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S U M M A R Y

We determine the 3-D in situ shear-wave velocities of shallow-water marine sediments by ex-

tending the method of surface wave tomography to Scholte-wave records acquired in shallow

waters. Scholte waves are excited by air-gun shots in the water column and recorded at the

seafloor by ocean-bottom seismometers as well as buried geophones. Our new method com-

prises three steps: (1) We determine local phase-slowness values from slowness-frequency

spectra calculated by a local wavefield transformation of common-receiver gathers. Areal

phase-slowness maps for each frequency used as reference in the following step are obtained

by interpolating the values derived from the local spectra. (2) We infer slowness residuals to

those reference slowness maps by a tomographic inversion of the phase traveltimes of fun-

damental Scholte-wave mode. (3) The phase-slowness maps together with the residuals at

different frequencies define a local dispersion curve at every location of the investigation area.

From those dispersion curves we determine a model of the depth-dependency of shear-wave ve-

locities for every location. We apply this method to a 1 km2 investigation area in the Baltic Sea

(northern Germany). The phase-slowness maps obtained in step (2) show lateral variation of

up to 150 per cent. The shear-wave velocity models derived in the third step typically have very

low values (60–80 m s−1) in the top four meters where fine muddy sands can be observed, and

values exceeding 170 m s−1 for the silts and sands below that level. The upper edge of glacial till

with shear-wave velocities of 300–400 m s−1 is situated approximately 20 m below sea bottom.

A sensitivity analysis reveals a maximum penetration depth of about 40 m below sea bottom,

and that density may be an important parameter, best resolvable with multimode inversion.

Key words: Surface waves, Scholte waves, dispersion, tomography, inversion, shear-wave

velocity, shallow marine seismics

1 I N T RO D U C T I O N

The determination of reliable 3-D models of shear-wave velocity

for shallow-water marine sediments has applications in many differ-

ent fields. The shear-wave velocity provides important information

to characterize the sediment because it is much more sensitive to

lithology variations, and less to fluid content than P-wave velocities

are (Ayres & Theilen 1999; Hamilton 1976). The seafloor stabil-

ity can be quantified by empirical relation between shear strength
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and shear-wave velocity of the sediment (Ayres & Theilen 1999).

3-D shear-wave velocity models thus provide important informa-

tion for geotechnical applications like the foundation of offshore

platforms or pipelines or the investigation of slope stability. Fur-

thermore, in combination with P-wave velocity, Poisson’s ratio can

be inferred, which has been used to evaluate the porosity of the

sediment (e.g. Hamilton 1976; Gaiser 1996).

Multicomponent acquisition and processing of marine seismic

data generally benefits from the knowledge about S-wave veloci-

ties of the sediment. Especially in the first ten’s of meters beneath

the seafloor significant changes in S-wave velocities over small dis-

tances are commonly observed (Ewing et al. 1992; Stoll et al. 1994;

Bohlen et al. 2004) which strongly effect processing algorithms for

multicomponent seismic data like static corrections for SH-waves or

converted PS-waves (Mari 1984; Muyzert 2000), wavefield separa-

tion (e.g. Schalkwijk et al. 2000), as well as imaging with converted

waves (Tatham & Goolsbee 1984).
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552 S. Kugler et al.

Different seismic wave types can be analysed to study the shear-

wave velocity structure of marine sediments. The application of

interface waves provides many advantages over body shear-waves,

especially in marine environments (Klein et al. 2005; Kugler et al.

2005). We analyse the dispersive interface wave travelling along

the interface between water and sediment, generally called Scholte

wave (e.g. Rauch 1986) or generalized Rayleigh wave. Like Rayleigh

waves (travelling along an air-solid interface) and Stonley waves

(near a solid–solid interface) it is a P-SV polarized interface wave

and shows significant sensitivity to shallow shear-wave velocity.

Its propagation velocity is slightly lower than that of a Rayleigh

wave for small wavelengths and gradually approaches the Rayleigh-

wave velocity for long wavelengths. So in the long-wavelength limit,

the influence of the water-layer is negligible and the Scholte wave

equals the Rayleigh wave. For smaller wavelengths it is a modified

version of the Rayleigh wave that is trapped near the fluid-solid

interface.

Compared to shear waves it has the advantage that it can be gen-

erated with sufficient amplitude by an air-gun source in the water

column (Ritzwoller & Levshin 2002; Klein 2003; Bohlen et al. 2004)

even for soft sediments which allows a fast data acquisition. Fur-

thermore, because of the geometrical spreading of interface waves

being 2-D, the amplitude decrease with distance is less severe. Since

longer wavelength fundamental Scholte waves have a larger pene-

tration depth than those of shorter wavelengths elastic parameters

as a function of depth can be estimated by recording a broad range

of frequencies.

Scholte-wave dispersion has been previously used to determine

the lateral variation of shear-wave velocity of shallow-marine sed-

iments. The analysis of local dispersion as a first step to the 2-D

S-wave velocity model was performed by Stoll et al. (1994) through

cross multiplication of adjacent channels of a multichannel record.

Others used different local wavefield transformation methods

(Allnor et al. 1997; Muyzert 2000; Bohlen et al. 2004) which have

the main advantage that different Scholte-wave modes can be re-

solved.

In global seismology the 3-D velocity structure of the crust and

upper mantle is examined very successfully by surface wave to-

mography since the 1970’s. A 3-D shear-wave velocity model was

derived, for example, by Woodhouse & Dziewonski (1984) using

a waveform inversion which assumes surface waves to propagate

along the great-circle avoiding the direct measurement of group

and phase velocities. Global group- and phase-velocity maps have

been inferred for example by Nakanishi & Anderson (1982, 1983)

by measuring the dispersion of fundamental-mode surface waves.

Later, as the number of digital seismic records increased, the con-

struction of global models with higher resolution (e.g. Trampert &

Woodhouse 1995) as well as regional investigations (e.g. Ritzwoller

& Levshin 1998) became possible. Ray theory has played a central

role in most of this research. In recent years the use of scattering

theory based on the Born or Rytov approximation became popular

in seismological surface-wave tomography to overcome the limita-

tions of ray theory (e.g. Meier et al. 1997; Friederich 1999; Spetzler

et al. 2002; Snieder 2002; Ritzwoller et al. 2002). The studies ap-

proximate the effects of surface-wave propagation in heterogeneous

media to a different degree, following diverse approaches concern-

ing single or multiple scattering and the treatment of mode coupling

and conversion.

The conditions and questions found in shallow seismics, however,

differ significantly from earthquake seismology restricting the range

of methods that are adapted for shallow application. In shallow seis-

mics no a priori reference model is available like in global seismic

studies, where only relatively small perturbations to a well estab-

lished reference model have to be determined. Furthermore stronger

model parameter variations commonly exist, where large velocity

contrasts and reversals can lead to higher mode propagation. The

response-function of the receiver in shallow seismics, especially if

it is deployed as an ocean-bottom seismometer on a soft seafloor, is

not known without in situ calibration because of unknown seafloor

coupling. On the other hand, shallow seismic investigations have

the advantage that the positions of sources and receivers and thus

the path coverage are not as restricted as in seismology. With regard

to the geotechnical application in shallow marine environments a

method is needed that allows a fast and robust estimate of the 3-D

shear-wave velocity structure with a minimum of a priori informa-

tion needed.

Until today the investigations of near-surface shear-wave veloc-

ities using surface waves have usually been restricted to 2-D. 3-

D areal mapping in shallow land seismics was accomplished by

Badal et al. (2004) by simply spatially interpolating between a num-

ber of 1-D phase velocity soundings over the study area. Rigorous

3-D mapping by tomography has been conducted by Dombrowski

(1996) as well as Long & Kocaoglu (2001). Dombrowski recorded

Rayleigh waves along many different ray paths across his study area.

He determined the group velocity for each ray path by a modified

wavelet transform dispersion analysis. From all group velocities he

finally inferred group velocity maps using a standard traveltime to-

mography. He interpreted the lateral group velocity variations of the

tomograms, without inverting them to shear-wave velocity models.

Long & Kocaoglu used a standard multiple filter technique to mea-

sure group velocities along many different ray paths. Then they also

applied a tomographic inversion method to obtain the distribution

of group velocities inside that study area. The shear-wave velocity

structure of the study area was determined from the group velocity

dispersion curves by the inverse method outlined by Kocaoglu &

Long (1993).

In this work, we analyse the phase-traveltimes of Scholte waves.

We assume that the phase velocity of the Scholte mode at each point

on its path equals the structural velocity as defined from the material

parameters of the underlying medium. The work of Wielandt (1993),

however, showed that this is only the case for plane waves.

We adapt the concept of surface wave phase-traveltime tomog-

raphy to shallow-water marine environments using fundamental

Scholte waves, which are excited by an air-gun source and recorded

by ocean-bottom seismometers, after the approach of Bohlen et al.

