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Abstract

Background

The South-to-North Water Diversion (SNWD) project is designed to channel fresh water

from the Yangtze River north to more industrialized parts of China. An important question is

whether future climate change and dispersal via the SNWDmay synergistically favor a

northward expansion of species involved in hosting and transmitting schistosomiasis in

China, specifically the intermediate host,Oncomelania hupensis.

Methodology/ Principal findings

In this study, climate spaces occupied by the four subspecies ofO. hupensis (O. h. hupensis,

O. h. robertsoni,O. h. guangxiensis andO. h. tangi) were estimated, and niche conservatism

tested among each pair of subspecies. Fine-tuned Maxent (fMaxent) and ensemble models

were used to anticipate potential distributions ofO. hupensis under future climate change

scenarios. We were largely unable to reject the null hypothesis that climatic niches are con-

served among the four subspecies, so factors other than climate appear to account for the

divergence ofO. hupensis populations across mainland China. Both model approaches indi-

cated increased suitability and range expansion inO. h. hupensis in the future; an eastward

and northward shift inO. h. robertsioni andO. h. guangxiensis, respectively; and relative

distributional stability inO. h. gangi.

Conclusions/Significance

The southern parts of the Central Route of SNWD will coincide with suitable areas forO. h.

hupensis in 2050–2060; its suitable areas will also expand northward along the southern

parts of the Eastern Route by 2080–2090. Our results call for rigorous monitoring and sur-

veillance of schistosomiasis along the southern Central Route and Eastern Route of the

SNWD in a future, warmer China.
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Author summary

The South-to-North Water Diversion (SNWD) project is designed to channel fresh water

from the Yangtze River north to more industrialized parts of China. An important ques-

tion is whether future climate change and dispersal via the SNWDmay synergistically

favor northward expansion of schistosomiasis in China. Our models indicated increased

suitability and range expansion in Oncomelania h. hupensis in the future; an eastward and

northward shift in O. h. robertsioni and O. h. guangxiensis, respectively; and relative stabil-

ity in O. h. gangi. The southern Central Route of SNWDwill coincide with suitable areas

for O. h. hupensis in 2050–2060; its suitable areas will also expand northward along the

southern Eastern Route in 2080–2090. Our results call for rigorous monitoring and sur-

veillance of schistosomiasis along the southern Central Route and Eastern Route of the

SNWD in a future, warmer China.

Introduction

Schistosomiasis is a neglected tropical disease that is known to have affected people in China

for more than 2100 years, with presently ~800,000 infected and ~65 million people at risk of

infection [1]. The challenge of combatting this disease lies in the wide distribution of its snail

hosts and the broad range of domestic and wild mammals that act as reservoirs for human

infections [2]. Chinese schistosomiasis is caused by the digenetic blood trematode Schistosoma

japonicum, a parasitic flatworm that completes its life cycle through one intermediate (i.e. the

snail Oncomelania hupensis) and diverse definitive (i.e. mammals) hosts. Over the past five

decades, China has made remarkable progress in reducing S. japonicum infections in humans

through a combination of chemotherapy and snail control, but schistosomiasis has re-emerged

in recent years owing to changes in ecological and socio-economic factors, together with ter-

mination of the World Bank Loan Project on schistosomiasis control in 2001 [3]. Given that

schistosomiasis is unlikely to be eliminated, considering whether and how future climates are

likely to impact its transmission becomes increasingly important.

Based on the environmental variables that associated with species’ occurrence records, eco-

logical niche modeling (ENM) seeks to characterize environmental conditions suitable (i.e.

realized niche) for a particular species and then identify where suitable environmental habitats

are distributed in the space [4], it is a powerful tool in studies of effects of global climate change

on the geography of disease transmission [5]. Assumptions under which ENMs work best

include equilibrium between species’ distributions and their ecological requirements, and con-

servatism of ecological niche [4]. Among them, niche conservatism providing support for

using ENMs has been widely noticed, the degree to which plants and animals retain their

ancestral ecological traits and environmental distributions (’niche conservatism’) is hotly

debated, in part because of its relevance to the fate of modern species facing climate change

[6].

ENM tools, however, are also subject to issues including the need to balance goodness-of-fit

against model complexity [7], and the importance of considering uncertainty in model predic-

tions [8]. These issues are particularly critical in studies involving transfer of models across

space or time (e.g. climate change effects). Recent efforts have developed methods to reduce

model complexity and characterize uncertainty, and thereby improve model transferability in

forecasting climate change effects [9–12]. These steps include species-specific tuning of set-

tings (rather than default setting) to improve model performance [9,10], evaluation using
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spatially independent training and testing data sets [12], and integrating multiple predictions

via ensemble approaches [11,12].

