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Résumé. 2014 Nous proposons un modèle simple et général pour les jonctions métal-semiconducteur propres,
décapées ou bien chimiquement actives. Pour les jonctions propres, nous considérons également la possibilité
d’une relaxation ou de la présence d’une couche physisorbée. En ce qui concerne les deux autres cas, le para-
mètre crucial du modèle est la charge électrique liée aux états électroniques de surface qui réagit soit avec l’agent
décapant, soit avec le métal. Nous analysons de manière self-consistante la redistribution de cette charge à la
jonction ainsi que la densité d’états correspondante. Dans ce modèle nous incluons les résonances induites par
les états liés ou les liaisons libres (caractéristiques des interfaces inactives chimiquement) ainsi que les nouveaux
états à l’interface créés par réaction chimique. La densité d’états à l’interface est utilisée pour trouver le niveau de
charge neutre qui est un concept fondamental pour la description du comportement des jonctions métal-semi-
conducteur. Dans ce contexte nous discutons les données expérimentales concernant les jonctions non réactives
avec des semiconducteurs ioniques ou covalents ainsi que les jonctions décapées et actives de Si(111). Bien que,
dans la plupart des cas, seule une comparaison qualitative entre la théorie et les données expérimentales soit
possible, nous montrons comment ce modèle peut être utile à la compréhension des différents facteurs inhérents
au comportement de la jonction.

Abstract. 2014 A unifying simple model for clean, etched and reactive metal-semiconductor junctions is proposed.
For clean junctions the possibility of some relaxation or a physisorbed layer at the interface is also considered.
As regards the other two, the crucial parameter of the model is the amount of charge located in the semiconductor
surface states that reacts either with the etching agent or the metal. The selfconsistent redistribution of charge at
the junction and its density of states are analysed as a function of the interface conditions. Virtual states or dangling
bond derived resonances (characteristics of non reactive interfaces) and new interface states induced by the chemical
reactions are embodied in the theory. The interface density of states is used to obtain the charge neutrality level,
a central concept to explain the behaviour of metal-semiconductor junctions. The available data for ionic and
covalent semiconductor non reactive junctions, and etched and reactive Si(111) junctions, are discussed within this
context. Although in most cases only a qualitative comparison between the theory and experiment can be done,
the model is shown to be helpful for improving our understanding of the different factors governing the junction
behaviour.
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1. Introduction. - The mechanism of Schottky-
barrier formation at metal-semiconductor junctions
has been the subject of many different interpretations
[1-11]. All these theories have assumed a chemically
abrupt interface in which, at most, there was some
kind of relaxation [10, 11] or a physisorbed dielectric

layer [3,11] at the interface. Leaving appart the many-
body theories [5, 6], the interface behaviour has been
interpreted in terms of either semiconductor surface
states [2, 3] or virtual states originated by the tails of
the metal wavefunctions tunnelling into the semi-
conductor optical gap [4, 7-9]. More recently a case
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intermediate to those two has been considered,
namely that of dangling bond derived resonances
[10, 11], in which the semiconductor surface states are
broaden by the presence of the metal ; this broaden-
ing being possibly due to either a relaxed interface
[10, 11] or the presence of a physisorbed dielectric
layer [11]. The case of semiconductor surface states
can be simply considered as the limit of very thick
layers.

None of these theories fit into the very rich expe-
rimental information recently obtained [12-16]. In
these experiments a novel feature of metal-semi-
conductor junctions has been put forward, namely,
the eventual reactivity between the metal and the
semiconductor. An immediate consequence of this

reactivity is the formation of a chemical compound
at the interface, whose electronic structure is not,
in principle, related to those of the metal and the
semiconductor [15]. It is clear that when extended
reaction has occurred, a proper description of the
electronic structure of the chemical compound being
formed [ 15] is needed. Nonetheless it might be reason-
able to think that the changes occurring in the

junction behaviour during the first stages of the
reaction can be described by considering the charge
rearrangement at the interface without caring about
the actual electronic structure of the compound.
A kind of junctions which could be considered by
means of a similar scheme are those in which the
semicondudtor surface has been etched before the

junction is made [17]. In these junctions a rearran-
gement of the charge at the semiconductor surface is
promoted by the reactant and then the metal is depo-
sited on this etched surface.

To summarize, the experimental and theoretical
studies performed up to now [1-21] suggest that the
metal-semiconductor junctions can be classified into
three broad groups : i) non reactive interfaces, for

which no chemical compound is formed between the
metal and the semiconductor - including those in
which some relaxation or a physisorbed dielectric
layer is present - ; ii) etched interfaces, for which the
semiconductor surface has been previously treated
with a reactant, leaving an oxide layer between the
metal and the semiconductor ; and iii) reactive inter-
faces, for which the metal and semiconductor form a
new chemical compound. Notice that under the

heading of non reactive interfaces we include both
the covalent (Bardeen-like) and ionic (Schottky-like)
[20] junctions, as the differentiation made by Andrews
and Phillips [12] in terms of the strength of the inter-
face bonds, could be described by the relaxation at
the interface [10] mentioned in i).
The purpose of this paper is to present a theory

which might treat under the same footing either the
virtual states or the dangling bond derived resonances
characteristics of non reactive junctions, and the new
interface states originated through the interface reac-
tions taking place in etched or reactive junctions.

Fig. 1. - Energy diagram in the metal-semiconductor junction.
The meaning of the symbols is as follows : x semiconductor electron
affinity ; (pm metal work function; Eg semiconductor band gap ;
CPo charge neutrality level ; D interface induced dipole ; CPe barrier
height.

