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Abstract

For the Schrödinger flow from R
2 × R

+ to the 2-sphere S
2, it is not known if

finite energy solutions can blow up in finite time. We study equivariant solutions

whose energy is near the energy of the family of equivariant harmonic maps. We

prove that such solutions remain close to the harmonic maps until the blowup

time (if any), and that they blow up if and only if the length scale of the nearest

harmonic map goes to 0. c© 2006 Wiley Periodicals, Inc.

1 Introduction and Main Result

The Schrödinger flow for maps from R
n to S

2 (also known as the Schrödinger

map, and, in ferromagnetism, as the Heisenberg model or Landau-Lifshitz equa-

tion) is given by the equation

(1.1) ut = u × �u, u(x, 0) = u0(x).

Here u(x, t) is the unknown map from R
n × R

+ to the 2-sphere

S
2 := {u ∈ R

3 | |u| = 1} ⊂ R
3,

� denotes the Laplace operator in R
n , and × denotes the cross product in R

3. A

more geometric way to write this equation is

(1.2) ut = J P�u, P�u = �u + |∇u|2u,

where P = Pu denotes the orthogonal projection from R
3 onto the tangent plane

TuS
2 := {ξ ∈ R

3 | ξ · u = 0}
to S

2 at u, and J = J u := u × is a rotation through π/2 on TuS
2.

On one hand, equation (1.1) is a borderline case of the Landau-Lifshitz-Gilbert

equations that model isotropic ferromagnetic spin systems:

(1.3) ut = a P�u + bJ P�u, a ≥ 0,
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(see, e.g., [10, 11]). The Schrödinger flow corresponds to the case a = 0. The case

b = 0 is the well-studied harmonic map heat flow, for which some finite-energy

solutions do blow up in finite time [2].

On the other hand, equation (1.1) is a particular case of the Schrödinger flow

from a Riemannian manifold into another one with a complex structure (see, e.g.,

[6, 7, 8, 9, 14, 18, 19]). We will limit ourselves to the case u : R
n × R

+ → S
2 in

this paper.

Equation (1.1) can be written in the divergence form ut = ∑n
j=1 ∂j (u × ∂j u),

which is useful in the construction of global weak solutions [16]. Its formal equiv-

alence to a nonlinear Schrödinger equation (NLS) can be seen by applying the

stereographic projection from S
2 to C∞, the extended complex plane,

(1.4) w = u1 + iu2

1 + u3

, iwt = −�w + 2w̄

1 + |w|2
∑

j

(∂jw)2.

It is also known to be equivalent to an integrable cubic NLS in space dimension

n = 1 (see, e.g., [5, 17]).

Equation (1.1) formally conserves the energy

(1.5) E(u) = 1

2

∫
Rn

|∇u|2 dx = 1

2

∫
Rn

n∑
j=1

3∑
k=1

|∂j uk |2 dx .

The space dimension n = 2 is critical in the sense that E(u) is invariant under

scaling. In general,

(1.6) E(u) = s2−n
E(us), us(x) := u

(
x

s

)
, s > 0.

For our problem u : R
n × R

+ → S
2, local-in-time well-posedness (LWP) is

established in [16] in the class |u| = 1 and ∇u ∈ H k(Rn), where k > n/2 + 1

is an integer. The authors there also proved global-in-time well-posedness (GWP)

in the same class when n = 1 and when n ≥ 2 for data that is small in certain

Sobolev norms. For n = 2, global existence is proved in [3] for small energy

radial or equivariant data. Also, for n = 2, LWP for a closely related system of

nonlinear Schrödinger equations is established in [12, 13] for data corresponding

to ∇u ∈ H 1+ε . There are known to be self-similar blowup solutions for n = 2 [4];

however, these do not have finite energy.

Fix m ∈ Z, a nonzero integer. By an m-equivariant map u : R
2 → S

2, we mean

a map of the form

(1.7) u(r, θ) = emθ Rv(r)
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where (r, θ) are polar coordinates on R
2, v : [0,∞) → S

2, and R is the matrix

generating rotations around the u3-axis:

(1.8) R =

0 −1 0

1 0 0

0 0 0


 , eαR =


cos α − sin α 0

sin α cos α 0

0 0 1


 .

Radial maps arise as the case m = 0. The class of m-equivariant maps is formally

preserved by the Schrödinger flow.

If u is m-equivariant, we have |∇u|2 = |ur |2+r−2|uθ |2 = |vr |2+(m2/r2)|Rv|2,

and so

(1.9) E(u) = π

∫ ∞

0

(
|vr |2 + m2

r2
(v2

1 + v2
2)

)
r dr.

If E(u) < ∞, the limits limr→0 v(r) and limr→∞ v(r) make sense (see (2.2) in the

next section), and so we must have v(0), v(∞) = ±k̂, where k̂ = (0, 0, 1)T. We

may and will fix v(0) = −k̂. The two cases v(∞) = ±k̂ correspond to different

topological classes of maps. We denote by �m the class of m-equivariant maps

with v(∞) = k̂:

�m = {u : R
2 → S

2 | u = emθ Rv(r), E(u) < ∞,

v(0) = −k̂, v(∞) = k̂}.
(1.10)

The energy E(u) can be rewritten as follows:

E(u) = π

∫ ∞

0

(
|vr |2 + m2

r2
|J v Rv|2

)
r dr

= π

∫ ∞

0

∣∣∣∣vr − |m|
r

J v Rv

∣∣∣∣
2

r dr + Emin

(1.11)

where J v := v ×, and

Emin = 2π

∫ ∞

0

vr · |m|
r

J v Rv r dr

= 2π |m|
∫ ∞

0

(v3)r dr = 2π |m|[v3(∞) + 1]
(1.12)

(using v2
1 + v2

2 + v2
3 = 1). The number Emin, which depends only on the boundary

conditions, is in fact 4π times the absolute value of the degree of the map u, con-

sidered as a map from S
2 to itself (defined, for example, by integrating the pullback

by u of the volume form on S
2). It provides a lower bound for the energy of an

m-equivariant map, E(u) ≥ Emin, and this lower bound is attained if and only if

(1.13) vr = |m|
r

J v Rv.
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If v(∞) = −k̂, the minimal energy is Emin = 0 and is attained by the constant map

u ≡ −k̂. On the other hand, if v(∞) = k̂, the minimal energy is

E(u) ≥ Emin = 4π |m|
and is attained by the 2-parameter family of harmonic maps

(1.14) Om := {emθ Rhs,α(r) | s > 0, α ∈ [0, 2π)}
where

hs,α(r) := eαRh

(
r

s

)
,

and

(1.15) h(r) =

h1(r)

0

h3(r)


 , h1(r) = 2

r |m| + r−|m| , h3(r) = r |m| − r−|m|

r |m| + r−|m| .

The fact that h(r) satisfies (1.13) means

(1.16) (h1)r = −m

r
h1h3, (h3)r = m

r
h2

1.

So Om is the orbit of the single harmonic map emθ Rh(r) under the symmetries of

the energy E that preserve equivariance: scaling and rotation. Explicitly,

(1.17) emθ Rhs,α(r) =

cos(mθ + α)h1(r/s)

sin(mθ + α)h1(r/s)

h3(r/s)


 .

The solution (1.15) is easily found by solving system (1.13) of ODEs directly. Al-

ternately, under the stereographic projection (1.4), equation (1.13) amounts to the

Cauchy-Riemann equations, and these harmonic maps correspond to the antimero-

morphic (if m > 0) functions

(1.18) w = eiα

(
z̄

s

)−m

, z = reiθ .

We are now ready to state our main result. We denote ‖u‖Ḣ k = ‖∇ku‖L2 .

THEOREM 1.1 There exist δ > 0 and C0, C1 > 0 such that if u ∈ C([0, T ); Ḣ 2 ∩
�m) is a solution of the Schrödinger flow (1.1) conserving energy and satisfying

δ2
1 := E(u0) − 4π |m| < δ2,

then there exist s(t) ∈ C([0, T ); (0,∞)) and α(t) ∈ C([0, T ); R) so that

(1.19)

∥∥∥∥u(x, t) − e(mθ+α(t))Rh

(
r

s(t)

)∥∥∥∥
Ḣ1(R

2)

< C0δ1 ∀t ∈ [0, T ).

Moreover, s(t) > C1/‖u(t)‖Ḣ2
. Furthermore, if T < ∞ is the maximal time of

existence for u in Ḣ 2 (i.e., limt→T − ‖u(t)‖Ḣ2 = ∞), then

(1.20) lim inf
t→T −

s(t) = 0.
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Remark 1.2.

(1) This theorem can be viewed, on one hand, as an orbital stability result for

the family of harmonic maps (at least up to the possible blowup time), and on the

other hand as a characterization of blowup for energy near Emin: solutions blow up

if and only if the Ḣ 1-nearest harmonic map “collapses” (i.e., its length scale goes

to 0).

(2) The assumption E(u0) − 4π |m| < δ2 implies u0 is close to Om in Ḣ 1

(see (2.7)), but not necessarily in Ḣ 2.

(3) The existence of local (in time) Ḣ 2 ∩ Ḣ 1 solutions of (1.1) is established

in [16] for sufficiently regular initial data. In particular, this ensures Theorem 1.1

is nonempty (see also [12]–[13] for local well-posedness results). Local well-

posedness with data in Ḣ 2 ∩ Ḣ 1 still appears to be open. If we had this, (1.20)

could be replaced by limt→T − s(t) = 0.

(4) From now on we will assume m > 0. The cases m < 0 of Theorem 1.1

follow from the change of variables (x1, x2, x3) → (x1,−x2, x3).

The plan for the paper is as follows: In Section 2 we study maps whose energy

is close to that of the family of harmonic maps. The analysis here is completely

time independent. In Section 3 we apply Strichartz estimates to a certain nonlin-

ear Schrödinger equation, obtained via the Hasimoto transformation introduced in

[3], and present the proof of the main theorem. The proofs of some of the more

technical lemmas are relegated to Section 4 in order to streamline the presentation.

Without loss of generality, we assume m > 0 for the rest of the paper.

REMARK ON NOTATION. Throughout the paper, the letter C is used to denote

a generic constant, the value of which may change from line to line.

2 Maps with Energy near the Harmonic Map Energy

This section is devoted entirely to static m-equivariant maps (i.e., there is no

time dependence anywhere in this section). We establish some properties of maps

with energy close to the harmonic map energy 4πm. Roughly speaking, we prove

that such maps are Ḣ 1-close to harmonic maps. Precise statements appear in The-

orem 2.1 below.

We define the distance from any map u to the family Om of m-equivariant har-

monic maps to be

dist(u,Om) := inf
s∈(0,∞)

α∈S
1

‖u − emθ Rhs,α‖Ḣ1 .

Here S
1 = R/2π .

The following theorem defines a (nonlinear) projection from the set �m of m-

equivariant maps with energy close to 4πm onto the family Om and establishes a

key fact: for maps in this set, the squared distance dist2(u,Om) is bounded by the

energy difference E(u) − 4πm.
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THEOREM 2.1 There are constants δ > 0 and C0, C1 > 0 such that if u ∈ �m

satisfies

E(u) < 4πm + δ2,

then the following hold:

(i) There exist unique s(u) ∈ (0,∞) and α(u) ∈ S
1 such that

dist(u,Om) = ‖u − emθ Rhs(u),α(u)‖Ḣ1 .

Moreover, s(u) and α(u) are continuous functions of u ∈ Ḣ 1.

(ii) dist(u,Om) < C0[E(u) − 4πm]1/2 < C0δ.

(iii) If u ∈ Ḣ 2(R2), then s(u)‖u‖Ḣ2(R2) > C1.

PROOF: The proof is long, so we break it into a series of steps. At each step,

we may need to take δ smaller than in the previous step.

Step 1. A Change of Variable. Recall that u ∈ �m implies that in polar

coordinates (r, θ), u(x) = emθ Rv(r), with v(0) = −k̂ and v(∞) = k̂. The change

of variables

r → y = m log(r) ∈ (−∞,∞) or ey = rm

turns out to be very useful for our purposes.

