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Abstract

For the Schrodinger flow from R? x Rt to the 2-sphere S, it is not known if
finite energy solutions can blow up in finite time. We study equivariant solutions
whose energy is near the energy of the family of equivariant harmonic maps. We
prove that such solutions remain close to the harmonic maps until the blowup
time (if any), and that they blow up if and only if the length scale of the nearest
harmonic map goes to 0. © 2006 Wiley Periodicals, Inc.

1 Introduction and Main Result

The Schrodinger flow for maps from R” to S? (also known as the Schrodinger
map, and, in ferromagnetism, as the Heisenberg model or Landau-Lifshitz equa-
tion) is given by the equation

(1.1 u, =u x Au, u(x,0) =uo(x).
Here u(x, t) is the unknown map from R” x R to the 2-sphere
STi={uelR||u=1} c R,

A denotes the Laplace operator in R”, and x denotes the cross product in R?. A
more geometric way to write this equation is

(1.2) u, = JPAu, PAu= Au+ |Vul’u,
where P = P, denotes the orthogonal projection from R? onto the tangent plane
7,8 :={£eR|&-u=0)

to S? at u, and J = J“ := u x is a rotation through /2 on T,S?.
On one hand, equation (1.1) is a borderline case of the Landau-Lifshitz-Gilbert
equations that model isotropic ferromagnetic spin systems:

(1.3) u=aPAu+bJPAu, a=>0,
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(see, e.g., [10, 11]). The Schrodinger flow corresponds to the case a = 0. The case
b = 0 is the well-studied harmonic map heat flow, for which some finite-energy
solutions do blow up in finite time [2].

On the other hand, equation (1.1) is a particular case of the Schrodinger flow
from a Riemannian manifold into another one with a complex structure (see, e.g.,
[6,7, 8,9, 14, 18, 19]). We will limit ourselves to the case u : R” x Rt — S?in
this paper.

Equation (1.1) can be written in the divergence form u, = Z;':l 0j (u x Jju),
which is useful in the construction of global weak solutions [16]. Its formal equiv-
alence to a nonlinear Schrodinger equation (NLS) can be seen by applying the
stereographic projection from S? to Co,, the extended complex plane,

up +iuy

1.4 — :
(14) v 14+ uj

. 2w 2
1w, = —Aw + lelz X/:(E)]w) .

It is also known to be equivalent to an integrable cubic NLS in space dimension
n =1 (see, e.g., [5, 17]).
Equation (1.1) formally conserves the energy

n 3
1 1
(1.5) Eu) = 5/|W|2dx = E/ZZWjuklzdx.
Rn

R” j=1 k=1

The space dimension n = 2 is critical in the sense that £(u) is invariant under
scaling. In general,

(1.6) ) = 2 "Ewy),  uy(x) = u(f>, s> 0.

N

For our problem u : R” x R* — S2, local-in-time well-posedness (LWP) is
established in [16] in the class |u| = 1 and Vu € H*R"), where k > n/2 + 1
is an integer. The authors there also proved global-in-time well-posedness (GWP)
in the same class when n = 1 and when n > 2 for data that is small in certain
Sobolev norms. For n = 2, global existence is proved in [3] for small energy
radial or equivariant data. Also, for n = 2, LWP for a closely related system of
nonlinear Schrddinger equations is established in [12, 13] for data corresponding
to Vu € H'*<. There are known to be self-similar blowup solutions for n = 2 [4];
however, these do not have finite energy.

Fix m € Z, a nonzero integer. By an m-equivariant map u : R*> — S?, we mean
a map of the form

(1.7) u(r,0) = " Ry@r)
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where (r, 6) are polar coordinates on R?, v : [0, 00) — S?, and R is the matrix
generating rotations around the u3-axis:

0 —1 0 cosa —sina O
(1.8) R=1|1 0 O0f, e*®=]sina cosa 0
0 0 0 0 0 1

Radial maps arise as the case m = 0. The class of m-equivariant maps is formally
preserved by the Schrodinger flow.

If u is m-equivariant, we have |Vu|*> = |u, |>+r2|ug|* = |v,|>+m?/r?)|Rv|?,
and so

o] 2
(1.9) &W=ﬂ/‘QwF+gﬂﬁ+ﬁOmn
0

If £(u) < 00, the limits lim,_,¢ v(r) and lim,_, o v(r) make sense (see (2.2) in the
next section), and so we must have v(0), v(co) = ik where k = 0,0, DT. We
may and will fix v(0) = —k. The two cases v(0c0) = +k correspond to different
topological classes of maps. We denote by ¥, the class of m-equivariant maps
with v(c0) = k:

T = {u:R> = S?|u=e""Rv@r), Ew) < oo,

(1.10) . X
v(0) = —k, v(c0) = k).

The energy £ (1) can be rewritten as follows:

amzn/ @m+-|JR|>
0
/“ Im| g
=7
0

v, — — J'Rv| rdr + Euin

r

o

5mm:2n/ v,-mJ“erdr
0 r

(1.11)

where J' := v x, and

(1.12) o
=2ﬂ|m|/ (v3), dr = 2w |m|[v3(00) + 1]
0

(using v% + v% + v% = 1). The number &.;,, which depends only on the boundary

conditions, is in fact 47 times the absolute value of the degree of the map u, con-

sidered as a map from S? to itself (defined, for example, by integrating the pullback

by u of the volume form on S?). It provides a lower bound for the energy of an

m-equivariant map, £(u) > Enin, and this lower bound is attained if and only if
Im|

(1.13) v, = — J'Rv.
r
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If v(c0) = —k, the minimal energy is Enin = 0 and is attained by the constant map
u = —k. On the other hand, if v(co) = k, the minimal energy is

5(”) = 6min = 47r|m|

and is attained by the 2-parameter family of harmonic maps

(1.14) Oy = {0 (r)|s > 0, a € [0, 27))}
where
s, aR r
%) =e h(—),
s
and
hi(r) I
(1.15) h(r) = 0 s hl(”)=m, h3(’”)=m-
hs(r) rim 4+ r rim +r

The fact that i (r) satisfies (1.13) means
m m
(1.16) (h)y = =—Mihs,  (h3); = — 7.

So O,, is the orbit of the single harmonic map ¢”%h(r) under the symmetries of
the energy £ that preserve equivariance: scaling and rotation. Explicitly,

cos(mf + a)h(r/s)
(1.17) e Rpse(ry = | sin(mb + )k (r/s)
hs(r/s)
The solution (1.15) is easily found by solving system (1.13) of ODEs directly. Al-
ternately, under the stereographic projection (1.4), equation (1.13) amounts to the
Cauchy-Riemann equations, and these harmonic maps correspond to the antimero-
morphic (if m > 0) functions

(1.18) w = e (5) . z=ré®.
S

We are now ready to state our main result. We denote ||u|| g« = ||V¥ul| 2.

THEOREM 1.1 There exist § > 0 and Cy, C; > 0 such that ifu € C([0, T); H?N
X)) is a solution of the Schrodinger flow (1.1) conserving energy and satisfying

8% 1= E(ug) — 4 |m| < 82,
then there exist s(t) € C([0, T); (0, 00)) and a(t) € C([0, T); R) so that

u(x,t) — emoteRy L
’ s(t)

Moreover, s(t) > Cy/|u(t)|g,- Furthermore, if T < 00 is the maximal time of

(1.19) < Coéy Vtel0,T).

H;(R?)

existence for u in H? (i.e., limy_7- |u(t)|l g2 = 00), then

(1.20) liminfs () = 0.

t—T~
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Remark 1.2.

(1) This theorem can be viewed, on one hand, as an orbital stability result for
the family of harmonic maps (at least up to the possible blowup time), and on the
other hand as a characterization of blowup for energy near Ey;,: solutions blow up
if and only if the H'-nearest harmonic map “collapses” (i.e., its length scale goes
to 0).

(2) The assumption &(ug) — 4mw|m| < 8% implies ug is close to O, in H!
(see (2.7)), but not necessarily in H2.

(3) The existence of local (in time) H? N H! solutions of (1.1) is established
in [16] for sufficiently regular initial data. In particular, this ensures Theorem 1.1
is nonempty (see also [12]-[13] for local well-posedness results). Local well-
posedness with data in H2 N H' still appears to be open. If we had this, (1.20)
could be replaced by lim,_, 7- s(¢) = 0.

(4) From now on we will assume m > 0. The cases m < O of Theorem 1.1
follow from the change of variables (xi, x5, x3) — (x1, —X2, X3).

