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Abstract
The rs1344706 polymorphism in ZNF804A is robustly associated with schizophrenia and schizophrenia is, in turn, associated with abnormal non-rapid eye 

movement (NREM) sleep neurophysiology. To examine whether rs1344706 is associated with intermediate neurophysiological traits in the absence of disease, we 

assessed the relationship between genotype, sleep neurophysiology, and sleep-dependent memory consolidation in healthy participants. We recruited healthy adult 

males with no history of psychiatric disorder from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort. Participants were homozygous for 

either the schizophrenia-associated ‘A’ allele (N = 22) or the alternative ‘C’ allele (N = 18) at rs1344706. Actigraphy, polysomnography (PSG) and a motor sequence 

task (MST) were used to characterize daily activity patterns, sleep neurophysiology and sleep-dependent memory consolidation. Average MST learning and sleep-

dependent performance improvements were similar across genotype groups, albeit more variable in the AA group. During sleep after learning, CC participants 

showed increased slow-wave (SW) and spindle amplitudes, plus augmented coupling of SW activity across recording electrodes. SW and spindles in those with the 

AA genotype were insensitive to learning, whilst SW coherence decreased following MST training. Accordingly, NREM neurophysiology robustly predicted the degree 

of overnight motor memory consolidation in CC carriers, but not in AA carriers. We describe evidence that rs1344706 polymorphism in ZNF804A is associated with 

changes in the coordinated neural network activity that supports of�ine information processing during sleep in a healthy population. These �ndings highlight the 

utility of sleep neurophysiology in mapping the impacts of schizophrenia-associated common genetic variants on neural circuit oscillations and function.
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Statement of Signi�cance

Convergent evidence points to abnormal sleep neurophysiology in patients with schizophrenia. To begin disentangling cause and effect, we have used a “recall-by-

genotype” design to test the hypothesis that genetic variants associated with elevated schizophrenia risk also associate with altered, sleep-dependent thalamo-

cortical network activity, even in healthy young adults devoid of psychiatric symptoms. Our �ndings suggest that healthy carriers of the ZNF804A rs1344706 risk 

allele harbor neurophysiological �ngerprints of altered brain function that are reminiscent of the aberrant sleep EEG well-documented in patients with schizo-

phrenia. Our study therefore lends weight to the utility of non-REM sleep as a scalable and tractable biomarker of thalamocortical circuit dysfunction in psychiatry, 

enabling future studies mapping routes from genetic association to brain activity and function.
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Introduction

Schizophrenia (SZ) is a debilitating psychiatric disorder with 

a lifetime prevalence of up to 4% [1]. SZ etiology is complex 

and heterogenous, but an estimated heritability of up to 80% 

re�ects critical genetic contributions to SZ liability [2, 3]. The 

genetic architecture of SZ involves over 100 loci that poten-

tially contribute to the development of the disease [4, 5]. 

Despite most risk variants having small individual effects and 

acting in combination with other genetic and environmental 

factors, elucidating the neuronal changes downstream of gen-

etic liability remains crucial for understanding the etiology of 

psychiatric disorders.

The single nucleotide polymorphism (SNP) rs1344706 within 

the second intron of ZNF804A was the �rst SNP to show genome-

wide signi�cant association for psychosis in both bipolar dis-

order and SZ [6]. This �nding has been replicated in subsequent 

genome wide association studies (GWAS) [4, 7–9] including a 

�ne-mapping study which con�rmed an OR for SZ of 1.10 [1.07–

1.14] [10]. ZNF804A is expressed in the brain and predicted to en-

code a protein with a C2H2 zinc �nger domain, indicating a role 

in transcriptional regulation [8, 10] and likely complex biological 

functions [11]. rs1344706 has been linked to several behavioral 

and brain phenotypes [12, 13], including altered neuroanatomy 

[14, 15] (but see [16] for a null result), abnormal neurophysiology 

[17–19] and cognition [20–22]. In particular, ZNF804A genotype 

has been associated with cortico-hippocampal functional con-

nectivity in healthy control subjects [23, 24] and in SZ patients 

and their unaffected siblings [17, 25]. Therefore, though the sole 

contributions of ZNF804A polymorphisms to psychiatric risk are 

small, there is rationale and precedent for mapping associations 

between ZNF804A variants and brain physiology and function.

Although cognitive de�cits are an established feature of SZ 

[26, 27], links have recently been made between cognitive symp-

toms and abnormal sleep. Sleep disturbances are a core feature 

of SZ [28, 29] and include increased sleep latency and decreased 

total sleep time even in untreated patients [30], hence are not 

caused solely by neuroleptic medication. At the neural network 

level, sleep in patients also features changes in electroenceph-

alography (EEG) oscillations, particularly during NREM. Thalamo-

cortical spindle oscillations are a de�ning feature of NREM and 

are reduced in patients with schizophrenia [31–34]. Consistent 

with the roles of spindle oscillations in memory consolidation 

[35–38], spindle de�cits in SZ have been linked to cognitive de�cits 

in patients [39, 40]. More recently, slow oscillations and their co-

ordination with spindles have also been implicated in de�cits 

in sleep-dependent memory consolidation in patients [41–43]. 

Again, altered NREM oscillations are evident in �rst-degree rela-

tives [44], hence are not driven purely by diagnosis or medication.

Overall, there is convergent evidence that circuit abnormal-

ities in SZ are re�ected by changes in sleep physiology that, in 

turn, may be important for cognitive symptoms [45]. Linking 

speci�c genetic variations with sleep neurophysiology pheno-

types therefore holds the promise of illuminating a broader 

understanding of potential mechanisms of neural circuit dys-

function in SZ. Here, we used a recall-by-genotype approach [46] 

to recruit healthy individuals homozygous at rs1344706, redu-

cing issues of confounding and reverse causality common in 

case/control studies. We aimed to test the overarching hypoth-

esis that, in the absence of disease, rs1344706 genotype would 

associate with facets of abnormal sleep neurophysiology and 

sleep-dependent memory consolidation seen in SZ. Previous 

work has (1) associated rs1344706 genotype with altered coord-

ination of network activity during cognition [23] and (2) shown 

impairment of learning-dependent, coordinated slow wave (SW) 

activity in patients with schizophrenia [43, 47]. Our primary 

hypothesis therefore integrated these previous results, testing 

whether correlations between memory consolidation and co-

ordinated NREM slow waves would be disrupted in the rs1344706 

AA genotype group with increased genetic liability for SZ.

Methods

The study design was published in advance [48]. Raw and 

processed data and metadata are available from the Avon 

Longitudinal Study of Parents and Children (ALSPAC) Executive 

Committee through a standard application process (see http://

www.bristol.ac.uk/alspac/researchers/access/). Ethical approval 

for the study was obtained from the ALSPAC Ethics and Law 

Committee (ref. 9224)  and The University of Bristol Faculty of 

Science Human Research Ethics Committee (ref. 8089). All parti-

cipants provided informed consent.

Participants

Figure 1 shows recruitment and study design. Healthy males 

aged 21–23  years and of European ancestry were recruited 

from ALSPAC, a prospective birth cohort designed to allow the 

study of health and development across the life course [49–51]. 

Pregnant women resident in Avon, UK with expected dates of 

delivery April 1, 1991 to December 31, 1992 were invited to take 

part in the ALSPAC study. The initial number of pregnancies en-

rolled was 14,541. Of these initial pregnancies, there was a total 

of 14,676 fetuses, resulting in 14,062 live births and 13,988 chil-

dren who were alive at 1 year of age. When the oldest children 

were approximately 7 years of age, an attempt was made to bol-

ster the initial sample with eligible cases who had failed to join 

the ALSPAC study originally; an additional 913 children were 

subsequently enrolled. The total sample size for analyses using 

any data collected after the age of seven is therefore 15,454 preg-

nancies, resulting in 15,589 fetuses. Of these 14,901 were alive 

at 1 year of age. The ALSPAC study website contains details of 

all the data that is available through a fully searchable data dic-

tionary (http://www.bristol.ac.uk/alspac/researchers/our-data/).