Set

ṽ(y) := v(ey/m).

With this change of variables, the Ḣ 1 inner product of m-equivariant maps changes

as follows:

〈emθ Rv(r), emθ Rw(r)〉Ḣ1 =
∫
R2

∇[emθ Rv(r)] · ∇[emθ Rw(r)]dx

= 2π

∫ ∞

0

(
vr · wr + m2

r2
Rv · Rw

)
r dr

= 2πm

∫
R

(ṽ′ · w̃′ + Rṽ · Rw̃)dy,

where ′ denotes d/dy. In particular,

(2.1) E(u) = 2πm Ẽ(ṽ), Ẽ(ṽ) := 1

2

∫
R

(|ṽ′(y)|2 + ṽ1(y)2 + ṽ2(y)2
)
dy.

Note that this implies ṽj ∈ H 1(R) for j = 1, 2, and in particular (ṽ2
j )

′ ∈ L1(R) so

that the limits limy→±∞ ṽ2
j (y) exist and are equal 0. The function ṽ is continuous,

and ṽ2
3 = 1 − ṽ2

1 − ṽ2
2 has limit 1 as y → ±∞. Thus the limits limy→±∞ ṽ exist,

justifying our earlier claim

(2.2) lim
r→0

v(r) and lim
r→∞

v(r) exist.

Recall that for v ∈ �m , we have chosen ṽ(−∞) = −k̂, ṽ(∞) = k̂.
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Ẽ(ṽ) inherits the “topological lower bound”

(2.3) Ẽ(ṽ) = 2 + 1

2

∫
R

|ṽ′ − J ṽ Rṽ|2 dy ≥ 2.

In this new variable, scaling r corresponds to translating y. In particular, the family

of harmonic maps is composed of translations and rotations of a simple explicit

map:

hs,α(r) = eαRh

(
r

s

)
= eαRh̃(y − m log(s)),

h̃(y) =

 sech y

0

tanh y


 .

Step 2. Energy Close to 4πm Implies u Close to a Harmonic Map. Using

the variable y, we would like to prove the following:

LEMMA 2.2 For any ε > 0, there exists µ > 0 such that if a map ṽ : R → S
2

satisfies Ẽ(ṽ) < 2 + µ, and ṽ(−∞) = −k̂, ṽ(∞) = k̂, then

inf
α∈S1,a∈R

‖ṽ − eαRh̃( · − a)‖H1(R) < ε.

PROOF: Suppose not. Then there exist vj (r), j = 1, 2, 3, . . . , and ε0 > 0 such

that

(2.4)
|vj (r)| ≡ 1, Ẽ(vj ) < 2 + 1

j
,

vj (±∞) = ±k̂, ‖vj − eαRh̃( · − a)‖H1(R) ≥ ε0,

for every α ∈ S
1 and a ∈ R. Since Ẽ(vj ) < ∞, vj is continuous and thus

vj3(aj ) = 0 for some aj ∈ R. We replace vj by wj (y) := e−αj Rvj (y + aj ),

where αj ∈ S
1 is chosen so that wj (0) = ı̂ = (1, 0, 0)T. The properties (2.4) still

hold for {wj }:

(2.5) |wj (r)| ≡ 1, Ẽ(wj ) < 2 + 1

j
, wj (±∞) = ±k̂, ‖wj − h̃‖H1(R) ≥ ε0.

Since supj Ẽ(wj ) < ∞, there is a subsequence (which we continue to denote by

{wj }) and a limit vector function w∗(y) satisfying

(2.6)




wj1,−→ w∗
1, wj2 −→ w∗

2 weakly in H 1(R)

w′
j3 −→ w∗′

3 weakly in L2(R)

wj −→ w∗ strongly in L2
loc(R) ∩ C

0
loc(R).
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Because of the local uniform convergence, we have |w∗| ≡ 1 and w∗(0) = ı̂ . On

the other hand, by the topological lower bound (2.3), we have

2 ≤ Ẽ(wj ) = 2 + 1

2

∫
R

|w′
j − J wj Rwj |2 < 2 + 1

j
,

from which it is immediate that ‖w′
j − J wj Rwj‖L2(R) → 0 as j → ∞. For any

bounded interval I , using J w Rw = k̂ − w3w, we have

‖J wj Rwj − J w∗
Rw∗‖L2(I ) = ‖wj3wj − w∗

3w
∗‖L2(I ) → 0 as j → ∞.

Hence w′
j → J w∗

Rw∗ strongly in L2(I ). On the other hand, w∗′ is the weak limit

of w′
j , and so we obtain w∗′ = J w∗

Rw∗ almost everywhere, with w∗(0) = ı̂ . By

uniqueness of H 1
loc solutions of this system of ordinary differential equations, we

must have

w∗(y) = h̃(y) = ( sech y, 0, tanh y)T.

Now we note that

Ẽ(w∗) = Ẽ(h̃) = 2 = lim
j→∞

Ẽ(wj ).

By (2.1),

‖Rw∗‖2
H1(R)

+ ‖w∗
3
′‖2

L2(R)
= lim

j→∞
(‖Rwj‖2

H1(R)
+ ‖w′

j3‖2
L2(R)

)
.

By weak lower semicontinuity, i.e.,

‖Rw∗‖2
H1(R)

≤ lim inf
j→0

‖Rwj‖2
H1(R)

, ‖w∗′
3 ‖2

L2(R)
≤ lim inf

j→0
‖w′

j3‖2
L2(R)

,

we have ‖Rwj‖2
H1(R)

→ ‖Rw∗‖2
H1(R)

and ‖w′
j3‖2

L2(R)
→ ‖w∗′

3 ‖2
L2(R)

, which im-

plies Rwj → Rw∗ strongly in H 1(R) and w′
j3 → w∗′

3 strongly in L2(R). Finally,

we will show that wj − h̃ converges to 0 strongly in H 1(R), which will contradict

assumption (2.5), and so complete the proof of the lemma. Indeed,

‖wj − h̃‖2
H1(R)

= ‖w′
j − h̃′‖2

L2(R)
+ ‖Rwj − Rh̃‖2

L2(R)
+ ‖wj3 − h̃3‖2

L2(R)
.

We have already shown that the first two terms go to 0 in the limit, and so it remains

to consider the last term. For this, we need another lemma. For f : (a, b) → R,

denote by T(a,b)( f ) the total variation of f on (a, b). The following lemma shows

that the total variation of v3 is close to 2 if E(u) is close to 4πm.

LEMMA 2.3 If u = emθ Rv(r) ∈ �m and E(u) = 4πm + ε0, then T(0,∞)(v3) ≤
2 + Cε0.

PROOF: Make the change of variable ṽ(y) = v(ey/m), and write

ṽ = (ρ̃ cos(ω̃), ρ̃ sin(ω̃), ṽ3),

so that ρ̃2 = ṽ2
1 + ṽ2

2. We have
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4 + ε0

πm
≥

∫
R

(|ṽ′|2 + |Rṽ|2)dy =
∫
R

(
ρ̃2(ω̃′)2 + (ρ̃ ′)2

1 − ρ̃2
+ ρ̃2

)
dy

≥ 2

∫
R

ρ̃|ρ̃ ′|
(1 − ρ̃2)1/2

dy = 2

∫
R

∣∣∣∣ d

dy
(1 − ρ̃2)1/2

∣∣∣∣dy = 2TR(ṽ3).

Dividing by 2 on both sides completes the proof. �

Applying this lemma to wj , we have TR(wj3) ≤ 2 + C/j . Since wj3(−∞) =
−1, wj3(0) = 0, and wj3(∞) = 1, we have wj3(y) > −C/j for y ≥ 0 (and

similarly for y ≤ 0). Fix ε1 > 0. For |y| ≥ ε1 and j sufficiently large (depending

on ε1),

|w3 j − h̃3| = |w2
3 j − h̃2

3|
|w3 j + h̃3|

≤ |w2
3 j − h̃2

3|
|h̃3| − C/j

≤ 2

tanh ε1

∣∣w2
3 j − h̃2

3

∣∣ = 2

tanh ε1

∣∣|Rh̃|2 − |Rwj |2
∣∣,

and so ∫
|y|≥ε1

|w3 j − h̃3|2 dy → 0 as j → ∞.

Since
∫
|y|<ε1

|w3 j − h̃3|2 dy ≤ Cε1 and ε1 is arbitrary, we conclude

‖w3 j − h̃3‖L2(R) → 0.

This completes the proof of Lemma 2.2. �

Translating Lemma 2.2 back to the original variable r = ey/m , we find

(2.7)
given ε > 0, there is µ > 0 such that if u ∈ �m , E(u) < 4πm +µ,

then dist(u,Om) < ε.

Step 3. Existence of s(u) and α(u). Recall that since u ∈ �m , E(u) ≥
4πm, and set δ1 := [E(u) − 4πm]1/2 < δ. We observe first that

(2.8) lim
s→∞

inf
α

‖u − emθ Rhs,α‖2
Ḣ1 = lim

s→0
inf
α

‖u − emθ Rhs,α‖2
Ḣ1 = 8πm + δ2

1 .

Indeed, we have

(2.9) ‖u − emθ Rhs,α‖2
Ḣ1 = 8πm + δ2

1 − 2

∫
R2

∇u · ∇(emθ Rhs,α)dx,

and it suffices to show that for any α ∈ S
1

(2.10)

∫
R2

∇u · ∇(emθ Rhs,α)dx → 0

as s → 0 or s → ∞. Since hs,α(r) = h1,α(r/s), this latter fact follows from an

easy lemma:
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LEMMA 2.4 If f ∈ L2(R2), then

1

s
f

(
x

s

)
→ 0 weakly in L2(R2) as s → ∞ and s → 0.

PROOF: First suppose f ∈ L2 ∩ L∞ and fix g ∈ L2. By Hölder’s inequality,∫
R2

1

s
f

(
x

s

)
g(x)dx =

∫
|x |≤√

s

1

s
f

(
x

s

)
g(x)dx +

∫
|x |>√

s

1

s
f

(
x

s

)
g(x)dx

≤ ‖ f ‖L∞‖g‖L2

√
π√
s

+ ‖ f ‖L2

( ∫
|x |>√

s

|g(x)|2 dx

)1/2

→ 0

as s → ∞. A similar argument covers the s → 0 case. For general f ∈ L2, choose

fε ∈ L2 ∩ L∞ with ‖ fε − f ‖L2 < ε. Then by the above argument,∣∣∣∣
∫
R2

1

s
f

(
x

s

)
g(x)dx

∣∣∣∣ ≤ ε‖g‖L2 + o(s).

Since ε is arbitrary, we are done. �

To prove the claim (2.10), just take g = ∇u and 1
s

f ( · /s) = ∇(emθ Rhs,α) in

this lemma.

So on one hand, infα ‖u − emθ Rhs,α‖2
Ḣ1 approaches 8πm + δ2

1 as s → 0 and

s → ∞. On the other hand, (2.7) shows that if δ (and hence δ1) is sufficiently

small, then for some s and α, ‖u − emθ Rhs,α‖2
Ḣ1 < 8πm. Thus to minimize

F(s, α) := ‖u − emθ Rhs,α‖2
Ḣ1

over s ∈ (0,∞), α ∈ S
1, it suffices to consider s in a compact subset of (0,∞).

Since F(s, α) is continuous, there must exist s(u) ∈ (0,∞) and α(u) ∈ S
1 such

that

dist(u,Om) = ‖u − emθ Rhs(u),α(u)‖Ḣ1 .

Step 4. Uniqueness of s(u) and α(u). Denote σ = (s, α). Suppose there

exist σ1 and σ2 with σ1 �= σ2 such that

δ0 := dist(u,Om) = ‖u − emθ Rhσ1‖Ḣ1 = ‖u − emθ Rhσ2‖Ḣ1 .

