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Abstract In this paper we study connections between planar graphs, Schnyder
woods, and orthogonal surfaces. Schnyder woods and the face counting approach
have important applications in graph drawing and the dimension theory of orders.
Orthogonal surfaces explain connections between these seemingly unrelated notions.
We use these connections for an intuitive proof of the Brightwell-Trotter Theorem
which says, that the face lattice of a 3-polytope minus one face has order dimension
three. Our proof yields a linear time algorithm for the construction of the three linear
orders that realize the face lattice.

Coplanar orthogonal surfaces are in correspondence with a large class of con-
vex straight line drawings of 3-connected planar graphs. We show that Schnyder’s
face counting approach with weighted faces can be used to construct all coplanar
orthogonal surfaces and hence the corresponding drawings. Appropriate weights are
computable in linear time.

Keywords Order dimension · Graph drawing · Planar graphs · Schnyder woods ·
Orthogonal surfaces

1 Introduction

In two fundamental papers [17, 18] Schnyder developed a theory of Schnyder label-
ings and Schnyder woods for planar triangulations. The second paper deals with grid
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drawings of planar graphs and contains the first of numerous applications of Schny-
der woods in the area of graph drawing. For example, the results in [2, 3, 15] use
Schnyder woods, and more references can be found in [8].

In [17], Schnyder presented a characterization of planar graphs in terms of order
dimension. We briefly introduce the terminology needed for the statement of this
result: With a graph G = (V ,E), associate an order PG of height two on the set
V ∪E. The order relation is defined by setting x < e in PG if x ∈ V , e ∈ E and x ∈ e.
The order PG is called the incidence order of G.

The dimension of an order P is the least k such that P admits an order preserving
embedding in R

k equipped with the dominance order. In the dominance order we
have that u ≤ v if and only if ui ≤ vi holds for each component i. For more on order
dimension see [4, 9, 19, 20].

Theorem 1 (Schnyder’s Theorem) A graph is planar if and only if the dimension of
its incidence order is at most three.

In the same paper Schnyder also shows that the incidence poset of vertices, edges
and faces of a planar triangulation has dimension four, but the dimension drops to
three upon removal of a face. Brightwell and Trotter [5] extended Schnyder’s The-
orem to the general case of embedded planar multigraphs. The main building block
for the proof is the case of 3-connected planar graphs.

Theorem 2 (Brightwell-Trotter Theorem) The incidence order of the vertices, edges
and faces of a 3-connected planar graph G has dimension four. Moreover, if F is a
face of G, then the incidence order of the vertices, edges and all faces of G except F

has dimension three.

Note that, by Steinitz’s Theorem, the incidence poset of vertices, edges and faces of
a 3-connected planar graph is just the face lattice of the corresponding 3-polytope
with 0 and 1 removed.

The original proof of Theorem 2 in [4] was long and technical. Felsner [9] gave
a simpler proof. In [10] Felsner showed that every Schnyder wood of a 3-connected
planar graph is supported by a rigid orthogonal surface (Theorem 7). An orthogo-
nal surface is called rigid if it supports a unique graph, see Fig. 10b. By a result of
Miller [16], Felsner’s result implies Theorem 2. In Sect. 3 we present an intuitive
proof of Theorem 7, that leads to a simple linear time algorithm for the computation
of the rigid surface. The idea is to start with the orthogonal surface S obtained from
a Schnyder wood S by face counting. If this surface is non-rigid it is possible to make
some local adjustments at a non-rigid edge by moving some of the flats up or down in
the direction of their normal vector, see Fig. 12. The nontrivial point is to show that
these adjustments can be combined in such a way that the whole surface becomes
rigid.

The rest of the paper is organized as follows. In Sect. 2 we give definitions and
a brief introduction into the structural properties of Schnyder woods and orthogonal
surfaces which are required for the discussion in the later parts of this paper. For
a more detailed introduction to the topic we refer the reader to [11].
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Fig. 1 Rule of vertices and rule
of faces

As mentioned above, Sect. 3 deals with rigid orthogonal surfaces. An orthogonal
surface is coplanar if all its generating minima, i.e. the points on the surface which
are minimal with respect to the dominance order in R

3, lie in the same plane. Sec-
tion 4.1 is concerned with these coplanar surfaces. The interest in this class originates
from their close connection to planar straight line drawings. Connecting the minima
of a coplanar surface by straight line segments yields a plane and convex straight line
drawing of the graph. Similar approaches for non-coplanar surfaces fail as the draw-
ings need not be crossing-free. We show that all coplanar surfaces supporting S can be
obtained using Schnyder’s original construction with appropriately weighted faces.
An example of a Schnyder wood which has no supporting orthogonal surface which
is simultaneously rigid and coplanar is the topic of Sect. 4.2. In Sect. 5 we discuss
further representations of orthogonal surfaces and mention some open problems.

2 Basics on Schnyder Woods and Orthogonal Surfaces

All the proofs omitted in this section can be found in [9–11]. A planar map M is
a simple planar graph G together with a fixed planar embedding of G in the plane.
Let a1, a2, a3 be three vertices occurring in clockwise order on the outer face of M .
A suspension Mσ is obtained by attaching a half-edge that reaches into the outer face
to each of these special vertices.

Let Mσ be a suspended 3-connected planar map. A Schnyder labeling with respect
to a1, a2, a3 is a labeling of the angles of Mσ with the labels 1,2,3 (alternatively: red,
green, blue) satisfying three rules1:

(A1) The two angles at the half-edge of the special vertex ai have labels i + 1 and
i − 1 in clockwise order.

(A2) Rule of vertices: The labels of the angles at each vertex form, in clockwise
order, nonempty intervals of 1’s, 2’s, and 3’s.

(A3) Rule of faces: The labels of the angles at each face form, in clockwise order,
a nonempty interval of 1’s, a nonempty interval of 2’s and a nonempty interval
of 3’s. At the outer face the same is true in counterclockwise order.

Let Mσ be a suspended 3-connected planar map. A Schnyder wood rooted at
a1, a2, a3 is an orientation and coloring of the edges of Mσ with the colors 1,2,3
satisfying the following rules.

