Downloaded via UNIV DE LUXEMBOURG on January 8, 2019 at 10:17:09 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

‘ I ‘ Journal of Chemical Theory and Computation
@ Cite This: J. Chem. Theory Comput. 2019, 15, 448—455

pubs.acs.org/JCTC

SchNetPack: A Deep Learning Toolbox For Atomistic Systems
K. T. Schiitt,*"® P. Kessel,” M. Gastegger,.}' K. A. Nicoli,” A. Tkatchenko,**® and K-R. Miiller* %1

"Machine Learning Group, Technische Universitit Berlin, 10587 Berlin, Germany

iPhysics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg

§Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, South Korea

IMax-Planck-Institut fiir Informatik, Saarbriicken, Germany

O Supporting Information

ABSTRACT: SchNetPack is a toolbox for the development
and application of deep neural networks that predict potential
energy surfaces and other quantum-chemical properties of
molecules and materials. It contains basic building blocks of
atomistic neural networks, manages their training, and
provides simple access to common benchmark datasets.
This allows for an easy implementation and evaluation of
new models. For now, SchNetPack includes implementations
of (weighted) atom-centered symmetry functions and the
deep tensor neural network SchNet, as well as ready-to-use
scripts that allow one to train these models on molecule and

%ol

~ -.“+

SchNet ~
z R

Embedding

Interaction iy

spk.representation

Tnteraction

T 4 =l

spk.DipoleMoment
It Zr;.f.r. — o)

E.n,...

spk.Atomwise

P=Y P

spk.atomistic

material datasets. Based on the PyTorch deep learning framework, SchNetPack allows one to efficiently apply the neural
networks to large datasets with millions of reference calculations, as well as parallelize the model across multiple GPUs. Finally,
SchNetPack provides an interface to the Atomic Simulation Environment in order to make trained models easily accessible to

researchers that are not yet familiar with neural networks.

1. INTRODUCTION

One of the fundamental aims of modern quantum chemistry,
condensed matter physics, and materials science is to
numerically determine the properties of molecules and
materials. Unfortunately, the computational cost of accurate
calculations prove prohibitive when it comes to large-scale
molecular dynamics simulations or the exhaustive exploration
of the vast chemical space. Over the last years, however, it has
become clear that machine learning is able to provide accurate
predictions of chemical properties at significantly reduced
computational costs. Conceptually, this is achieved by training
a machine learning model to reproduce the results of reference
calculations given the configuration of an atomistic system.
Once trained, predicting properties of other atomistic systems
is generically inexpensive and has been shown to be sufficiently
accurate for a range of applications.'™**

A common subclass of machine learning models for
quantum chemistry are atomistic neural networks. There exist
various architectures of these models, which can be broadly
split into two categories: descriptor-based models, which take a
predefined representation of the atomistic system as
input,lg_yr and end-to-end architectures, that learn a
representation directly from atom types and positions.”> ™"

SchNetPack provides a unified framework for both
categories of neural networks. While we plan to support
more architectures in the future, SchNetPack currently
includes implementations for SchNet,'””” an end-to-end
continuous convolution architecture, as well as Behler—

-4 ACS Publications © 2018 American Chemical Society 448

Parrinello networks, which are based on atom-centered
symmetry functions (ACSF),"”*” and an extension thereof,
which uses weighted atom-centered symmetry functions
(WwACSF).**

SchNetPack furthermore contains functionality for accessing
popular benchmark data sets, training neural networks on
(multiple) GPUs to predict a variety of chemical properties. It
is built in an extensible manner and is implemented using the
PyTorch deep learning framework.

The remainder of the paper is structured as follows. In
Section 2, we present how models in SchNetPack are
structured and briefly review (w)ACSF and SchNet
representations. Section 3 outlines how SchNetPack manages
the training process for atomistic neural networks and gives an
overview of the integrated datasets. Section 4 summarizes
details about the implementation, while Sections 5 and 6
provide code examples for training an atomistic neural network
and calculating a power spectrum using the interface to the
Atomic Simulation Environment (ASE).*> Section 7 presents
results of SchNetPack on standard benchmarks, before we
conclude and give an outlook on future extensions.

2. MODELS

Models in SchNetPack have two principle components:
representation and prediction blocks (see Figure 1). The former

Received: September S, 2018
Published: November 27, 2018

DOI: 10.1021/acs.jctc.8b00908
J. Chem. Theory Comput. 2019, 15, 448—455

pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.8b00908
http://dx.doi.org/10.1021/acs.jctc.8b00908

Journal of Chemical Theory and Computation

wACSF

z
R

b - [

SchNet s Z R K
Z .

Y
.
v v
\
* spk.representation
[Trwacion_Je-
it e | -

- v -

spk.Atomwise

P=Y Pz

spk.DipoleMoment

o= Zq,[r;)

spk.atomistic

Figure 1. Basic building blocks of a model predicting the property P
from the positions R and atomic numbers Z of the atomistic system.
We use the abbreviation spk for the schnetpack package. All
representation and prediction blocks are collected in the spk.re-
presentation and spk.atomistic package, respectively.
The right and left panels illustrate various choices for these building
blocks.

takes the configuration of the atomistic system as an input and
generates feature vectors describing each atom in its chemical
environment. The latter uses these atom-wise representations
to predict the desired properties of the atomistic system. The
only difference between descriptor-based and end-to-end
architectures is whether the representation block is fixed or
learned from data. In the following two sections, we will
explain the possible choices for these components in detail.

