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In the present article, we argue that it is possible to generalize Schrödinger equation

to describe quantization of celestial systems. While this hypothesis has been described

by some authors, including Nottale, here we argue that such a macroquantization was

formed by topological superfluid vortice. We also provide derivation of Schrödinger

equation from Gross-Pitaevskii-Ginzburg equation, which supports this superfluid

dynamics interpretation.

1 Introduction

In the present article, we argue that it is possible to generalize

Schrödinger equation to describe quantization of celestial

systems, based on logarithmic nature of Schrödinger equa-

tion, and also its exact mapping to Navier-Stokes equa-

tions [1].

While this notion of macro-quantization is not widely ac-

cepted yet, as we will see the logarithmic nature of Schrödin-

ger equation could be viewed as a support of its applicability

to larger systems. After all, the use of Schrödinger equation

has proved itself to help in finding new objects known as

extrasolar planets [2, 3]. And we could be sure that new

extrasolar planets are to be found in the near future. As an

alternative, we will also discuss an outline for how to derive

Schrödinger equation from simplification of Ginzburg-

Landau equation. It is known that Ginzburg-Landau equation

exhibits fractal character, which implies that quantization

could happen at any scale, supporting topological interpret-

ation of quantized vortices [4].

First, let us rewrite Schrödinger equation in its common

form [5]
[

i
∂

∂t
+
∇̄2

2m
− U (x)

]

ψ = 0 (1)

or

i
∂ψ

∂t
= Hψ . (2)

Now, it is worth noting here that Englman and Yahalom

[5] argues that this equation exhibits logarithmic character

lnψ(x, t) = ln
(

|ψ(x, t)|
)

+ i arg
(

ψ(x, t)
)

. (3)

Schrödinger already knew this expression in 1926, which

then he used it to propose his equation called “eigentliche

Wellengleichung” [5]. Therefore equation (1) can be re-

written as follows

2m
∂
(

ln|ψ|
)

∂t
+2∇̄ ln |ψ|∇̄arg

[

ψ
]

+∇̄∇̄arg
[

ψ
]

=0 . (4)

Interestingly, Nottale’s scale-relativistic method [2, 3]

was also based on generalization of Schrödinger equation

to describe quantization of celestial systems. It is known

that Nottale-Schumacher’s method [6] could predict new

exoplanets in good agreement with observed data. Nottale’s

scale-relativistic method is essentially based on the use of

first-order scale-differentiation method defined as follows [2]

∂V

∂(lnδt)
= β (V ) = a+ b V + . . . . (5)

Now it seems clear that the natural-logarithmic derivat-

ion, which is essential in Nottale’s scale-relativity approach,

also has been described properly in Schrödinger’s original

equation [5]. In other words, its logarithmic form ensures

applicability of Schrödinger equation to describe macro-

quantization of celestial systems. [7, 8]

2 Quantization of celestial systems and topological

quantized vortices

In order to emphasize this assertion of the possibility to de-

scribe quantization of celestial systems, let us quote Fischer’s

description [4] of relativistic momentum from superfluid

dynamics. Fischer [4] argues that the circulation is in the

relativistic dense superfluid, defined as the integral of the

momentum

γs =

∮

pµ dx
µ = 2πNv ~ , (6)

and is quantized into multiples of Planck’s quantum of action.

This equation is the covariant Bohr-Sommerfeld quantization

of γs. And then Fischer [4] concludes that the Maxwell

equations of ordinary electromagnetism can be written in

the form of conservation equations of relativistic perfect fluid

hydrodynamics [9]. Furthermore, the topological character of

equation (6) corresponds to the notion of topological elect-

ronic liquid, where compressible electronic liquid represents

superfluidity [25]. For the plausible linkage between super-

fluid dynamics and cosmological phenomena, see [16–24].
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It is worth noting here, because vortices could be defined

as elementary objects in the form of stable topological exci-

tations [4], then equation (6) could be interpreted as Bohr-

Sommerfeld-type quantization from topological quantized

vortices. Fischer [4] also remarks that equation (6) is quite

interesting for the study of superfluid rotation in the context

of gravitation. Interestingly, application of Bohr-Sommerfeld

quantization for celestial systems is known in literature [7, 8],

which here in the context of Fischer’s arguments it has

special meaning, i. e. it suggests that quantization of celestial

systems actually corresponds to superfluid-quantized vortices

at large-scale [4]. In our opinion, this result supports known

experiments suggesting neat correspondence between con-

densed matter physics and various cosmology phen-

omena [16–24].

