger properties than those required originally in [Sou04] (for affine
varieties). The domain of such a functor is a category which contains both the category of
commutative rings and that of monoids (these two categories being linked by a pair of adjoint
functors) and moreover in the definition of the variety one also requires the existence of a suitable
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natural transformation. In this section we develop the details of this construction following an
idea we learnt from P. Cartier. The introduction in § 4.1 develops some generalities on the gluing
process of two categories linked by a pair of adjoint functors. In § 4.2, we also treat in this
generality the extension of functors. The specific case of interest is covered in § 4.3 where we
show that Chevalley groups are schemes over F12 . Finally, in § 4.4 we extend the computation
of zeta functions of [Dei06, Theorem 1] to our new setup which is no longer restricted to toric
varieties (as it covers in particular the case of Chevalley groups).

4.1 Gluing two categories using adjoint functors

We consider two categories C and C ′ and a pair of adjoint functors β : C → C ′ and β∗ : C ′ → C.
Thus, by definition one has a canonical identification

HomC ′ (β(H), R)
Φ∼= HomC (H, β∗(R)) for all H ∈ Obj(C), R ∈ Obj(C ′). (43)

The naturality of Φ is expressed by the commutativity of the following diagram where the vertical
arrows are given by composition, for all f ∈ HomC (G, H) and for all h ∈ HomC ′ (R, S).

HomC ′ (β(H), R)

Hom(β(f),h)

��

Φ
// HomC (H, β∗(R))

Hom(f,β∗(h))

��

HomC ′ (β(G), S)
Φ

// HomC (G, β∗(S))

(44)

We now define a category C ′′ = C ∪β,β∗ C ′ obtained by gluing C and C ′. The collection6 of
objects of C ′′ is obtained as the disjoint union of the collection of objects of C and C ′. For
R ∈ Obj(C ′) and H ∈ Obj(C), one sets HomC ′′ (R, H) = ∅. On the other hand, one defines

HomC ′′ (H, R) = HomC ′ (β(H), R) ∼= HomC (H, β∗(R)). (45)

The morphisms between objects contained in the same category are unchanged. The composition
of morphisms in C ′′ is defined as follows. For φ ∈ HomC ′′ (H, R) and ψ ∈ HomC (H ′, H), one defines
φ ◦ ψ ∈ HomC ′′ (H ′, R) as the composite

φ ◦ β(ψ) ∈ HomC ′ (β(H ′), R) = HomC ′′ (H ′, R). (46)

Using the commutativity of the diagram (44), one obtains

Φ(φ ◦ β(ψ)) = Φ(φ) ◦ ψ ∈ HomC (H ′, β∗(R)). (47)

Similarly, for θ ∈ HomC ′ (R, R′) one defines θ ◦ φ ∈ HomC ′′ (H, R′) as the composite

θ ◦ φ ∈ HomC ′ (β(H), R′) = HomC ′′ (H, R′) (48)

and using again the commutativity of (44), one obtains that

Φ(θ ◦ φ) = β∗(θ) ◦ Φ(φ) ∈ HomC (H, β∗(R′)). (49)

Moreover, one also defines specific morphisms αH and α′
R as follows

αH = idβ(H) ∈ HomC ′ (β(H), β(H)) = HomC ′′ (H, β(H)) (50)

α′
R = Φ−1(idβ∗(R)) ∈ Φ−1(HomC (β∗(R), β∗(R))) = HomC ′′ (β∗(R), R). (51)

6 It is not a set: we refer for details to the discussion contained in the preliminaries of [DG70].

1402

https://doi.org/10.1112/S0010437X09004692 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004692


Schemes over F1 and zeta functions

By construction, one obtains

HomC ′′ (H, R) = {g ◦ αH | g ∈ HomC ′ (β(H), R)} (52)

and for any morphism ρ ∈ HomC (H, K) the following equation holds

αK ◦ ρ= β(ρ) ◦ αH . (53)

Similarly, it also turns out that

HomC ′′ (H, R) = {α′
R ◦ f | f ∈ HomC (H, β∗(R))} (54)

and the associated equalities hold

α′
S ◦ β∗(ρ) = ρ ◦ α′

R for all ρ ∈ HomC ′ (R, S) (55)

g ◦ αH = α′
R ◦ Φ(g) for all g ∈ HomC ′ (β(H), R). (56)

Proposition 4.1. We have that C ′′ = C ∪β,β∗ C ′ is a category which contains C and C ′ as full
subcategories. Moreover, for any object H of C and R of C ′, one has

HomC ′′ (H, R) = HomC ′ (β(H), R) ∼= HomC (H, β∗(R)).