As pointed out above, we will discuss the first stages
of the interface reactions. To this end we shall follow
the lines of the theory presented by Cowley and
Sze [3, 8], whereby the properties of the junction are
explained in terms of the dipole layer built up at the
interface. According to this theory the barrier height
for a n-type junction (cphn) can be written as (Fig. 1) :

where gm and x are the metal workfunction and the
semiconductor affinity respectively, and Eg is the
semiconductor band gap. The dipole induced at the
interface is represented by D. The parameter oc is

related to some many-body interface properties [8],
and the remaining parameters of the theory are ({Jo,
the neutral level [18] (also called charge neutrality
level [3]) - which can be defined as the energy level
up to which the interface density of states in the gap
have to be filled in order to compensate the defects of
states in the semiconductor valence band induced

by the interface - and Nss the interface density of
states.

According to this theory, in order to discuss the
three types of junctions mentioned above, we must
determine both quantities, the density of interface
states and the neutral level. The latter requires a
careful analysis of the whole spectrum of electronic
states. We shall perform in depth this analysis not only
for the rather simple case of non reactive interfaces,
but also for the more involved of reactive and etched

junctions. The physics contained in the two latter

junctions will be modelled by assuming that, as the
chemical reaction proceeds, some electronic charge
at the interface is removed from the semiconductor,
to form a chemical compound. In fact this amounts
to the description of the microscopic redistribution of
the charge at the interface [13] promoted by the
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chemical reaction taking place. Although this is a
rather simplified model it will turn out a helpful tool
to improve our understanding of these complicated
interfaces.
The rest of the paper is organized as follows. In

section 2 we discuss in detail a one-dimensional model
which might be used to describe the three types of
junctions. This 1-dimensional model will allow us to
discuss some of the more prominent features of the
junctions. The 3-dimensional analysis is presented in
section 3. In this part of the paper we focus on Si(111)
junctions for which there is a wealth of experimental
data for all the different junctions. The 2-dimensional
Brillouin zone is treated by considering a single
representative point [8, 22, 23]. Then, the results
obtained for the different junctions are discussed and
used to analyse the available experimental infor-
mation. Finally some concluding remarks are included
in section 4.

2. The model. - For non reactive junctions in
which there is an intimate contact between the metal
and the semiconductor, a simple model has been
proposed by different authors [4, 8, 22, 23], whereby the
metal was treated in the jellium model and the semi-
conductor within a narrow gap approximation.
Moreover, recently similar simple models have been
suggested to handle relaxed interfaces and physi-
sorbed dielectric layers at the interface [10, 11]. In this
paper we shall use a rather similar model. In figure 2
we show schematically the model used in the present
work. The electronic charge in the junction is neutra-
lized by the ionic charge which in our model is simu-
lated by two uniform charges extending up to the
crystal edges. When there is any relaxation or a

physisorbed layer the thickness T is non zero, while
for non reactive interfaces d is always zero (Fig. 2).
For an etched interface, an electronegative atom

reacts with the semiconductor surface forming a

Fig. 2. - 1-dimensional model for clean, etched or reactive metal-
semiconductor junctions depending upon the values of the thickness
of the dielectric layer (T), and the charge removed from the semi-
conductor (described by d). For d = 0 an intimate contact junction
(T = 0) or one relaxed or with a physisorbed layer (T =1= 0) are
represented. In the cases of etched or reactive interfaces T and d
are both =1= 0. V stands for the absolute value of the effective Fou-
rier component of the semiconductor pseudopotential.

chemical compound. Then the metal is deposited
upon this etched surface. If there is a large electro-
negative difference between the etching atom (0, Cl, ...)
and the semiconductor, we might assume that, during
the etching process, the electronic charge in the surface
states characteristic of the semiconductor free surface,
are transferred to the absorbate in order to complete
its partially filled configuration. The crucial difference
between this case and the previous one is the whole
electronic charge at the interface. In the etched inter-
face we assume that the electronic charge playing a
role in the barrier formation, is that defined sub-

tracting to the charge of the clean metal and semi-
conductor surfaces, the charge transferred. from the
semiconductor surface states to the absorbate. In

figure 2 this is schematically represented by the dotted
region in the positive homogeneous charge of the
semiconductor, in such a way that the rest of the

positive charge cancels the electronic charges in the
metal and semiconductor bands. The effect of the
oxide layer is described not only by removing the above
mentioned charge but also by considering a new
interface potential between both crystals.
An intermediate case between clean and etched

interfaces appears for etched junctions in which not
all the semiconductor dangling-bonds are saturated
by the absorbate. For instance this occurs in ageing
junctions in which ionic diffusion allows a dangling
bond saturation along the time [17, 18]. For these
interfaces we can propose a model in which the
electronic charge transferred to the absorbate is only
a fraction of the charge located in the semiconductor
surface states.

Reactive junctions are more involved. As remarked
in the introduction, the reactions can be very extensive
in such a way that very thick layers of the chemical
compound can be formed at the interface, either by
rapid Si diffusion or by metallic diffusion [24, 25].
It is clear that the present model have to be restricted
to the first stages of the reaction, as when a thick layer
of chemical compound is built up at the interface,
a proper description of the electronic structure of the
compound which in some cases turns out to be a
metal [15] might be needed. According to this we shall
consider only reactive interfaces in which extensive
reaction has not occurred. To these junctions a model
similar to that described for etched or partially etched
junctions can be applied.

