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SCHRODINGER OPERATORS WITH MAGNETIC
FIELDS. I. GENERAL INTERACTIONS

J. AVRON, I. HERBST AND B. SIMON

1. Introduction
The rigorous study of Schr6dinger operators, -A + V, has become a highly

developed mathematical discipline during the past 25 years, see e.g., [39, 40,
41] for a systematic review. There has been much less study of Schr6dinger
operators with magnetic fields, i.e., -($7 _)2 + V, where a__,is the magnetic
vector potential so that the magneti__,c field B is given by 7 (in three
dimensions; in general dimension, B should be thoug_,ht of as a 2-form). The
bulk of the literature allowing magnetic fields requires a_[to go to zero at infinity
which is quite far from the important case of constant B (- is linear). One big
exception to this is the work on essential self-adjointness which, since the pa-
per of Ikebe-Kato [25], has placed no restriction on the behavior of at infinity
(e.g., Ikebe-Kato allow an arbitrary which is once continuously dif-
ferentiable); see [44, 50, 45, 66] for recentevelopments. The only previous
studies of "spectral theory" in cases where B does not go to zero at infinity are
those of J6rgens [27] and Schechter [44] (see also [28, 18, 56] and paper II of
our series [6]) locating the essential spectrum in N-body problems when one
mass is infinite and the potentials between particles of finite mass are positive,
Grossman [21] discussing direct integral decompositions for periodic potentials
in magnetic fields and Lavine-O’Carroll [34] who discuss a very special prob-
lem (to which we return in 5 and another paper [7]). Simultaneously to our
work, Combes, Schrader, and Seiler Il 1] have studied the semi-classical limit
with results that overlap ours on one point (see 2).

This is the first of a series of papers on the spectral and scattering theory of
Schr6dinger operators with magnetic fields. In this paper we study_, the theory

-’ Vfor general a s and s and also the special case where is linear (B constant).
In II of the series [6], we descri_b,be some rather novel features of the reduction of
the center of mass in constant B field. In III of the series [7], we describe some
special problems associated with the case B constant, V sum of Coulomb
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potentials, which describes an atom in a magnetic field. Announcements of
some of our results appear in [4, 5].

Basic to many ofour results is the following: If V is fixed and H() H0() +
V---t)+ Vthen

le-"<)4,1 <_ e-’’)14, (1.1)

pointwise. The history of (1.1) and references for proofs can be found in 2
where (1.1) is extensively applied. Typical of the results that follow easily from
(1.1) is the one that says that the wave operators fl+/-(H0() + V, Ho(-d)) exist
and are complete for V LI(IRa) f’) Lg(IRa) and "arbitrary".

Classically, the Hamiltonian function corresponding to H() is

HelassC (-) +

Thus, for example, (l’l Lebesgue measure in IR6)

is independent of since changing just changes positions of centers of
spheres in p-space. This fact suggests that various bounds on numbers ofbound
states, etc. by classical quantities (see 2 for references) should extend to arbi-
trary-, and using (1.1), we will see this in 2.

In 3-5 we concentrate on the case

a - (Bo -) (1.2)

of constant field Bo. Among our_. results, we mention those that depend on
the fact that a constant field, B0, confines particles in the directions per-
pendicular to B0; e.g., classically the orbits are spirals coming from circles or-
thogonal to B0 and drift !arallel to B0. Thus scattering only requires fall offfor V
in directions parallel to B0. Moreover, the bound state structure should be remi-
niscent of one dimension rather than three; see 5.
When has the form of (2), it is not true that Ho(h--d) Ho -A in norm

resolvent sense as h 0; rather the convergence is only in strong resolvent
sense. This means that the stability of isolated eigenvalues of Ho + V under
perturbation to Ho(h-d) + V is not completely trivial. This problem is discussed
in 6.
Two magnetic potentialsa and- with - gradh for some h C are

said to be equivalent under a (smooth) gauge transformation. Since they lead to
the same magnetic field, they should produce equivalent physics and indeed
one hasformally that

tyEt-/oC,) + v], t-/oCd,) + v (1.3)

where (Uxf)) exp (iX))f). Since X is C it is easy to make (1.3) more
than formal. For example, ifH0) + V is defined as a sum of forms by closing
the obvious form on D1 {f L f is C Df L2} (this requires L]oc and
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some hypothesis on V, e.g., V -> 0, V Lloc; see 2), then (1.3) holds in the
sense that U- is an isomorphism from D(H(a)) onto D(H(a)) and the oper-
ators are unitarily equivalent. In one dimension, any continuous a is equivalent
under a smooth gauge transformation to 0; take

(x) a(x’) dx’.

In particular, one dimensional H(a) are not especially interesting.
We would like to next give a brief discussion of quantum mechanical magnet-

ic bottles"

Definition. A C vector potential is called a magnetic bottle of the first
(resp. second) [resp. third] kind if and only ifH0) has some non-zero eigen-
function (resp. Ho() has pure point spectrum) [resp. H0) has compact resol-
vent].

It is fairly obvious that magnetic bottles are easier to make in even dimen-
sions than in odd dimensions because classically particles circle in planes or
products of planes. For example in two dimensions, of the form (1.2) (with0
in a fictitious third dimension) is a magnetic bottle of the second kind and more
generally, if is chosen in 2v dimensions so that B is a two form of maximal
rank, then is a magnetic bottle. On the other hand’s corresponding to con-
stant field are never magnetic bottles in odd dimensions and there are no mag-
netic bottles in one dimension since any can be gauged away.
One might think there are no magnetic bottles in any odd dimension. But, we

shall see in 2, that forB (y + z, x + z, x + y), the corresponding a is a
magnetic bottle of the third kind.

It is hard to put a finger on what precisely distinguishes odd and even dimen-
sions. In 2 we will construct a two-dimensional which is a magnetic bottle of
the second kind with 0 at infinity ( oo though), while this particular
construction will not work in odd dimension. We thus make"

CONJECTURE B. If h C (IRa) and 7 ’---> 0 at infinity, then ’ is
not a magnetic bottle of the second kind.

Two conjectures appear in this paper. One involves the behavior of new
states that appear in constant fields for small coupling (Conj SC in 5) and the
second is Conj B above.

It is a pleasure to thank M. Aizenman, E. B. Davies, J. Fr6hlich and E.
Seiler for a number of useful discussions, and L. Pitt and T. Kato for making
some of their results available prior to publication.

2. Scattering and spectral theory: General
Let be in L]oc (IR) and let II closure of -i7 a on C(IR) (it is clos-

able since it is symmetric). By a theorem of Von Neumann, H3II is a self
=1
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adjoint operator (see e.g., [39]); we denote it by H0). In terms of quadratic
forms, H0(-d) is the operator associated with the closure of the form

(’ )-> J I [(iTj + aj)dp] (-) [(iS7 + a)] ) dx

on C. This last statement is not trivial; it is proven in [66].
In a preliminary version of this manuscript, certain results for very general

Z’s and/or V’s depended on two conjectures which have now been proven by
Kato [64], Dodds and Fremlin [69], and Pitt [65], motivated, in part, by our
conjectures. We begin by stating Kato’s result in a slightly stronger form due to
Simon [66]:

THEOREM 2.1. (Kato [64]) Let n fi’ in L2ocqRa) (i.e., IIC )fll 0

for eachf C). Then no’dn) ---.> no(d in strong resolvent sense. In particular,
any Ho(d) is the strong resolvent limit of Ho(-dn) with -d C.
To give the Dodds-Fremlin-Pitt result, we need’

Definition. Let B, C be bounded operators on L2(M, dft). We write B C if
and only if In l <_ (pointwise) for any 4.