To make the conclusion that quantization of celestial

systems actually corresponds to superfluid-quantized vortices

at large-scale a bit conceivable, let us consider the problem

of quantization of celestial orbits in solar system.

In order to obtain planetary orbit prediction from this

hypothesis we could begin with the Bohr-Sommerfeld’s con-

jecture of quantization of angular momentum. This con-

jecture may originate from the fact that according to BCS

theory, superconductivity can exhibit macroquantum phen-

omena [26, 27]. In principle, this hypothesis starts with

observation that in quantum fluid systems like superfluidity

[28]; it is known that such vortexes are subject to quantization

condition of integer multiples of 2π, or
∮

vsdl= 2πn~/m.

As we know, for the wavefunction to be well defined and

unique, the momenta must satisfy Bohr-Sommerfeld’s quant-

ization condition [28]

∮

Γ

p dx = 2πn~ (6a)

for any closed classical orbit Γ. For the free particle of unit

mass on the unit sphere the left-hand side is [28]

∫ T

0

v2dτ = ω2T = 2πω , (7)

where T = 2π/ω is the period of the orbit. Hence the quantiz-

ation rule amounts to quantization of the rotation frequency

(the angular momentum): ω=n~. Then we can write the

force balance relation of Newton’s equation of motion [28]

GMm

r2
=
mv2

r
. (8)

Using Bohr-Sommerfeld’s hypothesis of quantization of

angular momentum, a new constant g was introduced [28]

mvr =
ng

2π
. (9)

Just like in the elementary Bohr theory (before Schrödin-

ger), this pair of equations yields a known simple solution

for the orbit radius for any quantum number of the form [28]

r =
n2g2

4π2GMm2
, (10)

which can be rewritten in the known form of gravitational

Bohr-type radius [2, 7, 8]

r =
n2GM

v20
, (11)

where r, n, G, M , v0 represents orbit radii, quantum number

(n= 1, 2, 3, . . . ), Newton gravitation constant, and mass of

the nucleus of orbit, and specific velocity, respectively. In

this equation (11), we denote [28]

v0 =
2π

g
GMm. (12)

The value of m is an adjustable parameter (similar to g)
[7, 8]. In accordance with Nottale, we assert that the specific

velocity v0 is 144 km/sec for planetary systems. By noting

that m is meant to be mass of celestial body in question, then

we could find g parameter (see also [28] and references cited

therein).

Using this equation (11), we could predict quantization of

celestial orbits in the solar system, where for Jovian planets

we use least-square method and use M in terms of reduced

mass μ= (M1+M2)
M1M2

. From this viewpoint the result is shown

in Table 1 below [28].

For comparison purpose, we also include some recent

observation by Brown-Trujillo team from Caltech [29–32].

It is known that Brown et al. have reported not less than four

new planetoids in the outer side of Pluto orbit, including

2003EL61 (at 52 AU), 2005FY9 (at 52 AU), 2003VB12 (at

76 AU, dubbed as Sedna). And recently Brown-Trujillo team

reported a new planetoid finding, called 2003UB31 (97 AU).

This is not to include their previous finding, Quaoar (42 AU),

which has orbit distance more or less near Pluto (39.5 AU),

therefore this object is excluded from our discussion. It is

interesting to remark here that all of those new “planetoids”

are within 8% bound from our prediction of celestial quant-

ization based on the above Bohr-Sommerfeld quantization

hypothesis (Table 1). While this prediction is not so precise

compared to the observed data, one could argue that the

8% bound limit also corresponds to the remaining planets,

including inner planets. Therefore this 8% uncertainty could

be attributed to macroquantum uncertainty and other local

factors.

While our previous prediction only limits new planet

finding until n= 9 of Jovian planets (outer solar system),

it seems that there are sufficient reasons to suppose that

more planetoids in the Oort Cloud will be found in the near

future. Therefore it is recommended to extend further the

same quantization method to larger n values. For prediction

purpose, we include in Table 1 new expected orbits based
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Object No. Titius Nottale CSV Observ. ∆, %