Participants from the ALSPAC cohort were invited to this 

study based on homozygosity either for the rs1344706 allele 

previously associated with increased liability for SZ (AA group), 

or for the alternative allele (CC group). rs1344706 is located 

on chromosome 2 at position 185,778,428  bp (genome build 

GRCh37); in ALSPAC, the minor allele (C) occurs at a frequency of 

40.0%. Both researchers and participants were blind to partici-

pant genotype throughout data collection.

Eligible participants were: (1) aged 20 years or over; (2) male; 

(3) non-smokers; (4) of European ancestry; (5) in good physical 

and mental health with no history of diagnosed sleep disorders; 

(6) able to give informed consent as judged by the investigator. 

Participants were excluded if: (1) they had current substance de-

pendence (other than caffeine); (2) they had a substantive cur-

rent or past illness; (3) were taking any medications that may 

affect or induce sleep; (4) worked at night. Participant eligibility 

was then veri�ed on arrival at the sleep clinic through further 

standardized screening questions and completion of the Bristol 

Sleep Pro�le (BSP), and The Pittsburgh Sleep Quality Index (PSQI).
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Data collection

Sleep lab routine and polysomnography (PSG). The PSG recording 

included nine scalp EEG electrodes placed according to the 

10–20 system (at F3, Fz, F4, C3, Cz, C4, Pz, O1, and O2). Data was 

acquired using Cz as reference and a standard PSG recording 

montage using a sampling rate of 500 Hz and a high-pass �lter 

Figure 1. Recruitment & study design. (A) Consort �ow diagram of the recruitment process: data were collected from a total of 47 participants (25 AA and 22 CC) aged 

21−23 years; seven participants were subsequently excluded. (B) Study patient timeline: The study included two visits to the sleep lab at the Clinical Research & Imaging 

Centre in Bristol with two weeks (wks) of actigraphy monitoring between visits. Participants �rst visited the sleep lab for a baseline polysomnography (PSG) recording 

(night 1), when they were also issued an actigraphy watch to wear until the end of the second study visit. During the second visit, participants were trained on the 

motor sequence task (MST) in the evening and tested in the morning, with an intervening second PSG recording (night 2).
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at 0.25 Hz with an Embla N7000 ampli�er and RemLogic soft-

ware (Natus Medical Inc., California). Additional electrodes 

monitored eye movements, submental muscle activity and 

heart rate; video and audio were also acquired throughout the 

recording.

During visits, participants completed the Bristol Sleep Pro�le 

and Pittsburgh Sleep Quality Index questionnaires to assess 

self-rated sleep quality. Each participant also completed the 

Edinburgh Handedness Inventory to ascertain handedness 

ahead of the motor sequence task (MST). Following PSG electrode 

placement and bio-calibration, participants followed their usual 

evening routine and were encouraged to go to bed at their usual 

bedtime. In the morning, participants were woken as close as 

possible to their usual wake time. After each PSG recording, par-

ticipants completed the St Mary’s Hospital Sleep Questionnaire 

and the Leeds Sleep Evaluation Questionnaire to assess sub-

jective experience of their night in the sleep laboratory.

Actigraphy. Participants were asked to wear an ‘actiwatch’ 

(MotionWatch 8, CamNtech, UK) to monitor wrist movement 

for the entire period between their clinic visits, removing it 

only during water-based activities (e.g. swimming, bathing) and 

sports which might result in the actiwatch being damaged (e.g. 

rugby). Participants were also asked to keep a sleep diary.

Motor sequence task. On the second night, participants were 

trained on the MST two hours before their planned bedtime 

(‘training’). They were then tested again on the MST after elec-

trode removal the following morning (‘test’). The MST is an es-

tablished test of sleep-dependent memory consolidation [39, 

52, 53] and was implemented in MATLAB using psychtoolbox 

[54], kindly donated by Dara Manoach (Harvard Medical School, 

Boston, MA). During the MST, participants were asked to 

press four numerically labeled keys on a computer keypad in 

a �ve-element sequence (4–1–3–2–4) with the �ngers of their 

non-dominant hand, repeating “as quickly and accurately as 

possible” for 30 s. The numeric sequence was visible throughout 

the trial and dots underneath provided visual feedback for each 

keystroke. During both training and test sessions, participants 

alternated typing and resting for 30  s for a total of 12 trials. 

Prior to each MST session, participants completed the Stanford 

Sleepiness Scale to quantify vigilance levels.

Data analyses

Questionnaire and actigraphy data. All paper questionnaires were 

manually scored and transcribed to spreadsheets. Actigraphy 

data were manually annotated in MotionWare (CamNtech, UK) 

to derive sleep architecture and circadian rhythm measures. 

Periods for which the participant had removed the watch were 

set to missing. An automated scoring algorithm determined 

‘sleep onset’ and ‘sleep offset’ for each night, except where diary 

information and/or activity counts contradicted these times. 

The ‘sleep analysis’ function in MotionWare was used to derive 

time in bed (TIB) (total elapsed time between the ‘Lights Out’ 

and ‘Got Up’ times), total sleep time (TST) (the total time spent 

in sleep according to the epoch-by-epoch wake/sleep categoriza-

tion), sleep ef�ciency (TST/TIB) (actual sleep time expressed as 

a percentage of time in bed), sleep onset latency (SOL) (the time 

between ‘Lights Out’ and ‘Fell Asleep’) and fragmentation index 

(FI) (the sum of the ‘Mobile time (%)’ and the ‘Immobile bouts 

≤1 min (%)’). Measures were then averaged across all available 

nights for each participant.

We used non-parametric circadian rhythm analysis (NPCRA) 

to quantify the regularity of daily and weekly sleep wake 

rhythms based on inter-daily stability, intra-daily variability and 

amplitudes of activity [55]. A modi�ed version of the algorithm 

implemented in the MotionWare software was kindly provided 

by Eus Van Someren (Netherlands Institute for Neuroscience), 

allowing periods of missing data to be excluded from the ana-

lysis. Only participants with at least seven days of data re-

maining after exclusions were included in the analysis. Sleep 

architecture and NPCRA measures derived from the actigraphy 

data were compared across genotype groups using a Wilcoxon 

rank-sum (Mann–Whitney) test.

MST data. The primary outcome measures from the MST were 

(1) the number of correct sequences (NCS) per 30-s epoch, 

which re�ects a combination of both the speed and accuracy 

of performance; and (2) execution time (ET, the average time 

difference between successive button presses during a correct 

sequence) in milliseconds (ms). These measures were derived 

for each 30-s trial in the evening (training) and morning (test) 

sessions. For each outcome measure, ‘training’ performance was 

de�ned as the average of the last three training trials and ‘test’ 

performance was de�ned as the average of the �rst three test 

trials. Overnight improvement was calculated as the percentage 

change in each outcome measure from training performance to 

test performance [56].

Sleep-dependent memory consolidation was quanti�ed 

using two approaches. Firstly, the mean and variance of over-

night improvement measures were compared using two-sample 

two-sided t-tests (with unequal variances) and two-sample 

variance comparisons, respectively. Secondly, a linear mixed 

model framework was applied where training (evening) and test 

(morning) performance were considered repeat observations. 

The regression was �tted via restricted maximum likelihood 

(REML) using a generalized Satterthwaite approximation to esti-

mate degrees of freedom. Session (training or test) and genotype 

were modelled as �xed effects, whereas participant identity was 

modelled as a random effect. Interactions between �xed effects 

were added to the �nal model if a likelihood ratio test com-

paring nested models with and without the interaction param-

eter suggested an improvement to model �t (p<0.05, maximum 

likelihood models, ML). The assumptions of the linear regression 

model were checked by plotting histograms and Q–Q plots of re-

siduals from the models. In addition, a Levene’s robust test for 

equality of variance across groups (within session) was applied 

[57]. Results from the Stanford Sleepiness Scale were compared 

across genotype groups using a two-sample two-sided t-test 

(with unequal variances).

