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ABSTRACT Automatic diagnosis and classification of schizophrenia based on functional magnetic res-
onance imaging (fMRI) data have attracted increasing attention in recent years. Most previous studies
abstracted highly compressed functional features from the view of brain science and fed them into shallow
classifiers for this purpose. However, their classification performance in practical applications is unstable
and unsatisfactory. As an acute psychotic disorder, schizophrenia shows functional complexity in fMRI
data. Therefore, additional features and deep classification methods are needed to improve classification
performance. In this study, we propose a multiple feature image capsule network ensemble approach for
schizophrenia classification. The proposed approach proceeds in three steps: 1) extracting multiple image
features from the perspective of linear sparse representation, nonlinear multiple kernel representation, and
function connection of brain areas respectively; 2) feeding these image features into three specially designed
independent capsule networks for classification; 3) obtaining the final results by fusing the outputs of these
three deep capsule network using a ensemble approach. To further improve the classification performance,
we design a optimization model of maximizing the square of correlation coefficients and propose a weighted
ensemble technology based on this model, which is mathematically proved to be solved as a eigenvalue
decomposition problem in certain case. Finally, the proposed approach is implemented and evaluated
on the schizophrenia fMRI dataset from COBRE, UCLA and WUSTL. From the experimental results,
we conclude that the proposed method outperforms some current methods and further improves the accuracy
of schizophrenia classification.

INDEX TERMS Schizophrenia classification, multiple features extraction, deep capsule network, classifier
ensemble.

I. INTRODUCTION

A. BACKGROUND

Schizophrenia is a devastating mental disease with extraor-
dinary complexity. Diagnosis of schizophrenia with high
confidence is important in neurosciences and medical sci-
ence [1], [2]. High-resolution brain imaging techniques,
such as functional magnetic resonance imaging (fMRI) [3],
structural magnetic resonance imaging(sMRI) [4], diffusion
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tensor imaging(DTI) [5], positron emission tomogra-
phy(PET) [6], facilitate understanding of the structure and
function of human brain. These techiques have contributed
greatly to the improved analysis and diagnosis of schizophre-
nia in recent years [7]–[11].

As a complex psychiatric disorder, schizophrenia shows
local abnormalities of brain activity and functional connec-
tivity networks in the schizophrenic brain feature disrupted
topological properties [12]. As a gold-standard functional
imaging technique in neurosciences, fMRI has become the
most widely used imaging technique among all the above
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mentioned imaging technologies for the analysis and diagno-
sis of schizophrenia [13]. To free imaging specialists from the
heavy task of interpreting fMRI images, methods to diagnose
schizophrenia automatically with high reliability need to be
developed to simplify analysis of fMRI images. Different
machine learning methods, including classification and fea-
ture extraction, have been introduced in recent years to realize
the automatic analysis and diagnosis of schizophrenia [14].
From the perspective of statistical machine learning,

schizophrenia analysis and diagnosis can be regarded as a
typical statistical classification task. Similar to other com-
mon statistical classification approaches, most of existing
approaches for schizophrenia classification based on fMRI
have the same processing steps. After some data preprocess-
ing operations, these existing approaches can be divided into
three main steps: 1) extracting features from original fMRI
data based on functional region of interests(ROI) informa-
tion; 2) transforming ROI features into compressed features
using linear or nonlinear feature transformation techniques;
3) optimizing a classifier by training it on these compressed
features. Recently proposed approaches using deep learn-
ing [19]–[21] involve concise operations in which the last two
steps are merged. And automatic feature extraction is realized
by end-to-end learning.

B. MOTIVATION

Despite the continuous advances in schizophrenia classifi-
cation approaches based on fMRI data, existing approaches
are still in the infancy stage, and their diagnosis levels are
considerably lower than those of human experts. The research
of schizophrenia classification based on fMRI data still faces
several inevitable problems and challenges.
First, little is presently known about the structures and

functions of human brain. In specific, the etiology of
schizophrenia and the abnormal modes of the brains of
patients with this condition remain unclear [14]. As men-
tioned above, existing approaches obtain ROI features from
current knowledge about brain regions. The only available
materials in schizophrenia classification are fMRI data and
prior knowledge about this condition. Therefore, a method to
extract deep information from fMRI data by using informa-
tion procesing technologies has become increasingly impor-
tant.
Second, most existing schizophrenia classification

approaches can be classified as shallow learning. Intu-
itionally, deep learning approaches [15]–[18] that are suit-
able for complex tasks should be used for highly complex
schizophrenia classification tasks. Besides, recently proposed
approaches using deep learning [19]–[21] involve concise
operations and automatic feature extraction is realized by
end-to-end learning. However, mainstream deep learning
methods are data hungry. In addition, these methods are
easily over-fitting and show poor performance in tasks with
a small sample size. Unfortunately, the number of samples
in a schizophrenia classification research is usually small.
As listed in the paper [48], the mean and median sample size

of 21 researches on schizophrenia classification in the recent
5 years(2014-2018) are 208 and 147 respectively. Hence,
how to choose appropriate deep learning methods and design
network architecture suitable for schizophrenia classification
with small sample size should also be determined.