1We assume a cyclic structure on the labels so that i + 1 and i − 1 are always defined. In Figures we use
labels and/or colors. The colors are clearly recognizable in the electronic version of this paper.
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Fig. 2 (Color online) Edge
orientations and edge colors at
a vertex

Fig. 3 (Color online) The
correspondence between angle
labels at an edge and the
coloring and orientation of
the edge

(W1) Every edge e is oriented in one direction or in two opposite directions. The
directions of edges are colored such that if e is bidirected the two directions
have distinct colors.

(W2) The half-edge at ai is directed outwards and colored i.
(W3) Every vertex v has out-degree one in each color. The edges e1, e2, e3 leaving

v in colors 1,2,3 occur in clockwise order. Each edge entering v in color i

enters v in the clockwise sector from ei+1 to ei−1.
(W4) There is no interior face the boundary of which is a directed monochromatic

cycle.

The next theorem shows that Schnyder labelings and Schnyder woods are, essentially,
the same.

Theorem 3 Let Mσ be a suspended 3-connected planar map. The correspondence
indicated in Fig. 3 is a bijection between the Schnyder labelings (axioms A1, A2, A3)
and Schnyder woods (axioms W1, W2, W3, W4) of Mσ .

Henceforth, when working with a Schnyder wood or a Schnyder labeling we may be
sloppy and refer to properties of the corresponding other structure. We will also refer
to the Schnyder wood of a planar map without choosing a suspension explicitly.

Let M be a planar map with a Schnyder wood. Let Ti denote the digraph induced
by the directed edges of color i. Every inner vertex has out-degree one in Ti . There-
fore, every v is the starting vertex of a unique i-path Pi(v) in Ti . The next lemma
implies that each of the digraphs Ti is acyclic, and hence the Pi(v) are simple paths.

Lemma 1 Let M be a planar map with a Schnyder wood (T1, T2, T3). Let T −1
i be

obtained by reversing all edges from Ti . The digraph Di = Ti ∪T −1
i−1 ∪T −1

i+1 is acyclic
for i = 1,2,3.

A proof can be found in [9] or [11].
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Fig. 4 (Color online) A Schnyder wood and the regions of the vertex v. The small numbers correspond to
edge colors

By the rule of vertices (W3) every vertex has out-degree one in Ti . Disregarding
the half-edge at ai , this makes ai the unique sink of Ti . Since Ti is acyclic and has
n − 1 edges we obtain:

Corollary 1 Ti is a directed tree rooted at ai , for i = 1,2,3.

The i-path Pi(v) of a vertex v is the unique path in Ti from v to the root ai .
Lemma 1 implies that for i �= j the paths Pi(v) and Pj (v) have v as the only common
vertex. Therefore, P1(v),P2(v),P3(v) divide M into three regions R1(v), R2(v),
and R3(v), where Ri(v) denotes the region bounded by and including the two paths
Pi−1(v) and Pi+1(v), see Fig. 4.

Lemma 2 If u and v are vertices with u ∈ Ri(v), then Ri(u) ⊆ Ri(v). The inclusion
is proper if u ∈ Ri(v) \ (Pi−1(v) ∪ Pi+1(v)).

Lemma 3 If the directed edge e = (u, v) is colored i, then Ri(u) ⊂ Ri(v), Ri−1(u) ⊇
Ri−1(v) and Ri+1(u) ⊇ Ri+1(v). At least one of the latter two inclusions is proper.

These lemmas are crucial for the applications of the face-count vector (v1, v2, v3)

of a vertex v with respect to a Schnyder wood which is defined by

vi = the number of faces of M contained in region Ri(v).

Later we will use this vector to construct orthogonal surfaces supporting a given
Schnyder wood. The classic application is in graph drawing. Let three non-collinear
points α1, α2, and α3 in the plane be given. These points and the region vectors can
be used to define an embedding of M in the plane. A vertex v is mapped to the point

μ : v → v1α1 + v2α2 + v3α3,

and an edge {u,v} is mapped by μ to the line segment connecting μ(u) and μ(v).
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Fig. 5 (Color online) The generic appearance of a face as described by Lemma 4 and two concrete in-
stances. The small numbers correspond to edge colors

Theorem 4 The drawing μ(M) of a 3-connected plane map is convex and plane, i.e.,
the boundary of every face is a convex polygon.

We will need another tool from the theory of Schnyder woods, the edge split.
We start with a lemma from [3] about the generic appearance of a face in a Schny-
der wood.

Lemma 4 Given a Schnyder wood S let F be an interior face. The edges on the
boundary of F can be partitioned into six sets occurring in clockwise order around F .
As illustrated in Fig. 5, the sets are defined as follows (in case of bidirected edges the
clockwise color is noted first):

• One edge from the set {red-cw, blue-ccw, red-blue}
• Any number (possibly 0) of edges green-blue
• One edge from the set {green-cw, red-ccw, green-red}
• Any number of edges blue-red
• One edge from the set {blue-cw, green-ccw, blue-green}
• Any number of edges red-green

The three edges from the first, third, and fifth set are the special edges of the face.

Sketch of the proof Recall the rule of faces (A3) for the Schnyder labeling. Apply the
rule (Fig. 3) for converting a Schnyder labeling into a Schnyder wood. �

Given a Schnyder wood S let e be a bidirected edge such that one of its directions
is colored j and F be the incident face to which e is not special. Choose a vertex w

of F such that the angle of w in F is labeled j . To split e towards w is to divide the
bidirected edge e into two uni-directed copies and to move the head of the j colored
copy to connect to w. Figure 6 illustrates the operation.

Lemma 5 Let S be a Schnyder wood and e a bidirected edge of S. Then, splitting
e yields a Schnyder wood on the resulting graph.