Let µ be half the distance between emθ Rhσ1 and emθ Rhσ2 , µ := 1
2
‖emθ Rhσ1 −

emθ Rhσ2‖Ḣ1 . It follows that µ ≤ δ0. Now set ϕ(t) = emθ Rhσ(t) with σ(t) =
1
2
[(σ1 + σ2) + t (σ2 − σ1)], so that ϕ(−1) = emθ Rhσ1 and ϕ(1) = emθ Rhσ2 . Set

ϕ̄ := 1
2
[ϕ(−1) + ϕ(1)]. Lemma 4.6 (stated and proved in Section 4) then yields

‖ϕ̄ − ϕ(0)‖Ḣ1 < Cµ2.

This estimate amounts to a bound on the curvature of the family Om .
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Now ∇[u−ϕ̄] is L2-orthogonal to ∇[emθ R(hσ1 −hσ2)], since ‖u−emθ Rhσ1‖Ḣ1 =
‖u − emθ Rhσ2‖Ḣ1 . By the Pythagorean theorem,

‖u − ϕ̄‖2
Ḣ1 = ‖u − ϕ(−1)‖2

Ḣ1 − 1

4
‖ϕ(−1) − ϕ(1)‖2

Ḣ1 = δ2
0 − µ2,

and so

‖u − ϕ(0)‖Ḣ1 ≤ ‖u − ϕ̄‖Ḣ1 + ‖ϕ̄ − ϕ(0)‖Ḣ1 ≤ (δ2
0 − µ2)1/2 + Cµ2

= δ0 − µ2

δ0 +
√

δ2
0 − µ2

+ Cµ2.

By (2.7), we can ensure δ0 < 1/(2C) by choosing δ sufficiently small. This in

turn implies ‖u − ϕ(0)‖Ḣ1 < δ0, which contradicts the assumption that δ0 is the

minimal distance. This establishes uniqueness of s(u) and α(u).

Step 5. Continuity of s(u) and α(u). We could invoke the implicit function

theorem, but we prefer to give a simple direct proof of continuity. Suppose uj → u

in Ḣ 1 with E(uj ) < 4πm + δ2 and E(u) < 4πm + δ2. We have

dist(uj ,Om) ≤ ‖uj − emθ Rhs(u),α(u)‖Ḣ1 ≤ ‖uj − u‖Ḣ1 + dist(u,Om)

and

dist(u,Om) ≤ ‖u − emθ Rhs(uj ),α(uj )‖Ḣ1 ≤ ‖uj − u‖Ḣ1 + dist(uj ,Om)

and so dist(uj ,Om) → dist(u∗,Om). Since

‖emθ R(hs(uj ),α(uj ) − hs(u),α(u))‖Ḣ1 ≤ dist(uj ,Om) + dist(u,Om) + ‖uj − u‖Ḣ1,

{s(uj )} is contained in a compact subinterval of (0,∞) by Lemma 4.5, and so,

up to subsequence, s(uj ) → s∗ and α(uj ) → α∗ for some s∗ and α∗. Along this

subsequence

‖u − hs(u),α(u)‖Ḣ1 = dist(u,Om) = lim
j→∞

dist(uj ,Om)

= lim
j→∞

‖uj − hs(uj ),α(uj )‖Ḣ1 = ‖u − hs∗,α∗‖Ḣ1 .

By the uniqueness we have already proved, s∗ = s(u) and α∗ = α(u). We conclude

that s(uj ) → s(u) and α(uj ) → α(u) (for the full sequence). Continuity is proved.

This completes the proof of part (i) of Theorem 2.1.

Step 6. The “Linearized Operator.” We now proceed to the proof of part (ii)

of Theorem 2.1. The main idea is this: the “global” result of Lemma 2.2 allows

us now to work “locally” — i.e., nearby a harmonic map. Indeed, to prove (ii),

we study the second variation of the energy functional around the nearby harmonic

map. We begin by discussing this “linearized operator.”

Given an m-equivariant map u ∈ �m with E(u) − 4πm < δ2, we fix s = s(u)

and α = α(u) and write u = emθ Rv(r) with

(2.11) v(r) = eαR

(
h

(
r

s

)
+ ξ

(
r

s

))
.
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This defines ξ = ξ(r) = e−αRv(sr) − h(r) (note that the variable r here is no

longer the original polar coordinate). Using hr − (m/r)J h Rh = 0, expand

E(u) = 1

2

∫
|∇u|2 dx = 4πm + 1

2

∫
R2

∣∣∣∣vr − m

r
J v Rv

∣∣∣∣
2

dx

= 4πm + 1

2

∫
R2

∣∣∣∣Lξ + m

r
ξ3ξ

∣∣∣∣
2

dx(2.12)

where Lξ is the linear part,

(2.13) Lξ := ξr + m

r
(ξ3h + h3ξ).

In fact, the operator L maps tangent vector fields (i.e., vector functions η(r) tan-

gent to S
2 at h(r)) into tangent vector fields. To see this explicitly, we specify an

orthonormal basis of ThS
2:

e =

0

1

0


 and J he =


−h3(r)

0

h1(r)


 .

Then for any map ξ : [0,∞) → R
3, we have an orthogonal decomposition

(2.14) ξ(r) = z1(r)e + z2(r)J he + γ (r)h,

which defines a complex-valued function z(r) := z1(r) + i z2(r). Note that

Le = m

r
h3e, L(J he) = m

r
h3 J he, Lh = m

r
h3h + m

r
k̂.

Hence the operator L restricted to ThS
2 is equivalent to

L0 := ∂r + m

r
h3 = h1∂r

1

h1

in the sense that

L(z1e + z2 J he) = (L0z1)e + (L0z2)J he.

Roughly speaking, our strategy for proving part (ii) of Theorem 2.1 is to show

that dist(u,Om) is controlled by z, which is controlled by L0z, which in turn is

controlled by E(u) − 4πm.

Define for radial complex-valued functions f (r) and g(r) the following inner

product:

〈 f, g〉X :=
∫ ∞

0

(
f̄r (r)gr (r) + m2

r2
f̄ (r)g(r)

)
r dr.

If we set f̃ (y) := f (ey/m) and g̃(y) := g(ey/m), we have

(2.15) 〈 f, g〉X = m

∫
R

(
f̃ ′g̃′ + f̃ g̃

)
dy = m〈 f̃ , g̃〉H1(R).
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LEMMA 2.5 There are ε, C > 0 such that if f : [0,∞) → C satisfies

(2.16) |〈 f, h1〉X | ≤ ε‖ f ‖X

then

(2.17) ‖ f ‖2
X =

∫ ∞

0

(
| fr |2 + m2

r2
| f |2

)
r dr ≤ C

∫ ∞

0

|L0 f |2r dr.

PROOF: We may assume f (r) is real-valued. Under our change of variables

f̃ (y) := f (ey/m), we have∫ ∞

0

(
f 2
r + m2

r2
f 2

)
r dr = m

∫
R

(( f̃ ′)2 + f̃ 2)dy

and ∫ ∞

0

[L0 f ]2r dr = m

∫
R

[L̃0 f̃ ]2 dy

where

L̃0 := d

dy
+ tanh y = sech (y)

d

dy

1

sech y
.

In the variable y, the assumption of the lemma becomes

(2.18) 〈 f̃ , sech y〉H1(R) =
∫
R

(
f̃ ′( sech y)′ + f̃ sech y

)
dy ≤ ε√

m
‖ f̃ ‖H1(R),

and so it suffices to prove that (2.18) implies

(2.19) ‖ f̃ ‖2
H1(R)

≤ C‖L̃0 f̃ ‖2
L2(R)

= C〈 f̃ , L̃∗
0 L̃0 f̃ 〉L2(R).

The second-order differential operator

H := L̃∗
0 L̃0 = − d2

dy2
+ 1 − 2 sech 2(y)

is nonnegative with unique zero eigenfunction (“ground state”) sech (y) (in fact,

this operator is well studied; see, e.g., [15]). Set φ := (1/
√

2) sech y so that

‖φ‖L2(R) = 1. Write

f̃ = aφ + ϕ with 〈φ, ϕ〉 = 0.

Similarly, decompose

φ = b(φ′′ − φ) + ψ with 〈(φ′′ − φ), ψ〉 = 0.

Since φ′′ − φ = −√
2 sech 3 y, ψ is nonzero, b = −‖φ2‖2

L2(R)
/(2‖φ3‖2

L2(R)
), and

‖ψ‖L2 < 1.

Now by (2.18),

|a| = |〈φ, f̃ 〉| ≤ |〈b(φ′′ − φ), f̃ 〉| + |〈ψ, f̃ 〉|
= |b| |〈φ, f̃ 〉H1 | + |〈ψ, f̃ 〉| ≤ Cε‖ f̃ ‖H1(R) + |〈ψ, f̃ 〉|.
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Using the above estimate and (A + B)2 ≤ q ′ A2 + q B2 where q ′ is the Hölder

conjugate of q with 1 < q < ∞, we have

〈 f̃ , f̃ 〉 = |a|2 + ‖ϕ‖2
L2 ≤ (Cε‖ f̃ ‖H1(R) + |〈ψ, f̃ 〉|)2 + ‖ϕ‖2

L2

≤ Cq ′ε2‖ f̃ ‖2
H1(R)

+ q|〈ψ, f̃ 〉|2 + ‖ϕ‖2
L2

≤ Cq ′ε2‖ f̃ ‖2
H1(R)

+ q‖ψ‖2
L2‖ f̃ ‖2

L2 + ‖ϕ‖2
L2 .

Choose q to be such that q‖ψ‖2
L2 < 1 to obtain

‖ f̃ ‖2
L2 ≤ Cε2‖ f̃ ‖2

H1(R)
+ C〈 f̃ , H f̃ 〉,

where we used ‖ϕ‖2
L2 ≤ C〈ϕ, Hϕ〉 = C〈 f̃ , H f̃ 〉. On the other hand, we have

〈 f̃ ′, f̃ ′〉 ≤ 〈 f̃ , H f̃ ) + C‖ f̃ ‖2
L2 .

Combining the two estimates above, we get

‖ f̃ ‖2
H1(R)

≤ C〈 f̃ , H f̃ 〉 = C

∫
[L̃0 f̃ ]2 dy,

provided ε is sufficiently small. Transforming back to the variable r , we obtain

estimate (2.17), completing the proof. �

Step 7. Almost Orthogonality. To apply the previous lemma to z(r), we

need to verify condition (2.16), for which we use the following lemma:

LEMMA 2.6 For z(r) and γ (r) defined by (2.11) and (2.14),

〈z1, h1〉X =
∫ ∞

0

(
z1r h1r + m2

r2
z1h1

)
r dr = 0,(2.20)

〈z2, h1〉X =
∫ ∞

0

(
z2r h1r + m2

r2
z2h1

)
r dr =

∫ ∞

0

4m2

r2
h2

1h3γ r dr.(2.21)

PROOF: The pair (α(u), s(u)) is the minimizer of the differentiable function

F(s, α) =
∫
R2

∣∣∇(emθ R(v − hα,s))
∣∣2

dx .

The lemma follows from the equations ∇α,s F(α(u), s(u)) = 0. �

Step 8. Proof of (ii). We will use the following abbreviation:

ze := z1e + z2 J he, z = z1 + i z2.

By (2.7), we may choose δ sufficiently small so that

‖u − emθ Rhs,α‖Ḣ1 < δ0

for any given δ0 > 0 (which will be specified later). So we have

(2.22) ‖ξr‖2
L2(R2)

+
∥∥∥∥m

r
Rξ

∥∥∥∥
2

L2(R2)

= ‖u − emθ Rhs,α‖2
Ḣ1 < δ2

0 .
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It is proved in Lemma 4.7 that (2.22) implies the L∞-smallness of ξ(r) for δ0

sufficiently small: ‖ξ‖L∞ ≤ Cδ0. This immediately implies

(2.23) ‖z‖∞ + ‖γ ‖∞ ≤ Cδ0.