The model shown in figure 2 can be handled as
follows. First we notice that the metal and the semi-
conductor are connected through the interface region,
where some selfconsistent potential is created by the
interface electronic charge as well as the oxide (or
chemical compound) layer, if any, formed between
the metal and the semiconductor. The whole free
electronic charge is neutralized by the homogeneous
positive charges denoted by dashed regions in figure 2,
whereas the dotted region of width d defines the

positive charge, and therefore the electronic charge,
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transferred from the semiconductor to the chemical

compound (or oxide). For a non reactive junction the
edge of the homogeneous semiconductor charge coin-
cides with the minimum of the semiconductor pseudo-
potential (d = 0). The semiconductor wavefunctions
will be described within a narrow gap approximation
and the interface selfconsistency will be introduced
in two steps : i) first we shall assume that the interface

potential behaves as in the metal-metal junction
(described within the jellium model) and solve this
selfconsistently ; ii) in a second step we shall switch
on the semiconductor pseudopotential and assume
that it does not perturb appreciably the interface

potential ; the consistency of this procedure will be
also discussed. This procedure will allow us to cal-
culate the interface density of states and the neutral
level for all the different cases.

2.1 THE 1-DIMENSIONAL METAL-METAL INTERFACE. -

This interface can be described as the limit of the
metal-semiconductor interface (see Fig. 2) for 1 V 1 -+ 0,
V being the effective pseudopotential Fourier compo-
nent which originates the semiconductor optical gap.
For the metal-metal junction at a given energy
E &#x3E; Eo [26] (E = 0 and Eo being the average poten-
tials at the semiconductor (z &#x3E; 0) and the metal
(z’ &#x3E; 0) sides respectively) and far away from the

interface, we have the following wavefunctions

where À, À’ and q,  n’are the momenta and the phase-
shifts. Notice also that we have used different spatial
origins for the two media (see Fig. 2).
For an energy E  Eo, we only have one wave-

function propagating away from the interface. This
is given by

since for E  Eo and z’ » 0 the wavefunction §’
decays exponentially.
To simplify the task of counting states we hereafter

work with finite media by placing two infinite barriers
at z = L and z’ = L’, L and L’ being as large as needed.
Then if we place two infinite barriers at z = 0 and
z’ = 0 and assume that the potential is constant up to
these barriers, we have q’ = 11 = 0, and the whole
density of states is given by

where NL(E) (NL(E)) is the density of states of a
jellium metal extending from z = 0 (z’ = 0) up to
z = L (z’ = L’) and the density of interface states

N’(E ) is given by

with the typical defects of 1/4 of state [22, 23] coming
from each band edge.

Now if the infinite barriers at z = 0 and z’ = 0 are

removed, matching through the interface allows us to
obtain, for E &#x3E; Eo, a relation between the two phase-
shift il and 11’, which for a general interface potential
can be written in the following general form

In Appendix 1 it is shown that taking 1 = q’ in
equation (6) gives two solution  n(1) and n(2) from which
the density of interface states can be obtained as

follows :

Furthermore it is also shown in Appendix 1 that
the two wavefunctions associated with n(1) and n(2)
are given by

with the relation a2 + b2 = 2. A second relation
between a and b can only be found by considering each
particular case. Two limits are worth of discussing :
i) first we assume that both media are decoupled,
ii) in the second limit we consider an interface poten-
tial varying very slowly through the interface, in such a
way that the WKB solutions for the wavefunction are
valid.

In the first case the two wavefunctions given by
equations (8) and (9) behave in the same way, and
therefore

In the second case we find

These two cases show that, depending on the inter-
face conditions, il(l)- il (2) varies between the extreme
values 0 (decoupled metals) and n/2 (WKB). Moreover,
considering the relation between a and b given in

equations (10) and (11) we use for the metal-metal
junction the wavefunctions of equations (8) and (9)
with a = b = 1.
Once defined the interface properties for E &#x3E; Eo,

we turn to consider the case E  Eo. In this case the
interface density of states can be obtained from the
phase-shift of equation (3)
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This equation is in fact equivalent to equation (7)
considering that in Appendix 1 it is shown that

this also shows that t/J(1) of equation (8) tends to the
wavefunction of equation (3) when E - Eo.
With this in mind we can finally write the expression

for the whole density of states as

Finally it is worth remarking that equation (14) allows
us to obtain a Friedel-type sum rule for the values of
11(1) and n(2) at the Fermi level, namely, PIF and 11?).
To this end we use equation (13) and consider that
for E -. 0, n(1) --+ 0; then, requiring overall charge
neutrality, we finally obtain

A second relation is needed to determine 11B!) and
nF(2). However, it can only be obtained once the parti-
cular interface potential is known. For instance for

decouped metals nF(1) = nF(2), while for a slowly varying
interface potential 111!) = nF(2) + n/2. In general the
interface conditions can be characterized by defining
a parameter A as

which varies between n/2 (WKB case) and zero

(decoupled metals). Notice that in the last case

nF(1) = nF(2) = n/4, a well known result for a free metal
surface [23]. The parameter A is in fact similar to the
one introduced by Mele and Joannopoulos [10] to
describe the broadening of the dangling bond states
which they assume to appear in the metal-semi-
conductor junction.