Proof. One needs to check that the composition ◦′′ of morphisms is associative in C ′′, that is,
that h ◦′′ (g ◦′′ f) = (h ◦′′ g) ◦′′ f . The only relevant case to check is when the image of f is an
object H of C and the image of g is an object R of C ′. Then f(G) =H, with G an object of C
and h(R) = S an object of C ′. One has g ∈ HomC ′ (β(H), R) and

g ◦′′ f = g ◦ β(f), h ◦′′ (g ◦′′ f) = h ◦ (g ◦ β(f)) = (h ◦ g) ◦ β(f) = (h ◦′′ g) ◦′′ f. ✷

4.2 Extension of functors

We keep the notation introduced in § 4.1. In particular, (β, β∗) denotes a pair of adjoint functors
linking C and C ′, that is, β : C → C ′ and β∗ : C ′ → C, and the isomorphism (43) holds. Let
F : C → T and F ′ : C ′ → T be covariant functors to the same category T . It is a straightforward
routine to verify that the assignment of a natural transformation F → F ′ ◦ β is equivalent
to giving a natural transformation F ◦ β∗ → F ′. By implementing in this setup the category
C ′′ = C ∪β,β∗ C ′ defined in § 4.1, one obtains the following more precise result.

Proposition 4.2.

(1) With the above notation, let F ′′ : C ′′ → T denote a covariant functor. Then the assignment
H 7→ F ′′(αH) defines a natural transformation F ′′ |C → F ′′ |C ′ ◦ β and analogously the
assignment R 7→ F ′′(α′

R) defines a natural transformation F ′′ |C ◦ β∗ → F ′′ |C ′ .

(2) Let F : C → T and F ′ : C ′ → T be covariant functors. Then:

(a) given a natural transformation F → F ′ ◦ β, there exists a unique covariant functor F ′′

which extends F , F ′ and agrees with the natural transformation on the morphisms αH ;
(b) given a natural transformation F ◦ β∗ → F ′, there exists a unique covariant functor F ′′

which extends F , F ′ and agrees with the natural transformation on the morphisms α′
R.

Proof.

(1) This follows from (53) and (55).

(2) (a) A natural transformation F → F ′ ◦ β determines, by (52), the extension from C ∪ C ′ to
C ′′ = C ∪β,β∗ C ′.

(b) The proof is similar to the proof of (a). ✷
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Let us assume now that we are given a representable functor F : C → T , where T = Sets. In
the following we investigate the extensions of F to C ′′ = C ∪β,β∗ C ′.

Note first that F admits a unique representable extension to C ′′. Indeed, the representability
of F amounts to the existence of an object G in C such that

F (H) = HomC (G, H) for all H ∈ Obj(C).

If the extension of F is represented by an object of C ′′, then this object must necessarily belong
to C, since by definition of C ′′ there is no morphism of C ′′ from an object of C ′ to an object of C.
Moreover, by restriction to C one obtains the uniqueness of the extension. Thus, any extension
of F to C ′′ which is represented by an object of this latter category is unique (as a representable
functor) and is given on C ′ by

F ′(R) = HomC ′ (β(G), R). (57)

The natural transformation F → F ′ ◦ β is simply given by the restriction of the functor β

β : HomC (G, H) → HomC ′ (β(G), β(H)).

Similarly, the natural transformation F ◦ β∗ → F ′ is defined by the identity map

HomC (G, β∗(R)) → F ′(R) = HomC ′ (β(G), R) ∼= HomC (G, β∗(R)).

Thus, the following result holds.

Proposition 4.3. Let F : C → Sets be a representable functor.

(1) There exists a unique extension F̃ of F to C ′′ = C ∪β,β∗ C ′ as a representable functor.

(2) Let G be any extension of F to C ′′ = C ∪β,β∗ C ′. Then, there exists a unique morphism of
functors from F̃ to G which restricts to the identity on C.

Proof. For part (1), we note that the object of C representing F is unique up to isomorphism
and it represents F̃ .

The proof of part (2) follows from the following facts. If A ∈ Obj(C) represents F̃ , by applying
Yoneda’s lemma (i.e. Nat(F̃ , G) ≃ G(A)) we know that there exists a uniquely determined natural
transformation φ : F̃ → G associated with any object ρ of G(A): the pair (φ, ρ) being linked by the
formulae ρ= φ(A)(idA) ∈ G(A) and φ= ρ♯(ρ♯(R)(β) = G(β)(ρ)). However, since the restriction
of φ to C is the identity map from F (A) to G(A) = F (A), one obtains the required uniqueness. ✷

The following corollary shows that even though the extension F̃ of F to C ′′ = C ∪β,β∗ C ′ is
not unique, it is still universal.