C. OUR CONTRIBUTIONS

In view of these problems, this paper proposes a deep learning
approach for schizophrenia classification from several per-
spectives, such as multiple features extraction, deep network
architecture design and classifier ensemble, to improve the
accuracy and stability of classification. The details of our
contributions are listed as below:

(1)We present a novel whole schizophrenia classification
approach which contains 3 steps: multiple features extrac-
tion, deep capsule network training and multiple classifiers
weighed ensemble. In our experiments, the approach outper-
forms some current methods.

(2)We present multiple fMRI features extraction method
and extract linear sparse feature image, nonlinear multi-
ple kernel feature image and functional connectivity feature
image from three different perspectives: statistical linear anal-
ysis, statistical nonlinear analysis and brain regions analysis.
This multiple fMRI features extraction method can extract
more useful information from the view of data science and
brain science separately.

(3)We introduce capsule network into schizophrenia diag-
nosis and design new capsule network architecture more
suitable for schizophrenia diagnosis. At the basis of original
capsule network, we add more convolution layers to enlarge
the local receptive field and cancel the RELU nonlinear map-
ping layers to control network capacity, which are effective
for solving over-fitting.

(4)We present a weighted ensemble method to complete
the final classifier ensemble of our schizophrenia classifica-
tion approach. This weighted ensemble method based on an
optimizationmodel maximizes the square of correlation coef-
ficients. We discuss and prove in theory that in certain case
the presented optimization model is essentially a eigenvalue
decomposition problem, which means we can obtain the best
weights rapidly by the common eigenvalue decomposition
algorithms.

The rest of the paper is organized as follows: In section II,
we review the related literature. In section III, we present
multiple feature image capsule networks ensemble approach
and describe it in details. In Section IV, the experimental
results on a multi-site schizophrenia fMRI dataset from the
center for biomedical research excellence(COBRE, avail-
able at http://openfmri.org/), the university of California,
Los Angles(UCLA, available at http://openfmri.org/) and the
conte center for the neuroscience ofmental disorders atWash-
ington university school of medicine in St. Louis(WUSTL,
available at http://openfmri.org/) are presented and discussed
by comparing with some other representative methods.
In Section V, we conclude the paper.

VOLUME 7, 2019 109957



B. Yang et al.: Schizophrenia Classification Using fMRI Data Based on a Multiple Feature Image Capsule Network Ensemble

FIGURE 1. Illustration of multiple feature image capsule networks ensemble.

II. RELATED WORK

The researches of schizophrenia classification based on fMRI
data havemade great progress in recent years. AS a classifica-
tion task, one of the most important things is choosing a good
classifier. So far many linear and nonlinear classifiers have
been applied in schizophrenia classification, which contain
bayesian classifier [22], c-means classifier [23], k-nearest
neighbor algorithm [24], artificial neural network [25], least
square classifier [26], support vector machine(SVM) [27] and
extreme learning machine(ELM) [28], [29].
The works mentioned above are generally based on

ROIs information extracted from the original fMRI data.
As pointed out in the paper [7], the dimension of functional
connectivity is large even if ones only evaluate connectiv-
ity between defined ROIs. To avoid overfitting problem,
many feature transformation technologies were also applied,
which contain principle components analysis(PCA) [30],
kernel PCA(KPCA) [31], fisher linear discriminant anal-
ysis (FLDA), kernel FLDA(KFLDA) [32], independent
component analysis (ICA) [33], locally linear embedding
(LLE) [23], canonical correlation analysis(CCA) [34], [35].
From the view of machine learning, all the above approaches
can be classified as shallow machine learning. However,
because there exists a gap between the highly complexity of
brain function and the relatively poor representation power
of shallow machine learning, further improving classifica-
tion performance using shallow approaches becomes very
difficult.
Recently, deep learning approaches were introduced in

classification of brain disease [48], [49], which contain

deep belief network [21], [36]–[38], Auto Encoder networks
[19], [20], [39], [40], Convolution Neural Networks(CNN)
[41]–[47]. Because of the powerful learning ability and
automatic features extraction ability of deep learning, these
approaches are hopeful to improve classification performance
of brain disease. However, due to the relatively small number
of samples [48], so far the deep neural networks widely
used in classical computer vision tasks still have not shown
distinguished classification power. As mentioned in the
paper [48], there are still only 18 papers published in recent
5 years(2014–2018) using deep neural network for classifi-
cation of various disorders(less than 4%, 18/209 papers) and
SVM, a famous shallow learning method, is still the most
popular methods(more than 55%, 117/209 papers). Hence,
how to improve the generalization of deep learning in clas-
sification of brain disease becomes a key technology needed
to be solved now.