Oncomelania hupensis is the sole intermediate snail host of S. japonicum in China, which

thus depends entirely on this snail species for transmission [13]. However, the taxonomy of O.

hupensis in mainland China has been debated in view of marked morphological variation. Liu

et al. recognized 5 subspecies [14], whereas Davis et al. treated only 3 subspecies based on shell

form, allozyme data, and biogeography [15]. However, Zhou et al. separated O. h. guangxiensis

from O. h. hupensis based on molecular characters, and recognized 4 subspecies in mainland

China [16], which was later verified by Li et al. based on internal transcribed spacer (ITS) and

16S fragments [17,18]. Here, we consider the four subspecies [14,16,18,19]; at present, O. h.

hupensis and O. h. robertsoni dominate transmission of S. japonicum, as control measures have

reduced O. h. guangxiensis and O. h. tangi considerably [13]. These four subspecies differ in

shell size and structure, breeding environment, growth rates, population genetics, and poten-

tial for infection by S. japonicum [17].

Previous attempts to predict spatial dimensions of transmission risk of schistosomiasis have

characterized transmission environments of S. japonicum [20–22] or ecological requirements

of O. hupensi [23,24]; these studies were generally conducted at local geographic scales and

with limited temporal coverage. Several environmental correlates of S. japonicum transmission

have been identified, including distance to snail habitat and wetlands, seasonal land surface

temperature, and seasonal variation of vegetation indices [21,22]. Climate conditions explain

much variation in transmission of schistosomiasis, especially at regional and continental scales

[25,26]. Understanding ecological dimensions and potential distribution of O. hupensis is thus

crucial [20], and yet has not seen detailed analysis.

The South-to-North Water Diversion (SNWD) project is a multi-decade mega-project in

China. It is the biggest inter-basin transfer scheme in the world, aiming to channel 25 × 109 m3

fresh water annually from the Yangtze River in southern China to the more arid and industri-

alized north via two routes (i.e. the Central Route and Eastern Route, Fig 1). In the context of

climate change, in which the geographic potential of O. hupensismay change, the relationship

of such changes to planned SNWD corridors remains unknown. Surveillance sites were estab-

lished during 2002–2010 across mainland China (Fig 1); however, most sites were located

along the Yangtze River at low elevations, focused on transmission by O. h. hupensis and O. h.

robertsoni. The questions of whether future climate change and the SNWD project may syner-

gistically favor expansion of some population of O. hupensis, and whether the existing surveil-

lance sites are sufficient, necessitate the present study.

In this study, we used a unique dataset of O. hupensis presences from more than 5 thousand

villages to explore ecological dimensions and potential distributions of O. hupensis in main-

land China. The aims of this study were to (1) compare climate spaces occupied by the four

subspecies of O. hupensis, to (2) test whether climate niches were conserved during the four

subspecies’ divergence (i.e. climate niche conservatism evaluation), to (3) predict their poten-

tial distributions using state-of-the-art modelling techniques, to (4) investigate the potential

impacts of future climate change and the SNWD project on O. hupensis. The overall purpose

was to predict the S. japonicum transmission risk at present and under climate change in main-

land China.

Methodology

Data collection

Occurrence data for subspecies of O. hupensis were assembled from Qian [27]. This national

surveillance effort of schistosomiasis was carried out at the village level between the 1950s and
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1980s across 12 Chinese provinces. In all, 5029 towns and villages reported presence ofO.

hupensis [27]. Rather than using centroids of infested counties, which reduces precision, we

georeferenced individual villages using Google Maps. These points varied in terms of clumping,

so we subsampled them to reduce sampling bias and spatial autocorrelation [28], as follows.

First, we arranged infested provinces according to sample density (i.e. number of occurrence

points divided by area of the province). The median served as the standard sampling effort, and

all provinces presenting densities above that value were subsampled randomly to a lower den-

sity. In the end, we had 1996 occurrence points: 1402O. h. hupensis, 470O. h. robertsoni, 64 O.

h. guangxiensis, and 60O. h. tangi (S1 File).