2.2 THE 1-DIMENSIONAL METAL-SEMICONDUCTOR

INTERFACE. - Once the metal-like wavefunctions have
been obtained at the interface, we proceed to analyse
the interface density of states for the metal-semiconduc-
tor junction, by switching on the crystalline pseudo-
potential and assuming that the interface potential is
not perturbed. If we assume further that the narrow
gap approximation is valid, we will only need to focus
our attention in the energy region around the optical
gap (or the Fermi level) as for energies well below
(or above) it the metal-metal solutions will be still valid.
To study the 1-dimensional model drawn in

figure 2, we start by considering the case of two infinite
barriers at z’ = 0 and z = - d with the crystalline
potentials (a constant for the metal) extending up to
these barriers. Then the whole density of states is given
by

In equation (17), NL(E) is the bulk density of states for a
semiconductor of length L extending from z = - d
up to z = ( - d + L), with L = na, n being an integer
and a the lattice constant, NtJ(E) the density of states
for a jellium metal of length L’ extending from z’ = 0
up to z’ = L’, and finally N’,’-’(E) is the interfaces
density of states which, for energies below the optical
gap [22], takes the form

with the typical defects of 1/4 of state associated with
the band edges [22, 23] E = 0, Ev, Eo [26], the bottom
and top of the semiconductor valence band and the
bottom of the metal band respectively.
We now remove the infinite barriers at z’ = 0 and

z = - d and proceed to discuss this case by differen-
tiating two energy regions, namely, inside and outside
the optical gap.

a) Over the range of energies inside the semi-
conductor gap, the interface density of states can be
obtained by matching the metallic and the semi-
conductor wavefunctions through the interface. The
metallic wavefunction can be written as

were 11’ is a phase-shift so far undefined and, as we
work in the narrow gap approximation, we can appro-
ximate the momentum by a constant equal to the
Fermi momentum.

For the semiconductor wavefunction we write
within the narrow gap approximation

where

being the effective pseudo-potential Fourier compo-
nent which creates the optical gap and g its associated
reciprocal lattice vector ; 8 is the energy referred to the

midgap and - 2 Y - e2, in such a way thatgp q 
g 

Y

q « g since V  g2. Notice also that gl2 = ÀF.
Now the wavefunctions given by equations (19)

and (20) have to be matched to the wavefunctions
coming from the interface. Within our model these
wavefunctions can be expressed as linear combinations
of those given in equations (8) and (9) - with a = b = 1
-, as follows
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The equation obtained by marching these wave-
functions can be written as

where we have made use of équations (15) and (16).
Equation (22) gives q’ as a function of e-note the
dependence of cp on B. The interface properties are
included through A and ô = gd (Fig. 2). The first

parameter (A ) describes the interface potential (it can
be related to the interface thickness T, see Fig. 2),
while the second (b) specifically accounts for the

charge removed from the semiconductor (related to d
in figure 2).

Finally the interface density of states inside the
optical gap can be obtained from equation (22) as
follows :

b) As regards the range of energies outside the
fundamental gap, we have to match the metallic
wavefunction (19) to the interface wavefunction (21),
and this one to the semiconductor wavefunction in

the valence band, namely,

where

and q is a phase-shift so far undefined. The matching
of these wavefunctions gives a relation between 1
and 11’. Using now the results obtained in Appendix 1
for the metal-metal interface, we can take 11 = 11’,
and then, the following equation for 11 is obtained

where we have also made use of equations (15) and (16).
From equation (25) we obtain two solutions, nI(1)
and nl(2) ; then the interface density of states is given by

Equations (23) and (26) allows us to obtain the whole
interface density of states as a function of the interface
properties brought in by A and the charge removed
from the semiconductor described by b (= gd ). Then
we write

for E  Ee (the conduction band edge) with N1,M-S(E)
given either by equations (23) or (26), depending on the
energy.
We can now calculate the neutral level by recalling

that it is the energy level up to which the interface
states are filled when the interface is neutral, namely,

~0

Nm-s(E) dE = whole charge in the two média,
-00 00 dE = whole charge in the two media,

(28)
which leads to

where the contribution ô/2 7r (ô = gd) represents the
electronic charge per spin participating in a chemical
reaction at the interface (the charge removed from the
semiconductor, see Fig. 2). Using now equations (23)
and (26) we can rewrite equation (29) as follows

Moreover, using equation (25) we can easily see that
at E = Ev, a = 1 and the phase-shifts. are given by

and finally

which together with equation (22) gives the charge
neutrality level (ço) as a function of à and A.

Let us now discuss the results which emerge from
the previous analysis.

i) Ideal metal-semiconductor junction (A = n/2). -
This is the case of an intimate contact first discussed by
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Heine [4]. In this case we obtain an interface density
(N’,M-s) of states which is symmetric with respect to the
midgap, the charge neutrality level (!Po) lying in the
middle of the gap. This density of states is originated by
the tails of the metal wavefunctions tunnelling into
the semiconductor gap. We notice that Heine [4] and
other authors [27] obtained for an abrupt potential
a non symmetric density of states rather than a sym-
metric one. Our result is a consequence of treating the
actual selfconsistent interface potential within the
WKB approximation, a procedure which should be
specially valid if the metal and the semiconductor

forming the junction have similar densities. On the
other hand, Heine’s original calculation for such a
junction would have also lead to a symmetric density
of interface states. A further consequence of the WKB

approximation is that !Po and N’,M-s are independent
of ô. Finally it is also worth noting that the whole
density of states in the gap (1/2) is compensated with
two defects of 1/4 located at the band edges.

ii) Decoupled media (A = 0). - This is the other

limiting case. Again well known results are rescued.
For instance, if b = 0 we have a covalent semi-
conductor free surface, for which a surface state appears
in the midgap with an occupancy of 1/2 [22, 23, 28].
For b i= 0 we recover the case of an ionic semiconduc-
tor with the surface state displaced with respect to the
midgap and no longer half occupied [28, 29].