Following the notation of [39], we use 5oo to denote the ideal of compact
operators and 5p to denote the operators with IIAII Tr (IAIP)1/ < , so e.g.,

is the Hilbert-Schmidt operators. Dodds and Fremlin [69] and Pitt [65] have
independently proven:

THEOREM 2.2. Let B - C and C , then B

Remarks 1. If is replaced by p and p < 2, the statement is false. If
p 2n with n an integer, it is an easy statement to prove. On this basis, it was
conjectured in [54, 59] that the result holds for p, p -> 2, (the conjecture in-
cluded p ). For p 2n, , the conjecture remains open.

2. In many places below where we use Theorem 2.2 one could avoid its
use by employing devices from [3].

Basic to our results in this section will be"

THEOREM 2.3. If a is in 2Loc, then for any t:

e-trio(a) - e-trio et. (2.1)

(2.1) was originally conjectured by Simon and stated in [55] with the remark
that Nelson had noted that it followed easily from the Feynman-Kac-Ito for-
mula for e-trio(a) in terms of Wiener path and Ito stochastic integrals. The details
of this argument may be found in [60]. An alternate argument exploiting Kato’s
inequality can be found in [23, 57]. In any event, (2.1) is proven in [60, 23, 57]
for C and then follows by Theorem 2.1 and a limiting argument for arbi-
trary L]oc. A "direct proof’ for all L]oc can be found in [66].

Typical of the applications of (2.1) are the following two results patterned on
ideas of Davies [13] and Faris [19]:
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THEOREM 2.4. If V is a multiplication operator which is Ho bounded with
Lloc, Visrelative bound a, thenfor any a Ho(-d)-bounded with relative bound

at most a. If t < 1, then Ho(-d) + V is self-adjoint on D(HoCd)) and

e-t(Ito(a) + v)<_ e-t(io + v). (2.2)

Remark. The first part of Theorem 2.4 is a result of Schechter (p. 168 in
[44])
THEOREM 2.5. If IV is a multiplication operator which is Ho-form bounded

with relative bound a, then for--d L]oc, VI is Ho(-d)-form-bounded with rela-
Lion, and V_ Ho-form-bound-tive bound at most t. If V V+ V_ with V+

ed with relative bound a < 1, then Ho(-d) + V is a closableform on Co and (2.2)
holds.

Proof. Since

(A + E)-1 If e-t e-ta dr,

(2.1) implies that (H0(-d) + E)-1- (Ho + E)- so, for b L"
IIV(I-Io ) / E)-lt[[-< IIV(I-Io / E)- I I II

i.e., IIW n0 ) / IIV m + E)-lll, Since a lim IIV m + e)- ll the

first part of Theorem 2.4 is proven. If V -> 0, (2.2) follows from the Trotter
formula, (2.1) and the fact that e-tv >- 0 pointwise. The proof of the first part of
Theorem 2.5 is similar using

(A + E)-v= t-e-e- dt/r

(2.2) follows for general V by letting

V) -> n
-n <- V(-) <- n
V)-< -n

and noting that (H0() + Vn) Ho) + V in strong resolvent sense as n
[47, 58].

(2.2) and the formula:

inf spec (A) inf
#0

imply that for any Lion"

lim -t-lln(dp, e-tab)]
inf spec [Ho(-d) + V] > inf spec [Ho + V] (2.3)
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a result of Simon [15]. Indeed (2.1) was found by attempting to generalize (2.3)
to "finite temperature."

THEOREM 2.6. Let-d be in Loe and V a multiplication operator. If
V(Ho + E)-1 is compact then V(Ho(-d) + E)-1 is compact.

Proof. V(Ho(-d) + E)-1<- V[(Ho + E)-1. Now use Theorem 2.2.

THEOREM 2.7. Let V be a multiplication operator of the form of theorem
2.5. Suppose that Ho + V has compact resolvent. Then Ho(-d) + V has compact
resolvent for any-d Loe.

Proof. Follows from (2.2) and Theorem 2.2.

Thus far, we have shown that H0) is at least as "well-behaved" as H; if
is big enough, it can be "better-behaved". The discussion below is related to

the question of magnetic bottles; see 1.

THEOREM 2.8. Suppose that for some function f o at and C:

(b, Iflb) <- C(b, (no(d) + 1)b) (2.4)

for all d C. Then Ho(--d) has compact resolvent.

Proof. (2.4) says that (H0) + 1)-1/2 Ifl is bounded. Since f--, o at o,
(1 + ]fl)-l/2(Ho + 1)-1/2 is compact [40], so by Theorem 2.2 and the bound

(1 + ]f(’)l)-1/2 (n0 + 1)-1/2-> (1 + Iff)l)-l/(n0() + 1)-1/2,

,(1 + If)l)-1/2 (n0()+ 1)-1/2

is compact. Since (H0(-d) + 1)-/z (If()l + )x, is bounded, (H0@) + 1)- is
compact.
The following is related to the standard proof of the uncertainty principle:

THEOREM 2.9. Let H -i7 as with-d C1. Then for any d C:

Remark. For constant field in two dimensions, this inequality is saturated
as we let approach the ground states for II + II. Since H0) is essentially a
harmonic oscillator and II and II obey the usual p, q commutation relations,
this should not be surprising.

Proof. Notice the formal commutation relation

[Hi, 1-Ij] i(Otaj- Oa).

Since C and b C, the formal relation can be justified to yield, by the
Schwarz inequality,
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COROLLARY 2.10. Let -d be an L]oe vector potential on IR and let A be a
covering of IR by cubes of size L about the points Lc(c 7Z). For each A,
suppose we can choose two unit vectors e and Ix so that B =- min

x Ao
F(x)(e., u.) (where F(x) (Oa OaO(x)dx / dx) approaches as .

i<j

Then Ho() has compact resolvent.

Proof. Let V. be a family ofC functions with the following propeies: (i). has support in the union of. and its 3" neighbors, (ii) V. on A., (iii). is the translate of V0 by La units, and (iv) V. 0. By Theorem 2.9:

nllll (.6, F(e,,

-< (n.6,

IIn,,.ll 2 (ll,.n,ll + ciixll)
t=1 t=l

where X, is the characteristic function of, and its neighbors and we have used
[H, ,] -iv,. Thus

nllll 2 3 (lln,ll + Cllll)
a t=1

c[(6, Ho)6) + (6, 6)].

Theorem 2.8 now implies the result.

Remarks. 1. For example, ifB, Bu,B -> 0 (in three dimensions) and Bx +
Bu + Bz oo at oo, then H0(-d) will be a magnetic bottle of the third kind.

2. One can easily modify the above to allow a V_, V/ of the form of theorem
2.5 with B, oo replaced by B, + min V+) o

X At

where B, max (B,, 0).

3. One can arrange for B 0, e.g., Bx x, B y, B -2z so that
one sets up a magnetic bottle without any currents in finite regions of space
(but, of course, one needs "currents at infinity").
We conclude our discussion of magnetic bottles with a two dimensional ex-

ample of a magnetic bottle of the second kind with B --) 0 at 0. As we have
already explained, we don’t believe that a similar phenomenon occurs in odd
dimensions.

Example.
Then

Let ax -yp-’, au xp-" with 0 < < and p (x2 -- y2)1/2.

B= (2-)p-’

and in terms of p, b coordinates and L

nod) -m -k- p2- 2, 2p-’Z.
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On each subspace with L m, H0(-d) has compact resolvent so H0) is a mag-
netic bottle of the second kind; it is not of the third kind since one can find 6,
orthonormal so that (bn, H0(-d)bn)---> 0 as n : For example, let I1 11 and
suppose that lies in C. Let

"q-Ln e’C- - "q /n

Then

I1(i-1 )"o’,. <- n-1 IIC7 11 + I1( ())

Choose y,, so that the ,/11,11 6 have disjoint suppo, so that

suppn C ]l n
and so that In[-’ 0 as n . Then since IV a const p-’, [

(const) nly,[-" on supp ., so (+,, n0(Z) ,) 0.