Several approaches have been used to select environmental datasets for ecological niche

modeling; the best environmental datasets would be ecological relevant to species in question

[29]. At regional and continental scales, climatic factors have excellent predictive power in

determining risk associated with disease transmission (e.g. schistosomiasis [25,26], West Nile

virus [30]). Hence, we used subsets of the 19 bioclimatic variables developed by Hijmans et al.

[31], chosen as follow. First, variables that combined temperature and precipitation (i.e. mean

temperature of wettest quarter, mean temperature of driest quarter, precipitation of warmest

quarter, precipitation of coldest quarter) were excluded because they display artificial disconti-

nuities between adjacent grid cells in some areas [32]. The importance of each of the remain-

ing 15 variables was assessed by a jackknife analysis of variable importance in Maxent ([33],

Fig 1. Geographic distribution of the four subspecies ofOncomelania hupensis in mainland China.Dashed color lines denote the
accessible areas used for climate space comparison and niche modeling. Three routes of South-to-North-Water-Diversion project, surveillance
sites, occurrence data, and administrative endemic areas are overlaid on elevation as a background.

https://doi.org/10.1371/journal.pntd.0006021.g001
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see below for Maxent detail), and unimportant variables were discarded. Highly correlated var-

iables were then removed in SDMtoolbox, a python-based GIS toolkit for spatial analysis [34].

Eight variables (S1 Table) that showed ecological relevance (regularized training gain>0.14)

and low correlation with other variables (Pearson correlation<0.9) were chosen in the end.

All variables were analyzed at a spatial resolution of 2.5 minute.

Climate space comparison

Climatic spaces occupied by the four subspecies were first compared along each environmental

dimensions using violin plots, which combine the functions of boxplot and kernel density,

providing a better indication of the shape of the data distribution. We used NicheA, a toolkit

to create and visualized ecological niches in environmental spaces [35], to visualize climate

niches occupied by each subspecies in reduced multiple environmental spaces: we displayed

the first three principal components derived from the 8 bioclimatic layers, and plotted mini-

mum volume ellipsoids (MVEs) around occupied conditions. We quantified niche overlap

between pairs of subspecies using Schoener’s D [36]; this metric ranges from 0 (no overlap) to

1 (complete overlap), and was used to test niche identity and niche similarity between subspe-

cies. Niche identity and similarity tests were performed to determine whether climate spaces

occupied by the two subspecies were identical or exhibited significant difference, and whether

these differences were caused by the environmental feature spaces [37]. Niche identity was

tested by randomly allocating occurrence records within each pair 500 times, according to

observed numbers of records, and comparing observed and simulated Schoener’s D estimates.

In contrast, niche similarity was tested by shifting the centroid of the observed occurrence den-

sities to a random location within the available environmental space 500 times, and comparing

observed with the null distribution of simulated estimates of Schoener’s D [37]; climate vari-

ables measured at locations across the available backgrounds of subspecies were combined and

projected onto the first two principal components using PCA_env package [37]. Smoothed

densities of occurrences and available environments in each grid cell were calculated and com-

pared among the four subspecies [37].

Background environments for climate niche comparisons and niche model calibration

should include only areas that have been accessible to the populations under study [38]. We

delimited this area by buffering a convex hull around known occurrences by 200 km (Fig 1) in

SDMtoolbox [34]. This approach reflects a compromise between including all environments

that have been accessible to the species, and still covering a broad-enough extent to minimize

extrapolation and detect climatic differences between presence and background records [39].

Ecological niche modeling

To forecast climate change effects, we used fMaxent (fine-tuned Maxent, see below) and ensem-

ble approaches [11,12] to calibrate models under present conditions, which were then trans-

ferred onto climate conditions for 2050 and 2080. Maxent is the most commonly used method

in ENM, and it can fit arbitrarily complex models to explain relationships between environmen-

tal variables and occurrence data (version 3.3.3k; [40]). However, because an excessively com-

plex model will be extremely specific to input data and perform poorly when extrapolating,

Warren and Seifert proposed using a sample-size-adjusted Akaike information criterion (AICc)

as criteria with which to address overfitting; this approach does not control model fit directly,

but rather uses AICc to choose appropriate settings [7]. We used the “ENMeval” package [9] to

fine-tune Maxent models by seeking the minimum value of AICc among candidate models.