2.1. Representations. An atomistic system containing n
atoms can be described by its atomic numbers Z = (Z,, .., Z,)
and positions R = (r, .., r,). The interatomic distances are
given as 7 = ||r; — ;| In the following, we will briefly describe
the currently 1mp1emented representations, i.e., (w)ACSF**
and SchNet?” For further details, refer to the original
publications.

2.1.1. (W)ACSF. Behler—Parrinello network potentialsw have
proven very useful for systems as diverse as small molecules,
metal and molecular clusters, bulk materials, surfaces, water
and solid—liquid interfaces (for a recent review, see ref 30).
Because of this impressive number of applications, Behler—
Parrinello networks are now firmly established as a highly
successful neural network architecture for atomistic systems.

For these networks, so-called atom-centered symmetry
functions (ACSFs) form the representation of the atomistic
system. Contrary to the approach taken by SchNet, where
features are learned from the data, ACSFs must be determined
before training. Hence, using symmetry functions can be
advantageous in situations where the available training data is
insufficient to learn suitable representations in an end-to-end
fashion. On the other hand, introducing rigid hand-crafted
features might reduce the generality of the model. In the
following, we will briefly review ACSFs and a variant called
weighted ACSFs, or wACSFs for short. We refer to refs 29 and
24 for a more-detailed discussion.

ACSFs describe the local chemical environment around a
central atom via a combination of radial and angular
distribution functions.

2.1.1.1. Radial Symmetry Functions.
descriptors take the following form:

Radial ACSF

rad

Zg(z)e AU ﬂ)f()

j#i

449

where i is the central atom and the sum runs over all
neighboring atoms j. y, and p, are parameters that modulate
the widths and centers of the Gaussians. Typically, a set of 71,4
radial symmetry functions with different parameter combina-
tions a€{1, ..., n,,4} are used. In SchNetPack, suitable 7, and
U, are determined automatically via an equidistant grid
between zero and a spacial cutoff r., adopting the empirical
parametrization strategy detailed in ref 24.

A cutoff function f ensures that only atoms close to the
central atom i enter the sum, and this function is given by the

following expression:
) + 1] ifr;<r,

l[COS(ﬂ
f(rl]) = 2 rc

0 else

)

For convenience, we will use the notation f;; = f(r;) in the
following. Finally, g(Z;) is an element-dependent weighting
function. In ACSFs, (Z) takes the form

1 ifZ, =2,

g(Z;) = 52,.,2“ =

0 else (3)

Hence, radial ACSFs are always defined between the central
atom and a neighbor belonging to a specific chemical element.

2.1.1.2. Angular Symmetry Functions. Information about
the angles between atoms are encoded by the n, angular
symmetry functions

ang_21 Ca Z g(

jFik>j
2 2
XP[_VO,(’;‘,‘ +r oy):lfl]'flk'f}k (4)

where Hi)-k is the angle spanned between atoms i, j, and k. The
parameter A takes the values A = +1, which shifts the maximum
of the angular terms between 0 and z. The variable {, is a
hyperparameter controlling the width around this maximum. y,
once again controls the width of the Gaussian functions. As
with radial ACSFs, a set of n,,, angular functions differing in
their parametrization patterns 0{6{1 ang} is chosen to
describe the local environment. For angular ACSFs, the
weighting function g(Zk,Zj) can be expressed as

) Z)(1 + 26,

1
8(Zy, Z,-) = E(5z/za5zkz,, + 5Z}zb5zkzﬂ) (s)
which counts the contributions of neighboring atoms j and k
belonging to a specific pair of elements (e.g, O—H or O—0).

Because of the choice of g, ACSFs always are defined for
pairs (radial) or triples (angular) of elements and at least one
parametrized function G,, must be provided for each of these
combinations. As a consequence, the number of ACSFs grows
quadratically with the number of different chemical species.
This can lead to an impractical number of ACSFs for systems
containing more than four elements (e.g, QM9).

Recently, alternative weighting functions have been
proposed that circumvent the above issue. In these so-called
weighted ACSFs (wACSFs), the radial weighting function is
chosen as g(Z) = Z; while the angular function is set to
8(Zu2Z) = 2,2, Through this simple reparametrization, the
number of requrred symmetry functions becomes independent
of the actual number of elements present in the system, leading

DOI: 10.1021/acs.jctc.8b00908
J. Chem. Theory Comput. 2019, 15, 448—455

http://dx.doi.org/10.1021/acs.jctc.8b00908

Journal of Chemical Theory and Computation

to more compact descriptors. SchNetPack uses wACSFs as the

standard descriptor for Behler—Parrinello potentials.
Irrespective of the choice for the weighing g, both radial and

angular symmetry functions are concatenated as a final step to

form the representation for the atomistic system, i.e.,

Gvrad

ifag”

X, = (G, ..

i,n.,

G:rllgu:il, vy Gangg|g=i1) (6)
This representation of X; can then serve as input for
prediction block of the atomistic network.
2.1.2. SchNet. SchNet is an end-to-end deep neural network
architecture based on continuous-filter convolutions.'”*” It

follows the deep tensor neural network framework,” i.e., atom-
wise representations are constructed by starting from
embedding vectors that characterize the atom type before
introducing the configuration of the system by a series of
interaction blocks.