Since 1 = |v|2 = |z|2 + (1 + γ )2 and |γ | is small,

(2.24) γ =
√

1 − |z|2 − 1 ≤ 0, |γ (r)| ≤ C |z(r)|2, |γr (r)| ≤ C |z(r)zr (r)|.
By Lemma 2.6, equation (2.23) through (2.24), and |h(r)| ≤ 1,

|〈z, h1〉X | =
∣∣∣∣
∫ ∞

0

4m2

r2
h2

1h3γ r dr

∣∣∣∣ ≤ C‖z‖∞

∥∥∥∥h1

r

∥∥∥∥
2

∥∥∥∥ z

r

∥∥∥∥
2

≤ Cδ0‖z‖X .

Taking δ0 small enough so that Cδ0 is less than ε in Lemma 2.5, we have

dist2(u,Om) = 2π

∫ ∞

0

(
|ξr |2 + m2

r2
|Rξ |2

)
r dr

≤ C

∫ ∞

0

(
|zr |2 + |z|2

r2

)
r dr ≤ C

∫ ∞

0

|L0z|2r dr.

(2.25)

On the other hand, by (2.12),

δ2
1 = E(u)−4πm = 1

2

∫
R2

∣∣∣∣Lξ + m

r
ξ3ξ

∣∣∣∣
2

dx = 1

2

∫
R2

∣∣∣∣L(ze)+ L(γ h)+ m

r
ξ3ξ

∣∣∣∣
2

dx .

Hence

∫
R2

|L0z|2 dx =
∫
R2

|L(ze)|2 dx ≤ 3δ2
1 + C

∫
R2

(
|L(γ h)|2 +

∣∣∣∣m

r
ξ3ξ

∣∣∣∣
2)

dx .

Using (2.23) we have, for δ0 sufficiently small,

∫
R2

∣∣∣∣m

r
ξ3ξ

∣∣∣∣
2

dx ≤ C‖z‖2
∞

∫
R2

∣∣∣∣ z

r

∣∣∣∣
2

dx .

For the term ‖L(γ h)‖2
L2 , using (2.24) we find

∫
R2

|L(γ h)|2 ≤ C

∫
R2

(
|γr h|2 +

∣∣∣∣γ h

r

∣∣∣∣
2

+
∣∣∣∣γr h3h

∣∣∣∣
2)

≤ C‖z‖2
∞

∫
R2

|L0z|2.

Thus we get (1 − Cδ2
0)‖L0z‖2

L2 ≤ 4δ2
1. Now choose δ0 > 0 sufficiently small (by

choosing δ small) so that ‖L0z‖2
L2 ≤ 5δ2

1 and therefore dist(u,Om) < Cδ1. This

completes the proof of part (ii) of Theorem 2.1.
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Step 9. Proof of (iii). By (2.9) with s = s(u) and α = α(u), we have∫
R2 ∇u · ∇(emθ Rhs,α)dx > 2πm, since δ1 is small. On the other hand, inequal-

ity (4.2) from Lemma 4.1 in Section 4 gives an upper bound: for any σ ∈ (0, 1),∫
R2

∇u · ∇(emθ Rhs,α)dx ≤
(∫

R2

|∇u|2
|x |2σ

dx

)1/2(∫
R2

|x |2σ |∇(emθ Rhs,α)|2 dx

)1/2

≤ C‖∇u‖1−σ

L2(R2)
‖∇2u‖σ

L2(R2)

∥∥|x |σ |∇(emθ Rhs,α)|
∥∥

L2(R2)

≤ C‖∇2u‖σ
L2(R2)

sσ .

Thus we obtain ‖∇2u‖L2(R2) ≥ C/s, completing the proof of Theorem 2.1.

�

3 Global Well-Posedness vs. Blowup

In this section we complete the proof of our main result, Theorem 1.1.

Let u ∈ C([0, T ); Ḣ 2∩�m) be a solution of the Schrödinger flow equation (1.1)

that conserves energy. We are assuming

δ2
1 := E(u0) − 4πm = E(u(t)) − 4πm < δ2

where δ is taken to be sufficiently small. In particular, we choose δ small enough

so that Theorem 2.1 applies for each t ∈ [0, T ) and so furnishes us with continuous

functions s(t) ∈ (0,∞) and α(t) ∈ R such that

(3.1)

∥∥∥∥u(x, t) − e(mθ+α(t))Rh

(
r

s(t)

)∥∥∥∥
Ḣ1

< Cδ1

and

s(t)‖u(t)‖Ḣ2 > C > 0.

Thus the first part of Theorem 1.1 is proved. It remains to show that

(3.2) T < ∞ and lim
t→T −

‖u(t)‖Ḣ2 = ∞ �⇒ lim inf
t→T −

s(t) = 0.

Recall that we are writing

u(x, t) = emθ Rv(r), v(r) = eα(t)R

[
h

(
r

s(t)

)
+ ξ

(
r

s(t)

)]
,

and (3.1) is equivalent to

‖emθ Rξ(r)‖2
Ḣ1 = ‖ξr (r)‖2

L2 + m2

∥∥∥∥ Rξ(r)

r

∥∥∥∥
2

L2

< Cδ2
1 .

To prove (3.2), we need estimates showing that ‖u(t)‖Ḣ2 is controlled as long

as s(t) is bounded away from zero. These Ḣ 2-estimates are obtained using the fact

that the coordinates of the tangent vector field vr − (m/r)J v Rv with respect to a
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certain orthonormal frame satisfy a nonlinear Schrödinger-type equation and can

be estimated using Strichartz estimates.

This construction, which was introduced in [3], begins with a unit tangent vec-

tor field ê(r) ∈ Tv(r)S
2 satisfying the parallel transport condition

Dv
r ê ≡ 0.

Recall that Dv
r is the covariant derivative acting on vector fields η(r) ∈ Tv(r)S

2:

Dv
r η := Pvηr = ηr − (v · ηr )v = ηr + (vr · η)v.

So ê(r) and J v ê(r) form an orthonormal frame on TvS
2. Then q(r) = q1(r) +

iq2(r) is defined to be the coordinates of vr − (m/r)J v Rv ∈ TvS
2 in the basis

vr − m

r
J v Rv = q1ê + q2 J v ê.

We will sometimes write qê := q1ê + q2 J v ê for convenience. Note that by (1.11),

‖q‖2
L2(r dr)

=
∥∥∥∥vr − m

r
J v Rv

∥∥∥∥
2

L2(r dr)

= 1

π
(E(u) − 4πm) = δ2

1

π

is constant in time and can be taken small.

Define ν = ν1 + iν2 as follows:

J v Rv = ν1ê + ν2 J v ê.

Again, we will sometimes denote νê := ν1ê + ν2 J v ê. It is now straightforward,

if somewhat involved, to show that if u(x, t) solves the Schrödinger map equa-

tion (1.1), the complex function q(r, t) solves the following nonlinear Schrödinger

equation with nonlocal nonlinearity (see [3] for more details):

(3.3) iqt = −�r q + (1 − mv3)
2

r2
q + m(v3)r

r
q + q N (q),

where

N (q) = Re

∫ ∞

r

(
q̄ + m

r
ν̄

)(
qr + 1 − mv3

r
q

)
dr.

By changing variables to q̃ := ei(m+1)θq, we obtain

(3.4) i q̃t + �q̃ − m(1 + v3)(mv3 − m − 2)

r2
q̃ − mv3,r

r
q̃ − q̃ N (q) = 0.

We will use this equation to obtain H 1-estimates on q.

For these estimates of q to be useful, we need to bound the original map u(x, t)

— or, equivalently, v(r, t) or ξ(r, t) or z(r, t) — by q. Since v(r, t) = eαR[h(r/s)+
ξ(r/s, t)], we have

(3.5) qê = 1

s
eαR

[
Lξ + m

r
ξ3ξ

](
r

s

)
,

where, recall,

Lξ = ξr + m

r
(ξ3h + h3ξ) and ξ = z1e + z2 J he + γ h.
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Since ξ is small, we have, very roughly speaking,

ξ ≈ ze and Lξ ≈ (L0z)e,

and z can be controlled by L0z. More precisely, Lemma 4.8, proved in the next

section, gives the following bounds: for 2 ≤ p < ∞, and provided δ is sufficiently

small,

‖zr‖L p(R2) +
∥∥∥∥ z

r

∥∥∥∥
L p(R2)

(3.6)

≤ C
(
s1−2/p‖q‖L p(R2) + ‖q‖L2(R2)

)
,

‖zrr‖L2(R2) ≤ C

(
s‖qr‖L2(R2) + s

∥∥∥∥q

r

∥∥∥∥
L2(R2)

+ s‖q‖2
L4(R2)

+ ‖q‖L2(R2)

)
,(3.7)

‖u‖Ḣ2(R2) ≤ C

(
1

s
+ ‖qr‖L2(R2) +

∥∥∥∥q

r

∥∥∥∥
L2(R2)

+ ‖q‖2
L4(R2)

+ 1

s
‖q‖L2(R2)

)
.(3.8)

We will use the following notation to denote space-time Lebesgue norms: for

an interval I ⊂ R,

‖ f ‖r

Lr
t L

p
x (R2×I )

:=
∫
I

(∫
R2

| f (x, t)|p dx

)r/p

dt.

We use (3.6)–(3.7) together with Strichartz estimates and equation (3.4) to prove

the following estimates for q:

LEMMA 3.1 For τ ≥ 0 and σ > 0, set I := (τ, τ + σ), Q := R
2 × I , and

X (Q) := L4
t L4

x(Q) ∩ L∞
t L2

x(Q) ∩ L
8/3
t L8

x(Q). Define s := inft∈I s(t). If δ is

sufficiently small, we have

‖q‖X (Q) ≤ C
(‖q0‖L2

x (R2) + (
s−1σ 1/2 + ‖q‖2

L4
x L4

t (Q)

)‖q‖L4
x L4

t (Q)

)
,(3.9)

‖∇q̃‖X (Q) ≤ C
(‖∇q̃(τ )‖L2

x
(3.10)

+ (
s−1σ 1/2 + s−3/2σ 3/4 + ‖q‖2

X (Q)

)‖∇q̃‖L∞
t L2

x (Q)∩L4
t L4

x (Q)

)
.

Before proving Lemma 3.1, we show how it completes the proof of our main

theorem.

COMPLETION OF PROOF OF THEOREM 1.1: We need to prove (3.2), so sup-

pose that

(3.11) lim
t→T −

‖u(t)‖Ḣ2 = ∞
and

(3.12) lim inf
t→T −

s(t) = s0 > 0.

Our goal is to derive a contradiction. By (3.12), we have s(t) ≥ s∗ for all 0 ≤
t < T for some s∗ > 0. So we may take s = s∗ in the estimates (3.9)–(3.10) for
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any time interval I ⊂ [0, T ). If σ is sufficiently small depending on s∗ (σ 1/2 <

s∗/(2C)), and ‖q0‖L2 ≤ Cδ1 is taken sufficiently small, estimate (3.9) implies

‖q‖X (Q) ≤ Cδ1.

Using this estimate in (3.10), for δ1 and σ sufficiently small we obtain

‖∇q̃‖L∞
t L2

x (Q) ≤ C‖∇q̃(τ )‖L2 .

In particular, taking τ close to T , we see

lim sup
t→T −

‖∇q̃(t)‖L2 < ∞.

Then using (3.8) and |qr | + |q/r | ≤ C |∇q̃|, we find lim supt→T − ‖u(t)‖Ḣ2 < ∞,

contradicting (3.11). This completes the proof of Theorem 1.1. �

PROOF OF LEMMA 3.1: By applying Strichartz estimates for the inhomoge-

neous Schrödinger equation (see, e.g., [1]) to (3.4), we get

(3.13) ‖q‖X (Q) ≤ C(‖q(τ )‖L2 + ‖F‖
L

4/3
t L

4/3
x (Q)

)

where

F := m(1 + v3)(mv3 − m − 2)

r2
q̃ + m(v3)r

r
q̃ + q̃ N (q).