Fig. 3. - Density of interface states for the metal-semiconductor
junction within the one-dimensional model described in the text.
The horizontal broken lines bound the semiconductor band gap.
The defect of 1/4 of state in the band edges is also indicated. The
dielectric layer is very thin (A = 1.0, see text). a, b and c correspond
to three different values of b = gd (see Fig. 2 and textl namely
- n/2, 0 and n/2, respectively.

Fig. 4. - Same as figure 3 for a thicker dielectric layer (A = 0.6).

iii) Intermediate cases (0  A  n/2). - In order
to illustrate the kind of results which are obtained in
this case, we show in figures 3 and 4 two sets of cal-
culations for a semiconductor like Si. In figure 3 we
report the results for a value of A close to n/2 (A = 1.0)
and différent values of b. The density of interface states
is no longer independent of b and so is lpo. For a lower
value of A (Fig. 4) the density of states becomes more
similar to that of the semiconductor free surface.
In both figures we also show the density of states in the
bands. In all cases we have an exact compensation
between the density of states in the gap and in the
bands. Note that cases (a) and (c) are symmetric of
each other with respect to the mid-gap.
Some consequences of the above results should be

remarked. First we consider the case of b = 0. In this
case the density of states evolves from the featureless
density of states of the ideal metal-semiconductor

junction (A = n/2) to a bound state (A = 0) characte-
ristic of the semiconductor free surface. We notice that
for intermediate values of A we obtain the dangling
bond derived resonances already discussed by
Flores [11], and Mele and Joannopoulos [10]. The
latter authors introduced a parameter (r) similar to
ours (A).
A novel situation occurs when ô :0 0. This case can

correspond either to a junction built up with an ionic
surface (like (111) surfaces of III-V compounds) or to
a junction formed with a covalent semiconductor from
which some charge has been removed. Let us examine
the latter case. In this case « new » states induced
either by an etchant or a metal reacting with the
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semiconductor, appear. The physics underlying this
result is that as electronic charge is removed from the
semiconductor, the centre of the density of states in the
gap shifts and so does go, to preserve overall charge
neutrality. The relevance of these results in improving
our understanding of reactive or etched interfaces will
be discussed in the next section.

3. The 3-dimensional metal-semiconductor inter-

face. - Let us now discuss how the previous scheme
can be extended to 3-dimensional semiconductors.
Here we limit our discussion to the (111) face of
covalent semiconductors (diamond structure). In this
case we have shown elsewhere [22] that a reasonable
average of the different points of the 2-dimensional
Brillouin zone can be achieved by taking the corner
point as a representative one. Moreover, a narrow
gap approximation seems to be a reasonable approach
for discussing, even quantitatively, the surface pro-
perties of covalent semiconductors [8, 22, 23]. Within
this approximation, the analysis of the interface can
be shown to be equivalent to three 1-dimensional
cases [22, 30], each one having the following pseudo-
potential for the semiconductor :

where

Then, the 3-dimensional metal-semiconductor junc-
tion can be approximately analysed by simultaneously
considering three 1-dimensional cases, and using for
each case the results of paragraph 2.
Note that now we have, in principle, three different

problems with their corresponding phase-shifts, den-
sity of states, etc..., at the interface. However, the sum
rule has to be considered for the full 3-dimensional

problem ; this means that is has to be rewritten as

where  tl(i) &#x3E; are the averages of 1(’) for the three
1-dimensional problems. In the approximation we are
using, we take the three values of r¡1!) and 1(’) identical
and equal to their mean value ( nF(1) &#x3E; and  (2) F ).
This comes from the fact that although the potentials
in equation (33) are shifted between them by the
complex constant w, and therefore with respect to the
jellium edge, their Fourier components and their
associated reciprocal lattice vectors are the same for all
the three 1-dimensional problems. In fact it can be
shown that the interface potentials for each 1-dimen-
sional problem are also the same [22].
On the other hand, the three 1-dimensional cases

are characterized by the same values of A and à

(b = gd, g being the reciprocal lattice vector associated
with the periodicity perpendicular to the interface
and d is the quantity shown in figure 2) ; the properties
of the junction as a function of the two parameters
of our model can be obtained by using the analysis
described in section 2.

Here we should comment on the consistency of the
procedure we used to achieve selfconsistency. In
relation to this it is an important result that the whole
cancellation between the occupied density of states
in the gap and the valence band holds locally too;
this is an exact result for ô = 0 and it is very approxi-
mately true for ô ~ 0. This means that when the
pseudopotential is switched on at the metal-metal
interface, a density of states appears at the interface
in such a way that there is no new contribution to the
interface potential. This result justifies our procedure
to obtain selfconsistency at the interface and therefore
all the magnitudes characteristic of it, namely, inter-
face density of states, neutral level, etc.

In the following paragraph we shall discuss the
metal-semiconductor junctions mentioned in the Intro-
duction by means of this simple approach.