Convolutional layers in deep learning usually act on
discretized signals such as images. Continuous-filter con-
volutions are a generalization thereof for input signals that are
not aligned on a grid, such as atoms at arbitrary positions.
Contrary to (w)ACSF networks which are based on rigid
hand-crafted features, SchNet adapts the representation of the
atomistic system to the training data. More precisely, SchNet is
a multilayer neural network that consists of an embedding layer
and several interaction blocks, as shown in the top left panel of
Figure 1. We describe its components in greater detail in the
following subsections.

2.1.2.1. Atom Embeddings. Using an embedding layer, each

atom type Z, is represented by feature vectors x° € R¥, which
we collect in a matrix X° = (x,° .., x,°). The feature dimension
is denoted by F. The embedding layer is initialized randomly
and adapted during training. In all other layers of SchNet,
atoms are described analogously and we denote the features of
layer I by X' = (x/, .., x,) with x/ € R”.

2.1.2.2. Interaction Blocks. Using the features X' and
positions R, this building block computes interactions which
additively refine the previous representation analogue to
ResNet blocks.”" To incorporate the influence of neighboring
atoms, continuous-filter convolutions are applied, which are
defined as follows:

I 1 N — 1)
=) = Y X o wiy)
j€E€nbh(i)

7)

We use the symbol “©” to denote element-wise multi-
plication, and nbh(i) are the neighbors of atom i. In particular,
for larger systems, it is recommended to introduce a radial
cutoff. For our experiments, we use a distance cutoff of 5 A.

Here, the filter is not a parameter tensor as in standard
convolutional layers, but a filter-generating neural network

W' R — R, which maps atomic distances to filter values.
The filter generator takes atom positions expanded on a grid of
radial basis functions that are closely related to the radial
symmetry functions (eq 1) of (w)ACSF. For its precise
architecture, we refer to the original publications.'>*’

Several atom-wise layers, i.e., fully connected layers, which
are defined as

= wix! + ¥ (8)
are applied to each atom i separately and recombine the
features within each atom representation. Note that the
weights W' and biases b’ are independent of i and, therefore,

450

are the same for all atom features x. Thus, the number of
parameters of atom-wise layers is independent of the number
of atoms n.

In summary, SchNet obtains a latent representation of the
atomistic system by first using an embedding layer to obtain
features X°. These features are then processed by L interaction
blocks, which results in the latent representation X", which can
be passed to the prediction block. We will sketch the
possibilities for the architectures of these prediction blocks in
the following section.

2.2. Prediction Blocks. As discussed in the last sections,
both SchNet and (w)ACSF provide representations X; with i €
{1,.., n} for an atomistic system with n atoms. These
representations are then processed by a prediction block to
obtain the desired properties of the atomistic system. There are
various choices for prediction blocks, depending on the
property of interest. Usually, prediction blocks consist of
several atom-wise layers (eq 8) with nonlinearities, which
reduce the feature dimension, followed by a property-
dependent aggregation across atoms.

The most common choice are Atomwise prediction
blocks, which express a desired molecular property P as a sum
of atom-wise contributions:

n

P= ZP(X;')

i=1

)

While this is a suitable model for extensive properties such
as the energy, intensive properties, which do not grow with the
number of atoms n of the atomistic system, are instead
expressed as the average over contributions.

Atomwise prediction blocks are suitable for many
properties; however, property-specific prediction blocks may
be used to incorporate prior knowledge into the model. The
DipoleMoment prediction block expresses the dipole
moment (u) as

K= Z q(x;) (x; — 1p)
i=1 (10)

where g: R" = R can be interpreted as latent atomic charges
and r; denotes the center of mass of the system.

The ElementalAtomwise prediction block is different
from the Atomwise prediction block in that, instead of
applying the same network to all the atom features Xj, it uses
separate networks for different chemical elements. This is
particularly useful for (w)ACSF representations. Analogously,
the ElementalDipoleMoment is defined for the dipole
moment.

3. DATA PIPELINE AND TRAINING

One of the main aims of SchNetPack is to accelerate the
development and application of atomistic neural networks. To
this end, SchNetPack contains several classes that provide
access to standard benchmark datasets and manage the training
process. Figure 2 summarizes this.

The dataset classes automatically download the relevant
data, if not already present on disk, and use the standard ASE
package® to store them in an SQLite database. In particular,
this means that we use the conventions and units of the ASE
package in SchNetPack, e.g, energies and lengths are in units
of eV and A, respectively. Currently, SchNetPack includes the
following dataset classes:

DOI: 10.1021/acs.jctc.8b00908
J. Chem. Theory Comput. 2019, 15, 448—455

http://dx.doi.org/10.1021/acs.jctc.8b00908

Journal of Chemical Theory and Computation

DATABASE

. AN

N QM8
[S017 MD17

\-_-/

v

| spk.AtomsData |

lMultithreads Data Loadz¢
| spk.Atomsloader I—}

Figure 2. Setup for training models in SchNetPack. Note that we
denote the various choices for dataset classes mentioned in Section 3
by their common spk.AtomsData base class.

sV

tensorboard

LOGGER

TRAINER

spk, AtomistichModel
spk. Trainer

e schnetpack.datasets.QM9: class for the QM9
dataset®** for 133 885 organic molecules, with up to 9
heavy atoms from C, O, N, and F.

e schnetpack.datasets.ANI1: functionality to
access the ANI-1 dataset,> which consists of more
than 20 million conformations for 57 454 small organic
molecules from C, O, and N.

e schnetpack.datasets.IS0O17: class for ISO17
data set™””** for molecular dynamics of C,O,H,,
isomers. It contains 129 isomers with 5000 conforma-
tional geometries and their corresponding energies and
forces.

e schnetpack.datasets.MD17: class for MD17
dataset'”*® for molecular dynamics of small molecules
containing molecular forces.

e schnetpack.datasets.MaterialsPro-
ject: provides access to the Materials Project™
repository of bulk crystal containing atom types ranging
across the entire periodic table up to Z = 94.