III. OUR SCHIZOPHRENIA CLASSIFICATION APPROACH

A. ILLUSTRATION OF OUR APPROACH

Suppose we have a labeled fMRI image data set
S = {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)}, where xi(xi ∈

Rl1×l2×l3×l4 , 1 ≤ i ≤ n) is the ith 4D fMRI image data, yi(1 ≤

i ≤ n) is the category label of xi and yi ∈ {1, . . . ,C} if there
are C categories. Automatic diagnosis of brain diseases can
be treated as a classification task in which unlabeled fMRI
image are classified into certain categories by a classifier
y = f (x). In order to ensure the classification accuracy,
the classifier y = f (x) should be trained and optimized based
on the minimization of empirical loss

∑n
i=1 L(f (xi), yi).
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This paper proposes a multiple feature image capsule net-
work ensemble approach for fMRI images classification. the
proposed approach is illustrated in Fig.1. Different from the
existing approaches, which mainly use functional connectiv-
ity feature set from ROI features to make decision, here we
use classifier ensemble on multiple features to improve the
accuracy and stability of brain disease classification. In our
ensemble model, we first extract different 2D feature images
based on the original high-dimensional 4D fMRI image data
from three different perspectives: linear sparse representa-
tion, nonlinear kernel mapping and prior knowledge from
brain science. Then the three 2D feature image are input
into three capsule networks for individual decision-making.
Finally, the classifier ensemble technology is used to integrate
the three individual classification results and output the final
ensemble decision-making results.

B. LINEAR SPARSE REPRESENTATION IMAGE

Linear sparse representation images are generated by sparse
dictionary learning [50]. Because there is no need for
temporal and spatial information here, first the 4D fMRI
image xi(xi ∈ Rl1×l2×l3×l4 ) is vectorized to a 1D vector
ri(ri ∈ Rl×1, l = l1 × l2 × l3 × l4).

Suppose there exists a Dictionary matrix D(D ∈ Rl×m)
to be optimized, which contains m atoms {d i}1≤i≤m and
D = (d1, . . . , d i, . . . , dm). The optimization model of sparse
dictionary learning is defined as

min
D,S

Tr((R− DS)T (R− DS)) + λ�(S), (1)

where matrix R is the sample matrix and R ∈

Rl×n,R = (r1, . . . , ri, . . . , rn), matrix S(S ∈ Rm×n,S =

(s1, . . . , si, . . . , sn)) is the sparse presentation matrix using
dictionary D, �(S) is the sparsity regularization term for S,
λ(λ ≥ 0) is the regularization coefficient.
At present, the commonly used sparsity regularization

terms are mainly based on L0 norm and L1 norm. Because
L1 norm is of convexity in mathematics and brings more
effective algorithms, here sparse dictionary learning based
on L1 norm regularization is adopted. So model(1) can be
rewritten as

min
D,S

Tr((R− DS)T (R− DS)) + λ||S||1. (2)

Eq.(2) can be optimized by alternating optimization of the
below 2 sub problems

min
S
Tr((R− DS)T (R− DS)) + λ||S||1, (3)

min
D
Tr((R− DS)T (R− DS)). (4)

Details of the optimization algorithm is described in
Algorithm 1.
Eq.(3) and (4) in Algorithm 1 are both convex optimization

models. Eq.(3) can be solved quickly by some rapid algo-
rithms such as the Least Absolute Shrinkage and Selection
operator and Least Angle Regression, while Eq.(4) can be
solved by K Singular Value Decomposition algorithm [50].

Algorithm 1 Optimization Algorithm for solving model(2)
Input: the sample matrix R, the initialized Dictionary D(0),

the regularization coefficient λ, stop threshold ε, t = 0
Output: the optimized Dictionary D∗, the optimized sparse

presentation matrix S∗

1: Fix dictionaryD(t) and optimize presentation matrix S(t)
according to Eq.(3).

2: Fix sparse presentation matrix S(t) and optimize dictio-
nary D(t + 1) according to Eq.(4).

3: If ||S(t−1)−S(t)||2F > ε or ||D(t−1)−D(t)||2F > ε,
t = t + 1, goto 1.

4: return the optimized Dictionary D∗ = D(t+ 1), the opti-
mized sparse presentation matrix S∗ = S(t).