Next, we consider two body scattering. We concentrate primarily on the
existence and completeness question for the pair (H0) + V; Ho(-d)), i.e.,
showing that asymptotically exp (-i[H0) + V]t) looks like motion in the pure
magnetic field. Other than the usual L]oc restriction, there will be,no restriction
on. Later (4), we will prove much stronger results for the case B constant.
We note that in cases where V and-d go to zero at infinity as 0(I-21-1-q, it has
already been proven (see Agmon [1], Kuroda [33] or Schechter [46]) that the
pairs (H0) + V, H0) and (H0(), H0) have complete scattering.

THEOREM 2.11. Let - L]oc(IR) and let

V LI(IR) L/(IR).

Then l)+(Ho(-d) + V, Ho(-d)) exist and are complete.

Proof. By the Kato-Birman theory (see e.g., [40]) it suffices to show that for
E real and sufficiently positive (H0(-d) + V + E)-1 (H0(-d) + E)-1 C is trace
class. Since V is H0(-d) form-bounded (see Theorem 2.5), with relative bound 0,
it suffices to show that A vl"(n0) + E)- is Hilbert-Schmidt (for C
-A*(sgn V)[1 + (sgn V)lVl’z(no + E)-IIvla/2J-1A). But IVIl/2(no(-d) q-

E)-- Vll/(no / E)-1 which is Hilbert-Schmidt. I
To handle the case of general u, we note"

n
THEOREM 2.12. Let W la(L2), let -d L]oc (IR) and let m >-. Then

W(Hod) + 1)-m is trace class.

Remark. I(Le) is a space introduced by Birman and Solomjak [8]: LetA be
a covering of IR" by the unit cubes about lattice points. Thenf 11(L2) if and
only if
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f

f /1(L2) if J (1 + 2)1f()12 dx < o for some k > v/2.so, e.g.,

Proof. By the closed graph theorem and the triangle inequality for Y, it
suffices to show the result in case W is in L2 with support in some with bound
independent of [59]. In that case we write

I(n0() + 1)-m [l(n0()+ 1)-m/(1 + )m/] [( +’z)-m/9(n0() + 1)-m/z]

Each factor in [. .] is dominated in sense, by the same object with 0 in
which case they are Hilbert-Schmidt (see [59] for the first factor). The proof is
complete.
From a result of Yafeev [62] (obtained independently, but subsequently by

Reed-Simon [42]), this theorem immediately implies:

COROLLARY 2.13. If V l(L) and is Ho form-bounded with relative
bound a < 1, then for any -d L]oe (IR") (v arbitrary) f-+(H0(-d) + V, H0))
exist and are complete.

Next, we wish to discuss bounds on the number of negative eigenvalues of
H0) + V and the related [37] question of the stability of matter. Most of the
results in this subsection have been obtained in [11] independently of and ap-
proximately simultaneously to our work. Define N(V;-d) to be the dimension
of the spectral projection forH0) + V corresponding to the interval (-oo, -a).
Then, the Birman-Schwinger principle (see [52] for references and a general
review of bounds on N(V; 0)) asserts that for V a relatively compact per-
turbation of H0 and -> 0:

N,(V; Z) #{ev. of K,,(V; Z) > 1}

where K(V Z) VI/9(H0() -b a)-a ]V/ with Vllg ]W l/g sgn V. Since
(H0(Z) + a)-- (H0 + a)-a we immediately have"

THEOREM 2.14. In three dimensions:

N(V;-d) <_ Tr (K(V; O)*K(V; 0))

iv_ ) v_f;)l exp (- X// 1- --l)dx dy

where V_ min (V, 0).

For 0, this is a well-known bound of Birman and Schwinger. Moreover:

THEOgEM 2.15. If v >-- 3"

No-(V;) -< c I
where c is the constant obtained by Lieb [35] in case -d O. (e.g., in 3,
ca .116)
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Proof.

where

Lieb’s proof [35] depends on the formula (see [60])

Tr (f(K(V;-d 0)))= I dtt e-at f dtz’;tg ( Io V(-(s)) ds)

f(x) e_Ug(xy
dy
Y

and where d/z0,-;t is conditional Weiner measure. By following the proof of
this formula, one easily shows that general can be taken on the left if one
adds a factor

exp 1- I div (--d(-(s)) ds + (-d dto1
(Ito Stochastic integral) on the right. Thus Tr (f(Ko(V; ))) -< Tr (f(Ko(V; 0)))
for any g -> 0. As a result, Lieb’s proof goes through without change, m
The bound above for 0 has been also obtained by Rosenblum [43] and

Cwickel [ 12] (although with larger constants c than Lieb). To push Cwickel’s
proof through for 0, one would use an analog of Theorem 2.2 for weak-p

spaces. Two examples show that one cannot extend the above results in vari-
ous directions"

Example 1. If we consider a constant field of magnitude B, then H
H0(-d) + V has essential spectrum beginning only at energy B. ThusH can have
discrete spectrum in [0, B]. One cannot extend the above bounds to the total
number of discrete eigenvalues; indeed, if V is a shallow attractive square well,
H will have no negative eigenvalues (by the above bounds) but it will have an
infinite number of eigenvalues in [0, B]! See 5.
Example 2. The bound No(V; -d) <_ No(V; 0) which one might expect on the

basis of the above is false! Indeed for a > 0, this follows by first order per-
turbation theory. For a 0-, pick W radially symmetric so that -A + W has
one s-wave bound state and a p-wave zero energy eigenvalue. In first order
perturbation theory, which is a variational upper bound to 0(B2), ifwe turn on a
constant field, the p-wave splits ito one negative,_, one positive and one zero
eigenvalue. Thus, one can pick B0 so that Ho(-d(Bo)) + W has two negative
bound states. Now take V (1 e)W for e small. Then

N0-(V;) -> 2 > N0-(V; 0) 1

(where No- is the number of eigenvalues in (-o, 0)).
From Theorem 2.14 or Theorem 2.15 (to get the improved constant) one

obtains the following results of Lieb-Thirring [37, 38] by just mimicking their
proofs:
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THEOREM 2.16. Let dp be an antisymmetric function of N-variables
(o’, 1) and let

o() I, x,..., x,) dx dx..
o’t +1 1,"

Then (v 3)

, H0), >- D 0’()dx
i=1

where D is the constant of Lieb [35] (and is independent of -d).

THEOREM 2.17. Let Ix < , M <_ . Let

H(N,M;-d) H0),/2/x + Ho(--d)j/21ft- I-k,- jl
i=1 j=l i<j

+ Z I-k- rl + E R, RjI-I"
i<j i<j

Then

inf tr(H(N, M;-d)) >- -C(N + M).

J. Fr6hlich (priva communication) has noted one beautiful consequence of
Theorem 2.17" Let A be an ultraviolet cutoff radiation field:

2
d3k

(2r)-a’ e’’ ’(a*(k)-.(k) + a(-k)-.(-k)) x./ 2,7./,=1 "1 K I1
and let

Ho(A) a(k)a.( k)lkl d3k
I<-K

/a,=l

be the usual free photon Hamiltonian. Let

Brad(N, M; a0)= Ho(A) + H(N, M; A(x) + o(X))

which describes N electrons and M protons interacting with "non-relativistic"
radiation and an unquantized background field-0. Then:

COROLLARY 2.18.

Hrad(N M; 0) -> -C(N + M).

Proof. Ho(fi) >- 0 so we only need that H(N, M; ) + -o)) >-
-C(N + M). But the components of,) can be simultaneously diagonalizcd
and thus the corollary follows directly from Theorem 2.17.



858 J. AVRON, I. HERBST, AND B. SIMON

Remark. As stated, the constants in Theorem 2.17 and Corollary 2.18 are
equal to each other and to Lieb’s imp__(roved value of the Lieb-Thirring constant.
However, if one Wick orders the A() term, then the C in Corollary 2.18
diverges as K ---> .
3. Homogeneous field
Here we want to review various properties of the "free Hamiltonian", H0(-d),

associated to constant field Bo. We prefer to work in the gauge (1.2). H0) then
has the form (/0  o/1 ol)

Bno(d) -A + -- (/o --k)2 -Bo" L (3.1)

where L is the angular momentum. If B0 (0, 0, Bo), then

Ho(-d) -A + -- (x + y) BoLz =- -/dz +Hosc- BoLz.