The plan for the paper is as follows: In Section 2 we study maps whose energy
is close to that of the family of harmonic maps. The analysis here is completely
time independent. In Section 3 we apply Strichartz estimates to a certain nonlin-
ear Schrodinger equation, obtained via the Hasimoto transformation introduced in
[3], and present the proof of the main theorem. The proofs of some of the more
technical lemmas are relegated to Section 4 in order to streamline the presentation.
Without loss of generality, we assume m > 0 for the rest of the paper.

REMARK ON NOTATION. Throughout the paper, the letter C is used to denote
a generic constant, the value of which may change from line to line.

2 Maps with Energy near the Harmonic Map Energy

This section is devoted entirely to static m-equivariant maps (i.e., there is no
time dependence anywhere in this section). We establish some properties of maps
with energy close to the harmonic map energy 47w m. Roughly speaking, we prove
that such maps are H'-close to harmonic maps. Precise statements appear in The-
orem 2.1 below.

We define the distance from any map u to the family O,, of m-equivariant har-
monic maps to be

dist(u, O,) := inf |lu — ™ Rn*%|
s€(0,00)

aeS!
Here S! = R/27.
The following theorem defines a (nonlinear) projection from the set X, of m-
equivariant maps with energy close to 4w m onto the family O,, and establishes a

key fact: for maps in this set, the squared distance dist*(u, O,,) is bounded by the
energy difference £(u) — 4mwm.
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THEOREM 2.1 There are constants 6 > 0 and Cy, C1 > 0 such that ifu € %,
satisfies
Ew) < 4m + 82,
then the following hold:
(i) There exist unique s(u) € (0, 00) and a(u) € S' such that
dist(u, Op) = [lu — " RR* O] .
Moreover, s(u) and a(u) are continuous functions of u € H'.
(i) dist(u, Op) < Col€(u) — 4mrm]'/? < Cyé.
(iii) Ifu € H*(R?), then s@)llull g2gzy > Ci.

PROOF: The proof is long, so we break it into a series of steps. At each step,
we may need to take § smaller than in the previous step.

Step 1. A Change of Variable. Recall that u € X,, implies that in polar
coordinates (r, 0), u(x) = e™®v(r), with v(0) = —k and v(co) = k. The change
of variables

r—y=mlog(r) € (—oo,00) or e =r"
turns out to be very useful for our purposes.
Set
o(y) = v(e’™).
With this change of variables, the H' inner product of m-equivariant maps changes
as follows:

(e"Ru(r), e"Rw(r)) g = / Vie™Rv(r)] - VIe™Rw(r)]dx

R2

00 m2
:271/ (v,-wr—i——zRv-Rw)rdr
0 r

=2mm /(5’ - + RU - Rw)dy,
R

where ' denotes d/dy. In particular,

Q1) Ew) =2mmE®@), E@):= % / (17O + 510 + 52(0)°)dy.

R
Note that this implies v; € H '(R) for j = 1,2, and in particular (f)jg)’ e L'(R) so
that the limits lim,_, 1 ﬁjz( y) exist and are equal 0. The function v is continuous,
and 5% =1- 17]2 — f)% has limit 1 as y — =£oo. Thus the limits lim,_, 4, ¥ exist,
justifying our earlier claim

2.2) lim v(r) and lim v(r) exist.
r—>00

r—0

A~

Recall that for v € X,,, we have chosen v(—00) = —k, v(c0) = k.
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E (D) inherits the “topological lower bound”

~ 1 -
(2.3) E@) =2+ 3 / |0' — J'RT>dy > 2.
R

In this new variable, scaling r corresponds to translating y. In particular, the family
of harmonic maps is composed of translations and rotations of a simple explicit
map:

R (r) = e"‘Rh(£> = e"®h(y — mlog(s)),
s
~ sech y
h(y) = 0
tanh y

Step 2. Energy Close to 4wm Implies u Close to a Harmonic Map. Using
the variable y, we would like to prove the following:

LEMMA 2.2 For any € > 0, there exists ju > 0 such that if a map v : R — S?
satisfies E(V) < 2 4+ u, and v(—00) = —k, v(00) = k, then

inf |5 — e"®h(- — @)l ) < €

aeS!,aecR
PROOF: Suppose not. Then there exist v;(r), j = 1,2,3, ..., and ¢y > 0 such
that
- 1
vl =1, E() <2+ -,
2.4) j

vj(£o0) = +k, Nvj — eFh(- — @)y @) = o

for every @ € S!' and @ € R. Since E(vj) < 00, v;j is continuous and thus
vj3(a;) = 0 for some a; € R. We replace v; by w;(y) = e %Rv;(y + q;),
where o; € S! is chosen so that w;(0) =1 = (1,0, 0)". The properties (2.4) still
hold for {w;}:

~ 1 N ~
2.5 lwir) =1, E(w;) <2+ }, wj(Eoo) = xk, |lw; —hllgig > €o-

Since sup; E (wj) < oo, there is a subsequence (which we continue to denote by
{w;}) and a limit vector function w*(y) satisfying

wji, — w}, wj —> w; weakly in H'(R)
(2.6) wiy — wi weakly in L2(R)
w; —> w* strongly in L2 _(R) N CY (R).

loc loc
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Because of the local uniform convergence, we have |w*| = 1 and w*(0) = 7. On
the other hand, by the topological lower bound (2.3), we have

~ 1 _ 1
R

from which it is immediate that [[w; — J" Rw; ;2@ — 0 as j — oo. For any

bounded interval 7, using J*¥ Rw = k — wsw, we have
|7 Rw; — J“’*Rw*lle(,) = |wjzw; — wiw* |2y — 0 as j — oo.
Hence w; — J w* Rw* strongly in L>(I). On the other hand, w* is the weak limit
of w]/., and so we obtain w* = J* Rw* almost everywhere, with w*(0) = . By
uniqueness of H,!_ solutions of this system of ordinary differential equations, we
must have
w*(y) = h(y) = (sechy, 0, tanh y).
Now we note that
E(w*) = E(h) =2 = lim E(wj).
Jj—>00
By (2.1),
”Rw*”i]l(R) + ”w;ﬁ/”i%R) = Jlifgo (”Rw] ”iII(R) + ||w;3||iZ(R))
By weak lower semicontinuity, i.e.,

®112 s 2 * 112 S 72
”Rw ||H1(R) S h]nl)lglf”Rwl”Hl(R)’ ”w3 ”LZ(R) S hjnl}élf”wj:i“Lz(]R)’

2 2 2 2
H(R) H(R) L2(R) L2(R)’

plies Rw; — Rw* strongly in H'(R) and w]’.3 — w’;, strongly in L2(R). Finally,

we have || Rw; || — ||Rw*|| and ||w]/.3|| — ||w§‘/|| which im-
we will show that w; — h converges to 0 strongly in H'(RR), which will contradict

assumption (2.5), and so complete the proof of the lemma. Indeed,

712 772 712 2
”w] - h”Hl(R) = ||w; - h/”LZ(R) + ”ij - Rh”LZ(R) + ||w]3 - h3||L2(R)'

We have already shown that the first two terms go to 0 in the limit, and so it remains
to consider the last term. For this, we need another lemma. For f : (a,b) — R,
denote by T(, 5 (f) the total variation of f on (a, b). The following lemma shows
that the total variation of vj is close to 2 if £(u) is close to 4w m.

LEMMA 2.3 Ifu = e"Ru(r) € %, and Eu) = 4mwm + €, then T0,00)(v3) <
2+ Ce.

PROOF: Make the change of variable 0(y) = v(e’/™), and write
v = (pcos(), psin(@), v3),

so that p> = 07 + 3. We have
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€0 ~/12 ~12 ~2  ~\2 (:5/)2 ~2
44— > [ (U + |Rv[)dy = P& + —=+p" |dy
Tm 1—p2
R R

o1o| ~ -~
22 m ‘—(1 £2)'?|dy = 2Tr(33).

Dividing by 2 on both sides completes the proof. U

Applying this lemma to w;, we have Tr(w;3) < 2+ C/j. Since w;3(—00) =
—1, wj3(0) = 0, and wj3(0c0) = 1, we have w;3(y) > —C/j for y > 0 (and
similarly for y < 0). Fix €; > 0. For |y| > € and j sufficiently large (depending
on €),

3 |w? —ﬁ2| lw?, — i3
|lws; — h3| = < <
|w3]+h3| |h3| — C/j
2 )
< — . —h3| = Rh|*> — |R
_tanhel|w3’ 3| tanh e || i |w1||
and so

/ |w3j—ﬁ3|2dy—>0 as j — oo.
[yl=€1
Since fM«l lws; — h3|?dy < Ce and €, is arbitrary, we conclude

lws; — A3l 2@ — O.
This completes the proof of Lemma 2.2. O

Translating Lemma 2.2 back to the original variable r = ¢*/™, we find

given € > 0, there is u > O such thatifu € %,,, E(u) < dmm+ u,
then dist(u, O,,) < €.