ENMeval provides an automated way to execute Maxent models across a user-specified range

of regularization multiplier (RM) values and features combinations (FC). We set the RM range
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to 0.5–6.0 with increments of 0.5, and used 6 FCs, to cover a broad range of model settings. The

block method was used to partition occurrence data into four bins, 3 of which were used for

training and the remaining one for testing (bin combination, BC), which is desirable for studies

involving model transferring [9]. In all, 2160 models (12 RMs × 6 FCs× 6 BCs × 5 occurrence

groups) were generated for the four subspecies and for O. hupensis as a whole.

Ensemble models are used commonly in forecasting climate change effects, seeking to gen-

erate a consensus estimate that reduces individual model uncertainty by reflecting the central

tendency of multiple models [11,12,41]. Here, outputs from six modelling algorithms, includ-

ing generalized additive models (GAM), generalized boosted models (GBM), generalized lin-

ear models (GLM), random forests (RF), genetic algorithms (GARP), and the fMaxent model

described above were included in ensembles. Individual GAM, GBM, GLM, and RF models

were developed using BIOMOD2 [42], as implemented in R [43]; GARP models were devel-

oped in desktopGARP [44]. Details of implementation of each algorithm are provided in the

supporting information (S2 Table). Model ensembles typically use a weighted averaging

approach, in which models are weighted according to their interpolative performance (e.g.

[30]). However, a recent assessment pointed to the challenge of balancing model interpolative

accuracy against transferability [29,45]. Therefore, rather than using weighted averages, we

used the PCA (median) method to identify the “central tendency” of individual model predic-

tions [8,11]. The PCAmeasures, for each model, its ability to follow the general trend of pre-

dictions of the six models. This method calculates the median of the four individual models

that had higher factor values among the six models [8,11,12].

The occurrence data used to fit the niche models were split randomly into two datasets, for

calibration (70% of points) and interpolation evaluation (30% of points). Performance of indi-

vidual and consensus models was evaluated via a partial ROC (receiver operating characteris-

tic) approach [46]. Comparing to traditional AUC (area under the ROC curve), which was

criticized because present data are more reliable than absence data in model evaluation [46],

the partial ROC approach takes the quality of occurrence points into account and weights

more on omission error [46]). Here, AUC calculations were limited to ROC spaces over which

models actually made predictions, and only omission errors<5% were considered (i.e.

E = 5%; [46]).

Final model runs incorporating all point data were used for visualizations and risk assess-

ments. A modified least training presence threshold based on E = 5% was applied to fMaxent

model predictions for O. hupensis and O. h. hupensis to generate binary predictions. We did

not generate threshold predictions in ensemble future projection because such predictions are

not applicable and hard to interpret (i.e. individual models for generating consensus models

were different in present and future predictions).

Future climate scenarios

Future climate variables were downloaded fromWorldClim [31], the Consultative Group on

International Agricultural Research (CGIAR), and the research program on Climate Change,

Agriculture and Food Security (CCAFS). To reduce uncertainty regarding future climate con-

ditions (S1 Fig), rather than using the 13 original global climate models (GCMs, S3 Table)

from the IPCC 5th Assessment, the PCA (median) protocol was also used to generate consen-

sus “climate models” among the 13 GCMs for each climate dimensions for 2050–2060 and

2080–2090 (S4 Table).

The fMaxent and ensemble models based on present predictions were applied to these

future conditions. Future climate models applied to the intermediate scenario of representative

concentration pathways of 4.5 (i.e. “RCP45”; [47]) in which future anthropogenic greenhouse
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gas emissions were estimated to peak around 2040. This scenario was chosen because it repre-

sents the middle range of available four scenarios, and as such is considered more realistic

than models based on extremely high or extremely conservative scenarios [47]. Climatic simi-

larities between present and future in 2050 and 2080 were assessed using mobility-oriented

parity (MOP) metrics, a correction and simplification of multivariate environmental similarity

surfaces [39].

Results

Spatial comparison

Different degrees of overlap were observed in the eight climate dimensions among the four

subspecies (S2 Fig). Oncomelania hupensis hupensis and O. h. robertsoni occupied similar tem-

perature and precipitation dimensions in terms of annual mean temperature (bio1), mean

diurnal temperature range (bio2), and annual precipitation (bio12), but not isothermality

(bio3), temperature seasonality (bio4), mean temperature of warmest quarter (bio10), or pre-

cipitation of driest month (bio14); O. h. guangxiensis and O. h. tangi occupied similar tempera-

ture and precipitation regimes in terms of annual mean temperature (bio1), temperature

seasonality (bio4), mean temperature of warmest quarter (bio10), annual precipitation

(bio12), and precipitation of driest month (bio14), but not mean diurnal temperature range

(bio2) or isothermality (bio3) (S2 Fig). The four subspecies showed diverse responses to pre-

cipitation seasonality (bio15).