Conservation of the L2-norm of q(t) (equivalent to conservation of energy E(u))

means we can replace ‖q(τ )‖L2 by ‖q0‖L2 in (3.13). Using v3(r) = h3(r/s) +
ξ3(r/s) and ξ3 = z2h1 + γ h3, we find∥∥∥∥1 + v3

r2

∥∥∥∥
L2

x

= 1

s

∥∥∥∥1 + h3 + z2h1 + γ h3

r2

∥∥∥∥
L2

x

≤ C

s

(∥∥∥∥1 + h3

r2

∥∥∥∥
L2

x

+
∥∥∥∥ z2h1

r2

∥∥∥∥
L2

x

+
∥∥∥∥γ h3

r2

∥∥∥∥
L2

x

)

≤ C

s

(
1 +

∥∥∥∥ z

r

∥∥∥∥
L2

x

+
∥∥∥∥ z

r

∥∥∥∥
2

L4
x

)

≤ C(s−1(1 + ‖q‖L2 + ‖q‖2
L2) + ‖q‖2

L4).

(3.14)

Using (3.14) and the uniform boundedness of ‖q‖L2 , we get∥∥∥∥m(1 + v3)(mv3 − m − 2)

r2
q̃

∥∥∥∥
L

4/3
t L

4/3
x

≤ C

∥∥∥∥1 + v3

r2
q̃

∥∥∥∥
L

4/3
t L

4/3
x

≤ C

∥∥∥∥
∥∥∥∥1 + v3

r2

∥∥∥∥
L2

x

‖q‖L4
x

∥∥∥∥
L

4/3
t

≤ C
(
s−1σ 1/2 + ‖q‖2

L4
t L4

x

)‖q‖L4
t L4

x
.
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Next we estimate ‖(m(v3)r/r)q‖
L

4/3
t L

4/3
x

. Compute

1

r
(v3)r = 1

sr

[
mh2

1

r
+ h1(z2)r − mh1h3z2

r
+ γr h3 + mγ h2

1

r

] (r

s

)
.

Remark 3.2. The notation means evaluate the quantity in the square brackets with

r replaced by r/s. We use this notation frequently in what follows.

Therefore, using boundedness of z, h3, h1/r , and γ = O(|z|2), γr = O(|zzr |),
we have

(3.15)

∥∥∥∥(v3)r

r

∥∥∥∥
L2

≤ C

s

(∥∥∥∥h2
1

r2

∥∥∥∥
L2

+ ‖zr‖L2 +
∥∥∥∥ z

r

∥∥∥∥
L2

)
≤ Cs−1(1 + ‖q‖L2).

So∥∥∥∥m(v3)r

r
q

∥∥∥∥
L

4/3
t L

4/3
x

≤ C

∥∥∥∥
∥∥∥∥v3,r

r

∥∥∥∥
L2

x

‖q‖L4
x

∥∥∥∥
L

4/3
t

≤ C(1 + ‖q0‖L2)s−1σ 1/2‖q‖L4
t ,L

4
x
.

Next we need to estimate the nonlocal term

N (q) = Re

∫ ∞

r

(
q̄ + mν̄

r

)(
qr + 1 − mv3

r
q

)
dr

= −|q|2
2

+ Re

∫ ∞

r

(
1 − mv3

r
|q|2 + mν̄

r
qr + mν̄(1 − mv3)

r2
q

)
dr

:= −|q|2
2

+ (R1 + R2 + R3).

First note

‖|q|2q‖
L

4/3
t L

4/3
x

= ‖q‖3

L4
t L4

x
.

Now consider q̃ R1. Using the estimate

‖ f (r)‖L2 ≤ C‖r fr (r)‖L2

(Hardy’s inequality in R
4 for radial functions), we have

‖q̃ R1‖L
4/3
t ,L

4/3
x

≤ ‖q‖L4 L4‖R1‖L2 L2 ≤ C‖q‖3

L4
t L4

x
.

Next we note that |ν̄| = |J v Rv| =
√

1 − v2
3 = |Rv|. We consider next q̃ R3. By

Hardy again,

‖q̃ R3‖L
4/3
x

≤ C

∥∥∥∥q̃

∫ ∞

r

mν̄(1 − mv3)

r2
q dr

∥∥∥∥
L4/3

≤ C

∥∥∥∥ ν̄

r
q

∥∥∥∥
L2

‖q‖L4 ≤ C

∥∥∥∥ ν̄

r

∥∥∥∥
L4

‖q‖2
L4 ≤ C

∥∥∥∥1 − v2
3

r2

∥∥∥∥
1/2

L2

‖q‖2
L4

≤ C

∥∥∥∥1 + v3

r2

∥∥∥∥
1/2

L2

‖q‖2
L4 ≤ C(s−1/2 + ‖q‖L4)‖q‖2

L4,

(3.16)
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where we used (3.14) again. Thus

‖q̃ R3‖L
4/3
t ,L

4/3
x

≤ C
∥∥(s−1/2 + ‖q‖L4

x
)‖q‖2

L4
x

∥∥
L

4/3
t

≤ C
(
s−1/2σ 1/4 + ‖q‖L4

t L4
x

)‖q‖2

L4
t L4

x
.

(3.17)

It remains to estimate q̃ R2. We rewrite R2, using integration by parts,

R2 = − Re
m

r
ν̄q − Re

∫ ∞

r

(
m

r
ν̄r − m

r2
ν̄

)
q dr

= − Re
m

r
ν̄q + Re

∫ ∞

r

(
mv3

r
q̄ + m(1 + mv3)

r2
ν̄

)
q dr,

where we used ν̄r = −v3q̄ − m
r

v3ν̄. So

‖q̃ R2‖L
4/3
t ,L

4/3
x

≤ C

(∥∥∥∥q
ν̄

r
q̄

∥∥∥∥
L

4/3
t ,L

4/3
x

+
∥∥∥∥q

∫ ∞

r

|q|2
r

dr

∥∥∥∥
L

4/3
t ,L

4/3
x

+
∥∥∥∥q

∫ ∞

r

ν̄

r2
q dr

∥∥∥∥
L

4/3
t ,L

4/3
x

)
.

The last term is estimated as follows:∥∥∥∥q

∫ ∞

r

ν̄

r2
q dr

∥∥∥∥
L

4/3
t ,L

4/3
x

≤ C

∥∥∥∥
∥∥∥∥ ν̄

r
q

∥∥∥∥
L2

x

‖q‖L4
x

∥∥∥∥
L

4/3
t

≤ C

∥∥∥∥
∥∥∥∥ ν̄

r

∥∥∥∥
L4

x

‖q‖2
L4

x

∥∥∥∥
L

4
3
t

≤ C
∥∥(s−1/2 + ‖q‖L4

x
)‖q‖2

L4
x

∥∥
L

4/3
t

≤ C
(
s−1/2σ 1/4 + ‖q‖L4

t L4
x

)‖q‖2

L4
t L4

x
,

(3.18)

where we used the same computations as in (3.16) and (3.17). The first term can be

treated in a similar manner, leading to the same estimate as in (3.18). The estimate

for the second term has been done already.

By returning now to (3.13) and using the above estimates, we establish (3.9).

Next we need to estimate the derivative of q̃ in order to establish (3.10). Denote

w := ∂xi
q̃ for i = 1, 2. Then w solves

iwt + �w = m(1 + v3)(mv3 − m − 2)

r2
w

+
(

m(1 + v3)(mv3 − m − 2)

r2

)
xi

q̃

+ m(v3)r

r
w +

(
m(v3)r

r

)
xi

q̃ + N (q)w + N (q)xi
q̃.

(3.19)
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Using the previous estimates, we can estimate the various terms involving w in the

right-hand side:

•
∥∥∥∥m(1 + v3)(mv3 − m − 2)

r2
w

∥∥∥∥
L

4/3
t L

4/3
x

≤ C‖(s−1 + ‖q‖2
L4

x
)‖w‖L4

x
‖

L
4/3
t

≤ C
(
s−1σ 1/2 + ‖q‖2

L4
t L4

x

)‖∇q̃‖L4
t L4

x

•
∥∥∥∥m(v3)r

r
w

∥∥∥∥
L

4/3
t L

4/3
x

≤ C‖s−1‖w‖L4
x
‖

L
4/3
t

≤ Cs−1σ 1/2‖∇q̃‖L4
t L4

x

• ‖N (q)w‖
L

4/3
t L

4/3
x

≤ C(s−1/2σ 1/4 + ‖q‖L4
t L4

x
)‖q‖L4

t L4
x
‖∇q̃‖L4

t L4
x

Now the other terms. First note that |∇q̃|2 ∼ |q̃|2 + |q̃/r |2, and thus∥∥∥∥ q̃

r

∥∥∥∥
L p(R2)

≤ C‖∇q̃‖L p(R2)

for any 1 ≤ p ≤ ∞. Due to (3.14) and (3.15), we have∥∥∥∥
(

(1 + v3)(mv3 − m − 2)

r2

)
xi

q̃

∥∥∥∥
L

4/3
t L

4/3
x

≤ C

(∥∥∥∥(v3)r

r2
q̃

∥∥∥∥
L

4/3
t L

4/3
x

+
∥∥∥∥(1 + v3)

r3
q̃

∥∥∥∥
L

4/3
t L

4/3
x

)

≤ C

∥∥∥∥
(∥∥∥∥(v3)r

r

∥∥∥∥
L2

x

+
∥∥∥∥1 + v3

r2

∥∥∥∥
L2

x

)∥∥∥∥ q̃

r

∥∥∥∥
L4

x

∥∥∥∥
L

4/3
t

≤ C
∥∥(

s−1 + ‖q‖2
L4

x

)∥∥‖∇q̃‖L4
x L

4/3
t

≤ C
(
s−1σ 1/2 + ‖q‖2

L4
t L4

x

)‖∇q̃‖L4
t L4

x
.

Next we consider∥∥∥∥
(

m(v3)r

r

)
xi

q̃

∥∥∥∥
L

4/3
t L

4/3
x

≤ C

(∥∥∥∥(v3)r

r2
q̃

∥∥∥∥
L

4/3
t L

4/3
x

+
∥∥∥∥ (v3)rr

r
q̃

∥∥∥∥
L

4/3
t L

4/3
x

)
.

The first term in the right side can be estimated as before:∥∥∥∥
(

(v3)r

r2

)
q̃

∥∥∥∥
L

4/3
t L

4/3
x

≤ Cs−1σ 1/2‖∇q̃‖L4
t L4

x
.

Recalling (h1)r = −(m/r)h1h3, (h3)r = (m/r)h2
1, and h1/r, h3 bounded, we find

|(v3)rr | ≤ 1

s2

∣∣∣∣m
(

h2
1

r

)
r

+ (h1z2,r )r − m

(
h1h3z2

r

)
r

+ (γr h3)r + m

(
γ h2

1

r

)
r

∣∣∣∣
(

r

s

)

≤ C

s2

[∣∣∣∣
(

h2
1

r

)
r

∣∣∣∣ +
∣∣∣∣h1z2

r2

∣∣∣∣ +
∣∣∣∣h1(z2)r

r

∣∣∣∣ + |h1zrr | + |zzrr | + |zr |2
](

r

s

)
.
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We estimate term by term:

•
∥∥∥∥ 1

s2

[(
h2

1

r

)
r

(
r

s

)]
q

r

∥∥∥∥
L

4/3
t L

4/3
x

≤ C

∥∥∥∥ 1

s2

(∣∣∣∣h2
1

r2
+ h2

1|h3|
r2

∣∣∣∣
(

r

s

))
q

r

∥∥∥∥
L

4/3
t L

4/3
x

≤ Cs−1σ 1/2‖∇q̃‖L4
t L4

x
,

•
∥∥∥∥ 1

s2

(∣∣∣∣h1|z2|
r2

+ h1|(z2)r |
r

∣∣∣∣
(

r

s

))
q

r

∥∥∥∥
L

4/3
t L

4/3
x

≤ C

∥∥∥∥s−1

(∥∥∥ z

r

∥∥∥
L2

x

+ ‖zr‖L2
x

)∥∥∥q

r

∥∥∥
L4

x

∥∥∥∥
L

4/3
t

≤ Cs−1σ 1/2‖∇q̃‖L4
t L4

x
,

•
∥∥∥∥ 1

s2

(
|zr |2

(
r

s

))
q

r

∥∥∥∥
L

4/3
t L

4/3
x

≤ C

∥∥∥∥1

s
‖zr‖2

L4
x

∥∥∥q

r

∥∥∥
L4

x

∥∥∥∥
L

4/3
t

≤ C
(‖q‖2

L4
t L4

x
+ s−1σ 1/2

)∇q̃ L4
t L4

x
.