Corollary 4.4. Let F : C → Sets be a representable functor and let F ′ : C ′ → Sets be defined
as in (57). Let G ′ be a functor from C ′ to Sets and let φ : F → G ′ ◦ β be a natural transformation.
Then there exists a unique morphism of functors ψ : F ′ → G ′ such that

φH = ψβ(H) ◦ F̃ (αH) for all H ∈ Obj(C). (58)

Proof. Given φ and G ′, there exists by Proposition 4.2 a unique extension G of F to C ′′ = C ∪β,β∗ C ′

which restricts to G ′ on C ′ and is such that

φH = G(αH) for all H ∈ Obj(C).

A morphism of functors from F̃ to G extending the identity on C is entirely specified by its
restriction to C ′ which is a morphism of functors ψ from F ′ to G ′ and it must be compatible with
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the morphisms αH . This compatibility is given by (58). Thus, the existence and uniqueness of ψ
follows from Proposition 4.3. ✷

The next proposition states a similar, but simpler, result for extensions of functors from C ′

to the larger category C ′′ = C ∪β,β∗ C ′.

Proposition 4.5. Let F ′ : C ′ → Sets be a functor.

(1) There exists a unique extension F̃ of F ′ to C ′′ = C ∪β,β∗ C ′ given by F ′ ◦ β on C and such
that F̃ (αH) = idβ(H) for all objects H of C.

(2) Let G be any extension of F ′ to C ′′ = C ∪β,β∗ C ′, then there exists a unique morphism of
functors from G to F̃ which is the identity on C ′.

Proof. The first statement follows from Proposition 4.2(2) by using the identity as a natural
transformation. Similarly, for the second statement, again Proposition 4.2(2) determines a unique
morphism of functors φ given by φ(H) = G(αH) and obtained from the restriction of G to C to
G ◦ β = F ′ ◦ β. We extend φ as the identity on C ′. The commutative diagram

G(H)

φH

��

G(αH)
// G(β(H))

��

F̃ (H) = F ′(β(H)) // F̃ (β(H))

(59)

shows that one obtains a morphism of functors from G to F̃ . The same diagram also gives the
uniqueness of φ. ✷

4.3 F1-schemes and Chevalley groups

We apply the construction described in §§ 4.1 and 4.2 to the following pair of adjoint covariant
functors β and β∗. The functor

β : Mo → Ring, M 7→ β(M) = Z[M ] (60)

associates to a monoid M the convolution ring Z[M ] (the 0 element of M is sent to 0). The
adjoint functor β∗

β∗ : Ring → Mo, R 7→ β∗(R) =R (61)

associates to a ring R the ring itself viewed as a multiplicative monoid (forgetful functor). The
adjunction relation states that

HomRing (β(M), R) ∼= HomM o (M, β∗(R)). (62)

We apply Proposition 4.1 to construct the category MR = Ring ∪β,β∗ Mo. Thus, for every
object R of Ring, one obtains a morphism

α′
R ∈ HomM R (β∗(R), R) (63)

and the following relation between the morphisms of MR:

f ◦ α′
R = α′

S ◦ β∗(f), for all f ∈ HomRing (R, S). (64)

Similarly, for every monoid M one has a morphism

αM ∈ HomM R (M, β(M)) (65)
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together with the relation

β(f) ◦ αM = αN ◦ f for all f ∈ HomM o (M, N). (66)

Definition 4.6. An F1-functor is a covariant functor from the category MR = Ring ∪β,β∗ Mo

to the category of sets.

Then, it follows from Proposition 4.2 that the assignment of an F1-functor X : MR → Sets

is equivalent to the specification of the following data.

– An Mo-functor X.

– A Z-functor XZ.

– A natural transformation e :X → XZ ◦ β.

The third condition can be equivalently replaced by the assignment of a natural
transformation X ◦ β∗ → XZ.

Now that we have at our disposal the category MR obtained by gluing Mo and Ring we
introduce our notion of an F1-scheme.

Definition 4.7. An F1-scheme is an F1-functor X : MR → Sets, such that:

– the restriction XZ of X to Ring is a Z-scheme;

– the restriction X of X to Mo is an Mo-scheme;

– the natural transformation e :X ◦ β∗ → XZ associated with a field is a bijection (of sets).

Morphisms of F1-schemes are natural transformations of the corresponding functors.

Example 4.8. The first three examples of Proposition 3.24 are affine Mo-schemes given by
representable functors X = spec(F1[M ]), for some monoid M . By applying Proposition 4.3(1),
these schemes determine, canonically, representable F1-functors X . By construction, the Z-
scheme corresponding to X (i.e. the restriction XZ of X to Ring) is spec(Z[M ]). For any object R
of Ring, the natural transformation e(R) :X ◦ β∗(R) → XZ(R) which is given by the adjunction
relation (62), is a bijection of sets.