Using dictionary D, a l-dimensional sample vector ri is
represented as a m-dimensional feature vector si. Noting that
the regularization coefficient λ has the effect of adjusting the
sparsity of representation S, here we set d different λ values
λ1, . . . , λd and obtain d different feature vectors of different
degrees of sparsity. Finally, we combine these d different
feature vectors into a sparsity representation matrix Si which
is called as linear sparsity representation image here

Si = (si(λ1), . . . , si(λd )). (5)

C. MULTIPLE KERNEL REPRESENTATION IMAGE

Multiple kernel representation images are generated by using
kernel mapping method [51]. For a l-dimensional 1D vec-
tor ri in sample set {ri}1≤i≤n, its nonlinear mapping can be
described as

ri → φ(ri), (6)

where φ(.) is a nonlinear mapping function.
Considering that φ(.) can hardly be defined in general,

we cannot analyse it directly in this implicit nonlinear space.
As an alternative, a well-defined kernel inner product func-
tion can be used. For two samples ri, rj, the kernel inner
product about them is defined as

k(ri, rj) = φ(ri)
Tφ(rj), (7)

where k(., .) is the kernel inner product function.
Furthermore, the sample ri can be mapped into n-

dimensional kernel sampling space using kernel inner product
function as a kernel sample ϕ(ri), which can be described as

ri → ϕ(ri) = (k(r1, ri), . . . , k(rn, ri))
T . (8)

Kernel sample ϕ(ri) is related not only to the types of
kernel inner product function but also to the values of super
parameters. Here we set s different super parameter val-
ues σ1, . . . , σs and obtain d different kernel samples for ri.
Finally, we combine these s different kernel samples into a
multiple kernel representation matrixK i denoted as nonlinear
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multiple kernel representation image

K i =







kσ1 (r1, ri) · · · kσs (r1, ri)
...

. . .
...

kσ1 (rn, ri) · · · kσs (rn, ri)






. (9)

D. FUNCTIONAL CONNECTIVITY IMAGE

The above two presentation feature images are generated
from the perspective of mathmatics.Unlike them, functional
connectivity feature images are based on brain science.
As we know, the first three dimensions of a 4D fMRI image
xi(xi ∈ Rl1×l2×l3×l4 ) compose the spatial dimensions of brain
voxels and the last one dimension is the temporal dimension.
The time series of a brain voxel describes the variation in
blood oxygen concentration with time at this brain voxel and
evaluates the variation in activation and repression of this
brain voxel. From the perspective of brain science, we can
obtain the functional connectivity matrix about all ROIs by
calculating the correlation coefficients of time series about
every two ROIs. The calculation of functional connectivity
matrix is described as follows:

(1) Select ROIs and obtain time series vi1, . . . , v
i
m in fMRI

image xi accrording to brain science;

(2) Calculate Pearson correlation coefficient wipq of time
series vip and viq. The Pearson correlation coefficient
wipq is defined as

wipq =
(vip −mvip

)T (viq −mviq
)

||vip −mvip
||2||viq −mviq

||2
, (10)

where mvip
, mviq

are the mean values of time series vip,

viq. Finally, we obtain a functional connectivity matrix W i

denoted as functional connectivity image here

W i =







wi11 · · · wi1m
...

. . .
...

wim1 · · · wimm






. (11)

E. CAPSULE NETWORK DESIGN

Capsule network is a neural network by Hinton in 2017 [52].
Compared with CNN, the capsule network discovers the
equivariance of features by introducing several capsule lay-
ers. It has been found experimentally that capsule network
can solve some problems with a relatively small sample size
effectively [52].

To improve the generalization performance of the capsule
network for schizophrenia classification, here we adjusted
the architecture of the original capsule network, which is
illustrated in Fig.2.

In addition to the basic layers of the original capsule net-
work, such as Convolution layer, PrimaryCaps layer, Class-
Capes layer and L2 output layer, we make the following
adjustments:

(1) The single convolution layer of the original capsule
network is extended to multiple convolution layers to

reduce the number of network parameters and expand
the local receptive field.

(2) All convolution layers of our capsule network are
designed not containing nonlinear activation, such as
RELU, to avoid over fitting.

F. WEIGHTED CLASSIFIER ENSEMBLE

Suppose the score outputs of n training samples from
m different classifiers are {oi}1≤i≤m, where oi(oi =

(o1i , . . . , o
j
i, . . . , o

n
i )) is the output vector from the ith classi-

fier and oji is the output of the jth training sample from the ith
classifier. To find the best score fusion results, here we pro-
pose a multiple classifier weighted ensemble method based
on the maximization of the square of correlation coefficients.
The optimization model is formulated as below

max J (α) =

m
∑

i=1

αTOT oio
T
i Oα

||Oα||22||oi||
2
2

s.t. α ≥ 0, αT e = 1, (12)

where O(O ∈ Rn×m) is the output matrix and
O = (o1, . . . , om), α(α ∈ Rm×1) is the weight vector, and
e(e ∈ Rm×1) is a vector whose elements are equal to 1.