For the remaining term, using (3.7),

•
∥∥∥∥ 1

s2

(
[(|h1| + |z|)zrr ]

(
r

s

))
q

r

∥∥∥∥
L

4/3
t L

4/3
x

≤ C

∥∥∥∥1

s
‖zrr‖L2

x

∥∥∥∥(|h1| + |z|)
(

r

s

)
q

r

∥∥∥∥
L4

x

∥∥∥∥
L

4/3
t

≤ C

∥∥∥∥
(

‖qr‖L2
x
+

∥∥∥∥q

r

∥∥∥∥
L2

x

)∥∥∥∥(|h1| + |z|)
(

r

s

)
q

r

∥∥∥∥
L4

x

∥∥∥∥
L

4/3
t

+ C

∥∥∥∥(‖q‖2
L4

x
+ s−1‖q‖2

L2
x

)∥∥∥∥(|h1| + |z|)
(

r

s

)
q

r

∥∥∥∥
L4

x

∥∥∥∥
L

4/3
t

≤ C
(‖q‖2

L
8/3
t L8

x

+ s−3/2σ 3/4
)‖∇q̃‖L∞

t L2
x

+ C
(‖q‖2

L4
t L4

x
+ s−1σ 1/2

)‖∇q̃‖L4
t L4

x
,

where we used, first by (3.6) with p = 8,

∥∥∥∥(|h1| + |z|)
(

r

s

)
q

r

∥∥∥∥
L4

x

≤ C

∥∥∥∥(|h1| + |z|)(r/s)

r

∥∥∥∥
L8

x

‖q‖L8
x

≤ C‖q‖2
L8

x
+ Cs−3/2

(
1 + ‖q‖2

L2
x

)
,

and then ‖(|h1| + |z|)(r/s)(q/r)‖L4
x
≤ C‖q/r‖L4

x
.
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It remains to estimate N (q)xi
q:

‖N (q)xi
q̃‖

L
4/3
t L

4/3
x

≤ C

∥∥∥∥
(

|q|2 +
∣∣∣∣ ν̄r q

∣∣∣∣
)(

|qr | +
∣∣∣∣q

r

∣∣∣∣
)∥∥∥∥

L
4/3
t L

4/3
x

≤ C

∥∥∥∥
∥∥∥∥
(

|q|2 +
∣∣∣∣ ν̄r q

∣∣∣∣
)∥∥∥∥

L2
x

∥∥∥∥
(

|qr | +
∣∣∣∣q

r

∣∣∣∣
)∥∥∥∥

L4
x

∥∥∥∥
L

4/3
t

≤ C

∥∥∥∥
(

‖q‖2
L4

x
+

∥∥∥∥ν

r

∥∥∥∥
2

L4
x

)
‖∇q̃‖L4

x

∥∥∥∥
L

4/3
t

≤ C
(
s−1σ 1/2 + ‖q‖2

L4
t L4

x

)‖∇q̃‖L4
t L4

x
.

Now applying Strichartz estimates to (3.19) and using the estimates established

above, we obtain

‖∇q̃‖
L

∞,2
t,x ∩L4

t L4
x
≤ ‖∇q̃(τ )‖L2

x
+ C

(
(s−1 + s−2)σ 1/2 + ‖q‖2

X (Q)

)‖∇q̃‖
L

∞,2
t,x ∩L4

t L4
x
.

This completes the proof of Lemma 3.1. �

4 Technical Lemmas

In this section we collect some of the technical lemmas used in the proof of the

main theorem in the previous sections.

4.1 Some Inequalities for Radial Functions

We begin with some inequalities for radial functions.

LEMMA 4.1

(i) Let 0 ≤ σ < 1, and suppose f ∈ H 1(R2) is radial. Then

(4.1)

∫ ∞

0

f 2

r2σ
r dr ≤ Cσ

(∫ ∞

0

f 2r dr

)1−σ(∫ ∞

0

| fr |2r dr

)σ

.

We have limσ→1− Cσ = ∞ and the estimate is false if σ = 1.

(ii) Let 0 ≤ σ < 1, and suppose f ∈ H 1(R2). Then

(4.2)

∫
R2

f 2

|x |2σ
dx ≤ Cσ

(∫
R2

| f |2 dx

)1−σ(∫
R2

|∇ f |2 dx

)σ

.

(iii) Suppose f ∈ H 1
loc(R

2) is radial with fr , f/r ∈ L2(R2). Then

(4.3) ‖ f ‖L∞(R2) ≤ C

(∫ ∞

0

(
| fr |2 + f 2

r2

)
r dr

)
.

PROOF: We first show that

(4.4)

∫ ∞

0

f 2(r)

r2σ
r dr ≤ 1

1 − σ

(∫ ∞

0

f 2(r)

r4σ−2
r dr

)1/2(∫ ∞

0

( fr (r))2 r dr

)1/2

.
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Indeed, by changing the order of integration, we get∫ ∞

0

f 2(r)

r2σ
r dr = −

∫ ∞

0

r

r2σ

∫ ∞

r

[ f 2(s)]s ds dr

= −2

∫ ∞

0

f (s) fs(s)ds

∫ s

0

r

r2σ
dr

= − 1

1 − σ

∫ ∞

0

s2−2σ f (s) fs(s)ds

≤ 1

1 − σ

(∫ ∞

0

s2−4σ f 2(s)s ds

)1/2(∫ ∞

0

( fs(s))
2 s ds

)1/2

.

In particular, if σ = 1
2
, (4.4) immediately implies (4.1). We also note that estimate

(4.1) is immediate in the case σ = 0.

Let σi = 1 − (1/2i ) where i ≥ 0 is an integer. From estimate (4.4) with

σ = σi+1, we have

∫ ∞

0

f 2(r)

r2σi+1
r dr

≤ 2i+1

(∫ ∞

0

f 2(r)

r2σi
r dr

)1/2(∫ ∞

0

( fr (r))2r dr

)1/2

, i = 0, 1, 2, . . . .

Iterating this estimate, we obtain

(4.5)

∫ ∞

0

f 2(r)

r2σn+1
r dr

≤ Cn+1

(∫ ∞

0

f 2(r)r dr

)1/2n+1(∫ ∞

0

( fr (r))2 r dr

)1−1/2n+1

for some constant Cn+1. (One can solve Cn+1 = 2n+1
√

Cn and C0 = 1 to get

Cn+1 = 22n+2−n

, which is certainly not the best constant.)

It remains to consider the general case σ ∈ [0, 1). Let k ≥ 0 be an integer with

σk ≤ σ < σk+1. There exists 0 ≤ θ < 1 such that σ = θσk+1 + (1 − θ)σk =
1 − (2 − θ)/2k+1. Using the Hölder inequality and (4.5), we get∫ ∞

0

f 2

r2σ
r dr ≤

(∫ ∞

0

f 2

r2σk+1
r dr

)θ(∫ ∞

0

f 2

r2σk
r dr

)1−θ

≤ Cσ

(∫ ∞

0

f 2(r)r dr

)1−σ(∫ ∞

0

( f ′)2(r)r dr

)σ

,

where Cσ = Cθ
k+1C1−θ

k . This completes the proof of the first estimate (4.1).

To see that this estimate fails at the endpoint σ = 1, fix a smooth, nonnegative,

nondecreasing function η(r), supported in ( 1
2
,∞), and with 1 − η(r) supported in

[0, 3
2
). Then it is easy to check that fδ(r) := η(r/δ) − η(r) provides a counterex-

ample to the endpoint estimate as δ → 0. Note that fδ(0) = 0 for all δ.
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The second estimate (4.2) is an immediate consequence of (4.1). Using polar

coordinates, we obtain

∫ 2π

0

∫ ∞

0

| f (r, θ)|2
r2σ

r dr dθ

≤ Cσ

∫ 2π

0

(∫ ∞

0

| f (r, θ)|2 r dr

)1−σ( ∫ ∞

0

|∂r f (r, θ)|2 r dr

)σ

dθ.

Using |∂r f |2 ≤ |∇ f |2, we obtain estimate (4.2) from Hölder’s inequality.

For the third estimate (4.3), we introduce the new variable y defined by r = ey

and denote g(y) = f (ey) = f (r). Then it is immediate that∫ ∞

0

(
| fr (r)|2 + f 2(r)

r2

)
r dr =

∫ ∞

−∞
(|g′(y)|2 + |g(y)|2)dy.

By Sobolev embedding, we have ‖g‖L∞(R) ≤ C‖g‖H1(R). Transforming back to

the original variable completes our proof. �

LEMMA 4.2 Let g : R
2 → C be radial and bounded with g, g′ ∈ L

p

loc, 2 < p < ∞.

Assume (∂r − m/r)g(r) ∈ L p(R2) for some m ≥ 1. Then g(r)/r ∈ L p(R2) and∥∥∥∥g(r)

r

∥∥∥∥
L p(R2)

≤ C

∥∥∥∥
(

∂r − m

r

)
g(r)

∥∥∥∥
L p(R2)

.

PROOF: Let 0 < r1 < r2 < ∞ and denote A = {x ∈ R
2 : r1 < |x | < r2}.

Consider

I := −2π Re

∫ r2

r1

(
gr − m

r
g

)∣∣∣∣g

r

∣∣∣∣
p−2

ḡ

r
r dr.

On one hand, I ≤ C‖g/r‖p−1
L p(A)‖gr − (m/r)g‖L p(A) by the Hölder inequality. On

the other hand,

I = m

∥∥∥∥g

r

∥∥∥∥
p

L p(A)

− 2π

p

|g(r)|p

r p−2

∣∣∣∣
r2

r1

− p − 2

p

∥∥∥∥g

r

∥∥∥∥
p

L p(A)

≥
(

m − 1 + 2

p

)∥∥∥∥g

r

∥∥∥∥
p

L p(A)

− 2π

p

|g(r2)|p

r
p−2
2

.

Thus (
m − 1 + 2

p

)∥∥∥∥g

r

∥∥∥∥
p

L p(A)

≤ 2π

p

|g(r2)|p

r
p−2
2

+
∥∥∥∥g

r

∥∥∥∥
p−1

L p(A)

∥∥∥∥gr − m

r
g

∥∥∥∥
L p(A)

.

This gives a bound for ‖g(r)/r‖L p(A) uniformly in r1 and r2. Hence g(r)/r ∈
L p(R2). As r2 → ∞ and r1 → 0, we get(

m − 1 + 2

p

)∥∥∥∥g

r

∥∥∥∥
p

L p(R2)

≤
∥∥∥∥g

r

∥∥∥∥
p−1

L p(R2)

∥∥∥∥gr − m

r
g

∥∥∥∥
L p(R2)

,

where we used p > 2 and the boundedness of g. This completes the proof. �
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Remark 4.3. It is essential to assume g is bounded, as can be seen by the example

g(r) = rm . If we assume in the above lemma that g(r) = o(1) as r → ∞, then we

also have ∥∥∥∥g(r)

r

∥∥∥∥
L2(R2)

≤ 1

m

∥∥∥∥
(

∂r − m

r

)
g(r)

∥∥∥∥
L2(R2)

.

Using Lemma 4.2, we prove an L p-version of Lemma 2.5.

LEMMA 4.4 Let 2 < p < ∞. There exists ε > 0 such that if f (r) is a radial

function satisfying |〈 f, h1〉X | ≤ ε‖ f ‖X , then

‖ fr‖L p(R2) +
∥∥∥∥ f

r

∥∥∥∥
L p(R2)

≤ C(‖L0 f ‖L p(R2) + ‖L0 f ‖L2(R2)).