Example 4.9. The projective line P1 is the Mo-scheme described in Example 3.12. It associates
to an object M of Mo the set P1(M) of complemented submodules E of rank one in M2 (the
rank is defined locally), that is, the range of an idempotent matrix e ∈ M2(M), of rank one, with
each line having at most one non-zero entry. Let R be an object of Ring and let M = β∗(R)
be the underlying monoid. Then, the idempotent matrix e ∈ M2(M) is an idempotent matrix
e ∈ M2(R). By applying Lemma 3.13 one has a complete description of these matrices e. One
uses the natural isomorphism

P(M) =M ⊔M × M ∼= P1(M)

and one checks that the corresponding matrices e ∈ M2(R) are all of rank one in the local sense of
the definition of projective space P1

Z given in [DG70]. Thus, one obtains a natural transformation
e : P1 ◦ β∗ → P1

Z. Moreover, when the object R of Ring is a field this natural transformation is
a bijection since for any field K the one-dimensional subspaces of K2 are ranges of projections
of the above form. Note that, unlike the cases of the three schemes considered in Example 4.8,
for the projective line X = P1 it is not true that the natural transformation e :X ◦ β∗ → XZ is a
bijection for arbitrary rings.
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Remark 4.10. Even though the restriction X of an F1-scheme X to Mo is an Mo-scheme, the
composite X ◦ β∗ is not in general a Z-scheme since X ◦ β∗ may fail to be a local Z-functor. In
Example 4.9, for instance, X ◦ β∗ determines only a smaller portion of the projective line as a
Z-scheme. However, one can associate to X ◦ β∗ a unique Z-scheme (X ◦ β∗)loc which is obtained
by localization. This amounts to assigning to a ring R the set of solutions of (29), using X ◦ β∗

and an arbitrary partition of unity in R. Then, Proposition 4.3 describes a canonical morphism
of Z-schemes τ : (X ◦ β∗)loc → XZ.

It is quite important to point out here that Definition 4.7 of an F1-scheme does not require τ
to be an isomorphism. When it is so, the obtained scheme XZ is toric (cf. [Dei08]). In the case of
Chevalley groups as described in [CC08], the corresponding schemes XZ are not toric in general
(it suffices to consider the case of SL(2)). For a Chevalley group G, the Z-scheme (X ◦ β∗)loc

is by construction a disjoint sum of affine schemes corresponding to the cells of the Bruhat
decomposition (cf. [CC08, Theorem 4.1]), while the Z-scheme XZ is the algebraic group-scheme
(i.e. Chevalley–Demazure group scheme) G associated with an irreducible root system of G (cf.
[DG77]). The canonical morphism τ is effecting the gluing of the various cells.

Proposition 4.5 describes the natural morphism from the Mo-scheme X to the ‘gadget’ (cf.
[CC08, Definition 2.5]) associated with the Z-scheme XZ.

Definition 4.7 admits variants corresponding to the extensions F1n . For Chevalley schemes one
considers the case n= 2. One defines the category Mo(2) of pairs (M, ǫ) made by an object M of
Mo and an element ǫ ∈ M of square one. Morphisms (M, ǫ) → (M1, ǫ1) in Mo(2) are morphisms
in Mo mapping ǫ 7→ ǫ1. One defines the functor β : Mo(2) → Ring as β(M, ǫ) = Z[M, ǫ], where

Z[M, ǫ] = Z[M ]/J, J = (1 + ǫ)Z[M ]. (67)

The adjoint functor β∗ : Ring → Mo(2) is given by β∗(A) = (A, −1), where (A, −1) is the object
of Mo(2) given by the ring A viewed as a (multiplicative) monoid and the element −1 ∈ A. Then,
the following adjunction relation holds for any commutative ring A

HomRing (β(M, ǫ), A) ∼= Hom
M o (2)((M, ǫ), β∗(A)). (68)

Finally, we have the following result.

Theorem 4.11. The algebraic group-scheme G over Z associated with (an irreducible root
system of) a Chevalley group G extends to a scheme G over F12 .

Proof. The proof follows from [CC08, Theorem 4.1], where we showed that:

– the construction of the functor G extends from the category F (2)
ab of pairs (D, ǫ) of a finite

abelian group and an element of order two in D to the category Mo(2);

– the construction of the natural transformation eG extends from F (2)
ab to the category Mo(2);

here eG associates to any A ∈ Obj(Ring) a map

eG,A : G(A, −1) → G(A); (69)

– when A is a field the map eG,A is a bijection. ✷

The map eG,A of (69) is constructed in [CC08, proof of Theorem 4.1], and it yields the
natural transformation G ◦ β∗ → G (and using (56) the corresponding natural transformation
G → G ◦ β). ForH ∈ Obj(Ab), this natural transformation is compatible with the group structure
on the subset G(ℓ)(H) ⊂ G(H) in lowest degree ℓ (ℓ= rk G), for the grading on G, as in [CC08,
Definition 3.23].
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4.4 Zeta function of Noetherian F1-schemes

We recall that a congruence on a monoid M is an equivalence relation which is compatible
with the semigroup operation. A monoid is Noetherian when any strictly increasing sequence of
congruences is finite (cf. [Gil80, p. 30]). The following conditions on a monoid M are equivalent
(cf. [Gil80, Theorems 7.7, 7.8 and 5.10]):

– M is Noetherian;

– M is finitely generated;

– Z[M ] is a Noetherian ring.