(2004) to derive fundamental mode phase slowness dispersion along

straight lines in the investigation area. These phase slowness mea-

surements are used to construct a coarse phase slowness model

needed as background model in the following tomographic inver-

sion. To linearize the problem, we assume that the Scholte wave

travels along the direct path connecting source and receiver. The

method basically consists of three major steps: First we construct a

phase slowness background model for each frequency. In the sec-

ond step we infer deviations from the background model through

tomographic inversion of phase traveltimes, so we are able to con-

struct improved phase slowness maps. The improved maps contain

the areal Scholte-wave dispersion which we invert in the third step

for the local 1-D shear-wave velocity variation with depth at each

surface element of the area.

The paper is organised as follows: First we describe the dispersion

analysis, phase traveltime tomography and inversion to 3-D shear-

wave velocity. Subsequently, we present the field data and describe

the data acquisition and geometry. We then infer a 1-D subsurface

model and background phase-slowness maps before we describe
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Scholte-wave tomography 553

the application of our tomographic approach. Finally we present the

resulting 3-D shear-wave velocity model.

2 M E T H O D S

2.1 First step: Local wavefield transformation

The objective of local wavefield transformation is to identify the

phase slowness of all Scholte-wave modes excited by the source for

a narrowly limited subsurface region. To achieve this, the recorded

wavefield is transformed from the offset-time domain into the

slowness-frequency domain. Methods of wavefield transformation

are described by McMechan & Yedlin (1981), Park et al. (1998) and

Forbriger (2003a). They consist of two consecutive linear transfor-

mations. McMechan & Yedlin (1981) suggest the application of a

slant-stack (p,τ -transform) followed by a 1-D Fourier transform with

respect to τ . Park et al. (1998) and Forbriger (2003a) start with a 2-D

Fourier transform and perform the summation as the second step in

the frequency domain after applying an offset-dependent phase shift.

Both methods generate a slowness-frequency spectrum (p–f spec-

trum), where the dispersion relation becomes apparent through the

amplitude maxima. To extract local phase slowness from a recorded

wavefield the offset range of the transformed seismograms has to

be restricted. For this purpose successive pie-shaped phase-velocity

filters can be applied to the wavefield leading to velocity-frequency

spectra for each offset (Misiek 1996). Scholte waves were analysed

with this method by Muyzert (2000). Bohlen et al. (2004) suggested

the calculation of local p–f spectra by local slant stacking, which

contains a successive offset-dependent weighting of the traces by

multiplying with a Gaussian offset window before the actual trans-

formation. However both methods suffer from the principal trade-off

between the resolution in phase slowness and array aperture. This

problem also exists for the spectral representation of signals in a

spectrogram, where it is desirable to obtain both a high temporal

and spectral resolution, but due to the uncertainty principle for the

time-frequency representation of signals this is impossible there as

well.

We apply the method of local slant stack described and tested in

detail by Bohlen et al. (2004) and here give a brief summary of the

procedure.

If the wavefield consists of N traces u(x k , t), recorded at the

offsets x k over the time t were k = 1, 2, . . . , N denotes the shot

number, the local wavefield u c(x k , x c, t) can be calculated by the

multiplication of the original wavefield u(x k , t) with a Gaussian

offset window

uc(xk, xc, t ; L) = u(xk, t) exp

[

−

(

xk − xc

L

2

)2
]

, (1)

where L/2 denotes the distance where the window amplitude drops

to 1/e and x c is the centre of the Gaussian offset window. After

this windowing, the local wavefield is transformed to the slowness-

frequency domain through Fourier transformation

ũc(xk, xc, f ) =

∫ +∞

−∞

uc(xk, xc, t)ei2π f t dt (2)

followed by an offset-dependent phase shift −2π fpxk and the sum-

mation

Ũc(xc, p, f ) =

N
∑

k=1

ũc(xk, xc, f )e−i2π f pxk (3)

over all shots k, where Ũc(xc, p, f ) is the complex p–f spectrum of

the local wavefield for the central offset x c.

For the calculation of local slowness-frequency spectra (p–f spec-

tra) from Common Receiver Gathers (CRGs) (alternatively Com-

mon Shot Gathers (CSGs)) it is required that all receivers (shots) lie

approximately on one straight line with the shot (receiver) so that

the difference between two adjacent seismograms is solely caused

by the medium between the two appropriate shots (receivers). For

marine environments we favour the application of CRGs because it

is much easier to shoot at many different air-gun source points rather

than deploying a comparable number of ocean-bottom seismometers

with a single shot point. In the analysis of CRGs source repeatabil-

ity is an important aspect. Furthermore, the distances between the

shots have to be carefully chosen depending on the slowest expected

Scholte-wave velocity to avoid spatial aliasing (Bohlen et al. 2004;

Klein et al. 2005).

Bohlen et al. (2004) have shown that the dispersion curves ex-

tracted from local p–f spectrum of a CRG solely depend on the

medium within the analysis window. This gives us the possibility to

measure the phase slowness of all excited Scholte-wave modes for

discrete subsurface areas along profiles leading to a coarse back-

ground phase-slowness model, which is necessary for the tomo-

graphic inversion in the next step.

2.2 Second step: Phase traveltime tomography

In a second step we refine the coarse background model of local

phase slowness by a tomographic approach. This uses data from

waves that did not travel along the profiles from which local wave-

field transforms were obtained.

We use a very simplified approach to surface wave propagation

and assume (1) that we can separate a single Scholte mode from

the rest of the wavefield in time domain, (2) that this mode can be

described by a plane wave travelling along a straight line between

source and receiver, and (3) that the phase velocity of the mode at

each point on its path equals the structural velocity (Wielandt 1993)

of the wave defined by the 1-D structure below that point.

Unfortunately reality differs from our assumptions, since: (1) in-

terface wave propagation in shallow soil is in many cases dominated

by higher modes which interfere and are coupled due to hetero-

geneity, and (2) the wave is generally not plane but has cylindrical

symmetry in homogeneous media and undergoes severe deviations

from cylindrical symmetry for laterally heterogeneous media due

to wavefield scattering. We expect most severe problems to be due

to the effect of lateral heterogeneity and the assumption that waves

propagate along a straight line. But in contrast to global seismic

studies, we are not seeking for small perturbations to a well estab-

lished reference model. In shallow seismics, we believe that we can

tolerate a bias of a few percent due to systematic insufficiency of

our approach. If we also require the wave path and the wave cur-

vature to depend on structure of the medium, the inverse problem

would become non-linear. With our simple approach the solution

is linear and straightforward. A correct wave theoretical approach

that incorporates scattering (Friederich 1998) and mode coupling

(Friederich 1999) would increase numerical effort by several orders

of magnitude and would not be applicable without a good reference

model.

Let

ulm(t) =

∫ ∞

−∞

Alm( f ) ei�lm ( f ) e−2iπ f d f (4)

be the waveform of the Scholte mode that travelled from source l

to receiver m. A lm( f ) ∈ R is then the modulus of its Fourier trans-

form, which includes the magnitude of wave excitation and wave
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554 S. Kugler et al.

attenuation along the path, and

�lm( f ) = φR
m( f ) + φS

l ( f ) + 2π f

∫

Clm

p(x(s), f ) ds (5)

is the phase of its Fourier transform, which includes the phase delay

due to finite phase slowness p and phase contributions φS and φR by

the source and the receiver, respectively. C lm specifies the integration

path along the straight line between source and receiver and x(s) are

the coordinates along the path. The phase slowness p(x (s), f ) that

controls wave propagation varies with location x and frequency f .

It defines a dispersion relation at each location. The expression for

the phase contribution due to wave propagation is exact in the case

of plane waves propagating perpendicular to the boundaries of a

band-like heterogeneity (Friederich et al. 1993).

For the purpose of inversion we distinguish between a mean con-

tribution

plm( f ) =
1

xlm

∫

Clm

p0(x(s), f ) ds (6)

that is already contained in the background model p0(x (s), f ) and

a residual contribution δp(x(s), f ) = p(x(s), f ) − plm( f ). x lm =

|xl − xm | is the distance between source and receiver. The back-

ground model p0(x (s), f ) is derived from interpolating the phase

slowness of local wavefield transforms as is described later. We

remove the contribution plm from the recorded data urec
lm (t) by de-

convolution. The deconvolved waveform

udec
lm (t) =

∫ +∞

−∞

ũrec( f ) e−2π i f plm ( f )xlm d f (7)

is derived by removing the phase contribution due to the background

model from the Fourier transform ũrec( f ) of the recorded waveform.

From this representation it is possible to extract the Scholte mode

under investigation with a narrow taper. The bias contributed by the

taper was described by Wielandt & Schenk (1993) but is ignored

in our study, since it is smaller than the bias due to ignoring non-

plane wave propagation. Furthermore, deconvolution is essential

for determining the Fourier phase of the deconvolved signal udec
lm (t).