Step 3. Existence of s(u) and o(u). Recall that since u € %, E(u) >
4m, and set 8, := [E(u) — 4rm]'/? < §. We observe first that

(28)  lim inf |u — "R, = hn% inf [|u — "%, = 8mm + 87

2.7)

Indeed, we have

29 lu — &R RS, = 8m 4 87 — 2/ Vu - V(e Rh*)dx,
R2

and it suffices to show that for any o € S!

(2.10) / Vu - V(" ps*)dx — 0
RZ

ass — Oors — o0o. Since h**(r) = h"*(r/s), this latter fact follows from an
easy lemma:
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LEMMA 2.4 If f € L*(R?), then

1
—f(f) — 0 weakly in L*(R?) as s — oo and s — 0.
s7\s

PROOF: First suppose f € L? N L™ and fix g € L?. By Holder’s inequality,
1 [(x 1 (x 1 (x
/ —f(—)g(X)dx = / —f(—)g(x)dx + / —f(—)g(x)dx
sT\s sT\s sT\s
R? Ix|</s x[>+/5

1/2
= ”f”LO"”g”LZ% + ”f”L2( f Ig(X)Ide) -0
NENG

as s — oo. A similar argument covers the s — 0 case. For general f € L2, choose
fe € L> N L™ with || f. — f|l;2 < €. Then by the above argument,

N N
R2

Since € is arbitrary, we are done. 0

< ellglle2 4 o(s).

To prove the claim (2.10), just take g = Vu and %f( - /s) = V(e"Rp59) in
this lemma.

So on one hand, inf, ||u — e , approaches 8mwm + Bf as s — 0 and
s — 00. On the other hand, (2.7) shows that if § (and hence §,) is sufficiently
small, then for some s and «, ||u — e"?Rh*¢ ”?91 < 8mwm. Thus to minimize

m@Rhs,a ”2

F(s o) 1= lu— """ h* |3,

over s € (0,00), @ € S!, it suffices to consider s in a compact subset of (0, 00).

Since F(s, ) is continuous, there must exist s(u) € (0, 00) and a(u) € S! such
that

diSt(l/l, Om) — ||l/l _ em@Rhs(u),a(u)”H] .

Step 4. Uniqueness of s(u) and a(u). Denote 0 = (s, o). Suppose there
exist o1 and o, with o1 # o, such that

8o 1= dist(u, Op) = |lu — ™ Rnt|| g1 = |lu — e Rh2|| 1.

Let 1 be half the distance between e”*®h and e™*®h%2, 1 = 1|le"*Rh™ —
e Rpo2| 51 It follows that © < 8. Now set ¢(t) = "Rh°® with o(t) =
%[(01 + 0») + t(0s — 01)], so that p(—1) = €"Rh% and (1) = e™Rh%2. Set
Q= %[gp(—l) + ¢(1)]. Lemma 4.6 (stated and proved in Section 4) then yields

16 — @)l ;1 < Cu’.

This estimate amounts to a bound on the curvature of the family O,),.
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Now V[u—@]is L?-orthogonal to V[e"R (ho1 —h°?)], since ||u—e™Rho || ;1 =
lu — e™®ho2|| 1. By the Pythagorean theorem,

_ 1
lu =@l =l = (=Dl = 7 le(=D — @D =8 — n?,
and so
lu — @Ol < llu— @l + 11 — @Ol < (85 — uH)'?+ Cu?

By (2.7), we can ensure §, < 1/(2C) by choosing § sufficiently small. This in
turn implies ||lu — @(0)|| 51 < 8o, which contradicts the assumption that & is the
minimal distance. This establishes uniqueness of s(#) and o (u).

Step 5. Continuity of s(«) and a(1). We could invoke the implicit function
theorem, but we prefer to give a simple direct proof of continuity. Suppose u; — u
in H' with Euj) < 4mm + 8% and £(u) < 4mrm + §>. We have

dist(u;, Op) < lluj — ™ RR* OO i < |luj — ul| g + dist(u, Oy,)
and
dist(u, O,) < ||u — ™ RR¥ @D |y < Jluj — |l o + dist(u;, O,)
and so dist(u;, O,,) — dist(u, O,,). Since
[l 8 (@D — g0« Wy < dist(uj, Op) + dist(u, Op) + lluj — ul| g1,

{s(uj)} is contained in a compact subinterval of (0, 00) by Lemma 4.5, and so,
up to subsequence, s(u;) — s, and a(u;) — o, for some s, and a,. Along this
subsequence

u — W)y = dist(u, O,) = lim dist(u;, O,,)
Jj—>00
— 111’1’1 ”uj _ hS(”j),Of(“j)”ﬁ] = ||lu — hs*’a*“,_',].
j—o00

By the uniqueness we have already proved, s, = s(#) and v, = a(u). We conclude
that s(u;) — s(u) and o (u;) — o (u) (for the full sequence). Continuity is proved.
This completes the proof of part (i) of Theorem 2.1.

Step 6. The “Linearized Operator.” We now proceed to the proof of part (ii)
of Theorem 2.1. The main idea is this: the “global” result of Lemma 2.2 allows
us now to work “locally” — i.e., nearby a harmonic map. Indeed, to prove (ii),
we study the second variation of the energy functional around the nearby harmonic
map. We begin by discussing this “linearized operator.”

Given an m-equivariant map u € X, with E(u) — 4mrm < 8%, we fix s = s(u)
and o = a(u) and write u = "Rv(r) with

@2.11) v (r) :e“R(h(5> +s<f)).
S h)
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This defines £ = £(r) = e *Rv(sr) — h(r) (note that the variable r here is no
longer the original polar coordinate). Using &, — (m/r)J"Rh = 0, expand
2

1 ) 1 m
Ew)== | |Vu|"dx =4mm + = v, — — J'Rv| dx
2 2 r
R2
1 m 2
(2.12) =4mm + 5 L& + —&E| dx
r
R2
where L£ is the linear part,
m
(2.13) L :=§ + 7(§3h + h3é).

In fact, the operator L maps tangent vector fields (i.e., vector functions n(r) tan-
gent to S? at h(r)) into tangent vector fields. To see this explicitly, we specify an
orthonormal basis of 7,S?:

—h3(r)
e=1]1 and J'e = 0
O h](}")

Then for any map £ : [0, c0) — R?, we have an orthogonal decomposition
(2.14) E(r) =z1(Ne + () J"e +y (nh,

which defines a complex-valued function z(r) := z;(r) + iz2(r). Note that
Le="hse, L") = "hsse, Lh="nn+"k.
r r r r

Hence the operator L restricted to T;,S? is equivalent to

m 1
Ly:=0,+—h3;=h;0, —
r ]’ll

in the sense that
L(zie + z22J"e) = (Lozi)e + (Loza) J"e.

Roughly speaking, our strategy for proving part (ii) of Theorem 2.1 is to show
that dist(u, O,,) is controlled by z, which is controlled by Lz, which in turn is
controlled by £(u) — 4mrm.

Define for radial complex-valued functions f(r) and g(r) the following inner
product:

oo _ 2
o= [ (ﬁ(r)gr(r) 0 f(r)g(r)>rdr.
If we set f(y) = f(e’™) and g(y) := g(e*/™), we have

2.15) (f.g)x=m f (F& + F3)dy =m(f. ).

R
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LEMMA 2.5 There are ¢, C > 0 such that if f : [0, o0) — C satisfies

(2.16) (o h) x| < ell fllx
then

[ee] m2 [e]
(2.17) 1% = /0 (|fr|2 + r—2|f|2)rdr < C/o |Lo f1*r dr.