We also provide a AtomsLoader class for feeding a
model with (a subset of) a dataset during training using
multiple threads. This class also calculates relevant statistics,
such as mean and standard deviation.

For convenience, a Trainer class is included in
SchNetPack, which manages the training process of the
model. This class evaluates the model’s performance on a
validation set, provides functionality for early stopping and
various learning rate schedules as well as checkpointing and
logging. For the latter, one can choose between csv files and
Tensorboard,”” which is a powerful web-based visualization
interface. SchNetPack supports training on multiple GPUs for
which we use the standard PyTorch implementation.

As we will show in the example discussed in Section S, the
classes presented in this section allow us to efficiently train
atomistic neural networks and evaluate their performance using
a very compact amount of code.

4. IMPLEMENTATION DETAILS

SchNetPack is implemented in Python using the PyTorch
(>0.4) deep learning library.*® Calculations that do not require
automatic differentiation are performed using Numpy.”’
SchNetPack is tightly integrated with the Atomic Simulation
Environment (ASE),*” which is used to persist configurations
of atomistic systems. We also provide an interface to the ASE
calculator class, which allows one to easily incorporate

451

SchNetPack models into ASE workflows, such as performing
molecular dynamics. Logging the training progress to Tensor-
board”” is facilitated by tensorboardX.** Some of the datasets
come in the HDFS5 binary file format, which we parse with the
hSpy package.”' SchNetPack can be easily installed using pip.
[To install run the following command: pip install
schnetpack.] The code for SchNetPack can be found on
GitHub. [Code can be found here: https://github.com/
atomistic-machine-learning/ schnetpack.]

5. EXAMPLE: TRAINING IN SCHNETPACK

Chart 1 is a minimal example of how to train a model with
SchNet representation to predict the total energy Uy on QM9.

Chart 1. Minimal Code Example for Training a SchNet
Model on the QM9 Dataset with SchNetPack

1 import schnetpack as spk
2 import schnetpack.atomistic as atm

import schnetpack.representation as rep

import torch

5 from torch.optim import Adam

s import torch.nn.functional as F

7 from schnetpack.datasets import #*

o # load gm9 dataset and dounload if necessary
w data = QM9("gm9/", properties=[QM9.U0])

12 # split in train and val

1+ train, wval, test = data.create_splits(lOOOO,
14 1000)
s loader = spk.AtomsLoader(train,

16 batch_size=100,

17 num_workers=4)

1w val_loader = spk.AtomsLoader(val)

20 # create model

21 reps = rep.SchNet()

22 output = atm.Atomwise()

23 model = atm.AtomisticModel (reps, output)

s # create trainer
2 opt = Adam(model.parameters(), lr=le-4)

27 loss = lambda b,p: F.mse_loss(p["y"],b[QM9.U0]}
s trainer = spk.Trainer("output/", model, loss,
20 opt, loader, val_loader)

a1 # start training
a2 trainer.train(torch.device("cpu"))

Training and validation sets with 10k and 1k data points are
used, and the data are loaded asynchronously, using four
worker threads.

In order to train on a different dataset, one must only change

line 10 in Chart 1. In the example of ANI-1, it will read
data = ANI1("anil/", properties=[ANI1.energyl)

Similarly, one can straightforwardly change the representa-
tion to wACSF by replacing line 21 by

reps = rep.BehlerSFBlock()

In this case, however, it is advantageous to use a
ElementalAtomwise output network by changing line
22 to

DOI: 10.1021/acs.jctc.8b00908
J. Chem. Theory Comput. 2019, 15, 448—455

https://github.com/atomistic-machine-learning/schnetpack
https://github.com/atomistic-machine-learning/schnetpack
http://dx.doi.org/10.1021/acs.jctc.8b00908

Journal of Chemical Theory and Computation

output = atm.ElementalAtomwise(reps.n_symfuncs)

These examples can also be found in the SchNetPack source
directory in the examples subdirectory.

6. EXAMPLE: SCHNETPACK FOR CHEMISTS

In addition to the above features, SchNetPack provides an
interface to the ASE Calculator class. This makes it
possible to use SchNetPack models with the calculation tools
available in ASE, such as geometry optimization, normal-mode
analysis, and molecular dynamics simulations.

The ASE interface is provided via the AseDriver class in
the molecular dynamics module.