It is useful to introduce the creation and annihilation operators"

0 + ’BoX/ Bo Ox ---4- x a a*z

0 + ’BoX,/ Bo Oy -- y a a*

Hoc is simple in terms of these objects, since

Ho.,c Bo(aa + aa, + 1).

L is not so transparent since

L i(aa- aa,).

We therefore change variables and let

a+_ a +- iau)

Then lag, a_] 0 and [a+/-, a] (same sign) so they generate independent
oscillators. Moreover:

and, in particular,

Bo(at+a+ + at-a-+ 1)

Lz a3a_ at+a+

HoCd)
dz

+ Bo(2 at+a+ + 1). (3.3)
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Several things are obvious from (3.1)-(3.3)
(i) The ground state energy (= inf spec (H0())) of H0() is B0.
(ii) Ho(-d) has an infinite degeneracy associated with the fact that a_ and a*_

commute with H0(-d) (Landau degeneracy). In II, we show that this degeneracy
is a characteristic of any system of non-zero total charge in a constant magnetic
field [6].

(iii) If we fix Lz m, then for m O, a*+a+ takes the values m, m + 1,
but for m >_ O, a+a+ takes the values 0, 1, so

inf spec (Ho(-d) L m) Bo (m >- 0)

B0(Elm + 1)(m < 0).

(iv) If Ck then by (3.1):

-d2 + Hose + BoLz Hod) + 2 BoLz.C Hod)C
dz2

In particular H0(-d) (L m) is antiunitarily equivalent to (H0(-d) + 2 Bom)
(Lz -m).
The Landau degeneracy, (ii) above, is extensively studied from several

points of view in II of this series [6]. One is relevant to our considerations
below: The operators

commute with H0(); in fact, up to factors the x and y components of are just
-1 (a_ a2) and (a_ + a2). has an important physical interpretation as a

pseudo-momentuLn,_,i.e, an operator commuting with H0(-d) which generates a
group, U()= e’ obeying

u()- u()- + .
U() thus realizes the obvious translation invariance of the physics. The special
feature here is that U() is not a representation on IRa but only a representation
up to a factor, explicitly

U() U(’) exp Bo" ( -")1 (x U + ’)

which follows from

(B X r)

(U(-)f) ) e f + -d) (3.4)
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As a final result, we want to discuss the derivation of the explicit formula
(essentially due to Feynman [63])

Boe-trI’-’) (47rt)-1n
4r sinh (But)

exp (-F(,-’; t)) (3.5)

B0F,-’;t) =(4t)-[/o ( --’)] / -- coth (Bot)[/o x ( --’)]

2 #

Most ways of deriving (3.5) that we know of depend on first deriving Mehl-
er’s formula for

d
to2x2.h(to) 2 dx - -119

e-tnt’)(x’ Y) 27r sinh (tot)

to
[cosh (tot)(x + y) 2xy]1. (3.6)exp

2 sinh (tot)

We know various derivations of (3.6) of which we mention: (a) One using
Wick ordered exponentials, due to Simon and H6egh-Krohn [61]; see esp. [20]
(b) One recognizing thatf(x) g(y) +-> (fIlo, e-tn(’)gflo) (flu gd state of h(to)) is

a Gaussian measure of covariance matrix (2to)-a ( a / with a exp (-tto)
a 1\ /

due essentially to Doob [17], see esp. [60]. (c) One beginning with the Feyn-
man-Kac formula with respect to Brownian motion and doing the Gaussian
integral [60].
We mention 5 ways of deriving (3.5); as a preliminary step in all of them it is

useful to note that the dz commutes with Ho (-d/dz) so we may as

well consider the two dimensional case"

(a) Notice that by (3.1), H0) (L 0) 2(h(to) @ h(to)) (L 0) with
B0

to Since the idealized vector o delta function at 0 has L 0, we
2

have that

(e-too(-) (-k, O)

e-tn(’)(rx, O) e-2tn(’)(ru, O)

given by (3.6).

Usg U()e-m0’-3 U()-a= e-mo-3 and (3.4), one can obtain e-m0- (7 +
tH (a)a, a) in terms of e- (r, 0). This yields (3.5).

(b) If (-Boy, O, 0), then Tx Bo so Ho) and H0() are unitarily
equivalent under an explicit gauge transformation. But Ho() (pz + Boy) +
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puz, so if pz is diagonalized, then H0() is a translated harmonic oscillator. Ex-
plicitly if UI multiplication by e-tnoxu/2, then

H1 =- U1Hod) U-11- (Px + Boy) + P
and if Uz e-/no, then

H2 U2Ul U p + By2

so e-m has a kernel given by Mehler’s formula. Realizing psing a Fourier
transform, one can obtain U e-n U e-ml and then e-*no().

(c) Once one knows that e-no() (x, y) is a Gaussian (which follows by suit-
able Trotter" -like approximations, see e.g [60]) one can find it by computing
the covariance of f(x) g(r (f0, e-tH(a)go) and inveing the 4 x 4 ma-
trix. (See proof (b) of Mehler’s formula).

(d) An explicit evaluation in a Feynman-Kac-Ito formula, see [60].

(e) Since one can obtain H) from 2B ag a + + O a by a Bo-

goliubov transformation (a, a) (a+, a_), it should be possible to obtain (3.5)
from (3.6) and an explicit formula for the unitary implementing the Bogoliubov
transformation.

4. Scattering and spectral theory: homogeneous magnetic field
The moral of the scattering theory in general fields (2) is that magnetic fields

do not make conditions for a good scattering theory any worse; the point in this
section is that constant fields can make the conditions milder: indeed, since a
constant field "traps" the particle in the directions perpendicular to the field,
one expects that falloffwill only be required in the direction parallel to the field.
This is the case’

THEOREM 4.1.

with-d By, - B, 0 and V real-valued. Suppose that

+ / e-(l-.-g (.e / "1 V(x, y, )1 dx dy dz <

for some > 0. Then a +/- (It, It.(-d)) exist.

Let H be a self-adjoint extension of Ho(-d) + V (on Cg)

(4.1)

Proof. By Cook’s method [40], it suffices to show that

(4.2)

for a total set of r. We will take (x, y, z) b(x, y) t(z) with k an eigenfunction
(x +

of Hose and Lz (scc 3) so that b(x, y) (polynomial in x and y) e-
In particular,

Bo

Idp(x,y)l <- (const) e
-(’- ’) --V (x"+
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Since e-Uno (d (R) ) e-t d (R) e-itzllt we see that for such 9, (4.2) is equivalent
to:

where

w e+-"llL,a, dt < o (4.3)

W(z) e
’) +  ’)lVl dx dy

By choosing vectors q 5e(IR) with supp q not containing the origin, it is easily
seen that (4.1) implies (4.3) for a total set of q [24] (see also [40]). m
Remarks. 1. Roughly speaking (4.1) requires that

(1 ) Bo (x’ + y)

iV(x,y,z)le 4 (1 +lzl)

and thus allows considerable growth in the x and y directions.

2. Theorem 4.1 should be compared with results of Avron-Herbst [3] and
Davies [ 14]. Davies notes that in the usual fl-+( A + V, A) situation, falloff in
the z-direction suffices if there is no growth in the xy directions. Avron-Herbst
discuss the case H0 -A + cz of constant electric field where some mild
growth in the xy plane is allowed but for a rather different physical reason.

3. It is not automatic that H0() + V has self-adjoint extensions since Ho()
does not commute with the usual complex conjugation. But if V is axially sym-
metric (invariant under rotations in the xy plane), then one can find a con-
jugation commuting withH C on each fixed Lz subspace, so H0() + V must
have equal deficiency indices.