Minimum volume ellipsoids occupied by the subspecies overlapped broadly (Fig 2). The

size of the MVEs corresponded roughly to the geographic range extent of each subspecies

(Figs 1 and 2), with O. h. hupensis and O. h. robertsoni occupying larger volumes than O. h.

Fig 2. Minimum volume ellipsoids occupied by the four subspecies ofOncomelania hupensis. The
inset shows the phylogenetic relationships of the four subspecies based on 16S sequences [18]. Gray dots
denote the background conditions available toO. hupensis across mainland China.

https://doi.org/10.1371/journal.pntd.0006021.g002
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tangi and O. h. guangxiensis. Niche overlaps between pairs of subspecies also corresponded

roughly to their genetic distances estimated by 16S sequence (Fig 2 and S3 Fig): i.e. the close

relationship between O. h. hupensis and O. h. tangi coincided with the highest climatic niche

overlap (D = 0.215) among all pairs (S3 Fig). Similar patterns were observed between O. h.

tangi and O. h. guangxiensis (D = 0.147), but to a lesser extent (Fig 2 and S3 Fig). The null

hypothesis of niche identity was rejected in all pairwise comparisons (S3 Fig). However, in

analyses of niche similarity, the null hypothesis could not be rejected, except for O. h. robert-

soni versus O. h. tangi (S3 Fig). Results of niche identity and similarity thus suggest that,

although the four subspecies occupy unique climate spaces, the nonequivalence of niche spaces

derives from a background effect, and not from biological differences.

Model performance

Individual model performances varied across model algorithms and subspecies in interpola-

tion validations (Fig 3). The machine learning methods (i.e. fMaxent, GBM, RF) generally

showed better discriminant ability than regression models (i.e. GAM, GLM); GARP showed

unstable performance (Fig 3). Similar to the machine learning models, consensus models

showed good discriminant ability for the individual subspecies and for O. hupensis as a whole

(Fig 3).

Using all of the occurrence data, parameters of AICc-selected models (i.e. fMaxent) differed

from default settings (S4 Fig). Based on block partitions of occurrence data, mean AUCtest val-

ues of fMaxent models were 0.79, 0.79, 0.80, 0.86, and 0.94 for O. hupensis (as a whole), O. h.

guangxiensis, O. h. hupensis, O. h. robertsoni and O. h. tangi, respectively, with fMaxent models

of O. h. hupensis (AUCdiff = 0.09) and O. h. tangi (AUCdiff = 0.02) showing less overfitting

Fig 3. Distributions of model evaluation results (AUC ratios) of individual and consensusmodels in interpolation validations.Models
were generated for the four subspecies separately and forOncomelania hupensis as a whole.

https://doi.org/10.1371/journal.pntd.0006021.g003
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than the other three (S4 Fig). In species-wide consensus models, the first principal component

explained 46.7–72.2% of individual model variation (Table 1). Consensus models were dis-

criminated by the first axis of the PCA, and each individual model was selected in consensus

model processing (Table 1).

Variation among individual model predictions spatially was observed in both present and

future (2050 and 2080; S5 Fig). Some areas identified as suitable nonetheless corresponded to

environments beyond the climate envelope of the calibration area at present, thus involving non-

analog climate conditions (S6 Fig). For example, fMaxent identified disjunct suitable areas

around Beijing in northern China (Fig 4), but these areas involved model transfer into novel cli-

mate conditions (S6 Fig), making their interpretation uncertain and unwise. Within the distribu-

tion of each subspecies (Fig 1), projection of present ENMs onto future climate datasets generally

involved little extrapolation (MOPmetrics; S6 Fig). Transferring present-day models onto future

climate scenarios, fMaxent models were more conservative than ensemble models (Figs 4 and 5):

the western part of the predicted distribution based on consensus models was cleaner than pre-

dictions based on fMaxent, and the consensus method did not make the isolated predictions in

the fMaxent model (Fig 4). Both fMaxent and consensus approaches identified a pattern of range

expansion and suitability increase inO. h. hupensis (Figs 4 and 5). InO. h. robertsoni, both models

identified an eastward shift, whereas inO. h. guangxiensis, a northward shift was indicated (Figs 4

and 5). InO. h. tangi, the two models showed contrasting predictions (Figs 4 and 5).