Sleep architecture. PSG data were manually scored by an experi-

enced expert (blinded to participant genotype) based on AASM 

criteria [58] using REMLogic software (Natus Europe GmbH, 

Germany). Each 30  s epoch was visually classi�ed into stages 

(Wake, NREM1, 2, 3, or REM). Awakenings were scored when one 

or more 30 s epoch was classi�ed as wake following initial sleep 

onset. Individual sleep continuity and architecture was quanti-

�ed using standard variables: time in bed (TIB), total sleep time 

(TST), sleep latency (SOL), wake after sleep onset (WASO), and 

sleep ef�ciency. Sleep stages are presented as the percentage 

of TST

EEG analyses. Prior to event detection, EEG data were-referenced 

to the linked mastoids and �ltered with a bandpass �lter in the 

range 0.5–30 Hz using the EEGlab function pop_eeg�ltnew, which 
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implements a zero-phase �nite impulse response (FIR) �lter and 

a Hamming window. 30s EEG epochs containing high amplitude 

noise and artefacts were manually removed. EEG traces were 

then analyzed using automatic detection of characteristic NREM 

sleep events—SW, delta waves, slow and fast spindle events—as 

described previously [43, 59]. NREM event detection relied on the 

same fundamental process as many other studies in the �eld, 

namely thresholding of amplitude values in a de�ned frequency 

range [32, 60, 61]. A recent version of the applied detection algo-

rithms is freely available at: https://gitlab.com/ubartsch/sleep-

walker. The extended code library for the analysis of this dataset 

is available upon request.

Slow wave and delta-wave event detection. Slow and delta waves 

were automatically detected after applying a 0.25–4 Hz band 

pass �lter (using pop_eeg�lt_new). The �ltered EEG trace was 

converted to a z-score and all negative single wave threshold 

crossings with an amplitude at least 3.5 standard deviations (SD) 

above the mean amplitude were identi�ed as candidate events. 

These candidate events were only accepted if they fell within the 

following parameter ranges: amplitude 50–300 µV; length (dur-

ation) 0.2–3 s; minimum gap between events to be considered 

separate was 0.5  s. Slow and delta wave events are then sep-

arated based on intrinsic frequency of the accepted candidate 

events (i.e. the inverse of the time difference between �rst peak 

and trough multiplied by 2): SW show an intrinsic frequency 

below 1.5 Hz, but delta waves intrinsic frequency is above 1.5 Hz.

Spindle detection. Spindle events were automatically detected in 

sensor space EEG traces (Figure 2). The signal was �ltered using a 

bandpass �lter (9–16 Hz), the resulting �ltered trace was recti�ed 

(squared), the envelope of the recti�ed trace was determined 

using spline interpolation (ML function spline) and the envelope 

was converted to a z-score. Candidate events were identi�ed as 

episodes when the envelope stayed above the threshold of 3.5 

for at least 50% of the estimated total event duration. Candidate 

events were further characterized in the time domain to de-

termine the duration and amplitude. Spindle events were only 

accepted if their properties fell within the following ranges: 

amplitude: 25–250 µV, length (duration) 0.5–3 s.

Spindles were then classi�ed as ‘slow’ or ‘fast’ based on their 

intrinsic frequency. The intrinsic frequency, f, of each event is 

determined in the time domain based on the average period be-

tween n spindle maxima f = 1/<p
(1, …, n)

>. Slow spindles are de-

�ned as events with 9 < f ≤ 12 Hz and fast spindles with 12 < f 

≤ 16. These boundaries are based on previous studies from dif-

ferent groups [62–65] where the current consensus is that slow 

spindles exhibit an intrinsic frequency below 12 Hz.

We con�rmed that spindles occurred during periods classi-

�ed as sleep based on PSG, avoiding potential mis-classi�cation 

of occipital alpha rhythms as spindles.

Coherence analysis. SW events were further characterized by ap-

plying multitaper-coherence analysis using the Chronux toolbox 

(www.chronux.org). For the SW triggered coherence analysis, 

SW negative peak times were used as t  =  0 to collect ±2  s of 

raw EEG around each SW event. SW triggered coherograms were 

calculated using three tapers, a 1 s sliding data window, 50 ms 

steps and were then averaged for each electrode pair (per sub-

ject) and then averaged across genotype groups and recording 

night. An average SW coherence value for each electrode pair 

was calculated from coherograms using a [−0.5–0.5 s] and [0.5–

1.5 Hz] window, and these average values were visualized as co-

herence matrices for each genotype group and recording night.

Experimental design and statistics

Experimental design. We did not perform formal power calcula-

tions relating to our primary hypothesis about associations be-

tween genotype and slow-wave coordination, but our sample 

size is in line with other works associating memory with sleep 

EEG including, for example, work showing post-learning in-

creases in SW coherence (based on N  = 13, Mölle et al., 2004). 

Both sleep EEG and its interrelationships with behavior are age-

dependent, meaning that pooling participants across a wide 

age range may obscure genotype-phenotype associations. The 

narrow age range (21–23) of ALSPAC participants in this study 

is therefore advantageous in this context, though �ndings re-

ported here may not extend directly to other ages.

Statistical approaches. Tables 1 and 2 show a full record of stat-

istical methods and their alignment to analytical arguments. 

Results presented are mean ± standard error (SE) unless stated 

otherwise.

Our main method of statistical analysis is the linear mixed 

model (LMM) using maximum likelihood estimation. LMM are 

particularly suited for the application to repeated measurement 

studies with multilevel data as they are (1) tolerant to missing 

data, (2) allow inclusion of all collected data without averaging 

(which results in a loss of statistical power), and (3) allow the 

explicit modelling of random effects which leads to more robust 

model parameter estimation [66].

Behavioral measures were analyzed either by a comparison of 

means across groups (two-sample two-sided t-test or Wilcoxon 

rank-sum test) or by �tting a LMM with genotype and MST ses-

sion (training versus testing) �tted as �xed effects, participant 

identity was �tted as a random effect (using Stata v14.2 [67]). 

The presence of interactions between �xed effects was evalu-

ated via a likelihood ratio test comparing nested models with 

and without the interaction parameter.

PSG-derived sleep architecture and EEG measures were ana-

lyzed using LMM with genotype and recording night (night 1: 

baseline, night 2: learning) �tted as �xed effects. PSG-derived 

event properties or coherence measures were compared across 

genotype groups, electrodes/electrode pairs, recording nights 

(night 1: baseline, night 2: learning) and sleep stages (N2, N3) 

using a linear mixed model framework and a stepwise reduc-

tion procedure implemented using the lme4 [68] and lmerTest 

[69] packages in R. We built full models of the general form [y 

~ genotype + night + electrode + sleep_stage + (genotype * night) + 

(1|ID)], where y is any derived sleep variable, and then applied 

backward elimination of non-signi�cant model terms using the 

R function step, which is part of the R package lmerTest [69]. Here 

we focused on night and genotype effects and their interactions, 

although data from all electrodes and sleep stages contributed 

to the �nal model result.

Thus, while all EEG channels were included in all statistical 

models, where exemplar channels are reported in the �gures, 

this is because they represent sites of maximal SW (F3) or fast 

spindle (Cz) activity.

The covariance of NREM event features was estimated using 

Pearson’s correlation coef�cient. We calculated correlation be-

tween the average of NREM event features from all electrodes 

for each individual and then averaged over each genotype group 

for recording night 2.  To compare the structure of covariance 

matrices between genotype groups, we employed Box’s M test, 

also known as Box’s test for equivalence of covariance matrices. 
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The test compares the covariance of two matrices of predictor 

variables [70]. We used an open-source implementation avail-

able at mathworks.com [71].