In Eq.(12), we find the best weight vector to maximize the
square of correlation coefficients between the fusion output
vector Oα and all outputs from the m single classifiers oi.
We use the square of correlation coefficients instead of cor-
relation coefficientsbecause the former is more convenient
to calculate. Considering the mathematical significance of
weights, we introduce the constraints α ≥ 0, αT e = 1 into
our model.

After defining inner product matrix of outputs K = OTO,
Eq.(12) can be further reformulated as

max J (α) =
αTKSKα

αTKα

s.t. α ≥ 0, αT e = 1, (13)

where S(S ∈ Rm×m) is a diagonal matrix and Sii = 1
||oi||

2
2
.

Observing the main optimization item of Eq.(13)
separately, we can find that it is essentially a generalized
eigenvalue decomposition model. Without considering the
constraints, the best weight vector is exactly the first eigen-
vector corresponding to the first eigenvalue of the main
optimization item. Unfortunately, after introducing the con-
straints, the conclusion is usually invalid.

After further analysis, we find that Eq.(13) can be treated
as an unconstrained optimization model under certain condi-
tions, which is described in Theorem 1.
Theorem 1: If outputs set {oi}m≥i≥1 are linearly indepen-

dent set and every 2 outputs oi, oj satisfy the condition
oTi oj > 0, then Eq.(13) is equivalent to the generalized

eigenvalue decomposition model max αTKSKα
αTKα

.
Proof: Suppose the best solution of weight vector for

Eq.(13) is α∗, then we can deduce that using β = cα∗(c ∈ R,

c 6= 0) can also obtain the best objective value and
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FIGURE 2. Basic framework of our capsule network.

α∗TKSKα∗

α∗TKα∗ =
βTKSKβ

βTKβ
. It implies that the constraint α∗T e = 1

is unnecessary in Eq.(13). Let β∗ be the best solution of the
similar model not containing the constraint αT e = 1. We can
obtain the best vector α∗ for Eq (13) by normalizing β∗

α∗ =
β∗

β∗T e
. (14)

In this case, J (α∗) = J (β∗). Hence, the constraint αT e = 1
can be removed from Eq.(13). The main optimization item
of Eq.(13) is a generalized eigenvalue decomposition model.
According to LagrangianMultiplier method, the best solution
satisfies

KSKα = λKα, (15)

where λ(λ > 0) is the Lagrangian multiplier. Because
{oi}m≥i≥1 are linearly independent, matrixK is always invert-
ible. Eq.(15) can be reformulated as

SKα = λα. (16)

Eq.(16) shows that the generalized eigenvalue decompo-
sition problem can be treated as a eigenvalue decomposition
problem for matrix SK when matrix K is invertible.

Let α∗ be the first eigenvector corresponding to the first
eigenvalue of matrix P(P = SK). In this case, the best
objective value is α∗TPα∗

α∗T α∗ . In general, α∗ ≥ 0 does not hold.
However, when the condition, every 2 outputs oi, oj satisfy
the condition oTi oj > 0, holds, we find it always holds.

In this case, K ≥ 0 and P ≥ 0 also hold, and we have

α∗TPα∗

α∗Tα∗
=

∑m
i=1

∑m
j=1 α∗

i α
∗
j Pij

α∗Tα∗

≤

∑m
i=1

∑m
j=1 |α∗

i ||α
∗
j |Pij

α∗Tα∗
=

∑m
i=1

∑m
j=1 |α∗

i ||α
∗
j |Pij

|α∗|T |α∗|
.

The above inequality shows that |α∗| is a better solution
than the best vector α∗. Thus, when every two outputs oi, oj
satisfy the condition oTi oj > 0, the best solution α∗ ≥ 0

always holds, which means that the constraint α∗ ≥ 0 can
also be removed from Eq.(13).

In application, the condition oTi oj > 0 in Theorem 1 can
be achieved naturally. Taking a frequently-used classifier,
softmax classifier, as an example, the outputs oi of the ith
softmax classifier are the probabilities of samples belonging
to all categories. Clearly, oi ≥ 0 always holds, which means
that oTi oj > 0 also holds for any 2 outputs oi, oj. SVM
classifier, which is another frequently used classifier, is also
used in this paper. The original outputs oi(oi = {oij}, oij ∈ R)
of the ith SVM classifier can also be transformed into the
probability outputs 1

1+exp(Aoij+B)
(Refer to paper [53] for more

details). Hence, here we find the best weight vector by solving
eigenvalue decomposition (16) directly.