3. 1 NON REACTIVE INTERFACES ( b = 0). - In this
section we consider two different interfaces i) junc-
tions in which there is an intimate contact between the
metal and the semiconductor, and ii) metal-semi-
conductor junctions with some relaxation or a physi-
sorbed layer at the interface.
Here we have ô = gd = 0 (see Fig. 2), since we have

no electronic charge of the semiconductor sharing
any chemical bond at the interface. The different

junctions are described by the parameter A ; for an
intimate contact A = n/2, while for decoupled sur-
faces A = 0. When some relaxation or a physisorbed
layer is present at the interface 0  A  n/2.
As regards the density of interface states in the

fundamental gap, the following results are worth of
comment; i) For an intimate contact (A = n/2,
à = 0) we have the ideal metal-semiconductor junc-
tion with the same typical density of states (symmetric
respect the midgap) for each 1-dimensional problem
(see Section 2). ii) For decoupled media (either by a
very wide layer or large relaxation), A -+ 0, and a
surface state, associated with the first 1-dimensional

problem [22, 30] appears located in the midgap.
iii) For intermediate cases (0  A  n/2) we have
obtained the density of interface states shown in

figure 5. A peak evolves at the midgap for the first 1-
dimensional case, while for the other two cases the
densities of states are each one the symmetric of the
other and decrease as A tends to zero. This peak is
nothing but the surface state characteristic of the
semiconductor free surface broaden by the presence
of the metal, the half-width of the peak being related
to the amount of relaxation or the width of the physi-
sorbed layer at the interface. Notice that this reso-
nance is the same that those previously discussed by
Mele and Joannopoulos [10] and Flores [11], and
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Fig. 5. - Density of interface states (eV - 1) for a metal-semi-
conductor junction with a physisorbed layer, in the semiconductor
gap for the three 1-dimensional problems at the corner point of
the 2-dimensional Brillouin zone of (111) faces. The charge neutrality
point always lies in the middle of the semiconductor gap (vertical
arrow). The densities of states for two different thickness of the
physisorbed layer are shown : a) 0.5 Á, and b) 1 Á.

fortunately called by the former authors [10] dangling
bond derived resonances. On the other hand, an
important result which is deduced from the given
density of states is that the charge neutrality level (cpo)
remains always in the midgap. Moreover, the interface
density of states around CPo increases as A - 0, i.e.,
as the interface changes from an intimate contact to
decoupled surfaces.
The main conclusions for non reactive covalent

junction are : a) the neutral level CPo is independent
of any relaxation or physisorbed layer at the interface,
and b) moreover, the interface density of states around
CPo is always high giving in any case a junction beha-
viour closed to the Bardeen limit. This result is in
line with many experimental data [18, 25].

It is worth to comment here that the reason for the
last conclusion (b) is that, in both the free surfaces and
the junctions of covalent semiconductors, there is a
high density of states around (po. This may not be the
case for ionic crystals. For instance, ZnS seems to have
a very low density of surface states around EF at its
free surface [31], while in its ideal junctions with metals
there is a non negligible density of interface states
[7, 9, 32]. This is the kind of reasoning underlying the
model used by Mele and Joannopoulos [10] in trying
to explain the covalent-ionic transition in metal-
semiconductor junctions reported by Kurtin et al. [20].
Nonetheless those authors [10], artificially introduced
some relaxation at the interface without giving any
sound reason for doing that. Considering the results
obtained in this paper, we can suggest two ways.to
justify a model similar to that of Mele and Joanno-
poulos [10] : 1) following Andrews and Phillips we
might think that the bonds between the ionic crystal
and the metal are weaker than those between the
covalent semiconductor and the metal. This would

justify the assumption of relaxations in the junctions
formed with insulators, and 2) considering that the

experimental data collected by Kurtin et al. [20] were
obtained in the sixties, it might be plausible to assume
the existence of physisorbed layers in the junctions
studied. Both suggestions would tend to explain the
covalent-ionic transition reported by Kurtin et al. [20],
a field which is still definitely open.

3.2 ETCHED JUNCTIONS (5 = n/3). - These junc-
tions are prepared by allowing an electronegative atom,
i.e., 0, Cl, etc., to react with the semiconductor surface.
We assume that only the charge in the surface states
takes part in the reaction ; this amounts to one electron
per surface atom. In our model this is equivalent to
take 5 = n/3.
The interface density of states for this case is shown

in figure 6, where two values of A have been chosen.
Notice that the density of states for the first 1-dimen-
sional case decreases as A decreases, i.e., for wider
oxide layers, while for the other two cases two peaks
evolve near the edges of the gap. When the two media
are decoupled these resonances become bound states,
this case being that of an etched semiconductor free
surface or, equivalently, a monolayer of an electro-
negative atom chemisorbed on a covalent semicon-
ductor surface. It is indeed very satisfactory that with
our simple model we recover the results of Schlüter
and Cohen [33] for Cl chemisorbed on Si(lll) at the
corner of the 2-dimensional Brillouin zone. On the
other hand, the total density of interface states (the
sum of the three 1-dimensional cases) is symmetric
with respect to the midgap, and again the neutral level
(90) lies in the midgap for any A.
Thus our main results for an etched interface are

the following : i) The neutral level go is independent
of the oxide layer thickness, its position being the same
that in the case of non reactive interfaces, ii) the
density of states around go decreases as the layer
thickness increases, in opposition with the previous
case, and iii) new interface states are induced by the

Fig. 6. - Same as figure 5 for an etched metal-semiconductor

junction. Here again the charge neutrality point remains in the
middle of the semiconductor gap (vertical arrow). It has been
assumed that all the charge in the surface states of the semiconductor
has been removed. The results for two layer thicknesses (T) are
shown : a) 0.8 À and b) 2.0 A. Notice the strong decrease of the
interface density of states at the charge neutrality level, as Tincreases.
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Table 1. - Theoretical values for the density of states
Nvs and for the slope S (see text) as a function of the
effective (T) of the oxide layer for metal-semiconductor
junctions prepared from etched semiconductor surfaces
(see § 3. 2).

etchant, not related to the free surface neither to the
ideal (intimate contact) metal-semiconductor junction.
These results are very important as regards the

junction behaviour. In fact as the density of states
around (po decreases, the slope of the straight line
relating the barrier height and the metal workfunction
should increase (see Eq. (1)). In table 1 we show the
slope S of this straight line as obtained for different
values of the effective widths of the oxide layer in an
etched metal-Si(l 11) junction. It should be remarked
here that in order to relate A with the layer thickness
(T), we have described the oxide layer by a simple
square barrier, its width being that of the layer (T)
and its height being defined by the vacuum level.
In this model A is given by

where ()J = Evac - EF and w’ = EF, EF being the
Fermi level and Evac the vacuum level [26]. This formula
has been used to determine A in figures 5-7. It should
be noticed in table 1 that when T = 4 Á, S is very
near 1 ; this is, therefore, the minimum width of the
oxide layer to decouple the metal and the semicon-
ductor.