PROOF: We may assume f(r) is real-valued. Under our change of variables
f(y) ;= f(e’/™), we have

e’} 2
/0 (ﬁ2 + ’%fz)r dr =m / ()Y + fHdy
R

and

/ [LofVrdr=m /[Zof]2dy
0 R
where

L 9 { tanh h( )d !
‘= — +4tanh y = sec — .
0 dy Y Y dy sechy

In the variable y, the assumption of the lemma becomes

~ - ~ e -~
(2.18)  (f, sechy) ) = / (f'(sechy) + f sechy)dy < —=IIfllu ).
Jm
R
and so it suffices to prove that (2.18) implies

(2.19) 1 g < CILof 132 = C{f. LiLof) 1)
The second-order differential operator
. d? 5
H:=LLy=—— +1—2sech
olo dy2 + )

is nonnegative with unique zero eigenfunction (“ground state”) sech (y) (in fact,
this operator is well studied; see, e.g., [15]). Set ¢ = (1/«/5) sech y so that
”¢”L2(R) = 1. Write

f=a¢+¢ with(g,¢)=0.
Similarly, decompose
¢=0b@" — @)+ with (@ —¢), ¥) =0.
Since ¢ — ¢ = —~/2sech’y, ¥ is nonzero, b = —||¢2||§2(R) /(2||¢3||§2(R)), and

¥l < 1.
Now by (2.18),

lal = ¢, £ < [(b@" — @), I+ (¥, f)
= bl g, Al + 1, O < Cell Fllgw + W, £
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Using the above estimate and (A + B)> < q’A? 4+ gB? where ¢’ is the Holder
conjugate of g with 1 < g < oo, we have
(fo F) =lal’ +llell72 < (Cell Flme + 1. FID® +llollz:
< Cq'If g +alw, HIF +llel}:
< Cq'N F g + a0 F17: + el
Choose ¢ to be such that g ||y ||i2 < 1 to obtain
1F15: < CEI I + C(F HI),
where we used ||<p||i2 < Clp, Hp) = C(f, Hf). On the other hand, we have
(' Y < (F HD) + CIFIR.
Combining the two estimates above, we get
17 ey = €U H7) = C [1EafPdy.

provided ¢ is sufficiently small. Transforming back to the variable r, we obtain
estimate (2.17), completing the proof. O

Step 7. Almost Orthogonality. To apply the previous lemma to z(r), we
need to verify condition (2.16), for which we use the following lemma:

LEMMA 2.6 For z(r) and y (r) defined by (2.11) and (2.14),
2

o m
(2.20) (z1, h)x = / (Z]Jl]r + r_2 Z]h])l‘ dr =0,
0

00 m2 oo 4m2
(2.21) (z2, h1)x = / (erhlr + s Z2h1>” dr = / 2 hihsyr dr.
0 0
PROOF: The pair («(u), s(u)) is the minimizer of the differentiable function

F(s,a) = [|V(e'"9R(v — h*))[* dx.
R2

The lemma follows from the equations V, ; F (o (u), s(u)) = 0. O
Step 8. Proof of (ii). We will use the following abbreviation:
ze:=zie+ 0", 7=z +iz.
By (2.7), we may choose § sufficiently small so that
lu — "% R || g1 < 8o

for any given §p > 0 (which will be specified later). So we have
2
= [lu — "R n>|3, < 8.

m
(2.22) HM@WVW—RS
r L2(R2)
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It is proved in Lemma 4.7 that (2.22) implies the L°°-smallness of &(r) for
sufficiently small: ||§]| .~ < C§p. This immediately implies

(2.23) [zlleo + ¥ lleo = Co.

Since 1 = |v|? = |z]> + (1 + ¥)? and |y| is small,

224) y=V1-1zP =120, |yMI=Clz®P |70 < Clz(r)z ()]
By Lemma 2.6, equation (2.23) through (2.24), and |h(r)| <1,

hy

Z
< C”Z”oo‘ pal 1

004m2
Iz, hi)x| = ‘/ F—Qh%hsyrdr
0

< Cdollzllx.

2 2

Taking 8¢ small enough so that C§y is less than ¢ in Lemma 2.5, we have

%) 2
dist?(u, 0,,) = 2n/ <|§r|2+ %msﬁ)rdr
0

o0 |Z|2 [e%e]
< C/ (er|2 + —z)rdr < Cf |L0z|2rdr.
0 r 0

On the other hand, by (2.12),

(2.25)

2
dx.

1 2 1
81 =E)—4mm = 5/‘L5+?§35 dx = Ef‘L(Ze)-l-L(Vh)JF?&S
R2 R2

Hence

2
)dx.

/|L0Z|2dx = / |L(ze)|>dx < 38% +C/(|L(yh)|2 + ‘%535
R2 R2

R2

Using (2.23) we have, for §; sufficiently small,

2
m
/‘7535 dx < cnznio/
]RZ

R2
For the term ||L(y h) ||i2, using (2.24) we find

2 2
vh 4
/|L(yh)|2sC/(|yrh|2+'7‘ +‘7h3h )§C||Z||<2>o/|LOZ|2-
R2 R2 R2

Thus we get (1 — C83)[| Lozl|7, < 487. Now choose 8, > 0 sufficiently small (by
choosing 8 small) so that || Loz||7, < 58 and therefore dist(u, O,,) < C§;. This
completes the proof of part (ii) of Theorem 2.1.

2
dx.

Z
r
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Step 9. Proof of (iii). By (2.9) with s = s(u) and ¢ = «(u), we have
Jz2 Vu - V(e™Rh**)dx > 2wm, since §; is small. On the other hand, inequal-
ity (4.2) from Lemma 4.1 in Section 4 gives an upper bound: for any o € (0, 1),

Vul? 1/2 172
/VM-V(em9RhS~“)dx < ( ﬂdx> (/ |x|2"|V(e’"9RhS’°‘)|2dx)

| x |20
R2 R2 R2

1- 2 OR s,
< CIVull 5 IV T oy | 1617 1V (R R |

R?) (R2)

2
=< C‘”V u”iZ(RZ)SU-

Thus we obtain || V2ul| 22y = C/s, completing the proof of Theorem 2.1.

3 Global Well-Posedness vs. Blowup

In this section we complete the proof of our main result, Theorem 1.1.
Letu € C([0, T); H?N %.,,) be a solution of the Schrédinger flow equation (1.1)
that conserves energy. We are assuming

81 :=Eug) — 4mm = E(u()) — 4nm < §*

where § is taken to be sufficiently small. In particular, we choose § small enough
so that Theorem 2.1 applies for each ¢ € [0, T') and so furnishes us with continuous
functions s(¢) € (0, 00) and @ (¢) € R such that

u(x, 1) — MRy r
’ s(1)

s |u) g2 > C > 0.
Thus the first part of Theorem 1.1 is proved. It remains to show that

3.1 < C4

H!

and

3.2) T <oo and lim ||lu(®)|lg2 =00 = liminfs(¢z) = 0.
t—>T~

t—T-

Recall that we are writing

_ mOR _ a(t)R_ L L
u(x, 1) =" v(r), v(r) =e _h<s([)>+g<s(t)>:|’

and (3.1) is equivalent to
2

< Cé7.
L2

R&(r)

r

le™Re@) % = 1€l + m®

To prove (3.2), we need estimates showing that ||u(¢)|| 72 is controlled as long
as s(¢) is bounded away from zero. These H>-estimates are obtained using the fact
that the coordinates of the tangent vector field v, — (m/r)J" Rv with respect to a



SCHRODINGER FLOW NEAR HARMONIC MAPS 479

certain orthonormal frame satisfy a nonlinear Schrédinger-type equation and can
be estimated using Strichartz estimates.

This construction, which was introduced in [3], begins with a unit tangent vec-
tor field é(r) € Ty(S* satisfying the parallel transport condition

Dye = 0.
Recall that D} is the covariant derivative acting on vector fields n(r) € T, U(r)Sz:
D/n:=P'n, =n, — (v-n)v=n, + (v, - M.
So é(r) and JVé(r) form an orthonormal frame on 7,S?. Then ¢(r) = q;(r) +
iq,(r) is defined to be the coordinates of v, — (m/r)J'Rv € T,S? in the basis
v, — ? J'Rv = q1é + quJ %¢.

We will sometimes write ge := g€ + g, J'é for convenience. Note that by (1.11),

2 2

m 1 h
v, — — J'Rv =—(EwW) —4mm) = —
r T

2
||q ”Lz(r dr) =
L%(rdr)

is constant in time and can be taken small.
Define v = v; + i1, as follows:
J'Rv =vie +1nJ'.
Again, we will sometimes denote ve := vie + v,JVe. It is now straightforward,
if somewhat involved, to show that if u(x, t) solves the Schrédinger map equa-

tion (1.1), the complex function ¢ (r, ¢) solves the following nonlinear Schrédinger
equation with nonlocal nonlinearity (see [3] for more details):

. (1 — mv3)? m(v3),
(3.3) iq = —Aq+ g+ — g+ qN(),

72

7 mo_ 1 —mus
N(q):Re/ q—|—7v qr—l—fq dr.

where

By changing variables to § := e/ +1Y%g, we obtain
- . m(l4uv)(mvs—m—=2) . mvs, . _
34 iq+ Agq — " 9———4- gN(g) =0.