We employed a combination of principal component ana-

lysis (PCA) (MATLAB function pca) and stepwise multilinear re-

gression (MATLAB function stepwiselm) to assess the relationship 

Figure 2. Examples of automatically detected slow and fast spindle events during NREM sleep. (A) Example of a slow spindle event, raw trace (top), bandpass �ltered 

(middle), recti�ed and z-scored (bottom). The initial detection threshold is marked with red line at 3.5 SD of the whole signal (excluding noisy epochs).B) Magni�cation 

of a slow spindle event: yellow circles mark maxima, purple circles mark minima. The time difference between each peak contributes to the mean of the period, 

with the intrinsic frequency f = 1/<p>. Intrinsic frequency, amplitude, and duration had to meet speci�ed selection criteria to qualify as an included spindle event. (C) 

Topography plot of �nal slow spindle density for one example participant. Note the typical frontal topography of slow spindle events. (D) Example of fast spindle event 

detected at the electrode Cz, format as in (A). (E) Magni�cation of a fast spindle event as in shown in (B). (F) Topology of all detected fast spindle events in the same 

participant as A−C. Note the distinct centro-parietal distribution of fast spindle events.
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Table 1. Overview of statistical analysis of non-EEG data

Characteristic Aim Data source Statistical approach Results

Confounding  

factors

To compare possible con-

founding factors across  

genotype groups and  

between recruited and  

invited groups

Existing ALSPAC data Categorical variables—Pearson 

chi-square;  

continuous variables—Wilcoxon  

rank-sum  

(Mann–Whitney)

No differences  

(not shown)

Motor sequence 

task  

performance

To compare overnight  

improvement in the MST 

across genotype groups

MST—overnight improvement 

in percent

Difference in means: two-sample  

two-sided  

t-test (unequal variances);  

difference in variances: two-sample 

variance  

comparison

Figure 3

  

Table 3

Motor sequence 

task  

performance

To estimate the effect of  

genotype and session 

(training versus test) on  

MST performance

Average number of correct 

sequences and reaction 

times for last three trials 

(training, evening) and �rst 

three trials (test, morning).

Difference in means: linear mixed  

model with MST performance as the 

dependent variable, genotype group 

and session as �xed effects and  

individual as a random effect,  

difference in variances: Levene’s robust 

test for equality of variance

Figure 3  

Table 4

Diurnal sleep  

wake rhythms

To compare sleep behavior  

and daily rhythm across  

genotype groups

Actigraphy Difference in means: Wilcoxon  

rank-sum  

(Mann–Whitney)

Supplemen-

tary Table S1

Sleep  

architecture

To compare objectively  

measured sleep

PSG Difference in means: linear mixed  

model with sleep architecture  

variables as dependent variables

Supplemen-

tary Table S2

Subjective and 

objective sleep 

quality

To compare objectively  

measured sleep between 

those who self-reported  

good vs. poor sleep quality

Pittsburgh Sleep Quality  

Index, actigraphy, PSG

Difference in means: Wilcoxon  

rank-sum  

(Mann–Whitney)

No differences  

(not shown)

ALSPAC, Avon Longitudinal Study of Parents and Children; MST, motor sequence task; PSG, polysomnography.

Table 2. Overview of statistical analysis of sleep EEG data

Characteristic Aim Data source Statistical approach Results

Spectral power of whole 

NREM epoch

To estimate the effect of genotype 

and night (�rst vs. second) on 

spectral power and to explore 

possible interactions between 

the two factors

Noise free whole 

epochs of N2 & N3 

sleep

Linear mixed model  

�tted using a stepwise  

reduction procedure, 

followed by predicted 

marginal  

means analysis

Not shown

Event properties for: slow 

waves, delta waves, slow 

spindles, fast spindles

To estimate the effect of genotype 

and night (�rst vs. second) on 

event properties and to explore 

possible interactions between 

the two factors

NREM event  

properties derived 

from automatic  

detection during  

N2 & N3 sleep

Linear mixed model �tted 

using a stepwise  

reduction procedure, 

followed by predicted 

marginal means  

analysis

Figure 4, Supple-

mentary Tables 

S3 & S4

Supplementary 

Tables S5 & S6

Figure 5, Supple-

mentary Tables 

S7 & S8

Supplementary 

Tables S9 & S10

SW event triggered  

slow coherence

To estimate the effect of genotype 

and night (�rst vs second) on SW 

event triggered SW coherence 

and to explore possible inter-

actions between the two factors

SW event triggered 

EEG data  

window (± 2 s) for 

coherence analysis 

(N2 & N3)

Linear mixed model  

�tted using a stepwise  

reduction procedure, 

followed by predicted 

marginal means analysis

Figure 7, Supple-

mentary Tables 

S11 & S12

Spectral coherence at SW 

frequency (0.5–1.5 Hz) of 

whole NREM epochs

To estimate the effect of genotype 

and night (�rst vs. second) on 

NREM coherence and to explore 

possible interactions between 

the two factors

Noise free whole 

epochs of N2 & N3 

sleep

Linear mixed model  

�tted using a stepwise 

reduction procedure,  

followed by predicted 

marginal means ana-

lysis.

Not shown

Relation between NREM 

sleep properties and  

behavioral change

To establish predictability of  

overnight behavioral change 

from NREM sleep features

NREM event  

properties, SW  

coherence

Principal component 

analysis + multilinear 

regression

Figure 6, Table 5 

Figure 8, Table 6
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between NREM neurophysiology features and overnight memory 

consolidation. As expected, the majority of NREM neurophysi-

ology features were highly correlated with one another (both 

event properties and SW coherence values). We applied PCA to 

reduce dimensionality and decorrelate predictor variable sets. 

The resulting principal components were fed into a stepwise 

procedure to build multilinear regression models. Model terms 

were added based on an F-test criterion (p  <  0.01) and �nal 

model terms were reported.

Results

Data were initially collected from 47 participants (25 AA and 22 

CC). The two genotype groups did not differ in maternal education, 

social class, psychosis-like symptoms at age 18, or in the Wechsler 

Abbreviated Scale of Intelligence at ages 8 or 15 (not shown). Data 

from seven participants were excluded: (1) one participant did not 

attend the second clinic visit; (2) four participants showed highly 

fragmented sleep during at least one recording night as identi�ed 

by expert reviewing of video PSG data (high WASO and arousals; 2 

AA and 2 CC); (3) two participants were outliers based on perform-

ance in the MST (>Q3 + 1.72*IQR or <Q1 – 1.72*IQR, 1 AA and 1 CC). 

We therefore present results for 40 participants.

Increased variability in motor sequence task 
consolidation in the AA carriers

On the second study visit (night 2), participants were asked to 

complete the MST in the evening before going to bed, and again 

in the morning after waking up (Figure 3, A–C). Participants did 

not differ in the Stanford Sleepiness Score when performing the 

task (Table 3).

Overall performance levels for practice-dependent increases 

in the number of correct sequences (NCS)—and corresponding 

decreases in button press latency within correct sequences 

(‘execution time’, ET) —were comparable between genotype 

groups. Figure 3, D and G show the MST learning curves for both 

genotype groups and Figure 3, E and H show the averages of 

the last three trials in the evening and �rst three trials in the 

morning that are used to calculate overnight improvement.

Participants in both groups improved overnight as quanti�ed 

by the mean NCS (overnight change in NCS, CC: 16.9 ± 9.6%, AA: 

15.9 ± 16.8%, Figure 3, F, Table 3, mean ± SD) and mean ET (over-

night change in ET, CC: 10.5% ± 6.2%, AA: 8.3% ± 11.9%, Figure 3, I,  

Table 3, mean ± SD).

Linear mixed modelling of the MST performance data con-

�rmed effects of session (training vs. test) on NCS (session: 

F(1, 39)= 79.1, p  =  6.38e−11) and ET (session: F(1, 39)  =  28.8, 

p  =  3.93e−06), suggesting sleep-dependent consolidation of 

motor memory in both genotype groups. There was no strong 

evidence for an effect of genotype on task performance, but 

point estimates suggested that AA group participants produced 

fewer correct sequences (F(1, 38) = 1.61, p = 0.21) and had slower 

execution times (F(1, 38)= 3.0, p = 0.09, Table 4).