Proof Figure 6 shows the angle labelings. It is obvious that the labels at the angles
of u, v, w, F1 and F2 obey the rule of vertices (A2) and of faces (A3), respectively.
Note that (w,v) and (w′, u) may also be special edges of F . �
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Fig. 6 (Color online) The two possible types of splits of a non-special bidirected red-green edge in F .
The small numbers correspond to angle labels

Fig. 7 Part a: orthogonal surface SV generated by v1 = (7,0,0), v2 = (0,6,0), v3 = (0,0,6),
v4 = (5,3,0), v5 = (5,−1,5), v6 = (4,1,2), v7 = (4,2,1), v8 = (2,4,2) and v9 = (1,2,4). Part b:
surface generated by u1 = (5,0,0), u2 = (0,5,0), u3 = (0,0,5), u4 = (4,3,2), u5 = (4,4,1)

2.1 Orthogonal Surfaces

Consider R
3 equipped with the dominance order. We write u ∨ v and u ∧ v to de-

note the join (component-wise maximum) and meet (component-wise minimum) of
u,v ∈ R

3. Let V ⊂ R
3 be an antichain, i.e., a set of pairwise incomparable elements.

The filter generated by V in R
3 is the set

〈V〉 = {α ∈ R
3 | α ≥ v for some v ∈ V}.

The boundary SV of 〈V〉 is the orthogonal surface generated by V , Figs. 7a and b
show examples.

If u,v ∈ V ⊂ SV and u ∨ v ∈ SV , then SV contains the union of the two line
segments joining u and v to u ∨ v; we refer to such arcs as elbow geodesics in SV .
The orthogonal arc of v ∈ V in direction of the standard basis vector ei is the piece
of the ray v + λei , λ ≥ 0, which follows a crease of SV . Clearly every vector v ∈ V
has exactly three orthogonal arcs, one parallel to each coordinate axis. Some orthog-
onal arcs are unbounded while others are bounded. Observe that u ∨ v shares two
coordinates with at least one (and perhaps both) of u and v, so every elbow geodesic
contains at least one bounded orthogonal arc.
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Fig. 8 A geodesic embedding and the induced Schnyder labeling and Schnyder wood

Let M be a planar map. A drawing M ↪→ SV is a geodesic embedding of
M into SV , if the following axioms are satisfied:

(G1) Vertex axiom. There is a bijection between the vertices of M and V .
(G2) Elbow geodesic axiom. Every edge of M is an elbow geodesic in SV , and every

bounded orthogonal arc in SV is part of an edge of M .
(G3) There are no crossing edges in the embedding of M on SV .

An orthogonal surface SV ⊂ R
3 is called axial if contains exactly three unbounded

orthogonal arcs. The example from Fig. 7a is not axial, however, removing the point
v5 from the set V leads to an axial surface, see Fig. 8. These definitions have been
proposed by Miller [16] who, essentially, also observed the following theorem.

Theorem 5 Let V be axial and M ↪→ SV be a geodesic embedding, then the em-
bedding induces a Schnyder wood of Mσ , which is suspended at the unbounded or-
thogonal rays. Conversely, every Schnyder wood of a suspended map Mσ induces an
axial geodesic embedding of Mσ .

Sketch of the proof Let M ↪→ SV be an axial geodesic embedding. The edges of
M are colored with the direction of the orthogonal arc contained in the edge: Arcs
parallel to the xi -axis are colored i. The orientation of an edge is chosen in accordance
with the axis used to color the edge, Fig. 8 shows an example. It can be verified that
this rule for coloring and orienting edges yields a Schnyder wood on Mσ .

Conversely, given a Schnyder wood of Mσ embed every vertex v at its face count
vector (v1, v2, v3) ∈ N

3 ⊂ R
3, i.e., V = {(v1, v2, v3) : v is a vertex of M}. It can be

verified that the canonical map M ↪→ SV is a geodesic embedding. The orthogonal
surface in the left part of Fig. 8 can be constructed by this rule from the Schnyder
wood on the right. The complete proof of the theorem can be found in [11]. �

With an axial geodesic embedding Mσ ↪→ SV we can also associate a Schnyder
labeling: Since every orthogonal arc leaving a vertex is occupied by an edge, every an-
gle is completely contained in a flat. Flats are the connected regions of constant gray-
value in our drawings of orthogonal surfaces. Formally, let H be the plane xi = h and
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Fig. 9 Two i-flats with the same i-coordinate

Fig. 10 a A degenerate pattern.
b A non-rigid edge (u, v), the
bend-point u ∧ v dominates w

F̃1, . . . , F̃�, the connected components of the interior of H ∩SV . The topological clo-
sures F1, . . . ,F� of these components are i-flats of height h, see Fig. 9. The i-flat of
v ∈ V is denoted by Fi(v). A more technical definition of flats is given in [12], the
definition there is used for investigations of orthogonal surfaces in dimension 4 and
higher.

In the Schnyder labeling the angle ϕ is labeled i, if the xi -axis is orthogonal to the
flat containing it (see the labels in Fig. 8). It is easy to verify properties (A1), (A2)
and (A3) for this angle labeling.

Given Theorem 5 it is natural to ask questions about existence and uniqueness of
geodesic embeddings.

Question 1 Does every axial orthogonal surface SV support a Schnyder wood?

Answer: No, a surface with three orthogonal arcs meeting in a single point does not,
see Fig. 10a. Call a surface degenerate if such a pattern occurs. It can be shown that
every non-degenerate axial orthogonal surface SV supports a Schnyder wood.

Convention: From now on this paper only deals with non-degenerate and axial or-
thogonal surfaces. For brevity we will usually omit these predicates.

Question 2 Is the Schnyder wood supported by the surface SV unique?

Answer: In general not, e.g. in the situation shown in Fig. 10b the edge (u, v) can be
replaced by the edge (u,w). Hence the surface supports two different graphs and also
two different Schnyder woods. The existence of such a choice for an edge is caused
by a non-rigidity in the sense of the following definition:

An elbow geodesic connecting vertices u and v is rigid, if u and v are the only
vertices in V dominated by u ∨ v. An orthogonal surface SV is a rigid surface if all
its elbow geodesics are rigid.
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The next section is devoted to the proof of a stronger version of Theorem 5, in the
sense that for every Schnyder wood there is a rigid surface supporting it.

3 Rigid Orthogonal Surfaces via Flat Shifting

We set Theorem 7 into context before we give a new proof. Miller [16] observed that
a rigid orthogonal surface supports exactly one Schnyder wood and proved:

Theorem 6 Every suspended 3-connected planar map Mσ has a geodesic embed-
ding Mσ ↪→ S on some rigid orthogonal surface S.