Chart 2 shows an example on how trained models are loaded
into the calculator and used for computation. For convenience,

Chart 2. Minimal Code Example for Performing ASE
Calculations with a Trained SchNetPack Model Stored in
model directory

1 import schnetpack.molecular_dynamics as md

2
3 # Load trained model

-

model = md.load_model(model_directory)

s ml_calculator = md.AseInterface(

7 path_to_molecule, model,
8 simulation_directory
9)

n # Optimize structure

12 ml_calculator.optimize()

14 # Compute numerical normal models
s ml_calculator.compute_normal_modes ()

17 # Setup and run molecular dynamics
15 ml_calculator.init_md()
1w ml_calculator.run_md()

SchNetPack provides the script schnetpack molecu-
lar dynamics.py, which can be used to perform various

simulations out of the box. To demonstrate the above features,
SchNetPack was used to predict the power spectrum of the
keto form of malondialdehyde via molecular dynamics
simulations (shown in Figure 3). The machine learning
models are able to reproduce the peak positions accurately,
even when trained on the smaller dataset, demonstrating the
efficacy of the force training procedure. Particularly impressive
are the fine details observed in the spectra. For example, the
two models are able to resolve the structure of the peak at
1700 cm™', which is due to the symmetric and asymmetric
stretching vibrations of the two carbonyl groups.

SchNet simulations of malondialdehyde require ~11 ms per
time step on a Tesla P100 GPU. This corresponds to an
acceleration of ~3 orders of magnitude, compared to the
original electronic structure reference computations. In the
present setup, Behler—Parrinello networks show a comparable
performance to SchNet, which indicates that both models do
not yet exhaust the full capacity of the GPU for molecules of
this size. It can be expected that ACSF-based models are more
efficient when simulating larger systems and also when using
CPUs instead of GPUs.

7. RESULTS

In this section, we present results on QM9, ANI-1, MD17, and
Material Project datasets obtained with SchNetPack. A
summary of the test set performance of both Behler—Parrinello
(ACSF and wACSF) and SchNet models can be found in
Table 1. The reported results are the average of three models
trained on different splits of the same size. The Python scripts
with which we obtained these results, using a Tesla-P100 GPU,
can be found in the scripts subdirectory of SchNetPack.
Although Behler—Parrinello networks produce reliable
results for a wide range of experiments, they are consistently
outperformed by the SchNet architecture. Because of its end-
to-end nature, SchNet is able to infer efficient molecular
representations in a data-driven fashion, which leads to an
improved flexibility, compared to the rigid handcrafted features
used in Behler—Parrinello potentials (ACSF and wACSFs).
The expressive power of SchNet models is enhanced further by
their deep architecture, compared to the shallow atomistic

Intensities [a.u.]

—— SchNet 1k
—— SchNet 50k
QM Static

0 500 1000

1500
w [em™1]

2000 2500 3000

Figure 3. Power spectra of malondialdehyde at 300 K, using SchNets trained on 1000 and 50 000 data points taken from the MD17 database. The
harmonic normal mode vibrations obtained with the electronic structure reference are shown in gray.

DOI: 10.1021/acs.jctc.8b00908
J. Chem. Theory Comput. 2019, 15, 448—455

http://dx.doi.org/10.1021/acs.jctc.8b00908

Journal of Chemical Theory and Computation

Table 1. Summary of Performance on Test Set”

property unit model MAE RMSE time
Dataset: Malondialdehyde (N = 1k)

energy keal mol™ SchNet 0.08 0.11 25h

energy kcal mol™ ACSF 0.30 0.40 0.6 h

energy keal mol™ wACSF 1.16 1.52 0.6 h

atomic forces keal mol™! A~! SchNet 0.13 0.16 2.5h

atomic forces kcal mol™ A™! ACSF 1.08 1.59 0.6 h

atomic forces keal mol™! A~} wACSF 327 4.53 0.6 h
Dataset: Malondialdehyde (N = 50k)

energy kcal mol™! SchNet 0.07 0.09 13.5h

energy keal mol™ ACSF 0.09 0.11 6h

energy kecal mol™! wACSF 0.69 0.88 6h

atomic forces keal mol™! A™! SchNet 0.05 0.09 13.5h

atomic forces kcal mol™ A™! ACSF 0.26 0.42 6h

atomic forces keal mol™! A~} wACSF 1.84 2.51 6h
Dataset: Acetylsalicylic Acid (N = 1k)

energy keal mol™ SchNet 0.38 0.52 25h

energy kcal mol™ ACSF 0.79 1.03 0.7 h

energy keal mol™ wACSF 2.11 2.69 0.7 h

atomic forces kcal mol™ A™! SchNet 1.17 1.68 2.5h

atomic forces keal mol™! A~! ACSF 1.92 2.75 0.7 h

atomic forces keal mol™! A™! wACSF 4.80 6.81 0.7 h
Dataset: Acetylsalicylic acid (N = 50k)

energy keal mol™ SchNet 0.11 0.14 2d,11.5h

energy kcal mol™* ACSF 0.40 0.53 1d,6h

energy keal mol™ wACSF 1.20 2.69 1d,6h

atomic forces kcal mol™ A™! SchNet 0.14 0.19 2d,11.5h

atomic forces keal mol™! A™! ACSF 0.88 1.26 1d,6h

atomic forces keal mol™! A~} wACSF 231 3.14 1d,6h

Dataset: QM9 (N = 110k)