We will use this equation to obtain H'-estimates on g.

For these estimates of g to be useful, we need to bound the original map u(x, )
— or, equivalently, v(r, t) or £(r, t) or z(r, t) — by g. Since v(r, t) = e*R[h(r/s)+
&(r/s, t)], we have

1 R|: m :| r
(3.5) ge = —e""| L& + —&§& (—>,
s r s

where, recall,

LE =& + %(sgh 4 hig) and & = zie + e + yh.
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Since £ is small, we have, very roughly speaking,
E~ze and L&~ (Lgz)e,

and z can be controlled by Lz. More precisely, Lemma 4.8, proved in the next
section, gives the following bounds: for 2 < p < oo, and provided § is sufficiently
small,

z
(3.6) lz/llr@ey + H—

LP(R2)
1-2
< C(S /p”anl’(Rz) + ||Q||L2(R2))’

q

BT MNzrrll2@ey < C(SllquILz(R2> +s +5llq 11742, + IIqlle(R2)>,

L2(R2)

1 q 1
(3.8)  ull p2re) < C(; + lgrll2@ey + H; + ||61||i4(Rz) + ;”an?(Rz))-

L2(R2)
We will use the following notation to denote space-time Lebesgue norms: for
an interval I C R,

r/p
T, 2=/(/|f(x,t)|”dx> .

I R
We use (3.6)—(3.7) together with Strichartz estimates and equation (3.4) to prove
the following estimates for ¢:

LEMMA 3.1 Fort > 0Oando > 0, set I := (t,71 +0), Q := R?> x I, and
X(Q) = L*L*(Q) N L®L2(Q) N LY’L¥(Q). Define s := inf,e; s(t). If 8 is
sufficiently small, we have

B9 llglxw = C(lgollze + (702 + 1174 40 191l 1300)-
(3.10) IVGlxco = C(IVG(Dll.2
+ (70 2+ 570 gl ) 1Vl ez 0niiLac0))-

Before proving Lemma 3.1, we show how it completes the proof of our main
theorem.

COMPLETION OF PROOF OF THEOREM 1.1: We need to prove (3.2), so sup-
pose that

(3.11) lir;l lu(@)|| g2 = oo
t—T~

and

(3.12) limTinfs(t) =59 > 0.
t—>T~

Our goal is to derive a contradiction. By (3.12), we have s(¢) > s* for all 0 <
t < T for some s* > 0. So we may take s = s* in the estimates (3.9)—(3.10) for
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any time interval I C [0, T). If o is sufficiently small depending on s* (o!/?

s*/(2C)), and ||qo|l;2 < C$é, is taken sufficiently small, estimate (3.9) implies

<

gllx) < Cdi.
Using this estimate in (3.10), for §; and o sufficiently small we obtain
IVGllirer2c0) = CIIVG (D)2
In particular, taking t close to 7', we see

limsup || Vg (@) ;2 < oo.
t—T-
Then using (3.8) and |g,| + |¢/r| < C|Vq]|, we find limsup,_, 7 |lu(?)| 52 < oo,
contradicting (3.11). This completes the proof of Theorem 1.1. U

PROOF OF LEMMA 3.1: By applying Strichartz estimates for the inhomoge-
neous Schrodinger equation (see, e.g., [1]) to (3.4), we get

(3.13) lglixo) = Cllg@ Iz + IF 4545 )

where

_ m(l +v3)(mvy —m —2) g m(v3), .

F: 5 + qg+qN(g).
r

,
Conservation of the L2Z-norm of q(t) (equivalent to conservation of energy £(u))
means we can replace ||g(7)|;2 by llqollz2 in (3.13). Using v3(r) = h3(r/s) +
&(r/s) and & = zoh| + y h3, we find

14 v; _l 1+h3+12h1+yh3
r2 L%_s r2 12
E(Hl—i—fm 220 vhs )
(3.14) IR r; g 1
C( z 4 )
<—(1t+]3] +[
S r L)z( r Li

< 6+ lgle + llglg2) + lgli7s)-

Using (3.14) and the uniform boundedness of ||g]| 2, we get

m(l+v3)(mv3—m—2)~ <C 14+ vs .
r? g LB r2 L343
14 v3
< CH H 5 llgllzs
r L2 L

—-1_1/2 2
< C(§ o2 4 ||q||L;4L§)||CI||L;‘L§-
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Next we estimate || (m(v3),/r)q|| LB LA Compute

1 1 |:mh2 mhihs3z myh%:| (r)

~(v3), = — | —L +hi(z2), — ———— + y,hs +
r Sr r r )

Remark 3.2. The notation means evaluate the quantity in the square brackets with
r replaced by r/s. We use this notation frequently in what follows.

Therefore, using boundedness of z, h3, hy/r,and y = 0(|z]?), y» = O(|zz,]),

we have
(v3)r C/(|h? Z _
(3.15) ‘ < (2] +hzle+|>] )=<cs'a+lgle.
r 12 S r L2 r L2
So
m(v?:)r V3, _
< CH lglzs| < CA+lgoll)s o Mgl s pa-
r L4343 rolle | e X

Next we need to estimate the nonlocal term

X/ my 1 —muy
V@ =Re [ (q+") (0 + g )ar
2 *® /1 —mv mv mv(l — mv
SN o (T R N ECE P

gl
= —T + (Rl + R2 + RS)-

First note
2 3
“I‘]| Q||L;*/3Li/3 - ||q||L¢L§

Now consider g R;. Using the estimate

Il = Clirfr (N2

(Hardy’s inequality in R* for radial functions), we have

~ 3
g Rill a5 p 45 = Ngllsre IR 22 = Cllglyeps-

Next we note that |v| = |J'Rv| = /1 — v% = |Rv|. We consider next g R;. By

Hardy again,
. - [ mu(l —muv3)
IgRsll, 43 < C||g —————qdr
x , r L4/3
D z —v?|'?
— _ 2 3 2
(3.16) =Cl=q|| lqllrs = CH lgll7s < CH 5 llgll7a
r 2 4 r L2
T4 -
=Cl—; lgli7s < C6™2 + lgloligls,
L2
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where we used (3.14) again. Thus
1Rl s o < €[ G™2 + gl g | o

2

(3.17) )
< C(s™20 " + Nl o) 117 -

It remains to estimate g R,. We rewrite R, using integration by parts,

m _ ®f(m_  m_
R, = —Re —vg —Re —V,— —V]qdr
r - r

r
_ ® i muvy _ 1 +muvs) _
:—Reﬂvq—FRe/ (m3q+m( 2m 3)v>qdr,
r p r r
where we used v, = —v3g — 7 v3V. So

» b *lql?
g Rall 45 45 SC(HCI—CI + ‘Q/ ——dr
LY O VRN , r

P
q —2qu a3 43 )
r r L,/',Lx/'

The last term is estimated as follows:

Y
q/ —qdr
P

L?/3,Li/3

_.l_

=

N <

q| lalls

L. Ly L2 Ly

v
=C||-
.

2
lqli2s
L3

TN

(3.18) L}

< Cll™2 + llgloliglyy ] om

—1/2 _1/4 2
< €50 + gl o) lall7s

where we used the same computations as in (3.16) and (3.17). The first term can be
treated in a similar manner, leading to the same estimate as in (3.18). The estimate
for the second term has been done already.
By returning now to (3.13) and using the above estimates, we establish (3.9).
Next we need to estimate the derivative of ¢ in order to establish (3.10). Denote
w := dy,q fori = 1, 2. Then w solves

m(l + v3)(mvy —m — 2)
72 w
N (m(l +v3)(mv3; —m — 2)) p

72

iwt+Aw:

(3.19)

N m(;)3)rw n (m(:3)r) G+ N@w + N@)ud.
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Using the previous estimates, we can estimate the various terms involving w in the
right-hand side:

m(vs3),
—w
r

m(l + v3)(mvz —m — 2)
r? v

—1 2
< Clls™ + liglza)llwlizall+s
4/3 473 X '
L/PLy

< C(s7'0 2 + 1174, 1V 31

-1 —-1_1/2 ~
< Clis™ wlzgll e < Cs'o 21Vl a1

L;4/3Li/3
—1/2 _1/4 ~
o IN@wWlsnn < C6 0 4 gl gl IVl s

Now the other terms. First note that |V§|? ~ |G|*> + |§/r|*, and thus

q

- = C||V(§||LP(1R2)

LP(R2)

for any 1 < p < oo. Due to (3.14) and (3.15), we have
H ((1 + v3)(mvy —m — 2)) .