SNWD and surveillance sites

Binary predictions were based on fMaxent outputs, as thresholding future predictions from

ensembles is difficult. Overlapping the Central Route and Eastern Route of SNWD with the

Table 1. Variance projection of individual models on the first component obtained from a principal component analysis (PCA) of the six individual
predictions. Percentage of variance that PC1 explained, together with the factor loadings of individual models, are shown. Bold values are the four models
for which the PC1s were the highest for each combination of species x time, which were selected for the “PCA(median)” consensus. Individual models were
generated for the four subspecies separately and forOncomelania hupensis as a whole.

PC1
variance

Models

Present fMaxent GAM GARP GBM GLM RF

O. hupensis 58.9% 0.313 0.075 0.816 0.328 0.089 0.339

Q. h. guangxiensis 53.8% 0.038 0.904 0.051 0.086 0.399 0.115

Q. h. hupensis 68.4% -0.005 0.020 -0.082 0.008 0.996 -0.023

Q. h. robertsoni 65.6% -0.003 0.043 0.135 0.138 0.978 0.073

Q. h. tangi 59.8% -0.019 -0.002 0.268 -0.216 0.930 -0.131

2050s

O. hupensis 69.1% 0.309 0.461 0.489 0.241 0.568 0.269

Q. h. guangxiensis 49.7% 0.091 0.830 0.039 0.102 0.525 0.126

Q. h. hupensis 68.5% 0.290 0.406 0.147 0.336 0.729 0.293

Q. h. robertsoni 72.0% 0.032 0.103 0.207 0.186 0.948 0.110

Q. h. tangi 65.8% -0.006 0.009 0.278 -0.205 0.928 -0.141

2080s

O. hupensis 72.2% 0.301 0.503 0.429 0.216 0.601 0.253

Q. h. guangxiensis 46.7% 0.150 0.719 0.048 0.141 0.645 0.151

Q. h. hupensis 70.5% 0.298 0.465 0.112 0.317 0.716 0.263

Q. h. robertsoni 69.3% 0.029 0.103 0.270 0.149 0.941 0.089

Q. h. tangi 70.1% -0.003 0.011 0.293 -0.193 0.926 -0.138

https://doi.org/10.1371/journal.pntd.0006021.t001
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binary future predictions for O. hupensis and O. h. hupensis, the southern Central Route coin-

cides with suitable areas for O. h. hupensis in 2050–2060, and its suitable areas will expand

northward along the southern Eastern Route by 2080–2090 (Fig 6). All of these areas are

beyond the reach of present surveillance sites for schistosomiasis monitoring. Because a north-

ward expansion of O. hupensismay occur considering future climate warming, these potential

expansion areas need to be better covered by future surveillance efforts. Future surveillance

efforts should also consider potential re-emergence of O. h. guangxiensis and O. h. tangi, as

some areas of increasing suitability were noted for these two subspecies as well (Fig 5),

although present intervention efforts have brought the snails to near extinction.

Fig 4. Predicted potential distributional changes forOncomelania hupensis as a whole. The fine-tunedMaxent (fMaxent) and consensus
models were calibrated on the accessible area and transferred onto future climate conditions in 2050–2060 (top) and 2080–2090 (bottom). White
points indicate the surveillance sites, hatched areas indicate the administrative endemic areas.

https://doi.org/10.1371/journal.pntd.0006021.g004
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Fig 5. Potential distributional changes for the subspeciesOncomelania hupensis hupensis andOncomelania hupensis robertsoni. The
fine-tunedMaxent (left side) and consensus models (right side) were calibrated on the accessible areas and transferred onto future climate in
2050–2060 (up) and 2080–2090 (bottom). White points indicate the surveillance sites, hatched areas indicate the administrative endemic areas.

https://doi.org/10.1371/journal.pntd.0006021.g005
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Discussion

Limitations on materials and methodologies employed in this study need to be addressed here.