In [Gil80, Theorem 5.1] it is proven that if M is a Noetherian monoid, then for any prime
ideal p ⊂ M the localized monoid Mp is also Noetherian (the semigroup pc is finitely generated
and thus Mp is also finitely generated). The same theorem also shows that the abelian group
(Mp )× is finitely generated.

Definition 4.12. An Mo-scheme is Noetherian if it admits a finite open cover by representable
subfunctors spec(M), where M are Noetherian monoids.

An F1-scheme is Noetherian if the associated Mo and Z-schemes are Noetherian.

A geometric Mo-scheme X is said to be torsion free if the groups O ×
X,x of invertible elements

of the monoids OX,x, for x ∈ X, are torsion free. The following result is related to Theorem 1 of
[Dei06], but it applies to a wider class of varieties (i.e. non-necessarily toric).

Theorem 4.13. Let X be a Noetherian F1-scheme and let X be the geometric realization of its
restriction X to Mo. Then, if X is torsion free, the following results hold.

(i) There exists a polynomial N(x+ 1) with positive integral coefficients such that

#X(F1n) =N(n+ 1) for all n ∈ N.

(ii) For each finite field Fq the cardinality of the set of points of the Z-scheme XZ which are
rational over Fq is equal to N(q).

(iii) The zeta function of X has the following description

ζX (s) =
∏

x∈X

1

(1 − 1/s)⊗n(x)
, (70)

where ⊗ denotes Kurokawa’s tensor product and n(x) is the local (finite) dimension of X
at the point x (cf. Definition 3.23).

In (70), when n(x) = 0, we write

(

1 − 1

s

)⊗n(x)

= s.

We refer to [Kur92, Man95] for the details of the definition of Kurokawa’s tensor products and
zeta functions.

When X = P1
F1

, the associated geometric space X is made by three points X = {0, u, ∞} (cf.
proof of Proposition 3.24(4)), n(0) = n(∞) = 0 and n(u) = 1. Thus, (70) gives

∏

x∈X

1

(1 − 1/s)⊗n(x)
=

1

s2
1

1 − 1/s
=

1

s(s − 1)
.
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Formula (70) continues to hold even in the presence of torsion on the structural sheaf OX and
in that case it corresponds to the treatment of torsion given in [Dei06].

Proof. (1) By definition, X(F1n) is the set obtained by evaluating the restriction of X (from the
subcategory Mo of MR) on Ab, at the cyclic group H = Z/nZ. By applying Proposition 3.22,
one has the decomposition

X(H) =
⊔

x∈X

Xx(H), Xx(H) = HomAb (O ×
X,x, H). (71)

Since X is Noetherian, X is a finite topological space and, by hypothesis, for each x ∈ X
the abelian group O ×

X,x is finitely generated and torsion free. The rank of O ×
X,x is n(x),

thus the set Xx(H) = HomAb (O ×
X,x, H) has cardinalitynn(x). It follows that the function of the

indeterminate y

P (y) =
∑

x∈X

yn(x) (72)

is a polynomial with positive integral coefficients. Here P (y) is related to the counting function
of X by the equation N(x+ 1) = P (x). Then part (1) follows.

Part (2) follows from part (1) and the fact that the natural transformation e :X ◦ β∗ → XZ

(which is part of the set of data describing an F1-scheme, cf. Definition 4.7) evaluated at any
field is a bijection. In the case of a finite field Fq, the corresponding monoid is F1[H], for the
cyclic group H = Z/nZ of order n= q − 1.

(3) By definition, the zeta function ζX (s) of X is given by the formula (4) applied to the
polynomial counting function N(x) of X . By part (1), we have N(x+ 1) = P (x), where P (x) is
given by (72). In other words one has

N(q) =
∑

x∈X

(q − 1)n(x).