Phase determination is always non-unique by an additive constant of

a multiple of 2π . While this happens to be a problem with �lm( f ) in

particular at large offsets, the phase of the deconvolved signal can be

expected to be less than 2π , if the background model is appropriate

and if the mean contribution of source and receiver are removed too.

For each source receiver combination we determine the phase

�dec
lm ( f ) = atan

(

Im(ũdec
lm ( f ))

Re(ũdec
lm ( f ))

)

(8)

of the deconvolved seismogram udec
lm (t), with ũdec

lm ( f ) being the

Fourier transform of udec
lm (t). Thereby �dec

lm ( f ) is expected to be in

the range from −π to +π . If this assumption is violated for the

field data, the background model could not explain the phase val-

ues sufficiently and a phase unwrapping becomes necessary. The

phase unwrapping consists of two consecutive steps and is based on

the following assumptions: (1) The paths from two adjacent shots

within a profile to one receiver differ only slightly, so that the phase

difference of the traces should be much smaller than 2π . This equals

the spatial Nyquist criterion which already has to be fulfilled for ap-

plying the local wavefield transformation when we determine the

background model. (2) The background model fits the data to a

similar extent for all frequencies. Therefore, the phase values be-

longing to two adjacent frequency samples differ only slightly. The

first step unwraps from shot to shot within one profile. Therefore,

we minimize the function

F1(n) =
∣

∣�dec
lm ( f ) − �dec

(l+1),m( f ) − n2π
∣

∣, n ∈ Z (9)

and obtain nmin for which F 1 becomes minimal. The unwrapped

phase can then be calculated from the original phase by

�̂dec
(l+1)m, ( f ) = �dec

(l+1),m( f ) − nmin2π. (10)

This is done consecutively for all shots l within one profile with

the phase of the nearest shot to the receiver �̂dec
1,m( f ) = �dec

1,m( f ) is

left unchanged. In the second step the unwrapping from frequency

to frequency is realized. If we have determined the phase �dec
lm for

the N f frequency samples f i (i = 1, . . . , N f ), we minimize the

function

F2(n) =

∣

∣

∣

∣

∑

l

�̂dec
lm ( fi ) −

∑

l

�̂dec
lm ( fi+1) − n2π

∣

∣

∣

∣

, n ∈ Z (11)

where the sum is performed over all shots within one profile and

determine nmin. Then we apply the same phase shift −nmin2π for

all the shots l in the profile by

ˆ̂
�

dec

lm ( fi+1) = �̂dec
lm ( fi+1) − nmin2π. (12)

We repeat this second unwrapping for all frequency samples f i .

This two-step phase unwrapping is done independently for all

profile-receiver combinations of the data set. Finally, we remove

the average phase φ̄ for every profile and get the remaining

phase

φlm( fi ) =
ˆ̂
�

dec

lm ( fi ) −
1

Nshot

∑

l

ˆ̂
�

dec

lm ( fi ) (13)

Unfortunately in our case no data are available to determine the

receiver transfer function nor the source wavelet. We cannot distin-

guish between both and hence combine them to a phase contribution

φ P = φS + φR, which is assumed to be the same for all shots along

one profile P.

The φ lm( f ) are the data for the tomographic inversion. Unknowns

are the δp(x (s), f ) describing lateral variation of dispersion and the

phase contribution δφP = φP −φ due to the source and receiver. The

phase slowness map δ p(x (s), f ) + p0(x (s), f ) that characterizes

the structure under investigation is then obtained by minimizing the

residual

φlm( f ) − δφP ( f ) − 2π f

∫

Clm

δp(x(s), f ) ds (14)

in a least-squares sense with respect to δφ P and δp(x (s), f ) for all

source and receiver combinations at once and for all frequencies,

which is a linear problem.

In order to represent the tomographic model by a finite number

of unknowns, we use blocks as basis functions for the parametriza-

tion of phase slowness. Thereby we divide the study area into bins

with constant slowness. After discretization of the medium the inte-

gral in eq. (14) simplifies to a summation. Furthermore, if we have

recorded seismograms at N R different receiver locations, excited

at N S different source locations we can set up a linear system of

equations of the form

dobs − Gm = dresidual, (15)

where dobs is a vector containing the remaining phases φ lm( f ) for all

source-receiver combinations at a given frequency and dresidual sig-

nifies the residuals between data and prediction. The design matrix

G accounts for the individual ray path and m is the vector containing

the unknowns

m( f ) = (δφP1( f ), δφP2( f ), . . . , δφP(NP +NR )( f ),

δp(r1, f ), . . . , δp(rM , f )), (16)
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Scholte-wave tomography 555

with N P denoting the number of profiles in the data set and M

being the number of bins in the study area with the coordinates

r1, . . . , rM . This is done independently for each frequency f so we

have dropped f in the notation.

We now search for the residuals m that fit the data in a least-

squares sense (|dresidual|2 = min) by minimizing the objective func-

tion

�(m) = (dobs − Gm)TCe(dobs − Gm) + mTQm, (17)

where Ce is a diagonal matrix weighting the input data dobs.

The second term of the objective function (17) describes the

damping condition. With this condition a priori constraints for the

searched model are introduced. As we will show later, our data

set has regions where many ray paths intersect the bins while in

other regions the data coverage is poor. This has to be balanced by

the damping condition so we include a model norm constraint that

takes data coverage into account. Furthermore a spatial smoothing

constraint is used. This is included in the damping matrix

Q = F
T
F + H

T
H, (18)

which is described with more generality by Barmin et al. (2001).

Here

Fi j = γ























0, if (i, j ≤ N );

1, if (i, j > N ) ∨ (i = j);

−S(ri−N , r j−N )/gi−N , if (i, j > N ) ∨ (i �= j),

with gi−N =
∑

j

S(ri−N , r j−N ).

(19)

is the spatial smoothing constraint with the indices i , j = 1, . . . , N

+ M ; N = N P + N R and S denoting the smoothing Kernel

S(rm, rn) = exp

(

−
|rm − rn|

2

2σ 2

)

(20)

which includes the correlation length σ and n, m = 1, . . . , M .

The smoothing constraint assures that the differences between the

phase slowness residual δp of a bin and the weighted sum of the

phase slowness residuals of all other bins is small. The weighting

is thereby dependent on the spatial distance between the bins and

decreases with increasing distance like a Gaussian distribution with

correlation length σ .

The model norm constraint is given by the matrix

Hi j =











α, if (i = j) ∨ (i ≤ N );

βe−λξi , if (i = j) ∨ (i > N );

0, if (i �= j),

(21)

where λ is a user-defined constant and i , j = 1, . . . , N + M . The

matrix H accounts for local path density ξ , that is, the number of ray

paths intersecting a bin which will be described in detail later. Since

the model vector m contains the perturbations of slowness from

a background model the consideration of local path density in the

model norm constraint ensures that the estimated model merges into

the background model in areas of poor data coverage. The damping

constants α and β specify the relative strength of damping between

the model parameters of remaining phase contribution δφ P due to

source and receiver and the slowness residuals δp. Furthermore the

damping constants β and γ define the relative strength of norm

constraint and smoothing to the estimated model. They control the

trade-off between model amplitude and misfit. For the tomographic

inversion of our data set, we find the optimal combination of damp-

ing constants by trial inversions of synthetic data sets with many

different damping constants which is discussed in detail below.

We now set all partial derivatives of the objective function (17)

with respect to the components of m to zero and obtain the matrix

equation

mest = (GT
CeG + Q)−1G

T
Cedobs (22)

for the best-fitting residual phase slowness of the bins in the study

area and residual phase contribution of source and receiver com-

prised in mest.

To assess the resolution of the tomographic inversion we infer

the model resolution matrix (Menke 1989). Therefore, we substitute

eq. (15) with dresidual = 0 into expression (22) and obtain

mest =
(

G
T
CeG + Q

)−1
G

T
CeGm = Rm, (23)

with the symmetric model resolution matrix R. Each row of R sig-

nifies to what extend the model parameters can actually be resolved.

In the ideal case of perfect resolution the resolution matrix would

equal the identity matrix.

2.3 Third step: Inversion

From the phase slowness maps pobs(r, f ) estimated by the described

traveltime tomography we can extract local Scholte-wave dispersion

curves. From this input data, we determine the local S-wave velocity

v s(r, z) as a function of depth z using the inversion scheme described

by Bohlen et al. (2004). Since Scholte-wave dispersion is in principal

also influenced by compressional-wave velocity and density, we will

investigate the sensitivity of Scholte-wave dispersion to all seismic

parameters for a single 1-D subsurface model that is representative

for our study site later. The influence of seismic wave attenuation to

the Scholte-wave dispersion can be neglected because the dispersion

caused by moderate Q-values (Q > 10) is small compared to the

dispersion of the Scholte wave due to structural variations of elastic

parameters in the subsurface.