IV. EXPERIMENTS

A. DATASET

The dataset includes 385 subjects that are composed
of 153 patients with schizophrenia and 232 healthy controls
from three imaging resources.

The first sub-dataset is COBRE, which includes 72 patients
with schizophrenia and 75 healthy controls. The original
fMRI data were obtained from a 3 Tesla SIEMENS TIM
scanner with the following parameters:time of repetition
TR = 2000ms, echo time TE = 29ms, flip angle FA = 75◦,
field of view FOV = 192mm, 4mm thickness and 0mm gap,
matrix size 64×64 and the number of axial slices is 32.

The second sub-dataset is UCLA, which includes
58 patients with schizophrenia and 134 healthy controls. The
original fMRI data were obtained from a 3 Tesla SIEMENS
TIM scanner with the following parameters:time of repetition
TR = 2000ms, echo time TE = 30ms, flip angle FA = 90◦,
field of view FOV = 192mm, 4mm thickness and 0mm gap,
matrix size 64×64 and the number of axial slices is 34.

The last sub-dataset isWUSTL, which includes 23 patients
with schizophrenia and 41 healthy controls. All sub-
datasets are available at the web site (https://openfmri.org/).
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The original fMRI data were obtained from a 3 Tesla
SIEMENS TIM scanner with the following parameters:time
of repetition TR = 2500ms, echo time TE = 27ms, flip angle
FA = 90◦, field of view FOV = 256mm, 4mm thickness
and 0mm gap, matrix size 64×64 and the number of axial
slices is 33.

B. PREPROCESSING AND FEATURE GENERATION

All fMRI data were preprocessed as previously described
[54], [55] by using a statistical parametric mapping soft-
ware package(SPM8, which can be downloaded freely from
the web site: http://www.fil.ion.ucl.ac.uk/spm). For each
subject, the first 5 frames of the scanned data were dis-
carded for magnetic saturation. The following preprocess-
ing steps then proceeded in turn: a) slice timing correction;
b) motion correction; c) normalization with an EPI template
in the Montreal Neurological Institute atlas space (3mm
isotropic voxels); d) spatial smoothing with a 6mm full-
width half-maximum Gaussian kernel; e) linear detrend and
band-pass temporal filtering (frequency range:0.01-0.08Hz);
f) regression of nuisance variables, including the 6 parameters
obtained by rigid body head motion correction, ventricular
and white matter signals, and their first temporal deriva-
tives, quadratic terms, and squares of derivatives (32P); and
g) if frame-wise displacement at any point in time exceeded
0.3mm, then that time point was scrubbed.
After the above processing steps, data cleaning oper-

ations such as control of motion artifact, balancing for
age and gender between the patient and control groups
were then performed according to paper [19], [20]. Finally,
we obtained 222 image samples composed of 102 patients
with schizophrenia and 120 healthy controls, which were
well matched in gender (patients vs. controls: 47/55 vs.
70/51 males/females) and age (patients vs. controls:
33.41±9.47 vs. 31.99±10.08 years). All samples were then
adjusted to 4D images with the same size 53×63×52×140.
The linear sparse representation image, nonlinear multi-
ple kernel representation image, and functional connec-
tivity image are all from the above preprocessed 4D
images.

Linear sparse representation image. The dictionary con-
tains 80 atoms. All the atoms are selected initially and
randomly from another fMRI image dataset, Human
Connectome Project and 20 values of the regularization
coefficient λ : {2−10, 2−9, . . . , 28, 29} are set. Finally,
we obtain a linear sparse representation feature image
with size 80×20.

Nonlinear multiple kernel representation image. The

Gaussian kernel function k(ri, rj) = exp(
||ri−rj||

2
2

−σ 2 ) is used

and 20 values of the kernel parameter σ : {σs × 1.20,
σs × 1.21, . . . , σs × 1.248, σs × 1.249} are set. σs is
calculated as previously described [56]. In every training
stage, all 100 samples are used as representation basis.
Finally, we obtain a nonlinear multiple kernel representa-
tion feature image with size 100×50.

Functional connectivity image. All voxels are first divided
into 116 brain regions according to the automated
anatomical atlas(AAL). Then, we calculated the mean
blood oxygen concentration of all brain regions, which
are treated as the time series of all ROIs.We further calcu-
late all the correlation coefficients between every 2 ROIs.
Finally, we obtain a functional connectivity feature image
with size 116×116.