Recall L0 f := fr + (m/r)h3 f .

PROOF: We note first that it suffices to prove∥∥∥∥ f

r

∥∥∥∥
L p

≤ C(‖L0 f ‖L p + ‖L0 f ‖L2),

since

‖ fr‖L p ≤ C

(∥∥∥∥ fr + m

r
h3 f

∥∥∥∥
L p

+
∥∥∥∥m

r
h3 f

∥∥∥∥
L p

)
≤ C

(
‖L0 f ‖L p +

∥∥∥∥ f

r

∥∥∥∥
L p

)
.

Let ϕ : [0,∞) → R be a standard cutoff function with

0 ≤ ϕ ≤ 1, ϕ(r) ≡ 1 for r < 1, ϕ(r) ≡ 0 for r > 2,∫ ∞

0

∣∣∣∣ f

r

∣∣∣∣
p

r dr ≤ C

( ∫ ∞

0

∣∣∣∣ f ϕ

r

∣∣∣∣
p

r dr +
∫ ∞

0

∣∣∣∣ f (1 − ϕ)

r

∣∣∣∣
p

r dr

)
≡ C(I + II).

We consider the second term II. Since 1 − ϕ ≡ 0 if r < 1, we have

II =
∫ ∞

0

∣∣∣∣ f (1 − ϕ)

r

∣∣∣∣
p

r dr ≤ ‖ f ‖p−2

L∞(R2)

∫ ∞

0

∣∣∣∣ f

r

∣∣∣∣
2

(1 − ϕ)r dr

≤ C‖ f ‖p−2

L∞(R2)

∥∥∥∥ f

r

∥∥∥∥
2

L2(R2)

≤ C‖ f ‖p−2

L∞(R2)
‖L0 f ‖2

L2(R2)
,

where we used Lemma 2.5.

Next we consider the term I. Using Lemma 4.2, we have∥∥∥∥ f ϕ

r

∥∥∥∥
p

L p

≤ C

∥∥∥∥( f ϕ)r − m

r
f ϕ

∥∥∥∥
p

L p

≤ C

(
‖ϕr f ‖p

L p +
∥∥∥∥
(

fr + mh3

r
f

)
ϕ

∥∥∥∥
p

L p

+
∥∥∥∥m

r
(1 + h3) f ϕ

∥∥∥∥
p

L p

)
.
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Since ϕr is supported only on (1, 2), and (1 + h3)/r is bounded, we have∥∥∥∥ f ϕ

r

∥∥∥∥
p

L p

≤ C(‖ f ‖p

L∞ + ‖L0 f ‖p

L p).

Since, by Lemma 2.5, ‖ f ‖L∞ ≤ C‖L0 f ‖L2 , we obtain∥∥∥∥ f

r

∥∥∥∥
p

L p

≤ C(‖L0 f ‖p

L p + ‖L0 f ‖p

L2),

completing the proof. �

4.2 Some Harmonic Map Estimates

Here we prove some facts about the family Om of m-equivariant harmonic

maps.

The first lemma shows that if m-equivariant harmonic maps h = h0,1 and hα,s

are close in the sense of energy, then α and s are also close to 0 and 1, respectively.

LEMMA 4.5 Let 0 < s < ∞ and −π ≤ α < π . There exists ε > 0 and C > 0

such that if
∫

R2 |∇(emθ R(h−hs,α))|2 dx < δ2 for any δ < ε, then |α|+|s−1| ≤ Cδ.

PROOF: Consider the case s > 1 (the case s < 1 can be treated in the same

way). We first note that

h − hs,α =

h1(r) − h1(r/s) cos α

−h1(r/s) sin α

h3(r) − h3(r/s)


 .

Our assumption is

∫
R2

|∇(emθ R(h − hs,α))|2 dx

= 2π

∫ ∞

0

(
|∂r (h − hs,α)|2 + m2

r2
|R(h − hs,α)|2

)
r dr < δ2.

For 0 ≤ r ≤ 1, we have (s2m − 1)(1 − r2m) ≥ 0, which, when rearranged, yields

h1

(
r

s

)
≤ 2sm

s2m + 1
h1(r) ≤ h1(r), 0 ≤ r ≤ 1.

Using this inequality, we find

δ2 ≥
∫
R2

|∇(emθ R(h − hs,α))|2 dx ≥ 2π

∫ 1

0

∣∣∣∣∂r

(
h3(r) − h3

(
r

s

))∣∣∣∣
2

r dr

= 2π

∫ 1

0

m2

r2

(
h2

1(r) − 1

s2
h2

1

(
r

s

))2

r dr
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≥ 2π

∫ 1

0

m2

r2

(
h2

1(r) − h2
1

(
r

s

))2

r dr

≥ 2πm2 (s2m − 1)4

(s2m + 1)4

∫ 1

0

h4
1(r)

r2
r dr

= C
(s2m − 1)4

(s2m + 1)4
.

It follows that |s − 1| ≤ Cδ1/2 if δ is sufficiently small. Now g(s) := ‖∂r (h3(r) −
h3(r/s))‖2

L2 is a smooth function of s with g(1) = g′(1) = 0 and g′′(1) > 0,

and so by Taylor’s theorem, we have g(s) ≥ C(s − 1)2 for some C > 0, and for

|s − 1| ≤ Cδ1/2, δ sufficiently small. Thus |s − 1| ≤ Cδ, as required.

Next consider the second component of h − hs,α:

δ2 > 2π sin2(α)

∫ ∞

0

∣∣∣∣∂r h1

(
r

s

)∣∣∣∣
2

r dr ≥ C sin2(α)

and so |sin(α)| < Cδ for sufficiently small δ.

Finally, use

(1 − cos(α))h1(r) = (h − hs,α)1 + cos(α)

(
h1

(
r

s

)
− h1(r)

)

together with the previous results to arrive at 1 − cos(α) ≤ Cδ, from which (for

α ∈ [−π, π)) |α| ≤ Cδ follows. �

The next lemma is a bound on the curvature of the family Om of m-equivariant

harmonic maps.

LEMMA 4.6 There are ε > 0 and C > 0 such that if

‖emθ R(hs1,α1(r) − hs2,α2(r))‖Ḣ1 < ε,

then setting s̄ := 1
2
[s1 + s2], ᾱ := 1

2
[α1 + α2], and h̄ := 1

2
[hs1,α1 + hs2,α2], we have

(4.6) ‖emθ R(h̄(r) − hs̄,ᾱ(r))‖Ḣ1 < C‖emθ R(hs1,α1(r) − hs2,α2(r))‖2
Ḣ1 .

PROOF: By rotating and rescaling, we may assume (s1, α1) = (1, 0). If ε is

sufficiently small, Lemma 4.5 gives (taking α2 ∈ [−π, π))

(4.7) |s2 − 1| + |α2| ≤ C‖emθ R(h1,0(r) − hs2,α2(r))‖Ḣ1 ≤ Cε.

Now set s(t) := s̄ + (t/2)(s2 − 1), α(t) := ᾱ + (t/2)α2, and φ(t) := hs(t),α(t).

Then

h̄ − hs̄,ᾱ = 1

2
[φ(−1) − φ(0) + φ(1) − φ(0)]

= 1

2

[ ∫ 1

0

φ′(t)dt −
∫ 0

−1

φ′(t)dt

]

= 1

2

∫ 1

0

[φ′(t) − φ′(−t)]dt = 1

2

∫ 1

0

∫ t

−t

φ′′(τ )dτ.
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Using (4.7), we have

‖emθ Rφ′′(τ )‖Ḣ1 ≤ C[(s2 − 1)2 + α2
2] ≤ C‖emθ R(h1,0(r) − hs2,α2(r))‖2

Ḣ1

and (4.6) follows. �

Our next lemma gives L∞-smallness for Ḣ 1-small perturbations of harmonic

maps.

LEMMA 4.7 For u ∈ �m, set s = s(u) and α = α(u), and write

u(r, θ) = emθ Rv(r), v(r) = eαR

[
h

(
r

s

)
+ ξ

(
r

s

)]
.

There exists ε > 0 and C > 0 such that if δ0 < ε and

(4.8) ‖ξr‖2
L2(R2)

+
∥∥∥∥m

r
Rξ

∥∥∥∥
2

L2(R2)

= ‖u − emθ Rhs,α‖2
Ḣ1 < δ2

0,

then

‖ξ‖L∞ ≤ Cδ0.

PROOF: Without loss of generality, we may assume s = 1 and α = 0. It

follows immediately from (4.8) and Lemma 4.1 that

‖ξi‖∞ ≤ Cδ0, i = 1, 2.

For ξ3, we have, as yet, only ‖(ξ3)r‖L2 < δ0, and so our aim is to show that

‖ξ3‖L∞ ≤ Cδ0. Under our change of variable ξ̃ (y) := ξ(m log(r)), it suffices to

prove that ‖ξ̃3‖L2(R) ≤ Cδ0, since ‖ξ̃3‖L∞(R) ≤ C‖ξ̃3‖H1(R). By the continuity

and boundary conditions of v(r) (for u ∈ �m), there must exist y0 ∈ R such that

ṽ3(y0) = 0. Note that since h̃3(y) = tanh(y), we have

(4.9) |ṽ2
3(y) − tanh2(y)| =

∣∣∣∣
2∑

j=1

(
ṽ2

j − h̃2
j

)∣∣∣∣ ≤ C(|ξ1| + |ξ2|),

and in particular,

tanh2(y0) ≤ C(‖ξ1‖L∞ + ‖ξ2‖L∞) < Cδ0.

So for −1 ≤ y ≤ 1,

|ṽ3(y) − tanh(y)| =
∣∣∣∣
∫ y

y0

(ṽ′
3 − tanh′(y))dy − tanh(y0)

∣∣∣∣
≤ C(‖ṽ′

3 − tanh′ ‖L2 + δ
1/2
0 ) ≤ Cδ

1/2
0 ,

(4.10)

and in particular, for δ0 sufficiently small, |ṽ3(±1)| > (1/2) tanh(1). Then with

the aid of Lemma 2.3, for δ0 sufficiently small, we have |ṽ3(y)| > (1/4) tanh(1)

for |y| ≥ 1. Estimate (4.9) then yields∫
|y|≥1

(ṽ3(y) − tanh(y))2 dy ≤ Cδ2
0,
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which also gives us sup|y|≥1 |ṽ3(y) − tanh(y)| ≤ Cδ0 (Sobolev embedding), and in

particular |ṽ3(1) − tanh(1)| ≤ Cδ0. Finally, we get the same result for |y| < 1 by

integrating the derivative:

|ṽ3(y) − tanh(y)| ≤
∣∣∣∣
∫ 1

y

(ṽ′
3 − tanh′)dy

∣∣∣∣ + Cδ0 < Cδ0.

This completes the proof. �

4.3 Perturbation Is Bounded by q

Here we prove estimates used in Section 3. We show that z(r) is controlled by

q(r), where, recall,

vr − m

r
J v Rv = q1ê + q2 J v ê, Dv

r ê ≡ 0,

and

(4.11) v(r) = eαR

[
h

(
r

s

)
+ ξ

(
r

s

)]
, ξ = z1e + z2 J he + γ h.

LEMMA 4.8 Let 2 ≤ p < ∞. For δ sufficiently small,

‖zr‖L p(R2) +
∥∥∥∥ z

r

∥∥∥∥
L p(R2)

≤ C(s1−2/p‖q‖L p(R2) + ‖q‖L2(R2)),(4.12)

‖zrr‖L2(R2) ≤ C

(
s‖qr‖L2(R2) + s

∥∥∥∥q

r

∥∥∥∥
L2(R2)

+ s‖q‖2
L4(R2)

+ ‖q‖L2(R2)

)
,(4.13)

and

‖u‖Ḣ2(R2) ≤ C

(
1

s
+ ‖qr‖L2(R2) +

∥∥∥∥q

r

∥∥∥∥
L2(R2)

+ ‖q‖2
L4(R2)

+ 1

s
‖q‖L2(R2)

)
.(4.14)

PROOF: We will first show the following:

(4.15) ‖zr‖L2(R2) +
∥∥∥∥ z

r

∥∥∥∥
L2(R2)

≤ C‖q‖L2(R2).