The AA group showed higher variance in overnight improve-

ment in NCS (SD CC: 9.6, AA: 16.8, two-sample variance com-

parison p = 0.02, Table 3) and ET (SD CC: 6.2, AA: 11.9, two-sample 

variance comparison p = 0.01). This higher variance was particu-

larly pronounced during the morning test session (SD NCS, CC: 

3.6, AA: 5.5, Levene’s test p = 0.02; SD ET, CC: 41 ms, AA: 62 ms, 

Levene’s test p = 0.02).

Sleep timing, architecture, and quality appear 
unaffected by rs1344706 genotype

We did not �nd evidence for consistent effects of genotype on 

diurnal rhythmicity derived from actigraphy (Supplementary 

Table S1) or on subjective sleep quality derived from question-

naires (not shown). PSG-derived measures of sleep architecture 

and quality also appear unaffected by rs1344706 genotype, with 

mean sleep ef�ciency ranging from 90% to 93% for both nights 

and groups (Supplementary Table S2).

Slow wave amplitudes depend on experience, but 
only in the non-risk CC group

To assess potential neurophysiological correlates of variance in 

MST performance, we used custom detection algorithms to ex-

tract SW (0.5−1.5 Hz) events in EEG traces recorded during whole 

night polysomnography (Figure 4, A). These exploratory analyses 

are secondary to testing our primary hypothesis regarding SW 

coordination, but aid interpretation of the coherence results 

in Figures 7 and 8. Figure 4, B shows averaged, SW triggered, 

average EEG traces for both genotype groups and nights at elec-

trode Fz during N3 sleep, indicating SW morphology was com-

parable between genotypes groups.

We did not detect differences in density of SW events be-

tween nights or genotypes (not shown). However, a linear 

mixed model analysis of SW amplitudes from N2 and N3 sleep 

from all electrode locations suggested a main effect of night 

and an important interaction term (night by genotype) in the 

initial full model. After stepwise reduction, the night by geno-

type interaction remained (F(1, 1356.05) = 18.67, p = 1.67e−05). 

Figure 4, panels C1−C4 show topographic plots of SW event 

amplitude, averaged for both genotype groups and recording 

nights. Figure 4, D shows the differences in estimated mar-

ginal means between nights, demonstrating an increase in SW 

amplitudes from night 1 (baseline) to night 2 (learning) in CC 

participants (night 1: 100 ± 4.80 μV; night 2: 105.12 ± 4.78 μV, 

p < 0.001) but not in AA (night 1: 112.2891 ± 4.34 μV, night 2: 

111 ± 4.34 μV, n.s.). The SW event results were supported by 

similar results for delta wave (1.5-4 Hz) event properties. All 

SW and delta event properties are reported as Supplementary 

Tables S3–S6.

Collectively, these analyses suggest that the coordinated 

�ring of cortical populations during SW events may be modu-

lated following learning in a genotype-dependent manner.

Spindle properties depend on experience, with 
differential effects of genotype

To further assess neurophysiological signatures of NREM sleep 

after motor learning we next extracted slow (9−12 Hz) and fast 

spindle (13−16 Hz) events. All slow and fast spindle properties 

are reported in Supplementary Tables S7–S10.

Figure 5, A shows a fast spindle triggered average trace at 

electrode Cz during N2 sleep, for both genotype groups and 

recording night, indicating that overall spindle morphology is 

comparable between genotype groups.

A linear mixed model analysis of slow spindle event prop-

erties revealed night and genotype dependent associations 

with amplitude, with a trend for an increase after learning in 

the CC group (31.1  ± 2.0  µV during night 1 vs. 31.7  ± 2.0  µV 

during night 2, p = 0.05), but a decrease in the AA group (from 
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33.8 ± 1.8 to 33.2 ± 1.8 µV, p = 0.03). We also observed a main 

effect for night-dependent associations with slow spindle fre-

quency, with small decreases in slow spindle frequency after 

motor learning in both groups (from 11.36  ± 0.05 to 11.31  ± 

0.05 Hz in CC, and from 11.33 ± 0.04 to 11.31 ± 0.04 Hz in AA, 

p = 0.005).

Next, we analyzed fast spindle event properties. Figure 5,  

B1–4 shows topographic plots of fast spindle amplitude at 

electrode Cz during N2 sleep for both genotype groups and re-

cording nights. We detected a night by genotype interaction 

for fast spindle amplitude (F(1, 1356.05) = 10.24, p = 0.001), with 

differences in estimated marginal means shown in Figure 5, C: 

amplitudes increased from night 1 to night 2, but again only 

in the CC group participants (from 31.8 ± 2.0 to 32.6 ± 2.0 µV, 

p = 0.007). Fast spindle frequency did not vary across nights or 

genotype, but fast spindle duration showed a similar pattern 

Figure 3. Sleep dependent consolidation of motor sequence learning. Black: CC group (N = 18); Blue: AA group (N = 22). (A) Motor sequence task (MST) experimental 

setup: Participants were asked to type the sequence 4−1−3−2−4 as quickly and accurately as possible on a modi�ed computer number keypad. (B) Each trial lasts 30 s, 

trials are interspersed with 30-s rest periods. (C) Each participant has a total of 5 min and 30 s response time to complete 12 trials in total. (D) MST learning curves 

showing the number of correct sequences per trial. Night 2 is indicated by a dark grey separator, the last three and �rst three trials used to calculate the average for 

the evening (eve) and morning (morn) performance are highlighted in grey. (E) Box plot showing median number of correct sequences (last three trials in the evening 

vs. �rst three trials in the morning) for each MST session and genotype group. (Plots indicate the median, with boxes showing the 25th and 75th percentile of data, 

whiskers indicate the range of values inside 1.5 × outlier range, extreme values (outside 1.5 IQR) are plotted as individual data points). (F) Boxplot showing the median 

of overnight improvement in number of correct sequences/30 s trial as percentage change from evening to morning performance. (G) Learning curves as in A but for 

the mean execution time (ET, button press latency within a correct sequence) per trial. H) Boxplot showing the median ET during correct sequence button presses (last 

three trials in the evening vs. �rst three trials in the morning) for each MST session and genotype group. (I) Boxplot of median overnight improvement in ET measured 

as absolute percentage change from evening to morning performance
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to fast spindle amplitude: a genotype by night interaction (F(1, 

1356.53)  =  7.24, p  =  0.0072), driven by shorter spindles in CC 

group during night 1 (795 ± 8 ms vs. 819 ± 8 ms in AA, p = 0.02) 

and an increase in spindle length from night 1 to night 2 only 

in the CC group (from 795 ± 8 to 800 ± 8 ms, p = 0.03). We found 

no strong evidence for an effect of genotype or night on slow or 

fast spindle density.

To summarize these NREM EEG event analyses, only the CC 

genotype group showed SW and spindle properties—particularly 

event amplitudes—that were sensitive to experience, sustaining 

increases on night 2 (post-MST learning) relative to night 1 (base-

line). It is possible, then, that attenuated experience-dependent 

changes in thalamocortical activity contributed to more vari-

able MST performance in the AA group. To better understand 

the relationship between night 2 sleep features and motor task 

performance improvement, we therefore performed regression 

analysis using NREM event properties recorded during night 2.

NREM event properties predict motor memory 
consolidation only in CC carriers

To investigate whether NREM event properties during night 2 may 

predict overnight memory consolidation of motor learning, we 

�rst computed the Pearson’s linear correlation coef�cients be-

tween NREM event properties averaged over all electrodes for each 

genotype group during night 2 (Figure 6). The correlation structure 

appeared qualitatively different between CC and AA, with a clear 

segmentation between covariance among the properties of low fre-

quency events (SW and delta) and spindle properties evident in CC, 

but a more intermixed array of covariance in the AA participants. 