While this paper focused on climate drivers, these factors occur in a complex milieu of other

non-climatic drivers of snail distribution and parasite endemicity [21,22], although the non-

climatic factors usually functioned at a small scale. Although we adopted ensemble forecasting

approach to minimize the uncertainty of individual model predictions, the uncertainty exists

in consensus models [29]. Ecological niche conservatism is of increasing importance given the

complex impacts of ongoing climate change on biodiversity [4,6]. Many studies have evaluated

niche conservatism across diverse evolutionary time spans [4,6]. Future projections for species

involved in disease transmission and likely to respond to climate change are usually fraught

with uncertainties and complexities; however, these assessments are crucial in identifying

appropriate mitigation strategies [26]. Here, we tested climatic niche conservatism among the

four subspecies of O. hupensis across mainland China, and integrated state-of-the-art model-

ling techniques (fMaxent and ensemble models) to forecast climate change effects. Our results

have important implications regarding genetic divergence of O. hupensis and likely climate

change effects on schistosomiasis transmission in mainland China.

The ecological niches of the four subspecies of O. hupensis were not identical, but we were

unable to reject the null hypothesis that climatic niches are similar (except O. h. robertsoni ver-

sus O. h. tangi). Although failure to reject the null hypothesis does not assure that the climatic

niche has been conserved, no evidence indicates that they have not been conserved, and broad

climate spaces overlapped among the four subspecies (Fig 2 and S2 Fig). The relationship

between niche overlap and phylogenetic relationships of the four subspecies further supports

Fig 6. Future transmission potential of schistosomiasis projected on the Central Route and Eastern Route of the South-to-North-
Water-Diversion project. Areas of agreement of fMaxent binary predictions ofOncomelania hupensis (as a whole) andO. h. hupensis are
overlaid on the routes.

https://doi.org/10.1371/journal.pntd.0006021.g006
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the idea that climate niches have been conserved (Fig 2 and S3 Fig). The signal of climate niche

conservatism suggests that factors other than climate likely account for the genetic divergence

of O. hupensis populations. Li et al. suggested that genetic differentiation of O. hupensis in

mainland China is ultimately structured by landscape ecology [18], with populations falling

into four different ecological settings (Fig 1): swamps and lakes in the Yangtze River Basin (O.

h. hupensis); the mountainous region of Sichuan and Yunnan Provinces (O. h. robertsoni); the

hilly, littoral part of Fujian province (O. h. tangi); and the karst landscape of Guangxi Autono-

mous Region (O. h. guangxiensis). This landscape-level segmentation of the four subspecies is

generally consistent with the foundational work of Liu et al. [14]: indeed, clear geographic bar-

riers separate the four subspecies (Fig 1; [14,16]). Climate niche divergence between O. h.

robertsoni and O. h. tangimight relate to the long geographic distance separating them.

Previous studies have found that long-term climate warming tends to favor geographic

expansion of S. japonicum in mainland China, but most such risk assessments have relied solely

on mechanistic approaches (e.g. [23,25,48]). Although mechanistic models may be more desir-

able in that they estimate dimensions of the fundamental niche and in that they avoid problems

with extrapolation [49], correlative ENMs have practical advantages in terms simplicity and

flexibility, particularly as regards parameterization [50]. Comparing with mechanistic models,

which predict a broad northward and westward expansion of S. japonica [23,25,48], correlative

ENMs suggest a similar pattern, but with more detailed spatial predictions. Increased suitability

and range expansion were observed consistently inO. h. hupensis, eastward and northward

shifts in O. h. robertsoni andO. h. guangxiensis, and relatively stability status in O. h. gangi were

observed in all our future model predictions (Figs 4 and 5).

Most current surveillance sites are distributed along the Yangtze River, designated to moni-

tor transmission by O. h. hupensis and O. h. robertsoni. However, in a climate change context,

both of these subspecies are expected to expand or shift distributionally (Fig 5). Surveillance

sites distribution will have to broaden in coverage to be able to detect these shifts. In addition,

the potential of O. h. guangxiensis and O. h. tangi to re-remerge should also be considered, as

sites presenting increased suitability were identified (Fig 5). The southern parts of the Central

Route of South-to-North Water Diversion (SNWD) project will become suitable for O. h.

hupensis in 2050–2060, and suitable areas will expand northward along the southern parts of

the Eastern Route of SNWD by 2080–2090: these areas are not covered by present surveillance

efforts (Fig 6). Our results call for more rigorous monitoring and surveillance of schistosomia-

sis in the northern of potential expansion areas, although schistosomiasis currently has not

been detected along either the southern Central Route or the Eastern Route; nonetheless,

range expansion may open potential for emergence [48,51].
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Kabatereine NB, Tchuem-Tchuenté LA, Rahbek C, Kristensen TK (2013) Large-scale determinants of
intestinal schistosomiasis and intermediate host snail distribution across Africa: does climate matter?
Acta Tropica 128: 378–390. https://doi.org/10.1016/j.actatropica.2011.11.010 PMID: 22142789