2
r L4 LA
(v3)r . 14+ wv3) .
= C(‘ 2 4 3 3 4 3,43
r LY r L3[4

| -
- CH(‘ (v3)r +2v3 ) q
r L% r LE’ r Lﬁ L?/S
< Cl (™ + lgl7) [1Valls o
< C(s™'o "+ llglls )1V s
Next we consider
m(US)r ~ (v3)r ~ (v3)rr ~
<C + .
H( r )xiq L33 B (‘ r? LPLy? r 1 LPLy?

The first term in the right side can be estimated as before:

H ((v3)r ) ~
2 )4

Recalling (hy), = —(m/r)hihs, (h3), = (m/r)h?, and h;/r, h3 bounded, we find

=< C§_101/2”Vé”L;*L4-
4/3 473 x
L, Ly

1 h? hihaz 02 -
|(”3>rr|f—2m(—1) +<h1Zz,r)r—m( — 2) +<yrh3),+m(_y 1) (_)
§ "/ r r r , S
Cl|( hz| | hi(z), .
5_2[<_1> T = g A o) +lhlzrr|+|zzrr|+|z,|2}(—>.
S r - r r P
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We estimate term by term:
) C)
2 \r s/ ]r
1 (h_2 h2|h3|
2
h1|22|

<C
= 2
r2

2
(I
()7

1 2
= Cl=llzrlla |l =
Ky X

4/3 143

(5))
ol
ot ||zr||L;) KB

4/3 L4

q s lol21va
; = g / ||VLI”L§‘L;‘.’

4/3 LA

4/3 4/3

-1 _1/2 ~
< Cs 'a2IVqlpaps,

4
L || o

1 /2)

(||Q||L4L4 +S véL?Lé

Ll an

For the remaining term, using (3.7),

1
([(|h1|+|z|>zrr]< ))"
<|hl|+|z|><f)z
gl e
)H<|h1|+|z|>< )
r L4
<|hl|+|z|><f)g
S

< C(llqg ||iS/3L8 + §_3/203/4) VG llpeer2

4/3 LA

1
= CH_”erHL)ZC

= CH(IIerle + H

L4/3

+ CH (lgl7s +s7"lgl72)

4/3

LyhL;

+C (gl + 57 0 ) IVl s

LA

where we used, first by (3.6) with p = 8§,
thu - |z|)< )q
,

and then [[(|21] + 2D (r/s)(q/P)lILs < Clig/r 14

CH (11l + 12D (r/5)
r

g s

L8

X

< Clgliys + Cs7*(1 + llgl17),
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It remains to estimate N(q)y,q:

v q
@ity = | (1o + o] ) (a1 + 7))
v q
=<} (1ar +[a])], | (o2
r L)zc r

2 v? ~
<C “q”u;+ - IV@llrs s
L

L
—-1_1/2 2 ~
= C(§ o'+ ||CI||L;&L¢)||VCI”Lj‘L§-

Now applying Strichartz estimates to (3.19) and using the estimates established
above, we obtain

IVGll eo2npas < IVG(OIlL2 + C(s™ 4+ + ||61II§((Q>)||V6?I|L;§X.20L¢L§-

L4343

)

4/3
iy

This completes the proof of Lemma 3.1. g

4 Technical Lemmas

In this section we collect some of the technical lemmas used in the proof of the
main theorem in the previous sections.

4.1 Some Inequalities for Radial Functions

We begin with some inequalities for radial functions.

LEMMA 4.1
(i) Let0 < o < 1, and suppose f € H'(R?) is radial. Then

4.1) /OoorTrdr<C (/ frdr)lg</0 |fr|2rdr)0.

We have lim,,_, | C, = o0 and the estimate is false if o = 1.
(ii) Let0 <o < 1, and suppose f € H'(R?). Then

2 1-0o o
ljzﬂdxng(/lflzdx> (/|Vf|2dx> :
2 R2 R2

(iii) Suppose f € H,\ .(R?) is radial with f,, f/r € L*(R?). Then

2
43) TiPe C(/O (Ifrl —I—f)rdr).

PROOF: We first show that

0o £2 1 2 1/2 12
(4.4) /O frz(:)rdrfl_a(o rf4a(r3 ) (/ (f,(r))zrdr) .

4.2)
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Indeed, by changing the order of integration, we get
oo 2 00 00
) r 2
o rdr = — T(r [f ()15 dsdr

= —2/ f(s)f‘(s)ds/ —dr

=—1— s27 £ () fy(s)ds
%/,

1 oS 1/2 oo 1/2
(/ 5274 £2(s)s ds) (/ (fs(s))zsds) .
1—0o 0 0

In particular, if o = %, (4.4) immediately implies (4.1). We also note that estimate
(4.1) is immediate in the case o = 0.
Let o; = 1 — (1/2') where i > 0 is an integer. From estimate (4.4) with
0 = 0j41, we have
= f2(r)

0 r201+1

) 1/2 172
§2i+1< J;Err) ) (/ (fr(r))%»d;») , 1=0,1,2,....
0 1

Iterating this estimate, we obtain

fz(r)

r25n+l

A

rdr

4.5)

r

00 1/2n+1 00 1_1/2n+1
<Coi ( f f2<r>rdr> ( / (fr(r))zrdr)
0 0

for some constant C,,;. (One can solve C,; = 2"7'\/C, and Cy = 1 to get
Cny1 = 22727 which is certainly not the best constant.)

It remains to consider the general case o € [0, 1). Let £ > 0 be an integer with
oy < 0 < oxyq. There exists 0 < 8 < 1 such that 0 = oy + (1 — O)oyp =
1 — (2 — 6) /2!, Using the Holder inequality and (4.5), we get

o £2 ) 2 0 2 1-6
/ rfE rdr < (f r2{k+l rdr) ( rj;rk rdr)
0 0 0
00 1—0o o
-c, ( /O f2<r>rdr) ( /0 (f’)z(r)rdr) ,

where C, = C} +1C,1_9. This completes the proof of the first estimate (4.1).

To see that this estimate fails at the endpoint o = 1, fix a smooth, nonnegative,
nondecreasing function 7(r), supported in (%, o0), and with 1 — n(r) supported in
[0, %). Then it is easy to check that f5(r) := n(r/§) — n(r) provides a counterex-
ample to the endpoint estimate as § — 0. Note that f5(0) = O for all §.
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The second estimate (4.2) is an immediate consequence of (4.1). Using polar
coordinates, we obtain

2 2
/flf(ré))l e db
2 00 l—o 00 o
sca/ (f |f(r,9)|2rdr) (f |arf(r,9)|2rdr) db.
0 0 0

Using |9, f]> < |V f|?, we obtain estimate (4.2) from Holder’s inequality.
For the third estimate (4.3), we introduce the new variable y defined by r = ¢”
and denote g(y) = f(e¥) = f(r). Then it is immediate that

o0 2 o0
/0 (|fr( 2 +f v ))rdr:/ 18 OIP + 180 Pdy.

By Sobolev embedding, we have |gllze®) < ClIglly1 &) Transforming back to

the original variable completes our proof. O

LEMMA 4.2 Let g : R> — C be radial and bounded with g, g' € L) .,2<p<oo.
Assume (8, —m/r)g(r) € LP(R?) for some m > 1. Then g(r)/r € L?(R?) and

)zl
r

PROOF: Let0 < r; < r, < oo and denote A = {x € R? : r; < |x| < r}.