By (4.11), we have

(4.16) e−αRs(qê)(sr) = (L0z)e + (γ h)r + 2m

r
h3γ h + m

r
ξ3ξ.

Since ‖z‖X ≤ C‖L0z‖L2 by (2.25), it suffices to prove that ‖L0z‖ ≤ C‖q‖L2 . We

first show that ‖ξr‖L2 + ‖ξ/r‖L2 ≤ C‖z‖X . Indeed, since (J he)r = −(m/r)h1h

and hr = (m/r)h1 J he, we find

ξr = zr e − z2

m

r
h1h + γr h + m

r
γ h1 J he.

Therefore, since γ = O(|z|2) and γr = O(|z||zr |), we obtain

‖ξr‖L2 ≤ ‖zr‖L2 +
∥∥∥∥ z

r

∥∥∥∥
L2

+ ‖z‖L∞‖zr‖L2 + ‖z‖L∞

∥∥∥∥ z

r

∥∥∥∥
L2

,
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where we used the boundedness of h. By (2.23), we have ‖z‖L∞ ≤ Cδ, which can

be chosen sufficiently small to yield ‖ξr‖L2 ≤ C‖z‖X . In a similar manner, we can

show ‖ξ/r‖L2 ≤ C‖z/r‖L2 ≤ C‖z‖X . Combining, we obtain

(4.17) ‖ξr‖L2 +
∥∥∥∥ξ

r

∥∥∥∥
L2

≤ C‖z‖X .

Now we are ready to prove ‖L0z‖L2 ≤ C‖q‖L2 . Using again γ = O(|z|2),
γr = O(|z||zr |), and the boundedness of h, we find

∥∥∥∥(γ h)r + 2m

r
h3γ h + m

r
ξ3ξ

∥∥∥∥
L2

≤ C‖z‖L∞

(
‖zr‖L2 +

∥∥∥∥ z

r

∥∥∥∥
L2

)
+ C‖ξ‖L∞

∥∥∥∥ξ

r

∥∥∥∥
L2

≤ C‖ξ‖L∞

(
‖z‖X +

∥∥ξ

r

∥∥
L2

)

≤ C‖ξ‖L∞‖z‖X ≤ C‖ξ‖L∞‖L0z‖L2,

where we used (4.17) and ‖z‖L∞ ≤ ‖ξ‖L∞ . Thus we have

‖L0z‖L2 ≤ ‖sq(s·)‖L2 +
∥∥∥∥(γ h)r + 2m

r
h3γ h + m

r
ξ3ξ

∥∥∥∥
L2

≤ ‖q‖L2 + C‖ξ‖L∞‖L0z‖L2 .

Since ‖ξ‖L∞ ≤ C‖ξ‖X ≤ C‖z‖X ≤ Cδ can be taken sufficiently small, the above

inequality implies

(4.18) ‖L0z‖L2 ≤ C‖q‖L2,

which completes the proof of (4.15). Similarly, for any p with 2 ≤ p < ∞, we

have

‖L0z‖L p ≤ C

(
‖sq(s·)‖L p + ‖z‖L∞

(
‖zr‖L p +

∥∥∥∥ z

r

∥∥∥∥
L p

))

≤ C
(
s1−2/p‖q‖L p + ‖z‖L∞(‖L0z‖L p + ‖L0z‖L2

)
,

where we used Lemma 4.4. Since ‖z‖L∞ can be taken sufficiently small, by us-

ing (4.18), we finally have ‖L0z‖L p ≤ C(s1−2/p‖q‖L p + ‖q‖L2), completing the

proof of (4.12).

Next we prove (4.13). We first show

(4.19) ‖zrr‖L2 ≤ C

(
‖∂r L(ze)‖L2 +

∥∥∥∥ L(ze)

r

∥∥∥∥
L2

+ ‖L0z‖L2

)
.
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Indeed, recalling L(ze) = zr e + (m/r)h3ze, we have

(
∂r + 1

r
+ m

r
h3

)
zr e =

(
∂r + 1

r

)
zr e + m

r
h3zr e

=
(

∂r + 1

r

)(
L(ze) − m

r
h3ze

)
+ m

r
h3zr e

=
(

∂r + 1

r

)
L(ze) − m2

r2
h2

1ze + m2

r2
z2h3h1h.

Set

η := emθ Rze and H := emθ Rh.

Since ∂jη = DH
j η − (∂j H · η)H and (h3)r = (m/r)h2

1, we have

e−mθ R DH
j DH

j η =
((

∂r + 1

r

)
zr

)
e − m2

r2
h2

3ze

=
(

∂r + 1

r

)
(zr e) + m

r
z′

2h1h − m2

r2
h2

3ze

=
(

∂r + 1

r
+ m

r
h3

)
(zr e) − m

r
h3L(ze) + m

r
z′

2h1h,

and therefore we obtain

∥∥DH
j DH

j η
∥∥

L2 =
∥∥∥∥
((

∂r + 1

r

)
zr

)
e − m2

r2
h2

3ze

∥∥∥∥
L2

=
∥∥∥∥
(

∂r + 1

r

)
L(ze) − m

r
h3L(ze)

− m2

r2
h2

1ze + m2

r2
z2h3h1h + m

r
z′

2h1h

∥∥∥∥
L2

≤ C

(∥∥∥∥
(

∂r + 1

r

)
L(ze)

∥∥∥∥
L2

+
∥∥∥∥ L(ze)

r

∥∥∥∥
L2

+ ‖z′‖L2 +
∥∥∥∥ z

r

∥∥∥∥
L2

)

≤ C

(
‖∂r L(ze)‖L2 +

∥∥∥∥ L(ze)

r

∥∥∥∥
L2

+ ‖L0z‖L2

)
,

where we used |h1/r | bounded. Since ∂jη = DH
j η − (∂j H · η)H , we have

�η = ∂j∂jη = ∂j (DH
j η − (∂j H · η)H)

= ∂j DH
j η − ∂j ((∂j H · η)H)

= DH
j DH

j η − (∂j H · DH
j η)H − (∂j∂j H · η)H − (∂j H · ∂jη)H

− (∂j H · η)∂j H.
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Therefore, we obtain

‖�η‖L2 ≤ ‖DH
j DH

j η‖L2 + ‖(∂j H · DH
j η)H‖L2 + ‖(∂j H · ∂jη)H‖L2

+ ‖(∂j∂j H · η)H‖L2 + ‖(∂j H · η)∂j H‖L2

≤ ‖DH
j DH

j η‖L2 + C

(
‖∇η‖L2 +

∥∥∥∥η

r

∥∥∥∥
L2

)

≤ ‖DH
j DH

j η‖L2 + C

(
‖zr‖L2 +

∥∥∥∥ z

r

∥∥∥∥
L2

)
.

Thus

(4.20) ‖η‖Ḣ2 ≤ C‖�η‖L2 ≤ C

(
‖∂r L(ze)‖L2 +

∥∥∥∥ L(ze)

r

∥∥∥∥
L2

+ ‖L0z‖L2

)
.

Let

A = (ze)rr − (ze)r

r
+ m2ze

r2
, B = (ze)rr , E = m R(ze)r

r
− m Rze

r2
.

Then direct calculations show

(emθ Rze)xx = emθ R

(
− y2

r2
A + B − 2

xy

r2
E

)
,

(emθ Rze)yy = emθ R

(
− x2

r2
A + B + 2

xy

r2
E

)
,

(emθ Rze)xy = emθ R

(
xy

r2
A +

(
x2

r2
− y2

r2

)
E

)
.

Each of A, B, and E can be expressed in terms of combinations of second deriva-

tives of η = emθ Rze. This implies, in particular, estimate (4.19).

It remains to control ‖∂r L(ze)‖L2 + ‖L(ze)/r‖L2 . Noting that êr = −(vr · ê)v

and (J v ê)r = (vr · ê)v, so

(qê)r = qr ê − q1(vr · ê)v + q2(vr · ê)v,

and recalling vr (r) = eαR(1/s)(hr (r/s) + ξr (r/s)), we have

‖∂r (qê)‖L2 ≤ C

(
‖qr‖L2 +

∥∥∥∥q

r

∥∥∥∥
L2

+
∥∥∥∥q

1

s
zr

( ·
s

)∥∥∥∥
L2

)

≤ C

(
‖qr‖L2 +

∥∥∥∥q

r

∥∥∥∥
L2

+ ‖q‖2
L4 + s−1‖q‖2

L2

)
,
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where we used (4.12). Taking the derivative of Equation (4.16), we get

‖∂r L(ze)‖L2 ≤ C

(
s‖qr‖L2 + s

∥∥∥∥q

r

∥∥∥∥
L2

+ s‖q‖2
L4 + ‖q‖2

L2

+
∥∥∥∥(γ h)rr +

(
2

m

r
h3γ h

)
r

+
(

m

r
ξ3ξ

)
r

∥∥∥∥
L2

)
.

We consider first (γ h)rr . Using |hr | + |rhrr | < C , we have

‖(γ h)rr‖L2 ≤ C‖|γrr | + |γr hr | + |γ hrr |‖L2

≤ C

(
‖z‖L∞‖zrr‖L2 + ‖zr‖2

L4 +
∥∥∥∥|zr | +

∣∣∣∣ z

r

∣∣∣∣
∥∥∥∥

L2

)

≤ C(‖z‖L∞‖zrr‖L2 + s‖q‖2
L4 + ‖q‖2

L2 + ‖q‖L2).

Next we consider ((m/r)h3γ h)r . In a similar manner, we find

∥∥∥∥
(

m

r
h3γ h

)
r

∥∥∥∥
L2

≤ C

∥∥∥∥
∣∣∣∣ γ

r2

∣∣∣∣ +
∣∣∣∣γr

r

∣∣∣∣
∥∥∥∥

L2

≤ C

(∥∥∥∥ z

r

∥∥∥∥
2

L4

+ ‖zr‖L4

∥∥∥∥ z

r

∥∥∥∥
L4

)

≤ C
(
s‖q‖2

L4 + ‖q‖2
L2

)
.

For the term (ξ3ξ/r)r , we have the estimate

∥∥∥∥
(

m

r
ξ3ξ

)
r

∥∥∥∥
L2

≤ C
(
s‖q‖2

L4 + ‖q‖2
L2

)
.

Following a similar procedure for ‖L(ze)/r‖L2 , we obtain

‖∂r L(ze)‖L2 +
∥∥∥∥ L(ze)

r

∥∥∥∥
L2

≤ C

(
s‖qr‖L2 + s

∥∥∥∥q

r

∥∥∥∥
L2

+ ‖z‖L∞‖zrr‖L2 + s‖q‖2
L4 + ‖q‖2

L2

)

≤ C

(
s‖qr‖L2 + s

∥∥∥∥q

r

∥∥∥∥
L2

+ ‖z‖L∞

(
‖∂r L(ze)‖L2 +

∥∥∥∥ L(ze)

r

∥∥∥∥
L2

)

+ s‖q‖2
L4 + ‖q‖2

L2

)
,

using (4.19). Since ‖z‖L∞ can be taken sufficiently small, we conclude

(4.21) ‖∂r L(ze)‖L2 +
∥∥∥∥ L(ze)

r

∥∥∥∥
L2

≤ C

(
s‖qr‖L2 + s

∥∥∥∥q

r

∥∥∥∥
L2

+ s‖q‖2
L4 + ‖q‖L2

)
,

having used the smallness of ‖q‖L2 . Combining (4.21) with (4.19) completes the

proof of (4.13).
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It remains to prove (4.14). Since u(x) = e(mθ+α)R(h(r/s) + ξ(r/s)), it is

straightforward to check that for δ sufficiently small,

‖u‖Ḣ2 ≤ C

s
(1 + ‖η‖Ḣ2)

and so (4.14) follows from (4.20) and (4.21). The proof of Lemma 4.8 is complete.
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