27. Qian XZ (1985) Atlas of schistosomiasis transmission in China. Chinese Map Publishing House,
Shanghai.

28. Veloz SD (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-
only niche models. Journal of Biogeography 36: 2290–2299. https://doi.org/10.1111/j.1365-2699.2009.
02174.x

29. Zhu GP, Peterson AT (2017) Do consensusmodels outperform individual models? Transferability eval-
uations of diverse modeling approaches for an invasive moth. Biological Invasions 19: 2519–2532.
https://doi.org/https://doi.org/10.1007/s10530-017-1460-y

30. Harrigan RJ, Thomassen HA, BuermannW, Smith TB (2014) A continental risk assessment of West
Nile virus under climate change. Global Change Biology 20: 2417–2425. https://doi.org/10.1111/gcb.
12534 PMID: 24574161

31. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate
surfaces for global land areas. International Journal of Climatology 25: 1965–1978. https://doi.org/10.
1002/joc.1276

32. Escobar LE, Lira-Noriega A, Medina-Vogel G, Peterson AT (2014) Potential for spread of the white-
nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure
strict model transference. Geospatial Health 9: 221–229. https://doi.org/10.4081/gh.2014.19 PMID:
25545939

33. Peterson AT, Cohoon KP (1999) Sensitivity of distributional prediction algorithms to geographic data
completeness. Ecological Modelling 117: 159–164. https://doi.org/10.1016/S0304-3800(99)00023-X

Chinese schistosomiasis risk maps

PLOSNeglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006021 October 17, 2017 16 / 17

http://dx.doi.org/10.4002/0076-2997-49.2.367
http://dx.doi.org/10.4002/0076-2997-49.2.367
https://doi.org/10.4081/gh.2009.222
http://www.ncbi.nlm.nih.gov/pubmed/19440964
https://doi.org/10.1186/s13071-016-1321-z
http://www.ncbi.nlm.nih.gov/pubmed/26791938
https://doi.org/10.1371/journal.pone.0006947
https://doi.org/10.1371/journal.pone.0006947
http://www.ncbi.nlm.nih.gov/pubmed/19759819
https://doi.org/10.1186/1756-3305-6-214
http://www.ncbi.nlm.nih.gov/pubmed/23880253
https://doi.org/10.1371/journal.pntd.0003470
https://doi.org/10.1371/journal.pntd.0003470
http://www.ncbi.nlm.nih.gov/pubmed/25659112
https://doi.org/10.4081/gh.2013.61
https://doi.org/10.4081/gh.2013.61
http://www.ncbi.nlm.nih.gov/pubmed/24258890
http://www.ncbi.nlm.nih.gov/pubmed/18256410
https://doi.org/10.1016/j.actatropica.2011.11.010
http://www.ncbi.nlm.nih.gov/pubmed/22142789
https://doi.org/10.1111/j.1365-2699.2009.02174.x
https://doi.org/10.1111/j.1365-2699.2009.02174.x
https://doi.org/10.1007/s10530-017-1460-y
https://doi.org/10.1111/gcb.12534
https://doi.org/10.1111/gcb.12534
http://www.ncbi.nlm.nih.gov/pubmed/24574161
https://doi.org/10.1002/joc.1276
https://doi.org/10.1002/joc.1276
https://doi.org/10.4081/gh.2014.19
http://www.ncbi.nlm.nih.gov/pubmed/25545939
https://doi.org/10.1016/S0304-3800(99)00023-X
https://doi.org/10.1371/journal.pntd.0006021


34. Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and
species distribution model analyses. Methods in Ecology and Evolution 5: 694–700. https://doi.org/10.
1111/2041-210X.12200

35. Qiao HJ, Peterson AT, Campbell L, Soberón J, Ji LQ, Escobar LE (2016) NicheA: creating virtual spe-
cies and ecological niches in multivariate environmental scenarios. Ecography 39: 805–813. https://
doi.org/10.1111/ecog.01961

36. Schoener TW (1968) The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49:
704–726. https://doi.org/10.2307/1935534

37. Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin
M, Randin C, Zimmermann NE, GrahamCH, Guisan A (2012) Measuring ecological niche overlap from
occurrence and spatial environmental data. Global Ecology and Biogeography 21: 481–497. https://
doi.org/10.1111/j.1466-8238.2011.00698.x
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