Consider
r m
I .= -2n Re/ <g, - —g)
rl r

On one hand, I < C||g/r||Lp(A)||gr — (m/r)gllLr(a) by the Holder inequality. On
the other hand,

<c'

LP(R?) LP(R2)

=rdr.

p—2
g
r r

g|” 2w |gI”|”* p—2]g]”
[=m|2 e S °
T llLray p rr r p T e
2 P 27 |g(ry)|P
z(m_1+_>§ __|g(2)2|.
P/ liLra) p f
Thus
2 P 27[ )P p=1 m
(m_1+_> g 5(r2) N
p/Nrilleecy P r; T liLra) FollLea

This gives a bound for ||g(r)/r| Lrcay uniformly in r; and r,. Hence g(r)/r €
L?(R?). Asr, — oo and r; — 0, we get

P p—1

m

& — — 8
r

8

(2

r

8

r

’

LP(R2)

Lr®?) LP(R2)

where we used p > 2 and the boundedness of g. This completes the proof. U
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Remark 4.3. 1t is essential to assume g is bounded, as can be seen by the example
g(r) = r™. If we assume in the above lemma that g(r) = o(1) as r — o0, then we

also have
1 m
\ < —H (ar - —)gm
L2(R2) m r

Using Lemma 4.2, we prove an L”-version of Lemma 2.5.

g(r)

r

L2(R2)

LEMMA 4.4 Let2 < p < oo. There exists € > 0 such that if f(r) is a radial
function satisfying |{f, h1)x| < €|l flx, then
< CUILoflLrw2y + IILo f |l 22R2))-

‘i
r Lp(RZ)
Recall Ly f = f, + (m/r)hsf.

I frllLrm2y +

PROOF: We note first that it suffices to prove

H% < CILof Nl + Lo fll.2),

LP

since

Il frlle SC(‘ /

) < C(”LOf”LF + H—
Lp r

Let ¢ : [0, o0) — R be a standard cutoff function with
0<¢p<l, p(ry=1 forr <1, p(r)y=0 forr > 2,

o] p o] p o0 _
f S rdrSC(f Je rdr—i-f '—f(l #)
o |7 0 0 r

,
We consider the second term II. Since 1 — ¢ = 0ifr < 1, we have

_.l_
Lr

m
s
r

fr+ %hlf

)

P
rdr) = C{+10).

%) 00 2
Fa—g)| _ f
I =/ LD var <1122 [ 1L a—orar
0 r 0 r
Ak 2
L%(R?)

where we used Lemma 2.5.
Next we consider the term I. Using Lemma 4.2, we have

[
:

p

p m
§CH(f<p)r——f<P

LP r Ly

p

h
< C(Ilwrfllfp + H <fr + ?f)qo + H?(l +h) fg

p)
Lr

Lr
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Since ¢, is supported only on (1, 2), and (1 4 h3)/r is bounded, we have

fel”
| < CUfIT~+ILofN7r)-
r Ly

Since, by Lemma 2.5, || f||L~ < C||Lof] 2, we obtain

f P p P

= =CULoflLr +IILofll}2),

L?

completing the proof. O

4.2 Some Harmonic Map Estimates

Here we prove some facts about the family O,, of m-equivariant harmonic
maps.

The first lemma shows that if m-equivariant harmonic maps 4 = h%! and h**
are close in the sense of energy, then o and s are also close to 0 and 1, respectively.

LEMMA 4.5 Let 0 < s < ocoand —mw < a < 7. There existse > Qand C > 0
such that iffRz |V (" R(h—h**))|>dx < 8% forany § < €, then |a|+|s—1| < C8.

PROOF: Consider the case s > 1 (the case s < 1 can be treated in the same
way). We first note that

hi(r) —h;(r/s)cos«
h—h"% = —hi(r/s)sina
h3(r) — hs3(r/s)

Our assumption is

/ V("R (h — h**)|* dx
R2

o0 m2
=2 f <|a,(h — W)+ —|R(h — h‘”")lz)rdr < 8%
0 r

For 0 < r < 1, we have (s> — 1)(1 — r?") > 0, which, when rearranged, yields

r 2s™
hl(—>§ hi(r) <hi(r), 0=<r=<1

s s2m 41
0, <h3(”) — h3 (C>)
N
U m? 1
= 2;1/0 = (h%(r) — s—zh%(

Using this inequality, we find
2
rdr

oo

1
82 > / V(™R (h — h**)|>dx > 27[/
0

RZ

“L | S
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1,2 r 2
2271/0 r—2<h%(r)—h%<§)) rdr

2m __ 1 4 1 h4
> 27rm? (S2m )4 / 1(2r) rdr
(S + 1) 0 r
_ (s2m _ 1)4
(52 + ¥

It follows that |s — 1| < C8'/2 if § is sufficiently small. Now g(s) := |9, (h3(r) —
h3(r/s))|%, is a smooth function of s with g(1) = g’(1) = 0 and g"(1) > 0,
and so by Taylor’s theorem, we have g(s) > C(s — 1)? for some C > 0, and for
|s — 1] < C§'/2, § sufficiently small. Thus |s — 1| < C$8, as required.

Next consider the second component of & — h*%:

2 . 2 = "\
8% > 2m sin” () o-h| -
0 N

rdr>C sinz(a)
and so |sin(«)| < C§ for sufficiently small §.
Finally, use

(I = cos(@)hi(r) = (h —h>*); + COS(a)(hl (g) - hl(r))

together with the previous results to arrive at 1 — cos(a) < C§, from which (for
o €[—m, 1)) |a| < Cs follows. O

The next lemma is a bound on the curvature of the family O,, of m-equivariant
harmonic maps.

LEMMA 4.6 There are ¢ > 0 and C > 0 such that if

e ® (B () — B2 )l < e,
then setting § := %[sl + 5], @ = %[al +ay], and h = %[h“")‘l + h*2*2], we have
(4.6) le™ R (h(r) — KDl g < Clle™ B () — B> () |17,

PROOF: By rotating and rescaling, we may assume (s;, ;) = (1,0). If € is
sufficiently small, Lemma 4.5 gives (taking o, € [—m, 7))

4.7 ls2 — 1] + |aa] < Clle™®(h"O(r) — I*2*2(r) || ;1 < Ce.

Now set s(t) ;=5 + (t/2)(s2 — 1), a(t) := & + (t/2)a2, and ¢ (t) := h* OO,
Then

_ ]
i 5[d)(_1) —¢0) + (1) — ¢(0)]

1 1 0
= _[/ @' (t)dt —f d/(t)dt}
20 Jo -1

1 ! / / _1 e 7"
= 5/0 [¢ (1) — ¢ (—)]dt = Efo _td) (v)dr.



492 S. GUSTAFSON, K. KANG, AND T.-P. TSAI

Using (4.7), we have
le" " (D)l < Clis2 = D + 3] < Clle™ () — B2 (1) |1,
and (4.6) follows. [l

Our next lemma gives L*-smallness for H'-small perturbations of harmonic
maps.

LEMMA 4.7 Foru € %,,, set s = s(u) and o = o(u), and write

- o= ()]

There exists € > 0 and C > 0 such that if 5y < € and
2

(48) ”Sr ||L2(R2) + H 5

OR 1 5,02 2
L2(R?) == hw”Hl =%
then
1§ e < Céo.

PROOF: Without loss of generality, we may assume s = 1 and @« = 0. It
follows immediately from (4.8) and Lemma 4.1 that

[§illc < Cdo, i=1,2.

For &, we have, as yet, only ||(&3),];2 < 80, and so our aim is to show that
&3l < Cdo. Under our change of variable E(y) = E(m log(r)), it suffices to
prove that ||$3||L2(R) < Cdy, since ||€3||L°0(R) < C||.§3||H1(R) By the continuity
and boundary conditions of v(r) (for u € %,,), there must exist yo € R such that
v3(y9) = 0. Note that since 53(y) = tanh(y) we have

(4.9) |93 (y) — tanh®(y)| = )

= C(& 1+ 15D,

and in particular,

tanh’(yo) < C(ll&1llL> + [1€2]l=) < Co.

Sofor—1<y<1,
)7
(v — tanh'(y))dy — tanh(yp)
Yo

< C(||¥% — tanh’ |12 + 8,%) < €8}/,

and in particular, for &y sufficiently small, |v3(£1)] > (1/2) tanh(1). Then with
the aid of Lemma 2.3, for §, sufficiently small, we have |v3(y)| > (1/4)tanh(1)
for |y| > 1. Estimate (4.9) then yields

|v3(y) — tanh(y)| =

(4.10)

/ (33(y) — tanh(y))? dy < C32,

[yl>1
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which also gives us supy, - |U3(y) — tanh(y)| < Cdp (Sobolev embedding), and in
particular |v3(1) — tanh(1)| < C3§y. Finally, we get the same result for |y| < 1 by
integrating the derivative:

[03(y) — tanh(y)| <

1
/ (¥ — tanh’)dy‘ + Céy < Céy.
y
This completes the proof. g

4.3 Perturbation Is Bounded by ¢

Here we prove estimates used in Section 3. We show that z(r) is controlled by
q(r), where, recall,

m v — A Vs v, —
v, ——J'Rv=qgie+qJ%¢, D/e=0,
r
and
4.11) v(r):e“R|:h<£)+$(z)i|, E=zie+ ] e+ yh.
s s

LEMMA 4.8 Let2 < p < oo. For § sufficiently small,

< C(Sl_z/p”CIHLP(RZ) + llgllz2®2)s

z
(4.12) 2l Lr 2y + H =
LP(R2)

4.13) MNzrrll 22y < C<S||Qr||L2(R2) +s + S||61||%4(Rz) + ||Q||L2(R2))’

L2(R2)

and

1 q
(4.14) |lull f2gey < C(; + gl 2 g2y + “;

1
2
=+ ”q ||L4(R2) + - ”q ||L2(]R2)) .
L2(R?) 5

PROOF: We will first show the following:

(4.15) ||Zr||L2(R2) + ‘ - =< C||Q||L2(1R2)-
L2(R2)
By (4.11), we have
N 2m m
(4.16) e “Fs(gé)(sr) = (Loz2)e + (vh), + — hsyh + — &3§.