Together with the following proposition from [16] (see also [10]) this implies the
Brightwell-Trotter Theorem (Theorem 2).

Proposition 1 Let SV be a rigid orthogonal surface. Let Mσ ↪→ SV be a geodesic
embedding and F a bounded region of M . If αF is the join of the vertices of F , then
w ∈ F ⇔ w ≤ αF .

Note that αF as defined above lies on SV and is a maximum of the surface with
respect to the dominance order. In fact, for any set W ⊆ V of vertices the join lies on
SV if and only if they all lie on a common face of Mσ . It is crucial here, that SV is
a rigid surface. If W contains a vertex from each of the three sides of the face F , as
shown in Fig. 5, then the join is a maximum of SV .

We give a new proof of the following result by Felsner [10], who answered a ques-
tion by Miller with this extension of Theorem 6.

Theorem 7 If S is a Schnyder wood of a map Mσ , then there is a rigid axial orthog-
onal surface S and a geodesic embedding Mσ ↪→ S. In particular S is the unique
Schnyder wood supported by S.

We now present a new proof of this theorem, Lemmas 6 and 7 are part of this
proof. Let S be a Schnyder wood on a 3-connected planar map M = (V ,E) and let
S be the orthogonal surface obtained from S by face counting. Let Fi be the set of
i-flats of S. On the set Fi we define a relation �i by three rules, Fig. 11 shows an
example.

(a) If (u, v) is an edge of color i, then Fi(u) < Fi(v) in �i .
(p) If (v,u) is unidirected in color i − 1 or i + 1, then Fi(u) < Fi(v) in �i .
(r) If (v,u) is unidirected in color j �= i and w ∈ V is such that Fj (w) = Fj (u) and

wi > ui , then Fi(v) < Fi(w) in �i .

The pairs in �i are classified as a-relations (arc), p-relations (preserve) and
r-relations (repel). Lemma 6 is the heart of the proof of Theorem 7 as it justifies
why the flat shifts (i.e. r-relations) can be combined to obtain a rigid surface.

Lemma 6 The relation �i defined on Fi is acyclic, for i = 1,2,3.
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Fig. 11 (Color online) On the left a non-rigid surface with Schnyder wood S. On the right the correspond-
ing relation �1. Here, a-relations are represented by red arrows, p-relations by cyan arrows, and the only
r-relation by a golden arrow

Proof By symmetry it is enough to prove the case i = 1.
We identify the a- and p-relations with edges of the Schnyder wood S. The set

of vertices lying on a common 1-flat is strongly connected in S via bidirected green-
blue edges. We define a surjective map from the set of red edges in S to the set of
a-relations by mapping an edge (u, v) to the relation F(u) < F(v). Similarly, there
is a surjective map from the blue and green unidirected edges in S to the p-relations
(if (v,u) is such an edge, then F(u) < F(v) is in �1).

In order to deal with the r-relations we construct a Schnyder wood S′ from S using
edge splits (see page 108). Let e = (v,u) ∈ S be a unidirected blue edge and F(u) <

F(v) the corresponding p-relation. Let F(uk) > · · · > F(u1) be the set of flats that
have an r-relation F(v) < F(uj ) related to e, the order on this set coming from the
a-relations. The edges {u,u1} and {uj−1, uj } are bidirected in red and green in S.
Construct S′ by splitting the edges {u,u1}, {u1, u2}, . . . , {uk−1, uk} towards v. This
is legal since the angle of v in the face in question has label 2 (green), see Lemma 5.

Repeat this operation for other r-relations in �1 which come from unidirected
blue edges. A symmetric operation is used to introduce edges for all r-relations in �1
which come from unidirected green edges in the Schnyder wood S.

In the Schnyder wood S′ we associate an edge with every relation in �1: With
an a-relation F(u) < F(v) associate the red edge (u, v), and with a p-relation
F(u) < F(v) associate the blue or green edge (v,u). With an r-relation F(u) < F(v)

associate the blue or green edge (v,u) which was introduced into S′ by a split.
Now assume that C is a cycle in the relation �1 on F1. The idea is to show that C

induces a cycle C′ in T1 ∪ T −1
2 ∪ T −1

3 , where the Ti , i ∈ {1,2,3}, are the respective
trees of S′. This yields a contradiction to Lemma 1.

The relations in C are associated with some edges in T1 ∪ T −1
2 ∪ T −1

3 . However,
consecutive relations F(u) < F(v) and F(u′) < F(v′) in C, i.e., F(v) = F(u′), may
correspond to different vertices v �= u′ from the flat F(v). This yields gaps in the
intended cycle C′. In this case S′ contains a path of bidirected green-blue edges con-
necting v and u′, hence, the directed path required to close the gap in C′ can be found
in T1 ∪ T −1

2 ∪ T −1
3 .

The contradiction shows that �i is acyclic. �
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Fig. 12 An orthogonal surface and an associated rigid surface

Let S be the orthogonal surface supporting S which is generated by the face count-
ing vectors (cf. Theorem 5). Let �∗

i be the transitive closure of �i which is an order
on Fi by Lemma 6. Let Li be a linear extension of �∗

i . An i-flat Fi of S is mapped
to its position in Li , more formally to

αFi
= |{F ′

i ∈Fi : F ′
i < Fi in Li}|.

With a vertex v ∈ V we associate the point v′ = (αF1(v), αF2(v), αF3(v)) in R
3. In the

remaining part of this section we verify that the orthogonal surface SVα
generated by

Vα = {v′ : v ∈ V} is rigid and supports the Schnyder wood S. The key to the rest of
the proof of Theorem 7 is the following lemma.

Lemma 7 If Ri(u) = Ri(v), then u′
i = v′

i and if Ri(u) ⊂ Ri(v), then u′
i < v′

i .

Proof The first statement is immediate: From Ri(u) = Ri(v) it follows that Fi(u) =
Fi(v) and hence u′

i = v′
i .