U, keal mol™ SchNet 026 0.54 12h

U, keal mol™ ACSF 0.49 0.92 8h

U, keal mol™! WACSF 043 0.81 6h

dipole moment Debye SchNet 0.020 0.038 13h

dipole moment Debye ACSF 0.064 0.100 8h

dipole moment Debye wACSF 0.064 0.095 8h

Dataset: ANI-1 (N = 10.1M)
energy keal mol™ SchNet 0.55 0.89 9d,7h"
Dataset: ANI-1 (N = 19.8M)

energy keal mol™ SchNet 0.47 0.77 12 d, 1S h°
Dataset: Materials Project (N = 62k)

formation energy eV/atom SchNet 0.041 0.088 1d,14h

“N is used to denote the size of the combined training set and validation set. “Four Tesla P100 GPUs were used for data-parallel training. “Two

Tesla P100 GPUs were used for data-parallel training.

networks used in Behler—Parrinello models. These features are
also advantageous for learning molecular forces for which
derivatives of the energy prediction are required for training. A
good example are the results obtained for the molecules
malonaldehyde and acetylsalicylic acid taken from the MD17
dataset. Here, SchNet outperforms the other models, even on
small training sets. SchNet achieves chemically accurate
performance for datasets containing a wealth of different
molecular configurations (ANI-1), as well as for compounds
incorporating a wide range of chemical elements, demonstrat-

ing its high utility.

453

The prime advantage of Behler—Parrinello models is their
reduced computational cost, compared to SchNet, which is
expected to be beneficial, e.g, for molecular dynamics
simulations of large molecules. Moreover, note that all ACSF
and wACSF models presented here use the empirical scheme
introduced in ref 24. Their performance can be improved by
careful fine-tuning of the descriptors. However, such a
procedure is typically tedious, especially considering the
excellent out of the box performance of SchNet.

An interesting effect can be observed when comparing the
performance of standard ACSFs to the recently suggested

DOI: 10.1021/acs.jctc.8b00908
J. Chem. Theory Comput. 2019, 15, 448—455

http://dx.doi.org/10.1021/acs.jctc.8b00908

Journal of Chemical Theory and Computation

wACSFs. In tasks that focus on modeling structurally and
chemically diverse datasets (QM9), wACSF produce better
results. However, in problems for which small variations of the
molecular structure must be resolved (MD17), ACSFs
outperform wACSFs. The reason for this behavior is the loss
of spatial resolution of wACSF, which is a direct consequence
of the improved elemental resolution. Whether this problem
can be circumvented by learning elemental weights in a similar
manner as in SchNet will be the focus of future research.

SchNet achieves chemically accurate prediction on the ANI-
1 dataset. The ANI-1 neural network potential,*® which is
based on Behler—Parrinello networks, reported a RMSE of 1.2
kcal mol™}, using 80% of the ANI-1 dataset for training and
10% for validation. Using SchNet, we already obtain a RMSE
of 0.89 kcal mol ™}, using a training set of 10 million reference
examples. Raising our splits up to 80% of the entire dataset for
training and 10% for validation and testing, we obtain a MAE
of 0.47 kcal mol™" and a RMSE of 0.77 kcal mol ™.

8. CONCLUSIONS

SchNetPack is a framework for neural networks of atomistic
systems that simplifies accessing standard benchmark datasets,
training models of different architectures, and evaluating their
performance. It provides an interface to combine it with the
functionality of the ASE package such as molecular dynamics
simulations. We plan on extending SchNetPack further in the
future by adding more datasets, advanced training mechanisms
such as active sampling, support for additional quantum-
mechanical observables, and further neural network architec-
tures. We expect this unification and simplification to be of
great value for the community, because it allows one to
concentrate on the design of the neural network models and
easily compare different architectures.

B ASSOCIATED CONTENT

© Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jctc.8b00908.

Details on the setup of the different experiments (PDF)

B AUTHOR INFORMATION

Corresponding Authors

*E-mail: kristof.schuett@tu-berlin.de (K. T. Schiitt).
*E-mail: alexandre.tkatchenko@uni.lu (A. Tkatchenko).
*E-mail: klaus-robert.mueller@tu-berlin.de (K.-R. Miiller).

ORCID

K. T. Schiitt: 0000-0001-8342-0964

A. Tkatchenko: 0000-0002-1012-4854

Notes

The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

This work was supported by the Federal Ministry of Education
and Research (BMBF) for the Berlin Big Data Center BBDC
(No. 011S14013A). Additional support was provided by the
European Unions Horizon 2020 Research and Innovation
Program, under the Marie Sktodowska-Curie Grant Agreement
No. 792572, the BK21 program funded by Korean National
Research Foundation grant (No. 2012-005741). This research
was also supported by Institute for Information &
Communications Technology Promotion and funded by the

454

Korea government (MSIT) (Nos. 2017-0-00451 and 2017-0-
01779). A.T. acknowledges support from the European
Research Council (ERC-CoG grant BeStMo).

B REFERENCES

(1) Bartdk, A. P.; Payne, M. C.; Kondor, R;; Csanyi, G. Gaussian
approximation potentials: The accuracy of quantum mechanics,
without the electrons. Phys. Rev. Lett. 2010, 104, 136403.

(2) Rupp, M.; Tkatchenko, A.; Miiller, K.-R.; Von Lilienfeld, O. A.
Fast and accurate modeling of molecular atomization energies with
machine learning. Phys. Rev. Lett. 2012, 108, 058301.