4. The argument in remark 3 depended on B constant and V azimuthally
symmetric. Other cases can be accommodated. For example, suppose that

al(-Xl, x2, xa) al (Xl, x2, x3),

a2(-Xl, x2, x3) -a(xi, x, xz)
3

and

then

(e.g., a - x-k) with B (0, O, Bo

V(-x1, x2, x3) V (xl, x2, x3)

(0 ) (Xl, X2, X3) (--Xl, X2, X3)

obeys OH HO onCif V Loc, 7 a Loc. Other variations on the theorem,
e.g., V(-Y) V(Y), (-Y) -’(-) are possible.

TORM 4.2. Let--d -- By, -- Bx, 0 and let V be a function of
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p (X2 + y2)1/2 and z so that
3

(a) V V1 + V with V1 uniformly locally L’ for some p >- and V >

1
-el c p with c < B

(b) for each e > 0

dz do v(p, <P

Then on each (L m) subspace, H0) + V is a semibounded closable quad-
ratic form on Q(Ho)) Q( (Lz m). Let H be the coesponding oper-
ator. Then (H, H0)) exist and are complete.

Proof. LetA0 -A + Bp andA A0 + V on Q(A0) Q(. Then by

(a) and a result of Strichaz (see e.g., [41])A is a semibounded closed quadratic
fo, so restricting to (L m) subspaces, we have the first claim. Similarly,
the second claim will follow if we can show that (A, Ao) exists and is com-
plete. By Birman’s theorem (Theorem XI. 10 in [40]) it suffices to show that (i)

IA/e-ao andA/ e-a are bounded and (ii) E(A) V E(Ao) is trace class for any
bounded interval I. (Here E(o) is a spectral projection.)

It is easy to see that both (i) and (ii) follow if ivi e- 0 and ivi e are
Hilbert-Schmidt. Let K be the integral kernel of e-a and K that of e- (A
-A + p). Using the inequality [68]

e-.-a + W + W2)(’, y), [e-.-, + pwo(, )]l/P[e-t(-a + ’w.)(,

and a result of [60] (which extends a basic result of Herbst-Sloan [68]), one
finds for any p >

where a(p) p -- B0 Cz So taking p 2, we need only show that

IV(-)l Ig,, (, )l dxdy < .
Given the explicit form ofK (from Mehler’ s formula and the kernel of e-t, (b)
yields the finiteness of the integral.

Remark. The idea that one can improve the results of the trace class theory
considerably by restricting to symmetry subspaces goes back to Kuroda [32].
As a final result in the scattering theory for perturbations of (3.1) we want to

prove existence and completeness of modified wave operators for the pair

/-/0) + ---,//0(-8) By taking advantage of the symmetry subspace we will

actually be able to reduce everything to the trace class theory and Dollard’s

( )t -A) (Remark: Actually, complete-original result 16] for the pair A q-
[7---
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ness is much easier to prove in that case than as proven in [16]; for once one

proves that -A + _- has simple spectrum on each fixed and rn subspace, a
I’1

general argument of Kuroda [31] (corrected in [15]) implies that completeness
follows from existence).

Definition. A modified dynamics associated to Ho is a family of commuting
unitary maps Ut commuting with Ho so that for each fixed s,

If

s- lim Ut + sU*t e-i%.
t--.-o

l?:(Ho + V, Ho)= s- lim e+it<no + v)UtPac(Ho)

exists, we say l-l?: exist and if Ran 11 Ran lb Ran Pac(Ho + V) we say that
ll?: are complete.
Note that these definitions are slightly more general than in the usual Dollard

theory [16] where U is a function of Ho. In Hbrmander’s paper [24], H0 is a
constant coefficient pseudodifferential operator and Ut is required to be a func-
tion of-iV. In the above definition it might happen that ll and Off, exist for U
and W which were not mutually commuting. In any event, for its spectral signif-
icance, the above definition certainly suffices, i.e. existence and completeness
imply that (Ho + V) Ran Pac(Ho + V) is unitarily equivalent to Ho Ran
P(Ho). Moreover, in the case below, it is not hard to show that Utq and e-"noq
asymptotically have the same x-space probability distribution so that the usual
[ 16] physical interpretation of ll?: is possible.

THEOREM 4.3. For any h and Bo there exists a modified dynamics, U, asso-
ciated to Ho() so that ll (Ho() + )tll-1, Ho(’)) exist and are complete.

Proof. By the composition law for wave operators if fl-+(Ho + V, Ho + W)
and 127:(Ho + W, Ho) exist and are complete, then(Ho + V, Ho) exist and are
complete. By a simple extension of Theorem 4.2, (Ho) + h/l, Ho) +
h/(Iz + 1)) exist and are complete since

f dzl(z + x + y)-,,z + (x +1)-11 cllog y2)[.

Thus, it suffices to prove that

a(no) + h(Iz + 1)-, Ho))
exist and are complete for some U.
Next note that since Ho) + d/dz has the formA (R) I where A has discrete

spectrum under L(R) L(R) (R) L(dz), (HoCd) + x(Iz / no )) is a
direct sum of pairs

/ c / x(Iz / 1)-1 !-
dz
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so it suffices that

dz2
[- h(lz[ + 1)-1,

dz2

exist and are complete for U a function of -d2/dz (then, the U for the full
problem will be a function of-d2/dz and H0) + d2/dzZ).
By mimicking Dollard’s basic method, [16], if

U=e-" exp (-i I h(’2ps’ + 1)- ds)
then 1: exist and intertwine

h dz--W + X([z[ + 1)-1 and h0 dz

Moreover, fl leave the space of even (resp. odd) functions invariant, so by a
theorem of Kuroda [31] (corrected in [15]), it suffices to show that h has simple
absolutely continuous spectrum when restricted to the even or to the odd func-
tions.
One could presumably develop an eigenfunction expansion to prove the sim-

plicity of the spectrum in question, but we provide a proof based on the fact
that Dollard [16] has proven completeness in the three dimensional case, V(-k)
171-1 and therefore also for V(-k) (171 + 1)-1 (since 12-+(-A + ([l + 1)-’,
-A / I-;I-1 exist and are complete by an argument of Kuroda [32]). Restricting
to the 0 subspace we see that

15 dr - (r + 1)-1, dr

exists where
dr

has u(0) 0 boundary conditions on (0, oo). This pair is

unitarily equivalent to the pair on the whole line restricted to the odd subspace,
so simplicity is proven on the odd subspace. Since changing the half-line prob-

Ou
lem from u(0) 0 to--r (0) 0 boundary conditions is a rank one change in

the resolvents, we have completeness in that case and therefore simplicity on
the even subspace.

Remark. By the usual methods, once this result is proven, one has the same
result for hl-k[- / v where V obeys the hypothesis of Theorem 4.2.

** *** *** ***
THEOREM 4.4 Let Ho(-)_.be given by (3.1)with Bo O. Suppose that V is a

function of Bo and lr x B0[ which is locally L, and so that

1
4
7 x +v

is boundedfrom below and approaches infinity at infinity. Then H Ho) + V
is essentially self-adjoint on C and has a complete set of eigenvectors.
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Proof. Without loss take o (0, 0, i ol), Under the hypothesis, the theo-

rein holds by known results [39, 41] for -A + - [- x B0[ + V =//. ButH and

//leave eachL m space invariant andH (L m)=/7/ (L m)-m
so the result follows for H.

Remark. It can happen that Theorem 4.4 is applicable but that Ho(-d) + V

isn’t bounded from below (e.g., V (7’. Bo)z
8

(7 x Bo)z) or that

H0() + V doesn’t have discrete spectrum (e.g. V 1. 01).

Next, we want to show how the method of Agmon [1]-Kuroda [33] (in Ag-
mon’s version) extends to yield the absence of singular continuous spectrum
for H0(-d) + V and a large class of V’ s. As a by-product, one obtains a new proof
of existence and completeness of wave operators. In distinction to the case of
constant electric field where some new estimates are required [22], no new
estimates are needed here; indeed only one dimensional estimates of a simpler
nature than those in the general Agmon theory are required.