For the proof of the second statement note, that there exists an index j �= i such
that Rj (u) ⊃ Rj (v). Therefore, the j -path of v and the i-path of u have to cross in
a vertex w. The edges of Pi(u) imply that Fi(w) > Fi(u) in �∗

i and hence in Li . Let
(x, y) be an edge of color j on Pj (v). The complete information for e = {x, y} is one
of the following:

(1) e is bidirected and the color of (y, x) is i.
(2) e is bidirected and the color of (y, x) is not i.
(3) e is unidirected.

In case (1) we find the relation Fi(y) < Fi(x) in �i . In case (2) vertices x and y

are on the same i-flat, i.e., Fi(y) = Fi(x). In case (3) the relation Fi(y) < Fi(x) is
a p-relation in �i . Transitivity yields Fi(u) < Fi(w) < Fi(v) in �∗

i and hence in Li .
This implies u′

i < v′
i . �

Claim 1 Vα is an antichain in R
3.
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Proof This follows from Lemma 7 and the observation that for any two vertices
u,v ∈ S there are colors i and j with Ri(u) ⊂ Ri(v) and Rj (v) ⊂ Rj(u). �

Claim 2 SVα
is non-degenerate.

Proof The linear extension Li assigns different positions to different flats, therefore
the situation from Fig. 10a cannot occur. �

Claim 3 SVα
supports the Schnyder wood S.

Proof Let e = {u,v} be an edge of S and x �∈ e a vertex. For some i the edge e is
contained in region Ri(x). This implies Ri(u) ⊆ Ri(x) and Ri(v) ⊆ Ri(x).

From Lemma 7 it follows that in the above setting u′
i ≤ x′

i and v′
i ≤ x′

i . This shows
that with e = {u,v} the join u′ ∨ v′ and hence the elbow geodesic [u,v] is on the
surface SVα

.
If edge e = (u, v) is directed in color i from u to v then by Lemma 3 together with

Lemma 7 we have u′
i < v′

i , u′
i+1 ≥ v′

i+1 and u′
i−1 ≥ v′

i−1. Therefore, the orthogonal
arc of v in direction ei is used by this edge. Since the orthogonal arcs of all vertices
are already occupied by edges of S there are no additional edges on S. �

Claim 4 SVα
is rigid.

Proof Suppose not, then there is a unidirected edge (v,u) of color i and a vertex w

such that, w′ ≤ u′ ∨ v′, and Fi(u) = Fi(w). There is a bidirected path in colors j and
k joining u and w. We may assume that w ∈ Pj (u) and u ∈ Pk(w). It follows that
Rj (w) ⊃ Rj(u), hence, wj > uj and the relation Fj (v) < Fj (w) is an r-relation in
�j . The unidirected edge (v,u) in color i induces the p-relation Fj (u) < Fj (v) in
�j . Therefore, u′

j < v′
j < w′

j in contradiction to w′ ≤ u′∨v′. �

This completes the proof of Theorem 7.
Next, we present a simple algorithm which, given a Schnyder wood S, computes

a rigid orthogonal surface S inducing S.

Corollary 2 There is an O(n) algorithm computing a rigid orthogonal surface for
a given Schnyder wood S.

Proof We assume that S is given in the form of adjacency lists ordered clockwise
around each vertex. With each edge in the adjacency list of a vertex v, the informa-
tion about the coloring and orientation of that edge is given by its type relative to v.
There are twelve such types, three outgoing types in each color (two of them for
bidirected edges) and the unidirected incoming edges. By symmetry it is sufficient to
show how to obtain the first coordinate for all vertices of S in linear time. Produce
a copy of the vertex set. On this copy build a digraph Dr : For every red edge there is
an edge pointing in the same direction in Dr and for all blue and green unidirected
edges there is an edge pointing in the opposite direction. Check at each original vertex
if its red outgoing edge is green in the reverse direction and if it has a unidirected blue
incoming edge. If so, there is an edge from the start of the blue edge to the end of the
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red outgoing edge. This single repel edge is sufficient as other repel relations associ-
ated to the same unidirected blue edge will be implied by transitivity. Analogously,
check at each original vertex if its red outgoing edge is blue in the reverse direction
and if it has a unidirected green incoming edge. If so, there is a repel edge from the
start of the green edge to the end of the red outgoing edge in Dr . Finally, contract
all blue-green edges from S in Dr , maintaining a pointer from the original vertices
to their representatives in Dr . Then, compute a topological sorting of Dr and assign
each vertex the topsort-number of its flat as first coordinate. All this can be done in
O(n) time. Three runs of this procedure, one for each coordinate are required. The
correctness of the algorithm follows from Theorem 7. �

Theorem 8 Let P be a 3-polytope with n vertices. Then, a Brightwell-Trotter realizer
for P can be computed in O(n) time.

Proof Let G be the edge graph of P . As shown by Fusy et al. [13] a Schnyder wood S

for G can be computed in O(n) time. With little translational effort this also follows
from algorithms for computing orderly spanning trees [6] or canonical orderings [7]
which are based on Kant’s algorithm [14]. By Corollary 2 a rigid orthogonal surface
that induces S can be computed in time O(n). By Proposition 1 such an orthogonal
surface yields a Brightwell-Trotter realizer of P . �

4 Coplanar Surfaces

An orthogonal surface is called coplanar, if there exists a constant c ∈ R such that
every minimum v on the surface fulfills v1 +v2 +v3 = c. Schnyder’s classic approach
of drawing graphs using the face-count vectors {(v1, v2, v3) | v ∈ V } yields a subclass
of all coplanar surfaces, as described in the proof sketch of Theorem 5. Geodesic
embeddings on coplanar surfaces have the pleasant property that the positions of the
vertices in the plane yield a crossing-free and convex straight-line drawing of the
underlying graph.

Similar approaches for non-coplanar surfaces, where the points are projected or-
thogonally to the plane x + y + z = 1, fail. This is because crossings between edges
may be produced, see Fig. 7b for an example. The coordinates of the orthogonally
projected points are

u′
1 = (11,−4,−4)/3, u′

2 = (−4,11,−4)/3,

u′
4 = (4,1,−2)/3, u′

5 = (4,4,−5)/3.

This implies that 8u′
1/15 + 7u′

2/15 = u′
4/3 + 2u′

5/3, that is the straight line segments
representing the edges u1u2 and u4u5 cross.