Fig. 7. - Same as figure 5 for a reactive metal-semiconductor

junction. Two cases in which a différent amount of electronic charge
has reacted are shown : a) 3/4 ofelectron, and b) 5/4 of electron.
T (Fig. 2) is taken equal to 2 d (see text). Notice that the charge
neutrality point no longer lies in the middle of the semiconductor
gap; see also figure 8.

The above results can be used to discuss the experi-
mental data of Turner and Rhoderick [17, 18] for
etched metal-Si(111) junctions. These authors showed
how, for these junctions, the slope S increases up to
0.46. According to our analysis, this could be explained
by assuming a minimum effective width for the oxide
layer of 2 A (see Table 1).

3. 3 REACTIVE INTERFACES. - In these junctions
the metal reacts with an otherwise clean semiconductor
surface leaving a chemical compound at the interface.
These reactions dominate the interface behaviour,
and recently different correlations between the barrier
heights and magnitudes such as heats of formation
of the chemical compounds [12, 13] or eutectic tem-
peratures for transition metal-silicide-Si systems [25]
have been suggested.

As discussed earlier in this paper, in order to obtain

qualitative results for these junctions, we use the 3-
dimensional model given above for different values
of b. We recall that our results would be valid only
for the first stages of the reaction (small ô), as for
extended reaction we would need to describe the
electronic structure of the compound being formed
[13, 15]. Note that this model can be also used to
analyse etched interfaces for which only a fraction of
the dangling bonds have been saturated (in this case
0  c5  n/3).

In figure 7 we have drawn the density of interface
states for the three 1-dimensional cases for different
values of A and b. The main feature of these results
is that now the whole density of states ceases to be
symmetric around the midgap, in such a way that
the neutral level (po is also displaced from e = 0
(midgap). Here we notice that as in the previous case,
new interface states induced by the chemical reaction
appear. In figure 8 the charge neutrality level is
shown as a function of ô ; it can be noticed that for
b &#x3E; 2 n/3 (two electrons removed), both media are
decoupled and the charge neutrality follows that

corresponding to the semiconductor free surfaces.
Two assumptions have been made in doing these
calculations. First we took the effective layer thickness
T = 2 d (see Fig. 2) ; this is probably an underestima-
tion of T. Second we calculated A by using equation
(35) ; this means that we are assuming the chemical
compound to be a dielectric. We must be aware of
the fact that in many instances the silicides are metals,
as for-example is Pd2Si [15] ; in such cases our model
cannot probably be used (see discussion below).
The above results can be firstly applied to study the

ageing of etched metal-Si junctions [17, 18]. Notice
that in this case our calculation of A by means of
equation (34) is correct as the layer being built up at
the interface is probably an oxide. Turner and Rho-
derick [17] have found that as etched metal-Si contacts
are aged, the barrier heights (for Au-Si junctions in
particular) increase with time of ageing although the
final value is practically insensitive to the method used
to prepare the surface. If we made the plausible
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Fig. 8. - The charge neutrality level in reactive metal-semicon-
ductor junctions (full line) as a function of either the eiectronic
charge removed or the quantity gd, g being the reciprocal lattice
vector at the Fermi level and d is the distance shown in figure 2.
T (Fig. 2) is taken equal to 2 d (see tex)). Notice that for removed
electronic charges higher than 2 electrons the charge neutrality level
in the metal-semiconductor junctions follows that corresponding
to the free semiconductor surface (thick broken line).

assumption that ageing favours the saturation of the
dangling bonds, we can interpret those data as follows :
the final barrier height for a fully etched junction is
obtained when all the charge in the semiconductor
dangling bonds has reacted (ô = n/3) with the adsor-
bate (this result being independent of the method used
to fully etch the surface). If a less amount of charge
has reacted (this can now depend on the method used),
0  £5  n/3, the neutral level lies at higher energies
(Fig. 8) giving a smaller barrier height, in qualitative
agreement with the results of Turner and Rhode-
rick [17].
The discussion of reactive interfaces is not so clean.

Our model can be only used to interpret the first

stages of the reaction. Unfortunately, barrier heights
changes during those initial stages have not been

carefully analysed. Recently Cheng et al. [16] have
suggested that thèse measurements have to be per-
formed at low temperatures (170 K) to control the
rapid reactions that take place. The present theory
predicts that for these initial stages the neutral level
would be displaced to higher energies (Fig. 8) giving
smaller heights. One might be tempted to compare
this result with those of Brillson [13] which indicate
that the barrier heights for reactive interfaces are
smaller than those of non reactive junctions ; however,
a more detailed knowledge of the conditions under
which those data were taken and of the properties
of the compounds being formed is needed in order
to make a comparison with total confidence. We
should conclude that to develop a microscopic theory
of reactive junctions, more detailed experimental
data are needed, in particular there is a need of achiev-
ing a sound knowledge of the properties of the silicides
being formed.