By construction (cf. [Sou04]), (4) transforms a sum of counting functions into a product of zeta
functions. Thus, it is enough to show that for a monomial (q − 1)n, equation (4) gives the
zeta function 1/((1 − 1/s)⊗n

). In order to check that, we start by making explicit the Kurokawa’s
tensor product (for n > 0) as follows

(

1 − 1

s

)⊗n

=

∏

j even(s − n+ j)(
n
j)

∏

j odd(s − n+ j)(
n
j)
. (73)

The above equality is a straightforward consequence of the definition of Kurokawa’s tensor
product since the divisor of zeros of (1 − 1/s) is {1} − {0} and its nth power is given by the
binomial formula

({1} − {0})n =
∑

k

(−1)k

(

n

k

)

{n − k}.

Then, we apply the simple fact (compare [Sou04])

N(x) =

d
∑

k=0

akx
k =⇒ ζN (s) =

d
∏

k=0

(s − k)−ak (74)

and (73) to conclude that for (q − 1)n the zeta function is the inverse of (1 − 1/s)⊗n
. ✷
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5. The projective adèle class space

In this section we develop an application of the functorial approach to the theory of Mo-schemes
to explain, at a conceptual level, the spectral realization of zeros of L-functions for an arbitrary
global field K.

5.1 Vanishing result for Mo-schemes

In this section, we first briefly review some standard facts on sheaf cohomology and then we
show that for sheaves of abelian groups over (the geometric realization of) an Mo-scheme, sheaf
cohomology and Čech cohomology agree.

Given a topological space X, we denote by Ab(X) the category of sheaves of abelian groups
on X. It is a well-known fact that Ab(X) is an abelian category with enough injectives (cf.
[Gro57, Propositions 3.1.1 and 3.1.2]). For any open subset U ⊂ X the functor

Γ(U, ·) : Ab(X) −→ Ab, F 7→ Γ(U, F ) = F (U)

describes the space of sections of the sheaf F on U . It is well known that the functor Γ(U, ·)
is left-exact. Its derived functor defines the sheaf cohomology H(U, F ). Moreover, for any point
x ∈ X the functor ‘stalk of F at x’

Ab(X) −→ Ab, F 7→ lim−→
x∈U

Γ(U, F ) =: Fx (75)

is exact.

Proposition 5.1. Let X be the geometric realization of an Mo-scheme, then the following
results hold.

(1) For any open affine set U ⊂ X

Hp(U, F ) = 0 for all p > 0, for all F ∈ Obj Ab(X). (76)

(2) Let U = {Uj }j∈J be an open cover of X such that all finite intersections
⋂

jk
Ujk

are affine,
then for any sheaf F of abelian groups on X, one has

Hp(X, F ) = Ȟp(U , F ) for all p> 0, (77)

where the cohomology on the right-hand side is the Čech cohomology relative to the covering
U .

(3) Let Y = U c be the complement of an affine open set U ⊂ X. Then, for any sheaf F of abelian
groups on X one has the exact sequence

0 → H0
Y (X, F ) → H0(X, F ) → H0(U, F |U ) → H1

Y (X, F ) → H1(X, F ) → 0 (78)

where H∗
Y (X, F ) denotes the cohomology with support on Y .

Proof. (1) Let U = SpecM , where M is a monoid in Mo. Then, any open set V ⊂ U which
contains the closed point p = (M×)c of U coincides with U (cf. § 3.2, proof of Lemma 3.3). Thus,
the stalk Fp is equal to Γ(U, F ) = F (U). Then, the result follows from the exactness of the
functor ‘stalk at p’ (75).

Part (2) follows from part (1) in view of the equality of Hp(X, F ) with the Čech cohomology
relative to the covering U , under the assumption that for all finite intersections V =

⋂

jk
Ujk

of
opens in U one has Hp(V, F ) = 0 for all p > 0 (cf. [Har77, Exercice III, 4.11]).
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(3) For any sheaf F of abelian groups on X, one has a long exact sequence of cohomology
groups (cf. [Har77, III 2.3])

0 → H0
Y (X, F ) → H0(X, F ) → H0(U, F |U ) → H1

Y (X, F ) → H1(X, F )

→ H1(U, F |U ) → H2
Y (X, F ) → · · · (79)

where F |U denotes the restriction of the sheaf F on the open set U . Thus, part (3) follows
from (79) and the vanishing of H1(U, F |U ) shown in part (1). ✷

5.2 The monoid M = AK/K× of adèle classes

Throughout this section and until the end of the paper, we denote by K a global field and by
AK the space of adèles of K. The idèle class group CK of K is the group M× of the invertible
elements of the monoid

M = AK/K
×, K× = GL1(K). (80)

We consider the Mo-functor P1
F1

associated with the projective line (cf. Example 3.12). The
geometric realization of P1

F1
(cf. [Dei05] and § 3) is the finite topological space P1

F1
whose

underlying set is made by three points P1
F1

= {0, u, ∞} with

{0} = {0}, {u} = P1
F1
, {∞} = {∞}. (81)

The topology on P1
F1

is described by the following three open sets

U+ = P1
F1

\{∞}, U− = P1
F1

\{0}, U = U+ ∩ U−. (82)

Definition 5.2. The projective adèle class space is the set

P1
F1

(M) for M = AK/K
×.