A representation of all coplanar surfaces in terms of Schnyder woods is given in
Sect. 4.1. In Sect. 4.2 we present an example of a Schnyder wood for that no surface
inducing it can be rigid and simultaneously coplanar.
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4.1 Coplanar Surfaces and Face Weights

We now generalize the classic approach of counting every bounded face with weight
one by allowing more general face weights. We then use coordinate vectors record-
ing the sum of weights in the regions of a vertex. We show that this construction,
essentially, yields all coplanar surfaces supporting a given Schnyder wood, and thus
all non-degenerate coplanar surfaces can be obtained from some Schnyder wood
this way.

Theorem 9 Let S be a coplanar orthogonal surface generated by V supporting
a Schnyder wood S on vertex set V (S) ≡ V . Then there is a unique weight func-
tion w : F(S) → R on the set of bounded faces of S and a unique translation t ∈ R

3

such that for all v ∈ V (S) and i ∈ {1,2,3} the coordinates are given by

vi = ti +
∑

F∈Ri(v)

w(F ).

Remark A Schnyder wood S and a weight function w define an orthogonal surface
SS,w . This surface, however, need not support the initial Schnyder wood. From the
proof of Theorem 5 it follows that a necessary and sufficient condition for an embed-
ding S ↪→ SS,w is that

Ri(u) ⊆ Ri(v) �⇒
∑

F∈Ri(u)

w(F ) ≤
∑

F∈Ri(v)

w(F )

with strict inequality whenever Ri(u) ⊂ Ri(v).

Proof of Theorem 9 Let S be a coplanar orthogonal surface and S a Schnyder wood
induced by S. Note that Fi(aj ) = Fi(ak) for the suspension vertices a1, a2, a3 of
S, where {i, j, k} = {1,2,3}. Let ti be the ith coordinate of aj for j �= i. Sub-
tracting t = (t1, t2, t3) from all generating vectors v = (v1, v2, v3) of the surface
S, will normalize the figure such that the suspension vertices now have coordinates
(c,0,0), (0, c,0), (0,0, c) and v1 + v2 + v3 = c for all v. In the following we assume
that S is normalized in this sense.

Let f be the number of faces of S. With the region Ri(v) of a vertex v we associate
a row vector ri(v) of length f − 1 with a component for each bounded face of F .
The vector ri(v) is defined by

ri(v)F =
{

1 if F ∈ Ri(v),

0 otherwise.

The existence of a weight assignment to the faces realizing the normalized surface
S is equivalent to finding a vector w ∈ R

f −1 such that

∀v ∈ V, ∀i ∈ {1,2,3} : ri(v) · w = vi (∗)

Claim 1 The rank of the linear system (∗) is at most f − 1.
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Fig. 13 Faces with a directed cycle in the boundary

Proof First suppose that S is the Schnyder wood of a triangulation. For the three
special vertices, we only need the single equation 1 ·w = c, with the all-one vector 1.
This equation together with the three equations of an inner vertex v is a dependent
system: 1 = r1(v) + r2(v) + r3(v) and c = v1 + v2 + v3. Therefore, we have at most

1 + 2(n − 3) = 2n − 5 = f − 1

linearly independent row vectors.
Let S be a Schnyder wood on a 3-connected planar map. If S has k + 3 bidirected

edges, then it has f −1 = 2n−5− k bounded faces. If e = vw is a bidirected edge in
colors i − 1 and i + 1, then ri(v) = ri(w) and vi = wi . Therefore, among the 2n − 5
potentially independent vectors, there are at most 2n − 5 − k different ones. Hence,
there are at most f − 1 linearly independent row vectors. �

Let eF be the (f − 1)-dimensional row vector with a single one at the position
corresponding to the face F .

Claim 2 The vector eF is in the linear span of the region-face incidence vectors
{ri(v) | i ∈ {1,2,3}, v ∈ V }.

Proof We distinguish three cases:

Case 1 The boundary of F is a directed cycle C (bidirected edges are allowed on C).
From Lemma 4 or more directly from the rule of faces (A3) it follows that the cycle
C consists of three directed paths in the three colors. If C is clockwise, the order of
the paths is P1, P2, P3 and if C is counterclockwise the order of the paths is P1, P3,
P2, see Fig. 13. Let vi be the first vertex of path Pi . In the clockwise case consider
the regions R2(v1), R3(v2) and R1(v3), they are disjoint and cover the bounded area
B except the face F . Hence

1 − (r2(v1) + r3(v2) + r1(v3)) = eF .

In the counterclockwise case, the regions in question are R3(v1), R1(v2) and R2(v3)

and the equation becomes

1 − (r3(v1) + r1(v2) + r2(v3)) = eF .
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Fig. 14 (Color online) Faces without directed cycle, unidirected edges of the same color, and w1 = v2

Fig. 15 The region R in the
case i = 1

Case 2 We assume that the boundary of F is not a directed cycle and that there are
two unidirected special edges of the same color i. We may assume that i = 1 and
the two unidirected special edges of color 1 are e1 = (v1,w1) and e2 = (w2, v2). The
third special edge is e3 with endvertices v3,w3, where v1, w1, v2, w2, v3, w3 appear
clockwise in this order on the boundary of F (possibly wi−1 = vi ).

Subcase w1 = v2 We first treat the case that e3 is directed as (w3, v3), this includes
the case where e3 is bidirected. The left of Fig. 14 shows the situation with i = 1. As
illustrated in the figure R1(v1), R2(v1) and R3(v3) partition B \ F , hence

1 − (ri(v1) + ri+1(v1) + ri−1(v3)) = eF .

If e3 is directed as (v3,w3), then, as shown in the right part of Fig. 14:

1 − (ri−1(w2) + ri(w2) + ri+1(w3)) = eF .

Subcase w1 �= v2 In this case the boundary of F between w1 and w2 consists of edges
bidirected in colors i − 1, i + 1. Let R be the region enclosed by this bidirected path,
Pi(w1), and Pi(v2), and r the corresponding vector. Note that, as in Fig. 15, R1(w1),
R2(w1) and R3(v2) partition B \ R, hence

1 − (ri(w1) + ri+1(w1) + ri−1(v2)) = r.