Indeed, Box’s M-test provided evidence for a difference between 

the covariance matrices of N3 sleep variables for CC and AA aver-

aged over all electrodes (chi-square = 182.0666, df = 136, p = 0.0051).

Figure 6, A and B con�rms that—as expected given the 

physiological inter-dependencies between SWs and spindles—

NREM sleep event features tend to be highly correlated with 

one another, limiting the utility of multilinear regression of 

all the raw variables against behavior. We therefore performed 

PCA on NREM variables to derive independent data features for 

subsequent regression against MST performance. PCA behaved 

similarly for both genotype groups, with the �rst 10 principal 

components explaining over 85% of variance (Figure 6, C and D). 

We therefore entered these 10 principal components into a step-

wise linear regression procedure to identify components that 

may predict sleep dependent memory consolidation. We then 

built multilinear regression models with a stepwise procedure, 

where terms were entered based on the squared sum of errors 

(SSE) for the �nal model. Principal components were included if, 

after an F-test, their inclusion improved the model at p < 0.01.

We built separate models for CC and AA genotype groups. For 

both N2 and N3 sleep variables regressed onto the MST perform-

ance measures of NCS or ET, stepwise multilinear regression 

Figure 4. Slow wave events increase in amplitude after learning only in CC car-

riers. (A) EEG electrodes were placed in standard locations according to the 10−20 

system. (B) SW wave-triggered average at electrode F3 during N3 sleep for both 

genotype groups and recording nights. CC, baseline night, grey, CC, learning 

night, black, AA baseline night, light blue, AA learning night, dark blue. We found 

no difference for any time bin (p < 0.05, Wilcoxon rank sum test, no correction). 

(C1−4) Topography plots of SW amplitudes at all recorded EEG electrodes for 

both genotype groups and recording nights. (D) Estimated marginal means dif-

ferences for the factors genotype and night derived from a linear mixed model 

analysis of all detected SW amplitudes (see Methods for details). The CC group 

show an increase in SW amplitude during night 2, but AA do not. Error bars in-

dicate 95% con�dence intervals.

Table 3. Stanford sleepiness score and MST improvement

CC group (N = 18)  

Mean (SD)

AA group (N=22)  

Mean (SD)

t-test  

pb Levene’s test pc

Stanford Sleepiness Score

Evening 2.5 (0.9) 3.1 (1.4) 0.11 0.05

Morning 2.9 (1.0) 2.5 (0.9) 0.22 0.61

MST improvement a

NCS (#) 16.9 (9.6) 15.9 (16.8) 0.82 0.02

ET (ms) –10.5 (6.2) –8.3 (11.9) 0.45 0.01

NCS = mean number of correct sequences, ET = mean execution time during 

correct sequences.
a Improvement calculated as the percentage change in each outcome measure 

from training performance to test performance.
b p-value from two-sample two-sided t-test (unequal variances).
c p-value from Levene’s robust test for equality of variance across groups, 

(Levene, 1960).
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successfully converged onto �nal models for the CC group—but 

did not include any terms for the AA group (Table 5). For example, 

for N3 sleep derived variables, multilinear regression identi�ed 

a robust linear model predicting overnight improvements in the 

CC group’s MST performance on the basis of principal compo-

nents 2, 4 and 10 (F(1,10) = 25.02, p =5.77e−05); Figure 6, E shows 

an adjusted variable plot for the �nal model. For comparison, 

Figure 6, F shows a scatter plot of AA PC4 (smallest Euclidean 

distance to PC2 in CC, not shown) against NCS improvement, 

which fails to show any linear relationship.

Consistent with the AA group’s more variable MST per-

formance and limited post-training changes in SW and 

spindle event properties, these regression analyses con�rm 

that network activity during NREM sleep can accurately pre-

dict behavior (i.e. overnight memory consolidation), but only 

in CC participants. However, since recent work has highlighted 

the importance of temporal interrelationships between thal-

amocortical oscillations for sleep-dependent memory consoli-

dation [43, 47, 72, 73], we next tested whether SW coordination 

across the EEG recording locations also varied across nights 

and participants.

Slow wave mediated cortical connectivity during 
NREM sleep

SWs can occur simultaneously at different locations across the 

cortex. Figure 7, A shows raw EEG traces surrounding a single 

SW event detected at electrode Fz. To illustrate SW-associated 

temporal covariance in frontal and occipital EEG, we used Fz SW 

events (trough times) as triggers to extract ±2 s windows of EEG 

surrounding each event across both channels, averaging across 

all windows for each recording night. Figure 7, B shows Fz SW 

event triggered averages at Fz and O1 from one participant of 

the CC group. Here highly stereotypical SW events are detected 

at Fz (with low variance) during both recording nights, but dif-

ferent average waveforms at O1. During night 1, Fz SW coincided 

with highly variable activity at O1, where a SW-like waveform is 

hardly separated from surrounding background activity (Figure 7,  

B1); in contrast, during night 2, a distinct average SW waveform 

coordinated with Fz manifests at O1 (Figure 7, B2).

We quanti�ed SW synchronization during NREM sleep for 

both genotype groups and nights using multi-taper spectral co-

herence. Figure 7, panels C1−4 show group-averaged coherograms 

for the electrode pair Fz-O1 for both recording nights and geno-

type groups: the most coherent frequency ranges are 0.5−1.5 Hz 

(SW) and fast spindle coherence (12−15 Hz). We used the average 

SW coherence (0.5−1.5Hz) during 1s windows surrounding each 

SW for each electrode pair to construct a cortex-wide SW con-

nectivity matrix. Figure 7, D1−4 show matrices of group aver-

aged coherence values for both genotypes and both recording 

nights during N3 sleep. All matrices show a gradient of coher-

ence, with highest values between frontal and central electrodes 

and lowest values between the most distant pairs, that is frontal 

and occipital electrodes.

We calculated the difference between all coherence values 

and plotted them in the same matrix layout to illustrate changes 

in SW coherence between nights (Figure 7, E1−2) and genotypes 

(Figure 7, F1−2). Consistent differences in SW coherence are ap-

parent between recording nights. SW coherence increases in 

the CC group from night 1 (baseline) to night 2 (learning, Figure 

7, F1)—but a decrease can be seen in the difference matrices 

for the AA genotype group (Figure 7, F2). A linear mixed model 

with subsequent stepwise reduction (Supplementary Table S11, 

Figure 7, G) revealed a genotype by night interaction, indicating 

a differential effect of learning on SW coherence in CC vs. AA 

genotypes (genotype × night: F(1, 11182) = 97.37, p < 2e−16). Both 

genotypes show changes in SW coherence upon motor learning, 

but a least squares estimation of group marginal means reveals 

that those in the CC group show a post-learning increase in 

SW coherence (CC night 1 0.85 ± 0.021, CC night 2 0.87 ± 0.019, 

p < 0.001, Supplementary Table S12), whereas the AA group show 

a decrease in overall SW coherence after learning (genotype by 

night: AA night 1 0.89 ± 0.019 − AA night 2 0.86 ± 0.021, p < 0.001).