THEOREM 4.5 Let V be a measurable function on R so that (1 + Izl) +’ v
L + L for some > O. Let Ho(-d) be given by (3.1) with Bo parallel to z

and non-zero. Suppose that: (Hypothesis F) (1 + ]z]) +" V is a relatively com-
pact perturbation of Ho(-d). Then:

(a) Ho(-d) + V has empty singular continuous spectrum.
(b) fl+-(Ho(-d) + V, Ho(-d)) exist and are complete.

THEOREM 4.6. If V is symmetric under rotations about the z-axis then hy-
pothesis F can be droppedfrom Theorem 4.5.

Before going to the detailed proofs, we make a series ofpreliminary remarks"
(1) In following Agmon’s method, we use a trick of Davies [67] to avoid the

need of proving that the eigenvalues of H0(-d) + V lie in a set with a discrete
family of limit points. In fact all we show is that they lie in a closed countable
set. We do not see how to use the Agmon analysis to show that the eigenvalues
are discrete since {1 I1(1 / Izl)  ,ll < Ilno ,ll < n) is not compact but in the
context of theorem 4.6, we can show this on each (Lz m) subspace. Davies’
trick allows one to improve the result of [22] to remove the hypothesis about
the eigenvalues having a countable closure; it follows from the other hypothe-
ses of that paper.

(2) It suffices to prove that there is a countable closed set so that for any
1

closed interval [a, b] disjoint from g and any 6 > -f"

sup I1(1 + 12[)-(Ho(-d) + V- /z i)-1(1 + [21)-611 < o
0,a /z b

(4.5)
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for then the absence of singular continuous spectrum follows from a general
principle (see e.g., [41], XIII.6) and existence and completeness ofwave oper-
ators follows from the theory of local smoothness (see e.g., [41], XIII.7 and 8).
In the azimuthally symmetric case, it suffices to find a set ’m which is closed
and countable so that the analog of (4.5) holds for each H0(-d) + V (Lz m)
for [a, b] m .

(3) For simplicity, we will suppose that iv(7)l c(1 + Iz[)-1- ’. The localL2-
singularities can be accommodated easily as in [41].
The proofs of Theorems 4.5 and 4.6 depend on the weighted spaces

Ms {f[(1 / [zl)f L} with the obvious norm and the use of a simple eigen-
transform for H0(-d). In terms of a_+ of 3, let b,,m be the (unique up to phase)
function with (a a+) ( n, (at_a_ a+* a+) b m4), i.e., n 0, 1, 2,. -,

m -n, n / 1, Define the unitary map/x from LZ(R 3) to ) L(R) by

f(m, n, k) (2"t/’)-1/2 f e-ikZtm,n(X, y) f(x, y, z) dx dy dz
.I

so that

Ho)f(m, n, k) [Bo(2n + 1) / kZ]f (m, n, k)

The point is that for > -, each function f Ms has m,, f dx dy

dz < (by the Schwarz inequality) so that,(m, n, k) is continuous in k. More-
over, by general theorems (see e.g., [39], IX.9) specialized to one dimen-
sion, if E0 B0 (2n + 1) for any n and

:(m,n,k) 0;fMs > --for allk, n so thatB(2n + 1) + k E,, then (/-/.) E,)-fexists as a function
in M_

_
for any e > 0 with an inequality on the norms uniform for E in

compacts in the allowed region. One uses here the fact that

f(l+ ]z[)Zlf(x, y, z)12dx dy dz m,nZ I(1+ ]zl)11fm.,*dx dY]dz"

With these preliminaries one need only mimic the Agmon theory: To get Theo-
rem 4.5, we note that (Ho(-d) E +_. iO)- exists as a map from Mn to M_ for
E (2n + 1) B0, and that V (H0() E

___
i0)-1 is compact (by hypothesis F)

and norm continuous (in E) fromM to M. The norm continuity shows that
1 + V(Ho(--d) E +_ iO)- is invertible for E ge0, 0 a closed subset of (B0, )\
{(2n + 1) B0}. By the "Agmon bootstrap", any point in is an eigenvalue of
H0) + V so that {(2n + 1) Bo} t_J o is closed and countable. (This is
Davies’ trick [67]). Moreover, for E E ,
(Ho() + V- E _+ i0)- (Ho() E _+ i0)-1(1 + V(Ho) E +_ iO)-)-
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is bounded fromM toM_ giving us the estimate we need. To get Theorem 4.6
we proceed similarly except we look at fixed values of m. V(Ho(-d) E +_ iO)-is then automatically compact.

Finally, we discuss the applicability of dilation analytic ideas to the case of
constant magnetic field. We deal here with the case H0() / V. We hope to
return to the N-body case (which will require the analysis of [6] on removing
the center of mass) in part III of this series.

THEOREM 4.7. Let V be an axially symmetric function on Ra which is dila-
tion analytic (as an operatorperturbation of-A in the usual sense [2, 41]) in a
strip IIm0i < 0o. Suppose that V(O) (-A + 1)- oofor all Iim0l < 0o. Then the
resolvent of U(O) [Ho(-d) + V] U(0)-1 H(O) has an analytic continuationfrom 0

real to IImOI < rain 0,, -- and defines an operator tI(O) in this region. More-

over, o-(H(O)) is discrete outside of the set

[,3 {(2n + 1)Bo + e-klk [0, ]}
n--0

which is contained in r(H(O)). In particular:
(a) Ho(-d) + V has empty singular continuous spectrum
(b) The only possible cluster points for the point spectrum ofHoCd) + V are

the numbers (2n + 1)Bo.

Proof. (a) and (b) follow from the spectral information on H(O) in the usual
way. V(O) U(O) VU(O)- is a multiplication operator which is -A-compact by
hypothesis. Thus, by Theorem 2.6, V(O) is Ho)-compact. If we can show that
on each Lz rn subspace Ho(, 0) U(O)Hod) U(O)- is an analytic family of
type (A) and

r(Ho()) 1.3 {(2n + 1)Bo + e-XlX [o, )},
n max(0,-m)

then the desired result will follow from Weyl’s theorem (see [41], XIII.4). But
for 0 real

BU(O)Hf-d)u(o)- e-(-a) + -T- e(B -k) Bo" L.

so we need only note that e-p + ex in one dimension is a closed operator

on D(p) D(x) so long as IArg 01 < - with 0 invariant spectrum (see e.g.,

[49]). Thus

o’(Hosc(O)) {(2n + 1)Boln -> 0, n + m _> 0}

r(p(0)) {e-xlx -> 0}
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so, by Ichinose’s lemma ([41], XIII.9) we have proven that

o’(no(-d, 0))= [,.J {(2n + 1)B0 + e-Zh}
n max(0,-m)

5. Enhanced binding
There is an important qualitative difference between the bound state (eigen-

value) structure of-A in dimensionv _> 3 and in dimensionu _< 2" For ifv -> 3,
-A + hV will have no bound states ifh is small and V is short range whereas, if
v -< 2 and V -< 0, -A + hV will have a bound state for any h > 0. Explicitly,

-A + V has no bound state if v _> 3 if/IVl dx is sufficiently small [12, 35,

43], while in v -< 2 dimensions, -A + V
J
has a bound state if V) d’x <- O,

V 0 and I (1 + I1)IV(-)ldx < ([53, 10, 30]) (v 1) or I IV(-)ll+’ d2x <

oo ( 2).

As we have seen quite often already, the operator H0) of (3.1) is much
closer to a one dimensional Laplacian than to a three dimensional Laplacian
and this is reflected in the ease with which bound states occur. Typical of the
results we will prove in this section is"

THEOREM 5.1. Suppose that V is azimuthally symmetric, non-positive (not
identically zero) and in Lz + (L) on R3. Then for any Bo O, H HoCd) + V
has an infinite discrete spectrum and an infinity of eigenvalues in the essential
spectrum [B0, o).