Then, Definition 3.19 (cf. (39)) describes a canonical surjection of sets

πM : P1
F1

(M) =M ∪M × M → P1
F1
. (83)

By following the line of proof of Lemma 3.13, one sees that πM maps an element of M× = CK

to u ∈ P1
F1

and the complement of M× to 0 or ∞ accordingly to the two copies of M\M× inside

P1
F1

(M).

5.3 The space of functions on the projective adèle class space

To define a natural space S(M) of functions on the quotient space M = AK/K
× of the adèle

classes (cf. [Con99]), we consider the Bruhat–Schwartz space S(AK) of the locally compact
abelian group AK and the space of its coinvariants under the action of K×. More precisely,
we introduce the exact sequence associated with the kernel of the K×-invariant linear mapping
ǫ(f) = (f(0),

∫

AK
f(x) dx) ∈ C ⊕ C[1], that is,

0 → S(AK)0 → S(AK)
ǫ→ C ⊕ C[1] → 0. (84)

Then, one lets

S(M) = S0(M) ⊕ C ⊕ C[1], S0(M) = S(AK)0/{f − fq } (85)

where {f − fq } denotes the closure of the subspace of S(AK)0 generated by the differences f − fq,
with q ∈ K× (fq(x) = f(qx) for all x ∈ AK).

We now introduce the functions on the projective adèle class space P1
F1

(M) =M ∪M × M . We
define the following sheaf Ω on P1

F1
. Here Ω is uniquely defined by the following spaces of sections
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and by the restriction maps as in (87):

Γ(U+, Ω) = S(M)

Γ(U−, Ω) = S(M)

Γ(U+ ∩ U−, Ω) = S∞(CK)

where, for a number field K, S∞(CK) is defined as follows

S∞(CK) =
⋂

β∈R

µβ S(CK) = {f ∈ S(CK) | µβ(f) ∈ S(CK), ∀β ∈ R}. (86)

Here, µ ∈ C(CK) denotes the module µ : CK → R×
+, µβ(g) = µ(g)β and S(CK) is the Bruhat–

Schwartz space over CK (cf. [CM08, Mey05]). The natural restriction maps Γ(U±, Ω) → Γ(U+ ∩
U−, Ω) vanish on the component C ⊕ C[1] of S(M) while on S0(M) they are defined as follows

(Res+ f)(g) =
∑

q∈K×

f(qg), f ∈ S0(M) ⊂ Γ(U+, Ω)

(Res− h)(g) = |g|−1
∑

q∈K×

h(qg−1), h ∈ S0(M) ⊂ Γ(U−, Ω).
(87)

It is convenient to introduce the following mapping which will be used to simplify the notation
in the following sections:

Σ : S0(M) → S∞(CK), Σ(f)(g) =
∑

q∈K×

f(qg). (88)

5.4 H0(P1

F1
, Ω) and the graph of the Fourier transform

The Čech complex of the covering U = {U± } of P1
F1

has two terms

C0 = Γ(U+, Ω) × Γ(U−, Ω)

C1 = Γ(U+ ∩ U−, Ω).

The coboundary ∂ : C0 → C1 is given by

∂(f, h)(g) = (Res+f)(g) − (Res−h)(g) = Σ(f)(g) − |g|−1Σ(h)(g−1). (89)

Lemma 5.3. The kernel of the coboundary ∂ : C0 → C1 coincides with the graph of the Fourier
transform F on S0(M) i.e.

H0(P1
F1
, Ω) = {(f, F (f)) | f ∈ S0(M)} ⊕ C ⊕ C ⊕ C[1] ⊕ C[1] (90)

F (f)(a) =

∫

AK

f(x)α(ax) dx (91)

where α is a non-trivial character of the additive group AK/K.

Proof. The lattice K ⊂ AK coincides with its own dual. Note that the Fourier transform F on
S(AK)0 depends on the choice of the character α but it becomes canonical modulo the subspace
{f − fq } and a fortiori modulo its closure {f − fq } i.e. on S0(M). We recall that the Poisson
formula gives the equality

∑

q∈K

f(q) =
∑

q∈K

F (f)(q) for all f ∈ S(AK).