4. Concluding remarks. - The aim of this paper has
been to present a theory, which could account for
some of the properties of the junctions mentioned
in the introduction. To this end we have analysed the

interface density of states and the neutral level as a
function of the interface conditions. To our knowledge,
this is the first time that a rigorous discussion of the
neutral level in such a general terms, has been made
[18]. The price we have paid for it is the use of a rather
simplified model. However we have reached some
general conclusions that seem to be at least in quali-
tative agreement with the experimental evidence,
i) For clean covalent junctions, the neutral level is

independent of any relaxation or physisorbed layer
at the interface ; the junction behaviour, tums out to
be always near the Bardeen limit. ii) For ionic junc-
tions we have shown that the rather Bardeen-like
behaviour found for intimate contacts [7, 9, 32] can be
changed into a Schottky-like behaviour if a physi-
sorbed layer or some relaxation [10] are present at the
interface; we have also pointed out that the latter
could be correlated with the Andrews and Phillips
suggestion [12] concerning the strength of the metal-
semiconductor bonds (weak for the ionic junctions
and strong for the covalent ones). iii) For etched
covalent interfaces, we have found that the neutral
level coincides with the level obtained for non reactive

interfaces, although the density of states around (fJo
decreases with the width of the oxide layer ; we have
shown that, if the oxide layer is wide enough, the
junction behaviour is near the Schottky limit. We
have also analysed the ageing behaviour of partially
etched covalent interfaces and compared our results
with experimental data [17, 18]. iv) Finally we have
used our results for reactive interfaces to comment the

present state of our knowledge of these complicated
system. Following Cheng et al. [16] we have remarked
the need of performing barrier height measurements
at low temperatures, and we have demonstrated that
to develop a sound microscopic theory for these

junctions, various studies of the electronic structure
of the chemical compound being formed are required.

Appendix 1. - As stated in section 2, matching
wavefunctions like those of equations (2a) and (2b)
through the interface, leads to the general equation

that relates the two phase-shifts 11 and il’ of the two
wavefunctions given in equations (2). Then, the inter-
face density of states can be obtained from equation
(A.1) by using the following argument :

a) Let us consider the system of figure 2 (with
1 V 1 = 0) and assume that both jellium metals extend
up to z = L and z’ = L’. Then we choose L and L’
in such a way that for a given energy E (referred to the
average potential in z &#x3E; 0) we have
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where m and m’ are integers and À and À’ are the
wavevectors of the wavefunctions given in equations
(2a), (2b). Note that these equations lead to

a relation that can be satisfied with a given accuracy
even though the r.h.s. is an irrational number.

b) Let us now assume that both media have infinite
barriers at z = 0 (z’ = 0) and z = L (z’ = L’) and a
constant potential between these barriers. Then, by
considering equations (A. 2), (A. 3) and (A. 4) we can
prove that both metals have the same spectrum of
energy levels around E. In fact equations (A. 2) and
(A. 3) show that we have one electronic state for each
metal at the energy E. Moreover, any other level near
this one has a momentum given by

Om and Am’ being integers. Then the energy of this
level will be

Taking into account equation (A. 4) we finally find
that if Am = Am’, then AE =’ AE ’, and therefore both
metals have the same spectrum around the energy E.

c) Now we allow both metals to be connected

through the interface (we remove the infinite barriers
at z = 0 and z’ = 0), keeping the infinite barriers at
z = L and z’ = L’. In order to obtain the new levels
for the junction, we impose the following relations

since the wavefunctions (2a), (2b) must vanish at the
infinite barriers z = L and z’ = L’ respectively.

In equations (A. 7) ôÀ and b;" represent the shift in
the wavevectors for the new interface solutions.

Accordingly, the energy levels will be shifted to

E + ôE, in such a way that

Then equations (A. 7), (A. 8) and (A. 4) lead to the
relation

Then the equation which give the phase-shift q anc
consequently the new interface energy levels and
wavefunctions will be

It is important to note that equation (A. 10) must have
two solutions. In fact for the case of infinite barriers
at z = 0 and z’ = 0 we already had two levels, at the
same energy, one for each metal. When the two metals
are connected through the interface, this degenerate
level splits into two states that are given by (A 10).

Finally, the interface density of states NI(E) can be
obtained from the two solutions of equation (A. 10),
namely, n(1) and n(2) as follows

On the, other hand, the two wavefunctions can be
written as

for i = 1, 2.
Then by using the normalization and orthogonality

conditions and equation (A. 4) we obtain the following
values for the constants in equation (A 12)

with a2 + b2 = 2. Introducing these values into

equation (A .12) we obtain the form used in equa-
tion (18).

Finally, let us discuss the behaviour of n(i), i = 1, 2
at E = Eo (we recall that E = 0, Eo are the average
at z &#x3E; 0 and z’ &#x3E; 0, respectively). The general equa-
tion (A.1) can be obtained by matching across the
interface the wavefunction § at z &#x3E; 0 with that at
z’ &#x3E; 0 given by

thus the matching equation is written as

Now for E --. Eo and -&#x3E; 0, equation (A .15) has two
solutions, namely,
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The first case (a) corresponds to one of the solutions
of equation (A.1), namely 1 (2) - 0, while the second
(b) gives a finite value for ,,’ n(1) finite). On the other
hand, solution (b) involves a condition (L --&#x3E; oo) that
coincides with the one obtained by approaching

E = Eo from E  Eo, which means using the wave-
function of equation (3). This proves that

as written in equation (13).
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