Remarks. 1. Note that V’s of compact support are allowed so that the be-
havior is very different from that occurring for -A + V.

2. The embedded eigenvalues occur for reasons of symmetry: namely for
rn < O, H (Lz m) has essential spectrum [(21m[ + 1) Bo, ] so that discrete
eigenvalues ofH (L, m) can be in the essential spectrum of H. Presum-
ably for nonsymmetric V’s these eigenvalues will not occur. But they indicate
the difficulty of handling embedded eigenvalues.

3. This theorem has multiparticle analogs, see [5, 7].
Notice it can happen that the V of Theorem 5.1 is such that -A + V has no

eigenvalues. In that case (2.3) says that all the discrete eigenvalues of H0(-d) +
V must lie in the interval [0, B0]. We see an interesting phenomenon in that
case: while inf spec (Ho(-d) + V) goes up when Bo is "turned on", so does the
"binding energy", Bo-inf spec (Ho(-d) + V). In fact, Lieb has proven:

THEOREM A.1. For any V C(R3),

inf spec (Ho() + V) _< In01 + inf spec (-A + V) (5.1)



870 J. AVRON, I. HERBST, AND B. SIMON

We give Lieb’s proof in the appendix. In [7], we will prove that the binding
energy is monotone increasing in Bo in case V -X rI-

LEMMA 5.2. Let W L + (L), on (-oo, oo). Then dx.
+ W has a neg-

ative eigenvalue if any of the following holds"

(a) W<-0, W0

(c) f W+(x) dx < oo, f
W(x)ax < o

W_(x) dx oo where W_+ max (0,
_
W).

Proof. Most of these results follow from [10, 30, 53] but a direct proof is

possible. By the Z + (L), hypothesis,
dx2 +c W has essentialc spectrumc

[0, oo)(see e.g., [41])so it suffices to find b with/[41 < oo,/Ib’l + VC]bl
J J J

< 0. By increasing W, we can suppose we are in case (b). Let ba(x) e-alxl.
Then ba is piecewise C so

f lddl dx a f e-11 dx a

while

f
lim /Ia(x)l W(x) dx I W(x) dx <0

j.

by the dominated convergence theorem. Thus [bdl + [bal2 W <0 for some
a. 1

Proof of Theorem 5.1. Let rn -> 0 and let Hm H (Lz m) and o,m
Hose BoLz (L m). Let bm(p, ) 6m(P) eim’ (27r)-1/2 be the ground state
of/-)o,m so that/-)o,m dm Bo m. Let (p, z) m(/9) /(Z). Then

(att, HmXIt) Bo + (, hmb)

with

ax + V(z); V(z) [6(p)lV(p, z) ap.

Since hm has a negative eigenvalue by Lemma 5.2, we can find tk with
(att, Hm) < Bo. Thus, since O’ess(Hm) [no, oo), Hm has an eigenvalue Era. Since
O’es,(H) [Bo, oo), the Em’S must approachBo as rn oo, and, in particular, there
must be infinitely many distinct Era.
By (2.3),Em>- eo infspec (-A + V). SinceH L -m isunitarily

equivalent to nm + 2mlBo (for rn > 0), H has eigenvalues at the points
Em+ 2mlBo I. For rn sufficiently large, these numbers must be in [Bo, oo) (since
Em+ 2m[Bo -> eo + 2mlBo[).
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THEOREM 5.3. Suppose that V is in Lz + (L), on Rz and that either:

(a) IV(x, y, z) dx dy dz < and V(x, y, z) < 0 for x + y >_

Ro for some Ro or

(b) I IV(-})] dr < , IV(-})dr < O.

Then Ho(-d) + V has at least one eigenvalue in (-, In01),
Remark. The proof will show that in case (a), there are infinitely many ei-

genvalues in (-, IB01) if V is also azimuthally symmetric.

Proof. Let tm be as in the last proof and let 4m(P) q(z). Then for
m>O;

(, HW) Bo + (q, hmb).

Since (m(P) era(no) pm e-BoP44, we have that

Vm(Z) cm(no)z f V(x, y, z) p2m e-BoP2/2 d2p

Thus, in case (b)

E. c2 (_ )m (m !)-I f Vm(Z) dz f V(x, y, z) dx dy dz

(5.2)

THEOREM 5.4. Let V L2 + (L), be azimuthally symmetric on Rz and let
Bo > 0 and m >- 0 be fixea. Let IVIm be given by (5.2) with V replaced by IVI
Suppose that |(1 + Izl)IVIm(Z)dz < and that I Vm(Z) dz < O. Then, for all

small positive X, Ho(-d) + XV (Lz m) has a unique eigenvalue era(h) in the
interval (-, Bo). Moreover

era(h) =B0-(- f Vm(z) dz + 0(X*)). (5.3)

Proof. The proof is patterned after that in [53] as modified in [10]. Let
Ho,m(-d) Ho(-d) (L, m) with m >- 0

K (E) V/2 (Ho,m’d) E)-’ IVl 1/2

by the dominated convergence theorem, so some | Vm(z) dz < 0 and thus, by

lemma 5.1, some (q, hm) < 0. In case (a), / Vm(z) dz < 0 for all sufficiently

large m.
In [53], a machine is developed to find the ground state energy of

+- hV for small h. The above suggests this machine should be appli-
dx

cable to H0) + hV and this is our next goal. We only work to first order
although as in [53], one can obtain information in higher order.
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where Vuz V/lV[llg. Then as in the case of-A [53], E is an eigenvalue
ofHo(-d) + V (L m) in (-oo, Bo) ifand only ifXK(E) has eigenvalue 1. Let
[4m >< bm[ denote the operator

and write

where

"O e’m’t’ dpm(p) dpm(p) e-im’t’ rl pdp 2"n"

K(E) A(E) + B(E)

A(E) VU2(1

B(E) Vl/ldm >< ml(no E)-IIV[I’.
Since spec (Ho(1 [bm >< bm[)) [3Bo, ), we have that forE < Bo (operator
inequality)

3 3
(1 -16m >< 6])(no E)-1

so that

3
[a(E) vl,, nl V[ 1/2

is uniformly bounded (in E) since V is Ho)-bounded and 0 spec (Ho)).
Next note that Ho Ran [m >< ml

go(E- Bo) IVI 1/ where go(a) a)-’. Let g(a) be a)-’ where
isp with Dirichlet boundary conditions and let g, go g. Then 10] gz(a)

is rank (in the z variables) with integral kernel e--( +

and g has a kernel dominated (pointwise) by z z’l for all 0. Write

B(E) C(E) + D(E)

with C(E) Yu >< +m] g (E Bo) ]Y] ’’, D(E) Y’ ]+m >< +m]
gz(E Bo) V]u. Then we claim that C(E) is uniformly bounded, for its Hilbert-
Schmidt norm is dominated by

]lz z’l y(, ) iy(’, ’ ]+()1, l+(o’)lo p’ dz dz’

which is finite by the hypothesis on Vm. Thus for k small and all E < B0,
Xl]A() + C()] < so

+ x() [ + X(A() + C())]( + X[...]-’ B())

and thus kK(E) has eigenvalue -1 if and only if the rank operator
k[. .]-aB(E) has eigenvalue -1. From this point onwards, the proof follows
that in [53] or [10] word for word.
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Remarks. 1. By mimicking the arguments in [10], one can easily show that

if/(1 + Izl),lVIm(Z)< oo, and / Vm < 0then (H0(-d)+ V) (Lz m)has
d

only one eigenvalue of order B0 + 0(h2) as h 0 (it can have others of order

Bo + o(h)) and it is given by

B0 (- IVm(z) dz +o(h2).

2. The above reduces the analysis of the ground state on (Lz m) for small
to that ofp + KVm. By extending the arguments in [10] we will show in III of
this series [7] how to treat the case Vm 0(Iz[-1) at infinity and thereby obtain
the asymptotics of H0() [1-1 for small h. By scaling, this will also give us
the asymptotics ofH0) I- 1 for B0
COaOLLaR 5.5. There exist Bo 0 and an azimuthally symmetric Vm in

Sf(R) so that the lowest eigenvalue of Hod) + V does not have L O.