Since ||zllx < C||Loz||12 by (2.25), it suffices to prove that | Loz|| < C|lg|l;2. We
first show that ||&||,2 + |€/7]l;2 < Cllzllx. Indeed, since (J"e), = —(m/r)hih
and h, = (m/r)h,J"e, we find

m m h
& =zre —zz7h1h+yrh+ 7yh1J e.

Therefore, since y = O(|z|?) and y, = O(|z||z,]), we obtain
z

r 2

16112 < llzrllr2 + + lzlielizelliz2 + 2l

9’

L2
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where we used the boundedness of 4. By (2.23), we have ||z||~ < C3§, which can
be chosen sufficiently small to yield ||&,||;2 < C||z||x. In a similar manner, we can
show ||&/r|l;2 < Cllz/r |12 < C||z]llx. Combining, we obtain

§
4.17) 16112 + H; < Cllzlix-

L2

Now we are ready to prove ||Loz|;2 < Cligll;2. Using again y = O(|z|?),
¥, = O(|z]|z,]), and the boundedness of &, we find

§

2
H (yh), + e hsyyh + ﬂ&f > + Cll&]l oo
r r r

z
= C||Z||L°C<||Zr”L2 + H;

L? L?

< C||§||L°°(||Z||x + ||§||L2)

L2

= Cli§lle=llzllx < Cl&NLellLozll L2,

where we used (4.17) and ||z]|z~ < ||§]| L. Thus we have

2m m
| Lozllz2 < llsq(s)lz2 + |[(Yh), + — h3yh + = &3¢

L2

< llgliz2 + Cli L=l Lozl 2

Since €]~ < C|l€llx < C||zllx < C$ can be taken sufficiently small, the above
inequality implies

(4.18) ILozllz2 < Cligll 22,

which completes the proof of (4.15). Similarly, for any p with 2 < p < oo, we

have
r Lp))

z
[ LozllLr = C(”SC](S‘)”LP + ||Z||L°°(”Zr”LP + H—

< C(s"Pligller + llzllz=(ILozliLr + Lozl 2),

where we used Lemma 4.4. Since ||z||.~ can be taken sufficiently small, by us-
ing (4.18), we finally have || Loz|lz»r < C(s'=%?||qliLr + lq|l12), completing the
proof of (4.12).

Next we prove (4.13). We first show

L(ze)

(4.19) Izrrll2 < C(”arL(Ze)”L2 + H

+ ||LoZ||L2>-

L2
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Indeed, recalling L(ze) = z,e + (m/r)hsze, we have

1 m

(8, + -+ —]’l3)Zr€ = (8, + >z,e 4+ — h3z,e
rooor r
m m
= (8, + )(L(ze) - — h3ze> + — hazee
( m>

)L(ze) - — hfze + Zzhghlh.

Set
n:=e""Rze and H :=e"'Rh.

Since 9;n = D]Hn — (0;H -n)H and (h3), = (m/r)h?, we have
1 m?
—mOR NH H 2
D" D’n= o+ -z le——h
1 2
= <8r + —)(zre) + — zhhh — h%ze
r r2
1 m m m
= (Br +-+ —ha)(zre) — — h3L(ze) + — z5hh,
r r r r
and therefore we obtain

1 m?
|2 Dl = (047 )ar Je = %5 hize|

1 m
- H <8, + —)L(ze) — — h3L(ze)
r r

m2 m>
— —hfze—k z2h3h1h+—z2h1h

(o s

< C(HarL(Ze)”L2 + H

L2

L(ze)

‘|

Z
+ 122 + H— )
r 2

L2

+ IILoZIIL2>,

L2

L(ze)

L2

where we used |k /r| bounded. Since d;n = Df’n — (0;H -n)H, we have

An = 3;0;n = 8;(Dj'n — (O H - ) H)
= ajD]Hn —0;((0;H - n)H)
= DI'D!"y — (9;H - D'm)H — (9;0;H - n)H — (9; H - ;) H
_ (aj]—] . ;7)8jH.
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Therefore, we obtain
Al < 1D D nll2 + 10 H - DI m)H |2 + 13, H - 3;m) H |2

+ 1100 H - mH|l 2 + [|(3;H - n)d; H| 2
<ID/'D{'nll> + c(nvmle + HQ

r L2)
Z
<ID/'Dnll» + C<||zr||Lz + H—

r L2>

Thus
L(ze)
(4.20) Inllg2 < CllAnl 2 < CL 10, L(ze) |l 2 + + [ Lozllz2 )
LZ
Let
2
ze), m-ze mR(ze), mRze
A - (Ze)rr - Q + 2 ’ B == (Ze)rra E - ( ) - 2 .
r r r r

Then direct calculations show
2
@0, = (<5 a4 B2 E),
r r

2
mOR _ _mOBR X Xy
(™" ze)y, =e (__r2A+B+2_,,2 E)

2 2
mo mo Xy X y
(e ey = € R(Tz“ (72 - —)E>

Each of A, B, and E can be expressed in terms of combinations of second deriva-
tives of n = ™R ze. This implies, in particular, estimate (4.19).

It remains to control ||d, L(ze)||;2 + ||L(ze)/r| ;2. Noting that &, = —(v, - €)v
and (JV¢), = (v, - &)v, so

(qé), = q-é — q1(v, - &)v + q2(v, - &)V,

and recalling v, (r) = e*R(1/s)(h,(r/s) + &.(r/s)), we have

= G)lL)

+ ligl7e +s~" ||q||iz),

~ q
19,(q)llpe < c(uqrnp + H;

q
=< C(Ilqr||L2 + H;

L2
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where we used (4.12). Taking the derivative of Equation (4.16), we get

)

10, L(ze)ll > < C(SIIQrIILz +s +sllgl7s + llgl7
2

L
+ H(yh)” + (z?hsyh) + (?sss)

We consider first (yh),,. Using |h,.| + |rh,,| < C, we have

r

Iy R)erllr2 < ClllYerl + [vrhe | + 1y herlll 2

|Zr|+‘

)

< Cllzliz=llzerllz + slgl7s + Iglz + lgl2).

’ b4
< C<||Z”L°°||er||L2 + llzellzs + .

Next we consider ((m/r)hsyh),. In a similar manner, we find

() =<(;
r r L2 r

< C(slgqliys + ligll2)-
For the term (&3& /7)., we have the estimate

(7).

Following a similar procedure for ||L(ze)/r|| 2, we obtain

v

72

Vr

r

Z
rlp4

<C
L2

+ + iz llzs

2
L4

< C(sllglys + llgli72)-

L2

L(ze)

0, L(ze) 12 + H

L2

1

= C(Sllqule Rkl P s Izllzollzerll 2 + slgll7s + ||61||iz)
2

L(ze) )
L2

L

< c(s||qr||Lz+s %

+ ”Z”LOO(”arL(Ze)”LZ + H
L2

+sllgls + ||q||iz>,

using (4.19). Since ||z|| .~ can be taken sufficiently small, we conclude

L(ze) q

< C<S|I61r||L2 +s
L2 r

(4.21) 119, L(ze)ll 2 + H +sllgll7. + ||Q||L2>a
2

L

having used the smallness of ||g||;2. Combining (4.21) with (4.19) completes the
proof of (4.13).
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It remains to prove (4.14). Since u(x) = e™*IR(h(r/s) + £(r/s)), it is
straightforward to check that for § sufficiently small,

C
lullge = :(1 + Il 2)
and so (4.14) follows from (4.20) and (4.21). The proof of Lemma 4.8 is complete.

g
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