We describe the subsurface by k discrete layers overlying a half

space. The properties of each layer are defined by shear-wave veloc-

ity v s , compressional-wave velocity v p , and density ρ of its top and

bottom with a linear gradient in-between and the layer thickness (h)

leading to the set of model parameters

η =
(

h, vs
top, vs

bot, vp
top, vp

bot,ρtop,ρbot, vhs
s , vhs

p , ρhs
)

, (24)

where the vectors of the elastic parameters have k components and

vhs
s , vhs

p , ρhs define the elastic parameters in the half space. The

starting model of the inversion is guessed by testing many different

plausible models manually. The model with the best fit is then used

as starting model, whereas the number of layers is the minimum

number which is able to explain the measured p–f spectrum. From

such a subsurface model the synthetic p–f spectrum is calculated

by Wang’s method (Wang 1999). The phase slowness dispersion

pmod(r, η, f i ) predicted by the model is obtained by automatically

picking the maxima in the synthetic p–f spectrum (Bohlen et al.

2004). We define the relative misfit to the input data pobs(r, f i ) by

the objective function:

�(η) =
1

n

n
∑

i=1

(pmod(r,η, fi ) − pobs(r, fi ))
2, (25)

where n denotes the number of picked frequency values. The in-

version is performed without damping of the model. For the op-

timization of this nonlinear objective function we apply the Se-

quential Quadratic Programming method (function ‘fmincon’ of the

MATLAB optimization toolbox), which is described, for example,

by Boggs & Tolle (1995). The partial derivatives are derived numer-

ically by finite differences.
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556 S. Kugler et al.

3 F I E L D DATA S E T

3.1 Survey area

The study site is located in the Tromper Wiek, a bay situated in the

northeastern part of Rügen island (northern Germany). It is open

to the Baltic Sea to the northeast (Fig. 1). Tromper Wiek forms

a transition area between the onshore glaciotectonically deformed

deposits of Wittow, Jasmund and Schaabe on the one hand and the

recent mud accumulation of the Arkona Basin on the other hand

(Lemke et al. 1998). The recent water depth in the central part of

Figure 1. (a) Location of the Tromper Wiek in the Baltic Sea (north of Germany). (b) Locations of source points and receivers. The air gun was fired along

the lines with shot spacings between 4 and 20 m. The circles denote the positions of OBS, the triangles of buried geophones. Records from the grey marked

profile P23 (2002) recorded by geophone 4 are shown in Fig. 3.

Tromper Wiek is about 20 m. Lemke et al. (1998) divide the sed-

iment into five seismostratigraphic units on the basis of acoustical

investigations and sediment core information. The uppermost till is

assigned to the Weichselian glaciation and is situated approximately

20 m below sea bottom. Its upper edge is structured by late glacial

channels filled with glaciolacustrine sediments of the early Baltic

Ice Lake stages. These are overlain by silts or silty fine sands of

freshwater origin from the final phase of the Baltic Ice Lake. In the

central part of the bay the silts were covered by a younger unit of

fine muddy sand, which was deposited in the Ancylus Lake. With in-

creasing water depth to the northeast, muddy Littorina Sea sediments
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geophone
1 m

sediment

water

20 m

5 m

air gunOBS

Figure 2. Acquisition parameters: Scholte waves were excited by airgun

shots 5 m below sea level and recorded at the seafloor by ocean-bottom

seismometers (OBS), as well as buried geophones. The water depth was

about 20 m.

are observed. Our study area with the dimensions of approximately

1 km × 1 km is situated in the central part of the Tromper Wiek.

3.2 Data acquisition and geometry

For this study, we generated Scholte waves by small airgun (0.6 litre)

shots in the water layer approx. 5 m below sea level and recorded

them by ocean-bottom seismometers (OBS) as well as buried geo-

phones (both with eigenfrequencies of 4 Hz) as indicated in Fig. 2.

The airgun pulse had a centre frequency of approx. 35 Hz. The shots

were arranged along lines with shot distances between 4 and 20 m

covering the study area (Fig. 1b). Records from two surveys one year

apart were gathered to a data set of 40 000 records, assuming that

the elastic parameters of the sediment did not change significantly

in the meantime. During the first survey in the year 2002 1250 shots

were recorded by 4 receivers followed by about 3000 shots recorded

by 12 receivers in the year 2003. The shot locations were measured

by a differential GPS positioning system.

As an example, Fig. 3 shows a common receiver gather (CRG)

recorded by the vertical component of geophone 4 (2002) for shots

0

1

2

3

4

5

6

7

T
im

e
 (

s
)

-400 -300 -200 -100 0 100 200 300
Distance (m)

mental

higher
modes

Profile 23(2002), Geophone 4

SSE NNW

mode

Figure 3. Common receiver gather of profile 23 (2002) recorded by the vertical component of geophone 4 (2002). The traces are normalized to their maximum

amplitude and low-pass filtered below 20 Hz. A strong dispersed fundamental Scholte mode as well as faster higher modes can be observed.

along profile 23 (2002). The seismograms are normalized to their

maximum amplitude to correct for amplitude variation with off-

set possibly caused by geometrical spreading, attenuation or source

strength variation. A low-pass frequency filter is applied at 20 Hz

to reduce amplitudes of body waves and guided acoustic waves.

The signal-to-noise-ratio of this CRG is one of the best obtained

in this survey. The records show a strong dispersed fundamental

Scholte mode as well as higher mode amplitudes. The modes are

normally dispersed, that is, higher frequency components propagate

with smaller phase velocity. Seismograms with sufficient Scholte-

wave energy for the following analysis were recorded up to 800 m

offset.

4 O N E - D I M E N S I O N A L S U B S U R FA C E

M O D E L A N D B A C KG RO U N D P H A S E

S L O W N E S S

In a first step towards a 3-D shear-wave velocity model we derive a

first estimate of areal Scholte-wave phase slowness by local wave-

field transformation along the profiles. In the middle of the study

area we infer a 1-D subsurface model which was used to study the

sensitivity of the Scholte-wave phase slowness to model variations

as well as model resolution.

4.1 One-dimensional inversion

To get a first impression of the vertical shear-wave velocity structure

in the area of investigation we inverted the fundamental mode dis-

persion extracted from the local p–f spectrum of Fig. 4. This local

p–f spectrum was determined from the CRG of profile 23 (2002)

recorded by geophone 4 (2002) (Fig. 3). The local slant stack was

performed with a Gaussian offset window centred at 200 m offset

with a width L of 150 m (eq. 1). The spectrum clearly exhibits the

fundamental mode between 2 and 15 Hz and four higher modes in

the frequency range between 5 and 22 Hz. In surface wave stud-

ies it is frequently assumed that the influence of compressional-

wave velocity and density on the Scholte-wave dispersion can

be neglected and therefore only shear-wave velocity and layer
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Figure 4. Local p–f spectrum calculated with the Gaussian window parameters x c = 200 m and L = 150 m (eq. 1) from the CRG shown in Fig. 3. Besides

the fundamental mode four higher modes can be distinguished. The crosses denote the picked slowness values. Spatial aliasing of the compressional waves,

travelling with phase slowness smaller 0.7 s km−1 can be observed in the spectrum.

thickness are treated as active model parameters (e.g. Bohlen et al.

2004; Kugler et al. 2005; Park et al. 1999) or compressional-wave

velocity and density are coupled to shear-wave velocity by some em-

pirical relation (e.g. Herrmann & Al-Eqabi 1991). The best-fitting

model inferred by inversion of only fundamental-mode dispersion

is shown in Fig. 5(b) as dashed lines with the associated dispersion

given in Fig. 5(a) (dashed lines). Here only shear-wave velocities

and layer thickness were modified during inversion.

We have calculated sensitivity kernels with respect to shear-wave

velocity, compressional-wave velocity and density by the program

‘FLSPHER’ (Friederich & Dalkolmo 1995). As shown for a similar

model in Fig. 6, they reveal that the sensitivity of phase slowness to

compressional-wave velocity variation is negligible but a significant

sensitivity to density variations exists for such a model.

Thus, in this case it was not appropriate to treat density as passive

inversion parameter. Moreover, it turns out that the constraints on

shear-wave velocity and density are not sufficiently linearly inde-

pendent. According to this, it is not possible to draw unambiguous

conclusions about density variations with depth from fundamental

mode data alone. We therefore include the four higher modes in

the inversion. This allows sufficient resolution of density as well as

shear-wave velocity.

The best-fitting model inferred by multimode inversion can be

seen in Fig. 5(b) (solid lines). Fig. 5(a) shows the dispersion curves

(solid lines) of this model as well as the picked slowness values of

the five interpreted modes. It can be seen that a good fit between

modelled and observed slowness could be achieved during multi-

mode inversion for all analysed modes. Only the third higher mode

shows slightly stronger residuals probably due to the fact, that the

simple 1-D model consisting of five layers cannot fully represent

the features of the real medium.