(3) Schiitt, K. T.; Glawe, H.; Brockherde, F.; Sanna, A.; Miiller, K.-
R.; Gross, E. How to represent crystal structures for machine learning:
Towards fast prediction of electronic properties. Phys. Rev. B: Condens.
Matter Mater. Phys. 2014, 89, 205118.

(4) Behler, J. Constructing high-dimensional neural network
potentials: A tutorial review. Int.]. Quantum Chem. 2015, 115,
1032—1050.

(5) Huo, H.; Rupp, M. Unified representation for machine learning
of molecules and crystals. ArXiv preprint, arXiv:1704.06439, 2017.

(6) Faber, F. A; Christensen, A. S.; Huang, B.; von Lilienfeld, O. A.
Alchemical and structural distribution based representation for
universal quantum machine learning.]. Chem. Phys. 2018, 148,
241717.

(7) De, S.; Bartdk, A. P.; Csanyi, G; Ceriotti M. Comparing
molecules and solids across structural and alchemical space. Phys.
Chem. Chem. Phys. 2016, 18, 13754—13769.

(8) Morawietz, T.; Singraber, A.; Dellago, C.; Behler, J. How van der
Waals interactions determine the unique properties of water. Proc.
Natl. Acad. Sci. U. S. A. 2016, 113, 8368—8373.

(9) Gastegger, M.; Behler, J.; Marquetand, P. Machine learning
molecular dynamics for the simulation of infrared spectra. Chem. Sci.
2017, 8, 6924—6935.

(10) Chmiela, S.; Tkatchenko, A.; Sauceda, H. E.; Poltavsky, L;
Schiitt, K. T.; Miiller, K.-R. Machine learning of accurate energy-
conserving molecular force fields. Sci. Adv. 2017, 3, No. e1603015.

(11) Faber, F. A,; Hutchison, L.; Huang, B.; Gilmer, J.; Schoenholz,
S. S.; Dahl, G. E.; Vinyals, O.; Kearnes, S.; Riley, P. F.; von Lilienfeld,
O. A. Prediction errors of molecular machine learning models lower
than hybrid DFT error. J. Chem. Theory Comput. 2017, 13, 5255—
5264.

(12) Podryabinkin, E. V.; Shapeev, A. V. Active learning of linearly
parametrized interatomic potentials. Comput. Mater. Sci. 2017, 140,
171—-180.

(13) Brockherde, F.; Vogt, L.; Li, L.; Tuckerman, M. E.; Burke, K;
Miiller, K.-R. Bypassing the Kohn-Sham equations with machine
learning. Nat. Commun. 2017, 8, 872.

(14) Bartok, A. P; De, S.; Poelking, C.; Bernstein, N.; Kermode, J.
R,; Csanyi, G.; Ceriotti, M. Machine learning unifies the modeling of
materials and molecules. Sci. Adv. 2017, 3, No. e1701816.

(15) Schiitt, K. T.; Sauceda, H. E.; Kindermans, P.-J.; Tkatchenko,
A.; Miiller, K.-R. SchNet—a deep learning architecture for molecules
and materials. . Chem. Phys. 2018, 148, 241722.

(16) Chmiela, S.; Sauceda, H. E.; Miiller, K.-R,; Tkatchenko, A.
Towards exact molecular dynamics simulations with machine-learned
force fields. Nat. Commun. 2018, 9, 3887.

(17) Ziletti, A; Kumar, D.; Scheffler, M; Ghiringhelli L. M.
Insightful classification of crystal structures using deep learning. Nat.
Commun. 2018, 9, 2775.

(18) Dragoni, D.; Daff, T. D.; Csanyi, G.; Marzari, N. Achieving
DFT accuracy with a machine-learning interatomic potential:
Thermomechanics and defects in bcc ferromagnetic iron. Physical
Review Materials 2018, 2, 013808.

(19) Behler, J.; Parrinello, M. Generalized neural-network
representation of high-dimensional potential-energy surfaces. Phys.
Rev. Lett. 2007, 98, 146401.

(20) Montavon, G.; Hansen, K; Fazli, S.; Rupp, M.; Biegler, F.;
Ziehe, A,; Tkatchenko, A,; Lilienfeld, A. V.; Miiller, K.-R.Learning

DOI: 10.1021/acs.jctc.8b00908
J. Chem. Theory Comput. 2019, 15, 448—455

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b00908
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00908/suppl_file/ct8b00908_si_001.pdf
mailto:kristof.schuett@tu-berlin.de
mailto:alexandre.tkatchenko@uni.lu
mailto:klaus-robert.mueller@tu-berlin.de
http://orcid.org/0000-0001-8342-0964
http://orcid.org/0000-0002-1012-4854
http://dx.doi.org/10.1021/acs.jctc.8b00908

Journal of Chemical Theory and Computation

invariant representations of molecules for atomization energy
prediction. In Advances in Neural Information Processing Systems 25
(NIPS 2012), Lake Tahoe, NV, USA, Dec. 3—6,2012; pp 440—448.

(21) Montavon, G.; Rupp, M.; Gobre, V.; Vazquez-Mayagoitia, A.;
Hansen, K.; Tkatchenko, A.; Miiller, K.-R.; von Lilienfeld, O. A.
Machine learning of molecular electronic properties in chemical
compound space. New J. Phys. 2013, 15, 095003.