Figure 5. Fast spindle events increase in amplitude after learning only in CC car-

riers. (A) Spindle wave-triggered average at Cz for all genotype groups and both 

recording nights. We found no difference for any time bin (p < 0.05, Wilcoxon 

rank sum test, no correction). (B) Average spindle amplitude topography plots 

for both genotype groups and recording nights. (C) CC individuals show an in-

crease in fast spindle amplitude in night 2, but AA’s do not. Error bars indicate 

95% con�dence intervals.
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Figure 6. NREM event properties predict motor memory consolidation only in CC. (A) Matrix of correlation coef�cients (ρ) for all N3 sleep event properties averaged 

across all electrodes for the CC carriers. (B) Matrix correlation coef�cients (ρ) for all N3 sleep event properties averaged across all electrodes for the AA carriers. (C) 

Cumulative sum of explained variance per principal component for the PCA of N3 sleep variables in the CC group. (D) Cumulative sum of explained variance per prin-

cipal component for the PCA of N3 sleep variables in the AA group. (E) Added variable plot for the �nal multilinear regression model using N3 sleep variable principal 

components 1−10 from CC carriers. F-test p-values for individual components added to the �nal model: *** p < 0.001, ** p < 0.01, * p < 0.05, n.s.: not signi�cant. (F) In AA 

carriers a scatter plot of PC4 (shortest Euclidean distance to PC2 in CC) against improvement in NCS shows no relationship.
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Thus, the CC group showed the increased SW coherence pre-

dicted by previous studies [43, 47], whereas SW coordination 

was attenuated following learning in the AA participants.

Slow wave coherence predicts motor memory 
consolidation only in CC carriers

To further elucidate the relationship between SW-associated 

connectivity and overnight MST performance changes we per-

formed PCA combined with multiple linear regression analysis, 

as described for NREM sleep event features in Figure 6. Figure 8 

A and B shows explained variance plots for PCA in both groups 

for N3 SW coherence.

N2 and N3 sleep SW coherence regression models for MST 

performance (NCS or ET), converged onto �nal models for the 

CC group – but, as for individual NREM events in Figure 6, did not 

include any terms for the AA group (Table 6). For example, for N3 

sleep derived variables, multilinear regression identi�es a linear 

model with PC 2, 4 and 10 (F(1,10) = 10.03, p = 0.0008); Figure 8, C 

shows an adjusted variable plot for the �nal model for N3 SW co-

herence principal components regressed onto the improvement in 

NCS. Figure 8, D shows a scatter plot of AA PC4 (smallest Euclidean 

distance to PC2 in CC, not shown) against NCS improvement.

In a similar pattern to the analysis of NREM event features, 

SW coherence only predicts overnight memory consolidation 

in CC carriers but not in AA carriers. This again indicates the 

rs1344706 genotype-dependence of NREM neurophysiology’s 

utility as a predictor of sleep-dependent behavior.

Discussion

We performed a recall-by-genotype study [46] to investigate the 

potential contributions of an SZ-associated SNP, rs1344706, to 

sleep-dependent memory processing and neurophysiology in 

healthy volunteers. In summary, (1) all participants showed 

normal wake/sleep rhythms and sleep architecture; (2) we 

observed greater variance in learning and sleep-dependent 

memory consolidation following a motor task in AA partici-

pants; (3) we detected genotype- and learning-dependent ef-

fects on SW and fast spindle amplitudes, with the AA group 

showing normal SW and spindle densities, but attenuated 

changes in SW and spindle amplitudes after learning; (4) the 

AA group also failed to exhibit the learning-dependent increase 

in SW coherence evident in the CC genotype group; (5) conse-

quently, metrics of coordinated network activity during NREM 

sleep were robust predictors of sleep-dependent memory con-

solidation in CC participants, but were  unable to predict be-

havior in the AA group associated with higher genetic liability 

for schizophrenia.

Motor memory consolidation

Using an MST, performance in which has previously shown to be 

impaired in patients with schizophrenia, we found evidence for 

greater variability in overnight improvement and other variables 

derived from MST in those with the AA genotype at rs1344706, 

suggesting that rs1344706 may associate with subtle changes in 

motor learning and consolidation.

Table 4. Linear mixed model analysis of MST performance across groups and sessions

Mean (SD) Levene’s test Linear mixed model

 CC group (N = 18) AA group (N = 22) pa Session Genotype

 Train Test Train Test Train Test

Betab (SE),  

F(df1, df2),  

p

Betac (SE),  

F(df1, df2),  

p

NCS (#) 20.7 (4.1) 23.9 (3.6) 19.1 (5.3) 21.7 (5.5) 0.16 0.02 β = 2.91 (0.33),  

F = 79.1 (1, 39),  

p = 6.38 x 10-11

β = –1.87 (1.48),  

F = 1.61 (1, 38),  

p = 0.21

ET (ms) 268 (58) 238 (41) 301 (80) 271 (62) 0.07 0.02 β = –30 (6),  

F = 28.8 (1, 39),  

p = 3.93 × 10-06

β = 33 (19),  

F = 3.0 (1, 38),  

p = 0.09

NCS = mean number of correct sequences, ET = mean execution time during correct sequences.
a p-value from Levene’s robust test for equality of variance across groups (within session).
b Given with respect to the training session (evening) performance as baseline.
c Given with respect to the CC group as baseline.

Table 5. Stepwise linear regression models of NREM event principal 

components

NREM 

stage Group

MST 

variable PC included

F  p-value  

‘N2’ CC NCS PC4 6.63 0.024

‘N2’ AA NCS  n.s. n.s.

‘N2’ CC ET PC4 6.49 0.026

‘N2’ AA ET  n.s. n.s.

‘N3’ CC NCS PC2, PC4, PC10 25.02 5.77e-05

‘N3’ AA NCS  n.s. n.s.

‘N3’ CC ET PC2, PC7, PC10 21.63 0.0001

‘N3’ AA ET  n.s. n.s.

Table 6. Stepwise linear regression of SW coherence principal 

components

NREM stage Group MST variable PC included F stat p-value

‘N2’ CC NCS  n.s. n.s.

‘N2’ AA NCS  n.s. n.s.

‘N2’ CC ET PC4 7.97 0.013

‘N2’ AA ET  n.s. n.s.

‘N3’ CC NCS PC4, PC7 7.98 0.005

‘N3’ AA NCS  n.s. n.s.

‘N3’ CC ET PC2, PC4, PC6, PC7 10.13 0.0008

‘N3’ AA ET  n.s. n.s.
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Figure 7. Slow wave coherence. (A) Raw data example showing all EEG traces surrounding a typical SW event at Fz. (B) SW wave-triggered averages from one participant 

from band pass �ltered (0.5−4 Hz) and EEG traces. Individual SW event traces were averaged in windows of ±2 seconds with the SW trough time set t = 0. B1) SW trig-

gered average at Fz and O1 for 51 SW events detected during night 1 N2 sleep in one participant (CC, Night 1), B2) SW triggered averages as described in C1 using, 115 

SW events during night 2 from the same participant (‘CC’, Night 2). (C) Average SW triggered coherograms. SW triggered data windows (SW trough time at Fz, t = 0) from 

the seed electrode (Fz) and target electrode (O1) were used to calculate multitaper coherograms for each data window pair. Coherograms were averaged for each par-

ticipant and then averaged for each group and recording night. In the coherogram, lighter colors indicate higher coherence. Overlaid black traces are SW wave triggered 

averages for seed and target electrode (Fz, top and O1, bottom). C1) Average coherogram for CC night 1, C2) Average coherogram for CC night 2, C3) Average coherogram 

for AA night 1, C4) Average coherogram for AA night 2. (D) Average SW-triggered coherence values (0.5−1.5 Hz, −0.5−0.5 s) for all electrode pairs for each genotype group 

during N2 sleep for both recording nights. (D1) CC, during night 1; (D2) CC, during night 2, (D3) AA, during night 1, D4 AA, during night 2. (E) Differences in SW coher-

ence between nights in each genotype group CC (E1), and AA (E2). (F) Differences between genotype groups on each night, night 1: CC-AA (F1), night 2: CC-AA (F2). (G) 

Estimated marginal means differences for the factors genotype and night estimated from a linear mixed model analysis of SW event coherence. CC individuals show 

an increase in SW coherence during night 2, but AA’s show an overall decrease in coherence. Error bars indicate 95% con�dence intervals.
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Motor learning [74] and its sleep-dependent memory con-

solidation are impaired in patients with schizophrenia [53, 75–

77] and the key brain areas involved in these traits, including the 

neocortex, striatum, thalamus, hippocampus and cerebellum 

[78–81], have all been implicated in the etiology of SZ [82–84]. 