4.2 Resolution analysis

To evaluate the significance of the inverted model it is important to

analyse how well the estimated model parameters are constrained by

the dispersion of the five modes. Possibly there exist other combi-

nations of model parameters that can explain the data equally well.

We analyse the constrainedness of the inverted model following the

resolution analysis proposed by Forbriger (2003b). This analysis

provides a local linearized estimate of constrainedness at the lo-

cation of the final model in parameter space. Here we modify the

resolution analysis to avoid the strong linearization. This modifica-

tion, however, makes the method computationally very expensive.

The procedure is as follows: At the location of the best-fitting model

in the parameter space, the objective function (25) has a minimum.

A variation �η i of the i-th model parameter η i will lead to an in-

crease of the objective function (i.e. the data misfit). We then search

a new minimum, by optimizing all the other model parameters by

the described inversion, but holding the varied parameter η i con-

stant. This takes model-parameter trade-off into account. If the mis-

fit between predicted and recorded data for this new minimum has

increased by less than 10 per cent compared to the original min-

imum, we plot the associated model in Fig. 7 as a grey line. To

limit computing time the inversion was aborted if no minimum was

found after 600 iterations. We modify �η i using nested intervals

to achieve a misfit increase of 10 per cent as close as possible. The

minimal interval length was 5 per cent of the best-fitting model

parameter. This was done in turn for all model parameters. The

black dashed line in Fig. 7 shows the original inversion result. The

smaller the scatter in the suite if models, the better the parameter is

constrained.

The misfit was calculated for the slowness picks of all five modes.

The resolution analysis of the shear-wave velocities (Fig. 7a) shows

that they are well constrained for the two shallowest layers (depth

less than 5 m below seafloor). Here the maximum variations of

the different models are smaller than 15 per cent. In this shallow

depth region, the depth values of the layer interfaces are also well

constrained. The deeper layers (between 5 and 55 m) show sig-

nificant trade-off between shear-wave velocity gradients and layer

thicknesses. However, the trend of shear-wave velocity variation

with depth still is satisfyingly constrained. Below a depth of ap-

proximately 55 m the shear-wave velocities, as well as the layer

thicknesses are barely constrained by the data.

Fig. 7(b) shows the density resolution of the inversion result. The

density is not as well constrained as the shear-wave velocity. The

sensitivity analysis (Fig. 6) already showed a smaller sensitivity to

density compared to shear-wave velocity. The multimode inversion

including the fundamental and four higher modes, however, seems to
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Figure 5. (a) Scholte wave dispersion curves calculated for the best-fitting models shown in (b). The dashed lines signify the dispersion for the fundamental-

mode inversion model. The solid lines belong to the multimode inversion model. The picked slowness values from the local p–f spectrum (Fig. 4) used as input

to the 1-D inversions are denoted by the crosses. Only fundamental-mode slowness picks were used for the fundamental-mode inversion, whereas all shown

picks were incorporated for multimode inversion. (b) Dashed lines: best-fitting model of shear-wave velocities (left) inferred by the inversion of the picked

fundamental mode slowness values. The compressional-wave velocity model (middle) and the density model (right) shown are the starting models, which were

not modified during inversion. Solid lines: best-fitting model of shear-wave velocities (left) and densities (right) determined by the inversion of the picked

multimode slowness values. The shown compressional-wave velocity model (middle) is the starting model and was not modified during inversion because of

the poor sensitivity (Fig. 6).

be the key to obtain an improved resolution for shear-wave velocity

and to resolve density at all.

4.3 Construction of a background phase-slowness model

The calculation of local p–f spectra is only valid to measure Scholte-

wave slowness along the profiles. For that purpose we used a Gaus-

sian window (eq. 1) with a width L of 100 m and moved it along

the offset range of the recorded CRGs with an increment of 10

m. In Fig. 8, some examples of local p–f spectra of profile P23

(2002) recorded by geophone 4 for different offset values are shown.

From such spectra we determine the slowness of fundamental mode

Scholte wave from the amplitude maxima. The maximum frequency

of the observed Scholte wave decreases with increasing offset. Ab-

sorption and other propagation effects probably contribute to this

frequency-dependent amplitude decrease. For instance in the p–f

spectra shown in Fig. 8, the dispersion of the fundamental mode can

be picked up to a frequency of 16 Hz at −200 m offset (Fig. 8a), but

at −400 m offset is limited to frequencies below 7 Hz (Fig. 8c).

From all local spectra we picked the fundamental mode slow-

ness between 2 Hz and 8 Hz with an increment of 0.5 Hz where

possible. The resulting lateral slowness variation at the frequencies

3, 4, 5 and 6 Hz are shown in Fig. 9 (values in circles and dia-

monds). Fundamental mode slowness increases from S to N at 3 Hz

(Fig. 9a) changing to an increase from SE to NW with increasing

frequency. Furthermore, it can be seen that the method of local slant
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Figure 6. Sensitivity kernels of Scholte-wave modes at different frequencies

for the subsurface structure given in Fig. 5 (solid lines): (a) fundamental

mode, (b) to (e) next higher modes. Shown are the shear-wave velocity

kernels (dashed), the density kernels (solid) and the compressional-wave

velocity kernels (dashed-dotted). The horizontal black lines denote the layer

boundaries. Displayed are the normalized kernels Kn(z, f ) =
∂cn ( f )
∂m(z)

·
m(z)
cn ( f )

with the phase-slowness dispersion of the n-th mode cn( f ) (Fig. 4), and the

depth-dependent model m(z) (m ∈ {v p , v s , ρ}) shown in Fig. 5 (b).
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Figure 7. Results of resolution analysis for the 1-D multimode inversion

of five modes. The grey lines show all the models, which lead to a misfit

increase of less than 10 per cent. The black dashed line shows the best-

fitting (a) shear-wave velocity model and (b) density model obtained from

the inversion of the slowness picks denoted in Fig. 4. The resolution analysis

takes trade-off between the model parameters shear-wave velocity, density

and layer thickness into account.

stack provides consistent slowness values at the crosspoints of the

profiles.

To obtain a 2-D background slowness map at each frequency

from the slowness measurements of Fig. 9, we first divide the area

of investigation into 40 × 40 m bins. Then we assign to each bin

the mean of the slowness values lying within it. From the slowness

values of the bins along the profiles we construct a kriging predictor

(Lophaven et al. 2002) using a long correlation length to preserve
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Scholte-wave tomography 561

Figure 8. Local p–f spectra calculated from the CRG of Fig. 3 (P23, Geo-

phone 4 (2002)) at a central offset of (a) −200 m, (b) −300 m, and (c)

−400 m. The amplitudes are frequency-dependent normalized to the max-

imum amplitude. In (d) the unnormalized amplitudes at 4 Hz (left) and 11

Hz (right) for −200 m (dashed), −300 m (dash-dotted), and −400 m (solid)

offset are plotted. Note the severe loss of fundamental mode amplitude at

high frequencies with increasing offset.

only the smooth variation of the slowness. With this kriging predictor

the interpolated slowness values of each bin are calculated. The

result is shown in Fig. 9.

In the same way a background slowness map could be constructed

for all excited higher modes. However, for the following phase trav-

eltime tomography we have only used fundamental mode informa-

tion, because data quality was not sufficient to analyse enough trav-

elpaths for higher mode traveltime. Furthermore, the separation of

Figure 9. Lateral variation of fundamental mode phase slowness along the

straight airgun profiles derived from local p–f spectra at the frequencies (a)

3 Hz, (b) 4 Hz, (c) 5 Hz, and (d) 6 Hz (values in circles and diamonds). The

positions of circles and diamonds denote the midpoints of the Gaussian offset

windows used in the calculation of local spectra from the CRGs of the year

2002 (circles) and 2003 (diamonds). The colours in the background show

the background slowness model extrapolated from the slowness along the

profiles. These background models only incorporate the smooth slowness

trend and do not reproduce the slowness values of the spectra exactly.
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562 S. Kugler et al.

modes after deconvolution is generally difficult if their slowness

values are too similar. For our data set we are able to extract fun-

damental and first higher mode phase values from the deconvolved

traces with high signal-to-noise ratio. The second to fourth higher

mode, however, could not sufficiently be separated, since their slow-

ness values are too close together.

The 2-D inferred slowness maps (Fig. 9) can now be used as a

background slowness model for the application of the deconvolu-

tion (eq. 7). Before deconvolution we must interpolate the back-

ground slowness because we need to know a slowness value p0(r,

f i ) for each frequency sample f i from 0 Hz to the Nyquist fre-

quency. We use the described inversion from Scholte-wave p–f picks

to shear-wave velocity model as such an interpolation method. A

spline interpolation method would, however, do as well. Data input

of the inversion are the background slowness values at the picked

frequencies. The vector of model parameters η include layer thick-

nesses and associated shear-wave velocities for five layers and the

shear-wave velocity of the half space. Above the layered sediment

model, a water layer of 20 m thickness was implemented. For each

bin the slowness values were inverted for a best-fitting model η(r).