(22) Zhang, L.; Han, J.; Wang, H.; Car, R;; E, W. Deep potential
molecular dynamics: a scalable model with the accuracy of quantum
mechanics. Phys. Rev. Lett. 2018, 120, 143001.

(23) Smith, J. S; Isayev, O.; Roitberg, A. E. ANI-1: an extensible
neural network potential with DFT accuracy at force field computa-
tional cost. Chem. Sci. 2017, 8, 3192—3203.

(24) Gastegger, M.; Schwiedrzik, L.; Bittermann, M.; Berzsenyi, F.;
Marquetand, P. wACSF — Weighted atom-centered symmetry
functions as descriptors in machine learning potentials. . Chem.
Phys. 2018, 148, 241709.

(25) Schiitt, K. T.; Arbabzadah, F.; Chmiela, S.; Miiller, K. R;
Tkatchenko, A. Quantum-chemical insights from deep tensor neural
networks. Nat. Commun. 2017, 8, 13890.

(26) Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G.
E. Neural message passing for quantum chemistry. ArXiv preprint,
arXiv:1704.01212 2017.

(27) Schiitt, K. T.; Kindermans, P.-J.; Sauceda, H. E.; Chmiela, S.;
Tkatchenko, A.; Miiller, K.-R. SchNet: A continuous-filter convolu-
tional neural network for modeling quantum interactions. Adv. Neural
Inf. Process. Syst. 2017, 991—1001.

(28) Lubbers, N.; Smith, J. S.; Barros, K. Hierarchical modeling of
molecular energies using a deep neural network. J. Chem. Phys. 2018,
148, 24171S.

(29) Behler, J. Atom-centered symmetry functions for constructing
high-dimensional neural network potentials. J. Chem. Phys. 2011, 134,
074106.

(30) Behler, J. First principles neural network potentials for reactive
simulations of large molecular and condensed systems. Angew. Chem.,
Int. Ed. 2017, 56, 12828—12840.

(31) He, K; Zhang, X; Ren, S.; Sun, J. Deep residual learning for
image recognition. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. 2016, 770—778.

(32) Larsen, A. H.; Mortensen, J. J.; Blomgqvist, J.; Castelli, I. E.;
Christensen, R.; Dulak, M.; Friis, J.; Groves, M. N.; Hammer, B,;
Hargus, C.; Hermes, E. D.; Jennings, P. C.; Jensen, P. B.; Kermode, J.;
Kitchin, J. R;; Kolsbjerg, E. L.; Kubal, J.; Kaasbjerg, K.; Lysgaard, S.;
Maronsson, J. B.; Maxson, T.; Olsen, T.; Pastewka, L.; Peterson, A.;
Rostgaard, C.; Schiotz, J.; Schutt, O.; Strange, M.; Thygesen, K. S,;
Vegge, T.; Vilhelmsen, L.; Walter, M.; Zeng, Z.; Jacobsen, K. W. The
atomic simulation environmenta Python library for working with
atoms. J. Phys.: Condens. Matter 2017, 29, 273002.

(33) Ruddigkeit, L.; van Deursen, R;; Blum, L. C.; Reymond, J.-L.
Enumeration of 166 Billion Organic Small Molecules in the Chemical
Universe Database GDB-17. J. Chem. Inf. Model. 2012, 52, 2864—
287S.

(34) Ramakrishnan, R.; Dral, P. O.; Rupp, M,; von Lilienfeld, O. A.
Quantum chemistry structures and properties of 134 kilo molecules.
Sci. Data 2014, 1, 140022.

(35) Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1, A data set of 20
million calculated off-equilibrium conformations for organic mole-
cules. Sci. Data 2017, 4, 170193.

(36) Jain, A;; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D,;
Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K.
A. Commentary: The Materials Project: A materials genome approach
to accelerating materials innovation. APL Mater. 2013, 1, 011002.

(37) Abadi, M.; Agarwal, A; Barham, P.; Brevdo, E.; Chen, Z.; Citro,
C.; Corrado, G. S; Davis, A; Dean, J.; Devin, M.; Ghemawat, S,;
Goodfellow, L; Harp, A.; Irving, G.; Isard, M,; Jia, Y.; Jozefowicz, R.;
Kaiser, L.; Kudlur, M.; Levenberg, J.; Mané¢, D.; Monga, R.; Moore, S.;
Murray, D.; Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever,
L; Talwar, K; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas, F.;
Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu, Y.; Zheng,

455

X. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
201S; available via the Internet at: https://www.tensorflow.org/.

(38) Paszke, A; Gross, S.; Chintala, S; Chanan, G; Yang, E;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic
differentiation in PyTorch. NIPS 2017 Workshop Autodiff 2017.

(39) Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open Source Scientific
Tools for Python. 2001; available via the Internet at: http://www.scipy.
org/.

(40) Huang, T.-W. tensorboardX; available via the Internet at:
https://github.com/lanpa/tensorboardX.

(41) Collette, A. Python and HDFS; O’Reilly Media: Sebastopol, CA,
USA, 2013.

DOI: 10.1021/acs.jctc.8b00908
J. Chem. Theory Comput. 2019, 15, 448—455

https://www.tensorflow.org/
http://www.scipy.org/
http://www.scipy.org/
https://github.com/lanpa/tensorboardX
http://dx.doi.org/10.1021/acs.jctc.8b00908