To represent the vector eF we can now use the representations found in Subcase w1 =
v2, we only have to add r on the right side. �
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Fig. 16 (Color online) Faces without directed cycle, and unidirected edges of different colors

Case 3 We assume that the boundary of F is not a directed cycle. and that there are
no two unidirected special edges of the same color. Then, there are two unidirected
special edges of different colors i − 1, i + 1, say e1 = (v1,w1), e2 = (w2, v2) and the
third special edge is bidirected in colors i − 1, i + 1.

Subcase w1 = v2 The left of Fig. 16 shows the situation with i = 1. As illustrated in
the figure R3(v2), R1(w2), R1(v1) and R2(w1) cover B \ F , and exactly the faces in
R1(w3) are covered twice. Hence,

1 − (ri−1(v2) + ri(w2) + ri(v1) + ri+1(w1) − ri(w3)) = eF .

Subcase w1 �= v2 This is analogous to Case 2, subcase w1 �= v2, the right of Fig. 16
shows the situation. �

The dimension of the span of the face vectors eF is f −1. Claim 2 implies that the
span of the face vectors is contained in the span of the region vectors ri(v). Together
with Claim 1 this implies that the span of the region vectors is of dimension f − 1.
Let r1, . . . , rf −1 be a selection of rows which is a basis of this space and let R be
the square matrix with rows ri . Note that in the proof of Claim 1 one such basis
is explicitly given. By Claim 2 there is a matrix A with A · R = If −1, that is R is
invertible and the linear system (∗) has a unique solution.

Next we will show how to obtain an efficient algorithm that computes the repre-
sentation as in Theorem 9 for a given orthogonal surface S.

Theorem 10 Let a non-degenerate, axial, coplanar orthogonal surface S be given,
which is generated by n minima. A Schnyder wood S for S can be computed in
O(n logn) time. Given S, the translation vector and the face weights can be computed
in O(n) time.

Proof We will first describe how extract the Schnyder wood S from S. The algorithm
scans S from bottom to top with a sweep plane orthogonal to the x1-axis. Figure 17
shows a snapshot of the intersection of P with S. For the sweep algorithm we need
a data structure which maintains a finite ordered set of real numbers and allows us
to insert and delete elements. Furthermore, we need access to the predecessor and
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Fig. 17 (Color online) Projection of the explored part of S onto the sweep plane. The dotted lines repre-
sent the new edges when v is added, the other colored lines the sweep front. The grey lines and vertices
are the part of the surface that was already explored

successor of a given query value. Dynamic search trees perform all these operations
in logarithmic time.

The algorithm builds a Schnyder wood S in the form of clockwise adjacency lists
for the vertices, where we also store the information about the type of each edge
relative to this vertex, see also Corollary 2. The correctness of the algorithm will
follow from the invariant (∗).

(∗) Having seen a subset W ⊂ V of the generators of S the algorithm knows all
colored and directed edges of S which are induced by W .

We give a description of the algorithm. A priority queue Q and a dynamic tree P (the
sweep front) both ordered lexicographically with respect to (x1, x2) are the data struc-
tures used. Initialize S as a path of green-blue bidirected edges between the vertices
with minimum x1-coordinate, which are ordered by increasing x2-coordinate. P is
also initialized with these vertices, Q with all other vertices. A step of the algorithm
takes the first element v of Q, adds it to P and creates a representative for v in S.
The blue outgoing edge of v to its predecessor p in P is added. If p1 = v1 the edge is
green-blue bidirected, if p2 = v2 it is red-blue bidirected, otherwise it is unidirected.
Let s1, . . . , s� be the successors of v in P , where s� is the first one with smaller or
equal x3-coordinate than v. Remove s1, . . . , s�−1 from P adding a red unidirected
edge from si to v in S for those si which do not yet have a red outgoing edge. Finally,
check if u, the vertex to be added next, lies on the same x1-flat as v (in which case u

and v will be joined by a green-blue edge when u is considered). If not, add the green
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outgoing edge of v which ends at s�. If (s�)3 = v3 this edge is green-red bidirected,
otherwise it is green unidirected. This is done for all vertices in Q and the invariant
(∗) guarantees that the result is a Schnyder wood S induced by S.

So we turn to proving that the invariant (∗) indeed holds. It is easy to see that it
holds after the initialization. So we assume by induction, that only edges incident to
the new vertex v have to be checked. There can be no incoming unidirected green or
blue edges at v in S at this time, because their starting point has bigger x1-coordinate
than v. The red outgoing edge of v cannot be in S either. It is easy to check that
the blue outgoing edge of v and its red incoming edges are geodesic arcs on S. If
the green edge is added, it also corresponds to a geodesic arc. If the vertex u is the
endvertex of the green outgoing edge of v, this edge is not induced by S yet. We
have thus shown, that all edges added to S belong to a Schnyder wood induced by S.
Also, the induced orthogonal arcs are all used by an edge. In the case where the green
outgoing edge of v is not added, this orthogonal arc is not induced by the explored
part of the surface yet. This proves that the invariant (∗) holds.

We now show the O(n logn) complexity bound for the above algorithm. We access
the predecessor of a vertex only when it is inserted and its successor only when it is
inserted or deleted. As we insert and delete every vertex at most once, this proves
the time bound of O(n logn). Edges can be added in constant time maintaining the
clockwise ordering of the adjacency lists.

The second part of the algorithm is the computation of the face weights. The trans-
lation (t1, t2, t3) can be read off the coordinates of the three special vertices. Normal-
ize all vertex coordinates by subtracting the translation. The faces are now consid-
ered one by one. When considering a face F , first determine of which of the possible
twenty types F is. As indicated in the proof of Theorem 9 there are two cases where
the boundary of F is a clockwise or counterclockwise directed cycle. The other eigh-
teen cases correspond to the four subcases of Case 2 and the two subcases of Case 3
in the proof, multiplied with the number of colors. These six cases are:

• There are two unidirected edges of the same color, w1 = v2, and e3 is directed
(w3, v3)

• There are two unidirected edges of the same color, w1 = v2, and e3 is directed
(v3,w3)

• There are two unidirected edges of the same color, w1 �= v2, and e3 is directed
(w3, v3)

• There are two unidirected edges of the same color, w1 �= v2, and e3 is directed
(v3,w3)

• There are two unidirected edges of different color, and w1 = v2
• There are two unidirected edges of different color, and w1 �= v2

Determine the vertices v1, v2, v3 respectively, v1,w1, v2,w2, v3,w3. As all coordi-
nates are normalized, the coordinates correspond to the respective regions’ weights
and the weight of F can be calculated as in the proof of Theorem 9. For exam-
ple, in the case shown in Fig. 14 the weight of F is c − (w2)1 − (w3)2 − (w2)3
where x + y + z = c is the plane on which the minima lie after the transla-
tion.