From those models we calculate the background slowness for every

frequency needed in the deconvolution (eq. 7).

5 P H A S E T R AV E LT I M E T O M O G R A P H Y

5.1 Data preprocessing

In preparation for the tomographic inversion we extract the residual

phases φ lm( f i ) of fundamental Scholte wave from the deconvolved

seismic traces. We will explain the procedure applied to the seismo-

grams from CRG P23 (2002) shown in Fig. 3.

By deconvolution we remove the dispersion due to the back-

ground model p0(r, f i ). Prior to the application of the deconvolu-

tion (eq. 7), it is important to extend the seismic traces to negative

times since we apply a discrete Fourier transform to the data. After

deconvolution the fundamental mode dispersion is almost removed

as can be seen in Fig. 10, while higher mode energy was moved to
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T
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s
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Figure 10. CRG shown in Fig. 3 after deconvolution. Amplitudes were corrected for the frequency-dependent traveltime predicted by the slowness background

models shown in Fig. 9. The fundamental mode appears approximately at time zero. The dispersion contributed by the background model has been removed.

negative times. Thus the fundamental mode can be separated from

the higher modes at source-receiver distances greater than approxi-

mately 50 m by muting for times smaller than −0.4 s. A sine-squared

taper with a length of 0.02 s was used.

From those muted traces we obtain the residual phases by eq. (8)

and apply the two-step phase unwrapping (eqs 9 to 12). The resulting

phase values of the traces in Fig. 10 at the frequencies of 3 to 6 Hz

are shown in Fig. 11. It can be seen, that phase differences between

two adjacent shots are much smaller than 2π , so that phase unwrap-

ping within one profile for each frequency was unambiguous. The

phase differences between adjacent frequencies, however, are close

to 2π at large offsets, so that phase unwrapping concerning different

frequencies is problematic. After the tomographic inversion, it turns

out that this 2π bias leads to 2π -jumps from frequency to frequency

in the resulting instrument phase contribution δφ P , but is not intro-

duced in the phase slowness residuals, because the relative phase

differences within each profile for each frequency are correct.

The hatched areas in Fig. 11 denote the offset regions where no re-

liable fundamental mode phase information could be extracted from

the traces. These areas include the very small offsets (smaller 50 m)

due to the increasing influence of positioning errors as the offset

decreases, the superposition of higher mode energy, and near field

effects. Moreover at far offsets the phase deteriorates because of the

loss of amplitude with increasing offset. This latter effect is also

observed in the local p–f spectra (Fig. 8). The maximum offset us-

able to infer fundamental mode phase values depends on the signal-

to-noise ratio as well as on the frequency. From profile 23 (2002)

we could use traces with source-receiver distances up to 800 m

at low frequencies (3 Hz) and up to 300 m at high frequencies

(6 Hz). This leads to a different number of paths intersecting the

bins for each frequency (Fig. 12) in the subsequent tomographic

inversion.

5.2 Model parametrization

The background-slowness model was parametrized in bins with

a side length of 40 m because this is sufficient to represent this
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Scholte-wave tomography 563

Figure 11. Phase values φ lm (eq. 13) determined from the deconvolved

seismograms shown in Fig. 10 by Fourier-transformation after muting of the

higher mode energy at negative times. The hatched areas denote the offset

regions where no reliable fundamental mode phase information could be

extracted from the traces.

very smooth model. For the tomography we reduce the bin size

since the maximum width of the first Fresnel zone of the funda-

mental Scholte wave with the dispersion shown in Fig. 4 is 90 m

at a frequency of 2 Hz and 17 m at 14 Hz for a path length of 50 m

(the minimal path length used in the tomographic inversion). We

decided to use bins with a side length of 20 m for all frequencies.

This is a compromise between good resolution of small scale het-

erogeneities and sufficient ray path coverage for each bin. The path

density ξ , that is, the number of paths intersecting the 20 m × 20 m

bins for which reliable fundamental mode phase values could be ex-

tracted is displayed in Fig. 12. For each bin only rays were counted,

that differ in azimuth by more than two degrees. Furthermore, we

only count the bins intersected by at least three paths belonging

to three different profiles. This constraint is necessary to determine

the instrument phase contribution δφ P in the tomographic inversion

uniquely. In order to keep the number of model parameters as small

as possible, we have analysed the phase differences of adjacent shots

and found that the initial phase contribution due to the air gun is

approximately constant for all shots within one profile. We there-

fore use the same initial phase for all traces belonging to the same

profile.

5.3 Damping and data weighting

The local path density ξ is an important part of the model norm con-

straint implemented in H (eq. 21). Here, the user-defined constant
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Figure 12. Number of ray paths intersecting each bin from which reliable

fundamental mode phase values could be extracted at the example frequen-

cies (a) 3 Hz, (b) 4 Hz, (c) 5 Hz, and (d) 6 Hz. Only rays are counted, that

differ in azimuth by more than two degrees. If a bin is intersected by rays

from less than 3 profiles the path density of the bin was set to zero. With

increasing frequency the area of good ray coverage becomes smaller, be-

cause at higher frequencies only relatively short travelpaths contribute to the

ray density. From longer paths no fundamental mode phase values could be

extracted. Furthermore the data quality of OBS 10 and 5 (2003), which are

located in the north of the study area was poor.
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564 S. Kugler et al.

λ controls the strength of damping towards the background model

depending on the path density. We use λ = 0.08 so if ξ is greater

than about 30 paths, the resulting effective model-norm damping

for this bin is less than 0.1β, with β being the damping parameter

for the bins that have not been intersected at all.

To find an appropriate combination of the damping parameters α,

β and γ we first apply the tomographic inversion to synthetic data

sets. Therefore, we calculate a synthetic data set for a constant phase-

slowness residual model (δ p(r) = 1 s km−1 for all r). For instrument

phase contributions δφP random values from a normal distribution

with mean zero and variance one were used. We then determine the

synthetic data set dsynth by multiplying the design matrix G of the

source-receiver combinations of the 4-Hz field data (path density in

Fig. 12b) to this model vector. High amount of random noise was

then added to the synthetic data set

d̃
synth

i = d
synth

i +
d̄synth

10
n, i = 1, . . . , N (26)

with d̄synth =
∑N

i=1 |d
synth

i |, N is the length of vector dsynth and n

being normally distributed random numbers with mean zero and

variance one. We apply the tomographic inversion with many dif-

ferent combinations of damping parameters to the synthetic data

set d̃synth. All values of d̃synth are weighted equally within the tomo-

graphic inversion. The correlation length σ was set to 200 m for all

the following tomographic inversion tests. We parametrize the model

in 20 m × 20 m bins, that is, the same bin size as was used in the

tomographic inversion of the field data. The resulting tomograms

for six different parameter combinations are shown in Figs 13(a)

to (f). To help evaluating the results of the tomographic inversion

tests, we determine the rms-misfits between the model parameters

used to infer the synthetic data set and the inverted parameters. For

the instrument phase contribution this is denoted as �1 and for

the phase-slowness residuals as �2 in the figures. Furthermore the

rms-misfit �3 between the noisy input phases and the phases in-

ferred for the inverted model is shown. In the phase-slowness map

of Fig. 13(a) the high overdamping (α = 2500, β = 2500 m s−1)

expresses itself in strong anomalies at the positions of the receivers

as well as along the profiles. A clearly underdamped map (α = 2.5,

β = 2.5 m s−1) is shown in Fig. 13 b). It displays heavy artefacts in

the form of speckling and stripes where high amplitudes of oppo-

site polarity alternate. Next we choose an appropriate value for the

damping of phase-slowness residuals (β = 660 m s−1) and examine

the effect of overdamping and underdamping the instrument phases

only. This is shown in Figs 13(c) and (d) where far too high damping

(α = 2500) was chosen in (c) and far too low (α = 2.5) in (d). It can

be seen that the choice of α, though it controls the values of inferred

instrument phases, only marginally effects the slowness map. The

slowness maps almost only differ in the amplitudes at the positions

of the receivers, especially in the north of the area where ray density

is not optimal and the rays have a very limited range of azimuths. In

the damping tests shown so far, no smoothing was applied (i.e. γ =

0 m s−1). The effect of smoothing in addition to moderate damping

can be studied in Figs 13(e) and (f). It shows that moderate smooth-

ing (γ = 1000 m s−1) reduces clearly the rms-misfit between the

inverted and input phase-slowness residuals (�2) for this example

model (Fig. 13e). Stronger smoothing (Fig. 13f), however, shows a

comparable effect as overdamping, that is, artefact anomalies along

the profiles.