1 0.4 0.43

2 1.7 1.71

Mercury 3 4 3.9 3.85 3.87 0.52

Venus 4 7 6.8 6.84 7.32 6.50

Earth 5 10 10.7 10.70 10.00 −6.95

Mars 6 16 15.4 15.4 15.24 −1.05

Hungarias 7 21.0 20.96 20.99 0.14

Asteroid 8 27.4 27.38 27.0 1.40

Camilla 9 34.7 34.6 31.5 −10.00

Jupiter 2 52 45.52 52.03 12.51

Saturn 3 100 102.4 95.39 −7.38

Uranus 4 196 182.1 191.9 5.11

Neptune 5 284.5 301 5.48

Pluto 6 388 409.7 395 −3.72

2003EL61 7 557.7 520 −7.24

Sedna 8 722 728.4 760 4.16

2003UB31 9 921.8 970 4.96

Unobserv. 10 1138.1

Unobserv. 11 1377.1

Table 1: Comparison of prediction and observed orbit distance of

planets in Solar system (in 0.1AU unit) [28].

on the same quantization procedure we outlined before. For

Jovian planets corresponding to quantum number n= 10 and

n= 11, our method suggests that it is likely to find new

orbits around 113.81 AU and 137.71 AU, respectively. It is

recommended therefore, to find new planetoids around these

predicted orbits.

As an interesting alternative method supporting this pro-

position of quantization from superfluid-quantized vortices

(6), it is worth noting here that Kiehn has argued in favor of

re-interpreting the square of the wavefunction of Schrödinger

equation as the vorticity distribution (including topological

vorticity defects) in the fluid [1]. From this viewpoint, Kiehn

suggests that there is exact mapping from Schrödinger equa-

tion to Navier-Stokes equation, using the notion of quantum

vorticity [1]. Interestingly, de Andrade and Sivaram [33] also

suggest that there exists formal analogy between Schrödinger

equation and the Navier-Stokes viscous dissipation equation:

∂V

∂t
= ν∇2V , (13)

where ν is the kinematic viscosity. Their argument was based

on propagation torsion model for quantized vortices [23].

While Kiehn’s argument was intended for ordinary fluid,

nonetheless the neat linkage between Navier-Stokes equation

and superfluid turbulence is known in literature [34, 24].

At this point, it seems worth noting that some criticism

arises concerning the use of quantization method for de-

scribing the motion of celestial systems. These criticism

proponents usually argue that quantization method (wave

mechanics) is oversimplifying the problem, and therefore

cannot explain other phenomena, for instance planetary mig-

ration etc. While we recognize that there are phenomena

which do not correspond to quantum mechanical process, at

least we can argue further as follows:

1. Using quantization method like Nottale-Schumacher

did, one can expect to predict new exoplanets (extra-

solar planets) with remarkable result [2, 3];

2. The “conventional” theories explaining planetary mig-

ration normally use fluid theory involving diffusion

process;

3. Alternatively, it has been shown by Gibson et al. [35]

that these migration phenomena could be described via

Navier-Stokes approach;

4. As we have shown above, Kiehn’s argument was based

on exact-mapping between Schrödinger equation and

Navier-Stokes equations [1];

5. Based on Kiehn’s vorticity interpretation one these

authors published prediction of some new planets in

2004 [28]; which seems to be in good agreement with

Brown-Trujillo’s finding (March 2004, July 2005) of

planetoids in the Kuiper belt;

6. To conclude: while our method as described herein

may be interpreted as an oversimplification of the real

planetary migration process which took place some-

time in the past, at least it could provide us with useful

tool for prediction;

7. Now we also provide new prediction of other planet-

oids which are likely to be observed in the near future

(around 113.8 AU and 137.7 AU). It is recommended

to use this prediction as guide to finding new objects

(in the inner Oort Cloud);

8. There are of course other theories which have been

developed to explain planetoids and exoplanets [36].

Therefore quantization method could be seen as merely

a “plausible” theory between others.

All in all, what we would like to emphasize here is

that the quantization method does not have to be the true

description of reality with regards to celestial phenomena.

As always this method could explain some phenomena, while

perhaps lacks explanation for other phenomena. But at least

it can be used to predict something quantitatively, i. e. mea-

surable (exoplanets, and new planetoids in the outer solar

system etc.).

In the meantime, it seems also interesting here to consider

a plausible generalization of Schrödinger equation in partic-

ular in the context of viscous dissipation method [1]. First,

we could write Schrödinger equation for a charged particle
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interacting with an external electromagnetic field [1] in the

form of Ulrych’s unified wave equation [14]

[

(−i~∇− qA)µ(−i~∇− qA)
µψ
]

=

=

[

−i2m
∂

∂t
+ 2mU(x)

]

ψ .
(14)

In the presence of electromagnetic potential, one could

include another term into the LHS of equation (14)

[

(−i~∇− qA)µ(−i~∇− qA)
µ + eA0

]

ψ =

= 2m

[

−i
∂

∂t
+ U(x)

]

ψ .
(15)

This equation has the physical meaning of Schrödinger

equation for a charged particle interacting with an external el-

ectromagnetic field, which takes into consideration Aharonov

effect [37]. Topological phase shift becomes its immediate

implication, as already considered by Kiehn [1].