The runtime of the procedure for one face F cannot be bounded by a constant,
because the boundary of F has to be scanned. But every edge has to be considered
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Fig. 18 Schnyder wood on a rigid, but not coplanar surface

only a constant number of times when calculating the weight of F . As every edge lies
in at most two inner faces, the runtime is linear: every edge is considered only a con-
stant number of times and the number of edges is linear in the number of vertices for
planar graphs. �

4.2 Rigidity and Coplanarity

The face counting produces a coplanar surface for a given Schnyder wood and in
Sect. 3 we have seen how to construct a rigid surface for a given Schnyder wood.
Coplanarity and rigidity are both useful concepts in the realm of orthogonal surfaces.
A natural question to ask is therefore, if for every Schnyder wood there is an orthog-
onal surface having both properties, i.e. that is rigid and coplanar. In this section we
will present an example of a Schnyder wood for which a geodesic embedding can be
either rigid or coplanar, but not both.

Proposition 2 The Schnyder wood shown in Fig. 18 cannot be embedded on a rigid
and simultaneously coplanar surface.

Proof Assume that there is such an embedding.Coplanarity means that v1 + v2 +
v3 = c = w1 + w2 + w3 for all v,w ∈ V , hence, vi = wi implies vi−1 − wi−1 =
wi+1 − vi+1. In the given instance rigidity requires f1 > g1, b2 > g2 and d3 > g3.
We use the symbol ≺ to highlight the use of rigidity in the following calcula-
tion:

c3 < b3 < a3 < g3 ≺ d3 ⇒ a3 − b3 < d3 − c3,

d3 − c3 = c1 − d1,

e1 < d1 < c1 < g1 ≺ f1 ⇒ c1 − d1 < f1 − e1,

f1 − e1 = e2 − f2,

a2 < f2 < e2 < g2 ≺ b2 ⇒ e2 − f2 < b2 − a2,

b2 − a2 = a3 − b3.
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Fig. 19 Combinatorial data
together with the length of bold
edges represent the surface

Concatenating the inequalities from the right column of the table we obtain the con-
tradiction a3 − b3 < a3 − b3. �

5 Further Representations of Orthogonal Surfaces

In Theorem 9 we have shown that a coplanar orthogonal surface S can be represented
by a Schnyder wood S and a vector (wF )F∈F of weights for the bounded faces of S.

It is interesting to identify other representations for orthogonal surfaces. In this
section we mention some results and problems in this direction. We begin with a pos-
itive result.

Proposition 3 A coplanar orthogonal surface S can be represented by a Schnyder
wood S and a vector (�F )F∈F of lengths for the bounded faces of S. The length �F

is the length of an orthogonal i-edge ending in the point (maximum) of S which
represents F . If F is rightmost on its 1-flat, then �F is the length of the 1-edge,
otherwise it is the length of the 2-edge.

Figure 19 shows an example. We leave it to the reader to verify that the coplanarity
of the surface and the length of the bold edges uniquely determine the length of all
edges of the surface. Note that as in the case of Theorem 9 the proposition can be
rephrased as a result about the invertibility of a certain matrix. In this case a typical
equation corresponding to a row of the matrix is of the form v1 − w1 = �F if F is
a rightmost face and v2 − w2 = �F for the other faces.

Another value that is naturally associated to every bounded face F is the height
of the point of S which represents F . For simplicity we define the height of a point
p ∈ S as h(p) = p1 + p2 + p3. Is it true that a coplanar orthogonal surface S can be
represented by a Schnyder wood S and the vector (hF )F∈F of heights?

This question can be generalized to the case of non-coplanar orthogonal surfaces.
In this case we would like to represent a surface by the heights of the points repre-
senting the vertices and faces. The dimension of the vector with an entry for every
bounded face and every vertex actually exceeds the number of values needed to de-
termine the generating minima V of the normalized surface S by one. Hence the
problem:

Problem: (a) Is it true that an orthogonal surface S can be represented by a Schnyder
wood S and the vector (hF )F∈V∪F of heights?
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Fig. 20 A 4-connected triangulation and a triangle contact representation

(b) The equations implied by the height constraints must have one linear depen-
dence. What is the combinatorial interpretation of this dependence?

In a preliminary version of the paper we have posed this heights problem as open.
At that time we could only solve (a) and (b) for the special case where the graph
supporting the Schnyder wood is a stacked triangulation. That is a triangulation that
can be constructed starting from a triangle by repeatedly choosing a triangular face
and adding a new vertex to this face connecting it to the three vertices on the boundary
of the face.

Meanwhile we have an affirmative answer for part (a) of the problem while part (b)
remains open. The proof for part (a) can be derived from results which were obtained
in our attempt to prove the following conjecture of Jan Kratochvil2:

Conjecture: Every 4-connected planar triangulation admits a triangle contact repre-
sentation with equilateral, axis-aligned triangles.

Figure 20 shows an example of such a representation. Triangle contact representa-
tions for stacked triangulations and series-parallel graphs have been obtained in [1].
That paper also contains additional references and background information.

Triangle contact representations are closely related to orthogonal surfaces with
the property that the points on the surface corresponding to edges of the graph are
coplanar. Orthogonal surfaces with this property are always rigid. We know that not
all Schnyder woods are supported by such surfaces. Examples are easily derived from
the graph of the octahedron (cf. [1] for details). An answer to the following question
would contain a proof or refutation of the above conjecture.

Question: Which planar 3-connected graphs are supported by an edge-coplanar or-
thogonal surface?

2Conjecture was stated at the Bertinoro Workshop on Graph Drawing 2007.
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