The influence of different amounts of damping was also studied

at the example of a checkerboard input model. The synthetic data

set was determined by the multiplication of the 4-Hz-design matrix

G to the checkerboard model-parameter vector, where the phase

Figure 13. Phase-slowness maps for synthetic data sets reconstructed with

different sets of damping parameters α, β and γ as is indicated in the boxes

at the top of the maps. For all the data sets the bin size was 20 m × 20 m and

λ = 0.08 and σ = 200 m were used. The synthetic data sets were calculated

for a constant phase-slowness model (δ p = 1 s km−1) in Figs (a) to (f) and a

checkerboard model (squares size: 80 × 80 m, δ p = ±1 s km−1) in figure (g)

to (j). Random noise was added to all data sets before tomographic inversion

except for figure (g). The rms-misfits between the model parameters used to

infer the synthetic data sets and the inverted parameters are denoted as �1

for the instrument phase residuals and �2 for the phase-slowness residuals.

�3 is the rms-misfit between the noisy input traveltimes and the traveltimes

inferred for the inverted model. (Note that α is given in 1/radians, �1 and �3

in radians). Figs (a) and (i) are highly overdamped, Figs (b) and (h) highly

underdamped. In Figs (e) and (f) a smoothing constraint was applied in

addition to the model-norm constraint. Only at Figs (a) and (b) amplitudes

are clipped. In the shown maps the effects of too high as well as too low

damping can be studied.
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Scholte-wave tomography 565

slowness of the model alternate between −1 and 1 s km−1 for 80 ×

80 m bins. We still parametrize the model with 20 × 20 m bins.

For a noise-free synthetic input data set the model can be perfectly

reconstructed (Fig. 13g). If we add random noise to the input data

set as is described in eq. (26) the effects of underdamping (Fig. 13h)

and overdamping (Fig. 13i) are equivalent to the constant phase-

slowness residual model. Additionally it can be seen that in areas

with excellent path coverage (around the coordinates X = 6300 m

and Y = 1350 m) the model can be quite well reconstructed in spite

of the wrong choice of damping parameters. The inverted map for

an appropriate set of damping parameters is shown in Fig. 13(j).

Based on the knowledge gained from these synthetic tests, we

choose the optimal set of damping parameters for the field data in

the following way. We begin with very small damping parameters α

and β and no smoothing (γ = 0 m s−1). Then we slowly increase α

until the artefacts of underdamping as shown in Fig. 13(b) disappear.

So far we have still strong anomalies at the positions of the receivers.

Now we increase β until the phase-slowness residuals at the posi-

tions of the receivers are as close as possible to the residuals of the

surrounding. It wasn’t possible to totally eliminate those anomalies

in this way, but as we have learned from the synthetic tests these only

falsify the resulting model parameters of instrument phase contri-

bution and phase-slowness residual at the positions of the receivers,

leaving the rest of the model unchanged. Finally we slowly increase

the smoothing parameter γ but stop before the effects of overdamp-

ing become apparent. The inferred damping parameter set for the

field data is α = 0.15, β = 140 m s−1 and γ = 250 m s−1. These are

different to the damping parameters used for the synthetic test data

sets in Fig. 13 due to the different noise condition of the field data.

The correlation length σ of the smoothing was set to 200 m. We

decided to use the same parameter set for the tomographic inversion

of all frequencies because we want to keep the model amplitudes for

different frequencies comparable since we need to infer dispersion

curves from the phase-slowness maps.

The weighting of the input data is implemented by the matrix Ce

in the objective function (17). Here, we want to weight reliable phase

values more than biased values. To achieve this we incorporate that

the difference between the residual phases of two adjacent paths

within one profile is small. Therefore, we fit a polynomial of degree

5 to the residual phases of each profile. We assume that the accurate,

noise free phase values lie close to this polynomial, so we weight our

input phases the more, the smaller the distance to this polynomial

is.

6 R E S U LT S

6.1 Phase-slowness maps

The maps of phase slowness residuals derived by the tomographic

inversion are shown for 3–6 Hz in Fig. 14. Here the relative de-

viations from the background model (Fig. 9) are displayed. If we

apply the shown deviations to the background model and calculate

the traveltimes of fundamental Scholte wave for all rays in the study

area using the resulting model, the differences to the recorded trav-

eltimes become minimal in a least-squares sense. It can be seen that

strong anomalies of up to 20 per cent arise with a broad maximum in

the north-west of the area and a minimum in the south at a frequency

of 3 Hz. Anomalies become smaller with increasing frequency. At

6 Hz, for example, the slowness residual maps show anomalies as

small as 100 m in diameter. The data quality of the records from the

receivers in the north of the study area was, however, not sufficient,

Figure 14. Maps of phase slowness residuals of fundamental Scholte mode

inferred by phase traveltime tomography at the example frequencies of (a) 3

Hz, (b) 4 Hz, (c) 5 Hz, and (d) 6 Hz. The tomography extracted considerable

variations to the background model of up to 20 per cent from the off-profile

traveltimes. The geophone positions are denoted by the triangles and the

OBSs by the circles.
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566 S. Kugler et al.

so that at high frequencies the paths were only in the southern half

of the area dense enough to extract information about the structural

slowness. In the northern part the slowness was damped to the back-

ground model. Thus, the absence of anomalies in the northern part is

caused by a lack of information from the data and has no geological

reason.

6.2 Resolution and error analysis

We estimate the reliability of the slowness deviations obtained by

tomographic inversion by analysing the model resolution matrix

(eq. 23). The row values for the model parameter of phase-slowness

deviation at two different bins are shown in Figs 15(a) and (b). Here

the values are plotted against the coordinates of the bins to visualize

the information of the resolution matrix. The peaks in the figures cor-

respond to the particular diagonal element of the resolution matrix.

A peak value of 1 would indicate that sufficient data exist to yield a

unique estimate of the respective model parameter. In the middle of

the study site, where the quantity as well as the number of different

directions of intersecting rays are high, this is approximately the

case (Fig. 15a). At the fringe of the site, however, the ray coverage

decreases and the rays have very limited range of angles. Therefore,

the diagonal element of the resolution matrix corresponding to the

edge-bin shown in Fig. 15(b) is much smaller. The model values in

this region are therefore weighted averages of the true model param-

eters. The off-diagonal elements of the resolution matrix indicate

that this smearing occurs along the prevailing direction of travel

paths in this area.

Besides the phase-slowness deviations from the background

model our tomographic inversion infers the residual instrument

phase contribution δφ P of each profile-receiver combination. The

diagonal elements of the resolution matrix of those model param-

eters exceed 0.98 suggesting that they can be well resolved. As an

example the off-diagonal elements for profile 2(2003) recorded by

OBS 2(2003) are shown in Fig. 15(c). It can be seen that the matrix

has a considerable off-diagonal value for the phase-slowness devia-

tion at the position of the OBS. This indicates trade-off between the

model parameters of phase contribution of source and receiver and

the model parameter of structural phase slowness at the position of

the OBS.

From the resolution analysis, we can conclude that in the middle

of the study site the reconstructed model is very well resolved. To

the edges of the site only a blurred image of the real structure can

be established. The model parameters of phase slowness residuals

at the positions of the OBSs have only limited reliability because of

parameter trade-off.

The discussed resolution is the theoretical resolution of the used

imaging technique. The real lateral resolution of the traveltime to-

mography is limited by the first Fresnel-zone. It depends on the

wavelength as well as on the length of the travelpath. In our tomog-

raphy the length of travel paths are mainly between 50 and 400 m.

This leads to a maximum width of the first Fresnel-zone for the fun-

damental Scholte wave with the dispersion shown in Fig. 4 at 6 Hz

of 22–72 m, at 5 Hz of 27–88 m, at 4 Hz of 34–113 m and at 3 Hz

of 47–156 m.

Moreover, other errors may influence the quality of the tomo-

grams. These include incorrect positioning of sources and receivers,

variation of initial phase of the source within one profile, and the in-

terference of higher modes at small offsets. Corresponding kinds of

errors for shallow land seismics were studied by O’Neill (2003), us-

ing Monte-Carlo perturbations in full wavefield P-SV modelling of
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Figure 15. Row of the resolution matrix (eq. 23) at 4 Hz of the model

parameter (a) phase-slowness deviation δp at X = 6240 m and Y = 1420 m,

(b) phase-slowness deviation δp at X = 5700 m and Y = 1940 m, and (c)

remaining instrument phase contribution δφ P for profile 2 (2003) recorded

by receiver 2 (2003). The row values are plotted against the coordinates of

the bins. In (a) the resolution for one of the best resolved bin is displayed,

whereas in (b) one of the poorest resolution can be seen. Receiver 2 in figure

(c) was located at X = 5900 m and Y = 1500 m, that is, the position of

the peak. The recorded profile (P2) begins at approx. X = 6000 m, Y =

1000 m and ends at X = 6600 m, Y = 1600 m.
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Scholte-wave tomography 567

Rayleigh waves. Trace to trace static shifts in CSGs, equivalent to ini-

tial source phase differences in CRGs, contributed most to observed

dispersion errors in ideal 1-D cases. Other dominant influences were

receiver positioning errors and random noise, with receiver coupling

and tilt having little effect on the observed dispersion. Many of the

errors observed for shallow land seismics are generally of little in-

fluence for marine settings. So are initial source phase differences

negligible in marine airgun seismics and the source and receiver

coupling approximately constant within one profile. Furthermore

the signal-to-noise ratio of shallow marine Scholte-wave records is

as far as our experience goes mostly quite high. The positioning of

sources and receivers, however, is more complex and error-prone in

marine seismics.