ZNF804A has been shown to be highly expressed in these brain 

regions, particularly the thalamus, hippocampus and cortex [85], 

hence altered ZNF804A function or expression may contribute 

to changes in brain development and plasticity that in�uence 

motor learning and its consolidation [86]. Previous studies have 

shown that variability between individuals during early phases 

of learning a motor task is higher in patients diagnosed with SZ 

compared to healthy controls [87], potentially re�ecting higher 

variability in brain anatomy or functional connectivity patterns 

[88]. Whether this variability and the associations of ZNF804A 

derive from neurodevelopmental effects or altered adult neural 

plasticity remains an open question.

NREM sleep neurophysiology

Detailed analyses of overnight EEG unveiled relationships be-

tween rs1344706, corticothalamic activity during NREM sleep 

and neural correlates of motor memory consolidation. We 

observed several interaction effects between genotype and 

recording night, where NREM sleep activity appears to be dif-

ferentially affected by the acquisition of a motor task in AA as 

compared to CC participants.

Spindle oscillations. Previous studies have shown that sleep-

dependent motor memory consolidation correlates with spindle 

oscillations [62, 72, 89–91]. Indeed, a substantial body of work has 

demonstrated correlations between N2 sleep or spindles with 

motor memory in healthy participants [92–95], although contra-

dictory studies do exist [96, 97]. In particular, the individual con-

tributions of slow and fast spindles to memory consolidation are 

still debated, though their dissociable topographies may re�ect 

Figure 8. Slow wave coherence predicts motor memory consolidation only in CC. (A) Cumulative sum of explained variance per principal component for the PCA of N3 

SW coherence in the CC group. (B) Cumulative sum of explained variance per principal component for the PCA of N3 SW coherence in the AA group. (C) Added variable 

plot for the �nal multilinear regression model using N3 SW coherence principal components 1–10 as predictors of overnight improvement in NCS in CC carriers. F-test 

p-values for individual components added to the �nal model: ** p < 0.01, * p < 0.05. D). In AA carriers a scatter plot of PC6 (shortest Euclidean distance to PC7 in CC) 

against improvement in NCS shows no relationship.
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distinct roles in processing different stages or types of memory 

consolidation.

We found some evidence supporting a role for slow spindle 

oscillations (9−12 Hz) in motor memory consolidation, since 

slow spindle amplitudes appeared to be increased in CC geno-

type participants during the learning night, whilst decreasing 

in the AA group; fast spindle amplitudes and durations also in-

creased after learning, again only in the CC genotype group. The 

mechanisms driving these experience-dependent changes re-

main unknown, but may relate to plasticity in cortico-thalamic 

feedback, which has been shown to modulate spindle initiation 

and termination [98].

We found no evidence of an effect of rs1344706 genotype 

or night on either slow or fast spindle densities. Previous 

studies demonstrated reduced fast spindle density or inte-

grated spindle activity in �rst episode [34, 99] and chronically 

ill patients [32, 33, 39], plus in their �rst-degree relatives [34, 

44, 100]. Meanwhile, reduced fast spindle density has been re-

ported in healthy carriers of a catechol-O-methyltransferase 

(COMT) polymorphism [101], while polygenic risk score for SZ 

[102] was positively correlated with higher fast spindle density 

and amplitudes in healthy adolescents. The situation therefore 

remains complex and, given established polygenic effects in 

SZ, multiple genetic variants and their interactions are likely 

to impact cortico-thalamic circuit development and activity in 

different ways. In particular, SNPs linked to ion channel genes 

like CACNA1C [102] may interact with other SNPs to impact 

corticothalamic development and maturation which might 

have causal effects on cortico-thalamic oscillatory signatures 

or NREM sleep [40].

Slow oscillations. On average, SW amplitudes increased during 

the sleep after learning only in the CC genotype group. In add-

ition, SW coherence appears to be differentially modulated after 

learning between the genotype groups: those in the CC group 

show an increase in SW coherence, but participants with the AA 

genotype show a decrease in SW coherence during the night that 

followed motor learning. Previous studies have shown that during 

early sleep, after motor learning, SW event amplitudes are lo-

cally increased in central and parietal areas [103]. SW coherence 

has also been shown to increase during sleep after a declarative 

memory task [47], and our recent work has demonstrated SW 

coherence increased after motor learning in a control group, but 

not in patients diagnosed with SZ [43]. D’Agostino et al. [44] re-

port decreased SW amplitude and slope in �rst-degree relatives 

of schizophrenia patients, potentially indicating altered synaptic 

connectivity or plasticity in cortical networks. Our results in in-

dividuals homozygous for the ‘A’ allele at rs1344706 seem to be 

line with these �ndings and provide a genetic correlate for SW 

phenotypes related to psychosis and SZ.

Correlation between NREM neurophysiology and 
motor memory consolidation

We observed a striking lack of predictability of motor memory 

consolidation in carriers of the risk variant AA - compared to 

the non-risk variant CC where both local (SW and spindle 

event properties) and distributed (SW coherence across the 

scalp) NREM sleep features predicted successful motor memory 

consolidation.

This lack of predictability of overnight memory consoli-

dation in AA carriers is surprising and unexpected. A higher 

variability in behavioral responses and an altered correlational 

structure between sleep variables may destroy previously 

described associations between sleep neurophysiology and 

memory consolidation. Given the relatively high frequency of 

the ‘A’ allele in the general population (based on allele fre-

quencies reported for the European arm of the 1000Genomes 

project [104] approximately 39% of the population are AA at 

this locus), these �ndings may explain some of the inconsist-

encies found in the literature that describe relationships be-

tween sleep neurophysiology and overnight improvement in 

motor learning.

Recent studies on the rodent homologue of ZNF804A suggest 

the gene has a role both during development and in adult plasticity 

[86, 105]. Our own work in a rodent neurodevelopmental model 

of SZ has demonstrated that interference in cortico-thalamic de-

velopment causes severe disruption of SW coordination between 

remote cortical areas and simultaneous desynchronization of 

spindle and hippocampal ripple oscillations [59]. Given the sug-

gested role of ZNF804A in cortical and thalamic development 

we speculate that rs1344706 may have a role in corticothalamic 

development which itself would be related to impaired coordin-

ation of SW activity during sleep. These deep characterizations 

of genotypic association motivate future mechanistic studies 

in animal models that enable high-resolution phenotyping of 

corticothalamic circuit development and plasticity, and their role 

in sleep dependent memory processing.

Limitations and Conclusions

The functions of ZNF804A are not fully documented, nor are 

the molecular mechanisms linked to rs1344706 [13]. Indeed, the 

effects of rs1344706 may depend on other SNPs [106, 107] and 

environmental factors [108]. Also, the relatively small sample 

size of this study naturally limits the strength of our conclu-

sions; future sleep studies deploying wearable technology to 

monitor sleep neurophysiology over extended periods of time 

and in much larger genotyped samples stand poised to gen-

erate powerful advances in this regard. It will also be important 

to extend studies of sleep’s genotype-associated contributions 

to other memory types, including declarative memories, since 

NREM oscillations have been associated with a range of memory 

impairments in schizophrenia [75, 109].

Given the complex network of events linking genetics to brain-

wide connectivity and function, how can we best map genomic 

information to a neurobiological understanding of SZ? Here we 

show that sleep neurophysiology presents a uniquely powerful 

opportunity to bridge different levels of analysis: relating geno-

type to sleep-dependent physiology and environmental fac-

tors such as learning, constitutes a rational, neurobiologically 

informed approach to delineating causal mechanisms of thal-

amocortical circuit dysfunction [45]. Future translational studies 

should investigate the in�uence of ZNF804A on SW and spindle 

properties and their coordination in genetic rodent models and 

patient populations to further elucidate genetic and circuit 

mechanisms of psychosis and their impacts on sleep, cognition, 

and novel therapies.

Supplementary material

Supplementary material is available at SLEEP online.
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