C. APPROACHES AND EXPERIMENTAL SETTINGS

In our experiments, the 10 fold cross validation method is
used to evaluate the proposed approach. Then, SVM, ELM,
DAN, CNN, the original capsule network(capsule network-
1) and our modified capsule network(capsule network-2) are
employed as the final comparative classifiers for both single
and multiple features.The details of settings are as follows:

SVM. We use the libSVM toolbox which can be down-
loaded freely from the web site(www.csie.ntu.edu.tw/
cjlin/libsvm/). In our experiments, we use linear SVM
and the penalty parameter C of SVM is selected from
{10−5, 10−4, . . . , 104, 105} by grid search method.

ELM. The ELM is programmed on MATLAB plat-
form. Our ELM is of single hidden layer and the
number of nodes in the hidden layer is selected from
{50, 100, . . . , 450, 500} by grid search method. Here
the activation function of our ELM is sigmoid function
sigmoid(x) = 1

1+exp(−x) .

DAN. The DAN is also programmed on MATLAB
platform. The number of hidden layers is chosen in
{2, 3, 4, 5}. For simplicity, the numbers of nodes in hidden
layers are all same. The number of nodes in a hidden
layer is selected from {50, 100, 150}. Here the activation
function is tanh function tanh(x) =

exp(x)−exp(−x)
exp(x)+exp(−x) .

CNN. In our experiment, the CNN is designed and com-
pleted on the TensorFlow platform. The designed CNN
contains K composite convolution layers and one fully
connected classification layer. The output size of the fully
connected classification layer is 2, which is the same as
the number of classes in our experiment. For simplic-
ity, every composite convolution layer is composed of a
convolution layer and a max pooling layer. The RELU
nonlinearly mapping layers are excluded from our com-
posite convolution layers. In our CNN, the window size
and stride size are 2 for all max pooling layers. In all
convolution layers, the kernel size is 3, the stride size
is 1, and padding is equal to "same". The number of
output channels is chosen in {8,16,32}, and the number
of composite convolution layers k is chosen in {1,2,3,4}.
When training our CNN, batch size is 5, flop size is 200,
initial learning rate is 0.01 and Adam optimizer is used
for learning rate adjustment.

Capsule network-1. Here we use a publicly accessible edi-
tion of capsule network(https://github.com/naturomics/
CapsNetTensorflow) on the TensorFlow platform.

109962 VOLUME 7, 2019



B. Yang et al.: Schizophrenia Classification Using fMRI Data Based on a Multiple Feature Image Capsule Network Ensemble

TABLE 1. Classification results using linear sparse representation feature image(%).

TABLE 2. Classification results using nonlinear multiple kernel representation feature image(%).

TABLE 3. Classification results using functional connectivity feature image(%).

The capsule network-1 contains 1 RELU convolution
layers, 1 primary capsule layer, 1 class capsule layer,
and 1 L2 output layer. In the RELU convolution layer,
the kernel size is 3, the stride size is 1, padding is equal
to "valid". The number of output channels is chosen
in {8,16,32}.In the primary capsule layer, the length of
capsule is 4, the kernel size is 2, and the stride size is 2.
In the class capsule layer, the length of capsule is 30 and
the number of capsules is 2, which is equal to the number
of classes in our experiment. When training capsule
network-1, the batch size, flop size, initial learning rate,
and optimizer are the same as those used in our CNN.

Capsule network-2. The capsule network-2 is designed
and completed based on the above capsule network-1.
Different from only 1 RELU convolution layer in the cap-
sule network-1, the capsule network-2 contains k linear
convolution layers. The number of convolution layers k
is chosen in {3,4,5,6}, the number of output channels is
also chosen in {8,16,32}, and the values of the other super
parameters in the capsule network-2 are the same as those
in the capsule network-1.

D. EXPERIMENTAL RESULTS AND ANALYSIS

1) CLASSIFICATION ACCURACY AND ROC CURVES

Tables 1-4 show the average specificity(SC), sensitiv-
ity(SS), classification accuracy(ACC), positive predictive
value(PPV), negative predictive value(NPV) and F1-Score
of all classifiers when using linear sparse representation
feature image, nonlinear multiple kernel representation fea-
ture image, functional connectivity feature image and our
score weighted fusion on the multi-site data set.

Tables 1-3 show that the capsule network-2 has better clas-
sification performance than the others when using each single
features and achieves the best average classification accuracy
of 81.82% when using functional connectivity feature image,
with 2.53% higher than the second-best average classification
accuracy of 79.29% from DAN. By comparison, the capsule
network-1 shows no obvious improvement of classification
performance. It proves that the proposed architecture adjust-
ment for capsule network works indeed. Tables 4 shows
that our weighted ensemble technology further improves the
classification performance and that the final classification
accuracy when using the capsule network-2 is up to 82.83%,
with 2.02% higher than the second-best average classification
accuracy of 80.81% from DAN. For the other classifiers
except SVM and ELM, our weighted ensemble technology
also improves the classification performance to some extent.