To keep the influence of those errors to a minimum each residual

phase value used as input of the tomography was manually checked

and outliers were excluded. Furthermore, the data weighting during

tomography assures that the influence of remaining outliers is small.

Strong systematic errors can exist, however, if the wave propagation

in the analysed media does not satisfy the preconditions of the used

traveltime tomography. This is the case if strong heterogeneities ex-

ist so that the propagating wave is not plane and scattering cannot be

neglected. Then we may not specify the seismic wavefield by straight

rays anymore. At our study site the heterogeneities are moderate,

thus we expect these effects to be insignificant. At other study sites

with strong heterogeneities the modelling of synthetic seismograms

for 3-D heterogeneous media and fitting them to the recorded seis-

mograms by waveform inversion may become necessary (Friederich

1999). This method, however, among other complications needs a

good starting model which could probably be generated by the trav-

eltime tomography.

6.3 Comparison with local spectra

By inferring local p–f spectra we obtained fundamental-mode phase

slowness measurements along the profiles (Fig. 9). Since the back-

ground model (Fig. 9) is only a smoothed version of the readings

from the local p–f spectra along the profiles, we expect the obtained

residuals (Fig. 14) to match the residuals between p–f spectra and

background model along profiles. We check this in Fig. 16 at a

frequency of 3 Hz.
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Figure 16. Comparison between the phase slowness residuals with respect

to the smooth background model at 3 Hz determined by tomography and

those picked from local p–f spectra (values in circles).

It can be seen that the slowness residuals from local spectra and

those determined by tomography agree very well. This is a convinc-

ing validation of the tomograms, because the two slowness values

are achieved by two different approaches (local slant stack versus

traveltime tomography) on the basis of two different data sets, since

the records used in the calculation of local spectra were not in-

cluded in the tomography. The slowness at other frequencies also

agree well. However it can be observed, that the agreement between

tomographic maps and slowness residuals determined by local slant

stack decreases as the path density decreases with increasing fre-

quency. In particular at the edges of the study site the anomalies

of the local slant-stack slowness residuals exceed those of the to-

mographic maps because of the high damping of the tomographic

inversion in areas with low path density.

7 3 - D M O D E L O F S H E A R - WAV E

V E L O C I T Y

The fundamental mode dispersion at each bin from the tomographic

phase slowness maps is now used to infer the final 3-D shear-wave

velocity model. From the maps we obtain slowness values at fre-

quencies from 2 to 8 Hz every 0.5 Hz. The dispersion curves of each

bin were inverted independently. We started with the bin contain-

ing the location of the 1-D model shown in Fig. 5 using this model

as starting model and then continue with the adjacent bins, where

we used the previously inverted models from neighbouring bins as

starting models. Layer thickness and shear-wave velocities of the

top and bottom of each layer were active parameters, while density

and compressional-wave velocity were kept constant. We have only

extracted fundamental mode phase slowness information by the to-

mographic inversion so the density could not be included in the

set of active model parameters. The density model determined by

multimode inversion at the centre of the investigation area (Fig. 5b)

was applied everywhere. The compressional-wave velocities which

have negligible influence on Scholte wave dispersion were guessed.

The inverted model consists of five layers on top of a half space. In

Fig. 17 we show the inferred model parameters for the five layers.

The thickness of the two shallowest layers increase from SW to

NE. The shear-wave velocities of those layers are very small (be-

tween 54 and 90 m s−1) and decrease in the same direction. This is

plausible since the Tromper Wiek opens to the Baltic Sea in NE-

direction causing this decrease in shear-wave velocity. The third

layer shows an increasing thickness from S to N with decreasing

shear-wave velocities in the same direction. The thicknesses of the

two deepest layers show almost no lateral variation, whereas the

shear-wave velocities vary significantly with a trend of decreasing

velocities from S to N. This could be caused by a buried glacial chan-

nel, but the extension of our study area is relatively small compared

to the typical size of such geological structures in this region.

A vertical slice through the 3-D-shear-wave velocity cube be-

neath profile 23 (2002) is shown in Fig. 18(a). For a comparison we

have depicted a high-resolution zero-offset section of boomer seis-

mic data along the same profile in Fig. 18(b). The boomer source has

frequencies up to 6 kHz with a centre frequency of approximately

2 kHz. The two shallowest layers showing very low shear-wave

velocities are characterized by continuous, parallel, even reflections

in the high-resolution seismic section of Fig. 18(b). The next deeper

layer with shear-wave velocities between 150 m s−1 and 250 m s−1

extends over a depth region where many prominent reflections can

be identified. This sequence is characterized by a strong shear-wave

velocity gradient. The lateral variations of the reflections agree well
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568 S. Kugler et al.

Figure 17. Shear-wave velocity model determined by inversion of the fundamental mode phase slowness obtained by tomography. The layer thicknesses (left),

the top (middle) and bottom (right) shear-wave velocities of each layer are shown. The denotation of the model parameters is schematically displayed at the

very left side of the figures. Lateral variations of layer thickness can be observed for layer one to three, whereas the layer thickness of layer four and five is

almost the same for the whole study area. The shear-wave velocity gradient is the steepest for layer two and three, for the other layers the gradient is only small.
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Scholte-wave tomography 569

Figure 18. (a) Vertical slice through the 3-D shear-wave velocity model of Fig. 17 beneath profile 23 (2002). The black lines indicate the main reflections

of the high-resolution zero-offset section of boomer seismic data along the same profile shown in (b). Depth values in (b) are estimated using a constant

compressional-wave velocity of 1500 m s−1.

with the lateral variation of the shear-wave velocity gradient. The

layer boundary of the shear-wave velocity model at a depth of ap-

proximately 17 to 20 m can as well be observed in the high resolution

seismic section. It is probably caused by the upper edge of the glacial

till. The sudden increase in traveltimes of the reflections in the seis-

mic section at 965 m distance and a depth of 12 m, however, cannot

be identified in the shear-wave velocity model. The extension of

this structure (<50 m) is probably too small to be resolved by the

Scholte-wave tomography at this depth.

8 C O N C L U S I O N S

Scholte-wave phase-traveltime tomography is a robust and relatively

fast method to estimate the 3-D shear-wave velocity structure of

shallow-water marine sediments and is therefore (after calibration

of shear-wave velocity to shear strength) best suited for geotechnical

engineering applications in those environments.

A three-step tomographic approach is developed to infer the 3-

D shear-wave velocity structure of shallow-water marine sediments

using the fundamental Scholte mode excited by air guns. In the first

step we construct a background model of Scholte phase slowness

by slant-stacking local wavefields along common-receiver-gathers.

This method yields accurate phase-velocity values along straight

profiles. Phase slowness along the profiles are extrapolated to obtain

a smooth background model.

In the second step phase-slowness residuals to the background

model are derived by traveltime tomography. In our field data exam-

ple these residuals agree well with phase-slowness residuals deter-

mined from local p–f spectra along the profiles. The phase-slowness

residuals inferred by tomography together with the background

model established a phase-slowness dispersion curve at every lo-

cation of the study site.

In the third step the depth-dependency of shear-wave velocities

at each location was inferred by inverting the respective dispersion

curve leading to a 3-D model of shear-wave velocities. A vertical

slice through this 3-D model agrees well with a high-frequency

zero-offset seismic section. Therefore, the combination of Scholte-

wave traveltime tomography with areal high-frequency reflection

traveltimes within a joint inversion seems to be promising.

Future work should focus on two important aspects. Higher modes

should be included in the tomographic reconstruction to infer a 3-

D model not only of shear-wave velocity but also of density and

to enhance the vertical resolution. Furthermore, in our tomography

we assume that Scholte waves travel along the direct path between

source and receiver. In the case of significant lateral variations of

subsurface elastic properties this assumption becomes invalid. Fu-

ture tomographic applications should consider the correct ray path

and account for the band limitation of the Scholte wave implying

that the propagation is extended to a finite volume of space around

the geometrical ray path.
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