1412

https://doi.org/10.1112/S0010437X09004692 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004692


Schemes over F1 and zeta functions

When this equality is applied to the elements of S(AK)0 it gives
∑

q∈K×

h(g−1q) = |g|
∑

q∈K×

F (h)(gq). (92)

In particular, for (f, h) ∈ Ker ∂ =H0(P1
F1
, Ω), one obtains

Σ(Fh)(g) = |g|−1Σ(h)(g−1). (93)

Thus, one obtains

Σ(f − Fh) = 0 (94)

which shows, by applying Lemma 5.4 of [Mey05], that f − F (h) ∈ {f − fq }. ✷

5.5 The spectral realization on H1(P1

F1
, Ω)

The idèle class group CK acts on the sheaf Ω on P1
F1

as follows. For λ ∈ CK, set

ϑ+(λ)f(x) = f(λ−1x) for all f ∈ Γ(U+, Ω) (95)

ϑ−(λ)f(x) = |λ|f(λx) for all f ∈ Γ(U−, Ω)

ϑ(λ)f(x) = f(λ−1x) for all f ∈ Γ(U+ ∩ U−, Ω).

To check that formulae (95) determine a well-defined action, we need to show that (95)
are compatible with the restriction maps (87). This is clear for the restriction from U+ to
U = U+ ∩ U−. For the restriction from U− to U , one has

Res(ϑ−(λ)f)(g) = |g|−1
∑

q∈K×

(ϑ−(λ)f)(qg−1) = |g|−1
∑

q∈K×

|λ|f(λqg−1).

Since

ϑ(λ)Res(f)(g) = Res(f)(λ−1g) = |λ−1g|−1
∑

q∈K×

f(q(λ−1g)−1),

the required compatibility follows.

Let w be the element of the Weyl group W of PGL2 given by the matrix

w =

(

0 1
1 0

)

.

This element acts on CK by the automorphism g 7→ g−1 and this action defines the semi-direct
product N = CK ⋊W . Moreover, w acts on P1

F1
by exchanging 0 and ∞.

We lift the action of w to the sheaf Ω on P1
F1

as follows. We consider the direct image sheaf
w∗Ω

Γ(V, w∗Ω) = Γ(w−1(V ), Ω) for all V open, V ⊂ P1
F1
. (96)

Then, we define the following morphism of sheaves w# : Ω → w∗Ω

w#f = f ∈ Γ(U−, Ω) for all f ∈ Γ(U+, Ω)

w#f = f ∈ Γ(U+, Ω) for all f ∈ Γ(U−, Ω) (97)

w#f(g) = |g|−1f(g−1) for all f ∈ Γ(U+ ∩ U−, Ω).

The geometric action defined in the next proposition immediately implies the functional
equation and in fact lifts the equation at the level of the representation.
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Proposition 5.4.

(1) The equalities (97) define an action of the Weyl group W of PGL2 on the sheaf Ω. This
action fulfills the following compatibility property with respect to the action (95)

ϑ(λ)w#ξ = |λ|w#ϑ(λ−1)ξ. (98)

(2) There is a unique action of N = CK ⋊W on the sheaf Ω which agrees with (97) on W and
restricts on CK to the twist ϑ[−1/2] = ϑ ⊗ µ−1/2.

Proof. We need to show that the map w# : Ω → w∗Ω defined in (97) is compatible with the
restriction maps (87). For f ∈ Γ(U+, Ω), one has

Res(w#f)(g) = |g|−1
∑

q∈K×

f(qg−1)

which agrees with w#Res(f), using (97). A similar result holds for f ∈ Γ(U−, Ω). The full
statement follows from the involutive property of the transformation f 7→ w#f , w#f(g) =
|g|−1f(g−1). ✷

Theorem 5.5. The cohomology H1(P1
F1
, Ω) gives the spectral realization of zeros of Hecke

L-functions with Grössencharakter. The spectrum of the action ϑ[−1/2] of CK on H1(P1
F1
, Ω) is

invariant under the symmetry χ(g) 7→ χ(g−1) of Grössencharakters of K.

Proof. Consider the affine open set U− ⊂ P1
F1

and its complement Y = {0}. One checks directly
that the cohomology with support H1

Y (P1
F1
, Ω) describes the cokernel of the map Σ : S0(M) →

S∞(CK) of (88), that is, the spectral realization of [CCM07, CM08, Mey05] and initiated
in [Con99]. We refer to [CM08, IV, Theorem 4.116] for the detailed statement and proof. Since
U− is affine, the exact sequence (78) reduces to the isomorphism

0 → H1
Y (P1

F1
, Ω) → H1(P1

F1
, Ω) → 0. (99)

In fact, the homomorphism

H0(P1
F1
, Ω) → H0(U−, Ω|U−

) (100)

is surjective: cf. Lemma 5.3. The symmetry then follows from the existence of the action of
N = CK ⋊W on the sheaf Ω and hence on the cohomology H1(P1

F1
, Ω). ✷
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Tit57 J. Tits, Sur les analogues algébriques des groupes semi-simples complexes. Colloque d’algèbre
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