Furthermore, we calculate the AUC values and draw the
ROC curves of all classifiers and illustrate them in Fig.3.

Fig.3 shows that the capsule network-2 obtains the best
AUC values, followed by the DAN, finally the other classi-
fiers. From the view of AUC values, functional connectivity
feature image is the best, followed by linear sparse rep-
resentation feature image, finally nonlinear multiple kernel
representation feature image. Using our weighted ensemble
technology, the best AUC value is up to 0.9141.

2) GRID SEARCH FOR PARAMETERS OF CNN AND

CAPSULE NETWORK
The above experimental results are obtained by using the
best parameters, which are determined through grid search
method on validation samples. Figs.4, 5, and 6 illustrate the
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TABLE 4. Classification results using our weighted ensemble(%).

FIGURE 3. ROC curves.

average validation correct rates of SVM, ELM and capsule
network-1 when using different single parameter settings.
Figs.7, 8, and 9 illustrate the average validation correct rates

FIGURE 4. Average validation correct rates using SVM under different
parameter settings.

FIGURE 5. Average validation correct rates using ELM under different
parameter settings.

FIGURE 6. Average validation correct rates using capsule
network-1 under different parameter settings.

of DAN, CNN and capsule network-2 when using different
combinations of 2 parameters.

Using linear sparse representation feature image, we find
that the best penalty parameter C for SVM is 10−3, the best
number of hidden layer nodes for ELM is 400, the best num-
ber of channels for capsule network-1 is 16, the best number
of layers and the best number of nodes for DAN is 3 and
50 respectively, the best number of layers and the best number
of channels for capsule network-2 are 5 and 16 respectively,
the best number of layers and the best number of channels for

109964 VOLUME 7, 2019



B. Yang et al.: Schizophrenia Classification Using fMRI Data Based on a Multiple Feature Image Capsule Network Ensemble

FIGURE 7. Average validation correct rates for linear sparse
representation feature image using DAN, CNN and capsule
network-2 under different parameter settings.

CNN are 2 and 16 respectively. Using nonlinear multiple ker-
nel representation feature image, we find that the best penalty
parameter C for SVM is 10−1, the best number of hidden
layer nodes for ELM is 100, the best number of channels
for capsule network-1 is 8, the best number of layers and
the best number of nodes for DAN is 2 and 50 respectively,
the best number of layers and the best number of channels
for our capsule network are 6 and 16 respectively, the best
number of layers and the best number of channels for CNN
are 2 and 8 respectively. Using functional connectivity feature
image, we find that the best penalty parameter C for SVM
is 100, the best number of hidden layer nodes for ELM is
300, the best number of channels for capsule network-1 is
16, the best number of layers and the best number of nodes
for DAN is 2 and 100 respectively, the best number of layers

FIGURE 8. Average validation correct rates for nonlinear multiple kernel
representation feature image using DAN, CNN and capsule
network-2 under different parameter settings.

and the best number of channels for our capsule network are
6 and 16 respectively, the best number of layers and the best
number of channels for CNN are 2 and 16 respectively.

Figs.7, 8, and 9 illustrate that the average validation cor-
rect rates of DAN and CNN are reduced obviously as the
number of layers is increased, which implies that over-fitting
becomes more and more obvious with the increase of the
number of nonlinear layers. By contrast, the variation of
average validation correct rates of capsule network-2 with
the number of layers are not the case, which shows that our
introducing multiple linear layers into capsule network to
increase the depth of network can avoid over-fitting effec-
tively while improving the ability of covariant features extrac-
tion. Besides, the Figs.5,6,7,8 and 9 illustrate that the average
validation correct rates of all neural networks including ELM,
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FIGURE 9. Average validation correct rates for functional connectivity
feature image using DAN, CNN and capsule network-2 under different
parameter settings.

DAN, CNN, capsule network-1 and capsule network-2 are
not very sensitive to the width of network.

V. CONCLUSION

To improve the effectiveness of schizophrenia classification,
we propose amultiple feature image capsule networks ensem-
ble method. In the proposed method, we introduce multi-
ple features extraction, deep capsule network design, and a
novel weighted classifier ensemble to increase the comple-
mentarity of features and improve the generality of classi-
fication. Finally, we conduct the comparative experiments
on the schizophrenia fMRI dataset from COBRE, UCLA
and WUSTL. Experimental results show that the proposed
method performs better than the other comparative methods
and and that the average correct rate of schizophrenia classi-
fication increases to 82.83%.
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