As described above, one could also derived equation

(11) from scale-relativistic Schrödinger equation [2, 3]. It

should be noted here, however, that Nottale’s method [2,

3] differs appreciably from the viscous dissipative Navier-

Stokes approach of Kiehn [1], because Nottale only considers

his equation in the Euler-Newton limit [3]. Nonetheless,

it shall be noted here that in his recent papers (2004 and

up), Nottale has managed to show that his scale relativistic

approach has linkage with Navier-Stokes equations.

3 Schrödinger equation derived from Ginzburg-

Landau equation

Alternatively, in the context of the aforementioned superfluid

dynamics interpretation [4], one could also derive Schrödin-

ger equation from simplification of Ginzburg-Landau equa-

tion. This method will be discussed subsequently. It is known

that Ginzburg-Landau equation can be used to explain vari-

ous aspects of superfluid dynamics [16, 17]. For alternative

approach to describe superfluid dynamics from Schrödinger-

type equation, see [38, 39].

According to Gross, Pitaevskii, Ginzburg, wavefunction

of N bosons of a reduced mass m∗ can be described as [40]

−

(

~
2

2m∗

)

∇2ψ + κ |ψ|
2
ψ = i~

∂ψ

∂t
. (16)

For some conditions, it is possible to replace the potential

energy term in equation (16) with Hulthen potential. This

substitution yields

−

(

~
2

2m∗

)

∇2ψ + VHulthenψ = i~
∂ψ

∂t
, (17)

where

VHulthen = −Ze
2 δ e−δr

1− e−δr
. (18)

This equation (18) has a pair of exact solutions. It could

be shown that for small values of δ, the Hulthen potential (18)

approximates the effective Coulomb potential, in particular

for large radius

V eff

Coulomb
= −

e2

r
+
ℓ(ℓ+ 1) ~2

2mr2
. (19)

By inserting (19), equation (17) could be rewritten as

−

(

~
2

2m∗

)

∇2ψ+

[

−
e2

r
+
ℓ(ℓ+1)~2

2mr2

]

ψ = i~
∂ψ

∂t
. (20)

For large radii, second term in the square bracket of LHS

of equation (20) reduces to zero [41],

ℓ(ℓ+ 1)~2

2mr2
→ 0 , (21)

so we can write equation (20) as
[

−

(

~
2

2m∗

)

∇2 + U(x)

]

ψ = i~
∂ψ

∂t
, (22)

where Coulomb potential can be written as

U(x) = −
e2

r
. (22a)

This equation (22) is nothing but Schrödinger equation

(1), except for the mass term now we get mass of Cooper

pairs. In other words, we conclude that it is possible to re-

derive Schrödinger equation from simplification of (Gross-

Pitaevskii) Ginzburg-Landau equation for superfluid dyn-

amics [40], in the limit of small screening parameter, δ.
Calculation shows that introducing this Hulthen effect (18)

into equation (17) will yield essentially similar result to (1),

in particular for small screening parameter. Therefore, we

conclude that for most celestial quantization problems the

result of TDGL-Hulthen (20) is essentially the same with the

result derived from equation (1). Now, to derive gravitational

Bohr-type radius equation (11) from Schrödinger equation,

one could use Nottale’s scale-relativistic method [2, 3].

4 Concluding remarks

What we would emphasize here is that this derivation of

Schrödinger equation from (Gross-Pitaevskii) Ginzburg-

Landau equation is in good agreement with our previous con-

jecture that equation (6) implies macroquantization corres-

ponding to superfluid-quantized vortices. This conclusion is

the main result of this paper. Furthermore, because Ginzburg-

Landau equation represents superfluid dynamics at low-

temperature [40], the fact that we can derive quantization

of celestial systems from this equation seems to support

the idea of Bose-Einstein condensate cosmology [42, 43].

Nonetheless, this hypothesis of Bose-Einstein condensate

cosmology deserves discussion in another paper.

Above results are part of our book Multi-Valued Logic,

Neutrosophy, and Schrödinger Equation that is in print.
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