Remarks. 1. This result is of interest because when B0 0, general prin-
ciples (e.g., [41], XIII.12) assert that the ground state is positive and so has
L 0.

2. Examples of this type have been constructed by different means in La-
vine-O’ Carroll [34].

3. One of the deepest results in this series is one in III that asserts for
V -hll-1, the ground state does have L 0.

Proof. Since we have claimed no uniformity in m in Theorem 5.4, we can-

not assert that for small h, the ground state has that rn with Vm(z) dz largest

but certainly if we find some m > 0 with

Vm(Z) dz > -f V0(z) dz > 0 (5.4)

then for h small, the ground state cannot have L 0, since there is a lower

state with Lz m! Let W(p) I V(p, z) dz. Then (54) is equivalent to

f W(p)[m(p)12 > f W(p)ldpm= 0(p)12 > 0. (5.5)

Clearly, we can find W(p) in 5e(R) so that (5.5) holds. Thus it suffices to show
that the map V W takes 9(R) onto 5e(R) where 5e, {f b’]f is azi-
muthally symmetric}. In terms of Fourier transforms, the map from V to W is

l’(k) -(2r)l/Zf’(IkI, 0).

Given any azimuthally symmetric W, we can define f’(kl, k, k) -(27r)-/

([kl) and thereby demonstrate that the map is onto.
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Having considered the ground state energy ofH0() + hV for Bo fixed and )t

small, we next turn to h fixed and Bo small or Bo large.

THEOgEM 5.6. Suppose that V L + (L), and that -A + V has a dis-
crete simple eigenvalue, Eo, with eigenvector tk. Suppose that, for Bo small,
Ho(-d) + V has a unique eigenvalue E(Bo) near Eo (in the precise sense ofstabil-
ity defined in 6). Then

E(Bo)=Eo+O(IBo[z) as Bo0.
Remarks. 1. The question of when stability holds is discussed in {}6.
2. For degenerate eigenvalues, this result is no longer true but one can

prove that ifP is the spectral projection for Eo, then E(Bo) Eo Boa + O(B)
where aj are the eigenvalues of PLzP onP.

3. In particular, for Bo small and E0 the ground state, E(Bo) <- Eo + Inol in
agreement with (5.1).

Proof. Write Ho(-d) + V A(h) where A(h) Ao + B(h) and B(h) -hL +
1-- X,p. Let Px be the eigenprojection for E(X) so that Px (,, .) in norm. In

particular, for h small

E(h) Eo + (’k, ea)-a (, B(h)Px).
By general principles ([41], XIII.11), ’k D(r) and so D(Lz) since e.g.,

1 1

In the first place, this means that for E (r(A(h)) t.J o-(A(0))

ll[(m(o)- E)-’- (A(h) E)-’]l -< ll(m(x) E)-lll (E- Eo)-’lin(h)ll
so that llPxb bll O(h) by the assumed stability and the formula for spec-
tral projections as contour integrals of resolvents. Moreover, it implies that
B(h)qj -hLz,) + O(h) O(h) and (@, Px@) I + O(h) so

E(h) Eo- h(tk, Lz@) + 0(X).

But, as Eo is simple, q q and thus, (tk, Lz) is both purely real and purely
imaginary; hence zero.

THEOREM 5.7. Let V L + (L), be azimuthally symmetric and obey

I lamlvI dp dz < o for some rn >- O. Suppose I tO2m VQ3, z) todto dz < O.
d d

Then, Ho(-d) + V (Lz m) has an eigenvalue em(Bo) for all small Bo and

em(Bo) <- Bo c(B)m+ (5.5)

for some c > O.

Proof. We just make explicit the argument in Theorem 5.1. Let be the
trial function (m -> 0)

b(p, b, Z) (2ram !)-l/2Btn + 1)/2 pm e-BoP2/401/2 e-alZleim(27r)-l/2
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Then

(, Ho(),)= Bo + a
(, V) -< -2aB +1

for some c > 0 and all small B0 and a. Choosing a c B’ + 1, (5.5) results from
the variational principle.
We believe that (B)m / is the precise small Bo behavior, in fact"

CONJECTURE SC. Suppose in addition to the hypotheses ofTheorem 5.7,
that Ho + V (Lz m) has no bound states. Then"

lim [Bo em(Bo)] B-o2m + 1) am
BO 0

where

am --f (2ram !)-1 o2mVQg, z) odo dz

Remarks. 1. The conjecture says that to leading order, Bo em(Bo) is given
by the binding energy ofp + Vm(z) and then interchanges a limit ofh ---> 0 and

e-0’ in the small coupling limit V(z) dz [53] for this energy.

2. If/OIVI dO dz , and say, V -< 0, there will still be a bound state

obeying (5.5) but in fact e(Bo) will be smaller then the right side of (5.5). For
example if V(O, z) -(1 + 1)-- m, then the above proof shows that

em(Bo) <- Bo d (B +1 In Bo)2.

For some d > 0. We believe also that this is the exact behavior.
Finally, we consider large Bo"
THEOREM 5.8. Let V be a continuous function on R3 going to zero at in-

finity. Let E(Bo) inf spec (Ho(-d) + V). Then

lim E(Bo) Bo inf spec (p + V)
Bo (5.6)

rain infspec dz
t- g(x,y,.)

Proof. Since/-/() p >- B, the bound

E(B.) >- B. + inf spec (p + V)

holds for all g and allB so the lira half of (5.6) is trivial. Since O’e,(It,(-d) + V)
[B., ), the other half of (5.6) is trivial if inf spec (p + V) 0 so we will

suppose inf spec (p + V) a < 0. Let

f(x, y) infspec
dz

V(x y
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Thenf is continuous and goes to zero as x, y ---> oo so we can find Xo, Yo with
f(xo, Yo) a. By translation covariance in the x, y plane we can suppose with-
out loss that (Xo, yo) (0, 0). Since

there is a r(z) with

d2
O’ess d2 v(0, o, .)] [o, oo)

dz2 + V(O, O, z) q a’o.

Let bm o(X, y) r(z) where, as usual, bm o is the ground state with rn 0
of the oscillator part of Ho(-8). Then by a variational calculation with

E(Bo) <- Bo + a + [ I(z)lEVm _-o(Z) V(0, 0, z)] dz.

Since V is continuous, and 141 ol --->) (x, y), the two dimensional 6-function,
as Bo ---> oo, the last term has a zero limit by the dominated convergence theo-
rem.

Remarks. 1. In particular, this result says that the inequality in (5.1) is strict
for large Bo except for the trivial case where E(Bo) Bo for all Bo.

2. A similar argument shows that if V is azimuthally symmetric and if rn is
fixed, positive and Em(Bo) inf spec ((Ho(-d) + V) L m), then

lim Em(Bo)-Bo=infspec( d2 ]Bo--, dg2
t- V(0, 0, z)

In particular, if V(0, 0, z) -> 0 but V(xo, yo, z) < 0 for some Xo, yo, then it can
happen that Em= o(Bo) fails to obey (5.1). This shows that (5.1) cannot be
proved by a perturbation argument. In the Coulomb case Em o E and a
perturbation argument works (although the perturbation parameter is the Cou-
lomb coupling constant rather than Bot) [7].

3. This theorem is easily extended to the case where V max (V, -a) is
continuous for each a > 0 even if inf spec (p2 + V) -o. In particular, in the
case of the Coulomb potential, E(Bo) Bo --> -oo as Bo ---> oo. We will show in [7]
that the divergence is as (In Bo).
6. Stability of eigenvalues

In his study of asymptotic perturbation theory, Kato [29] singled out the
notion of stability of eigenvalues"

Definition. Let Tn be a family of closed operators thought of.as a per-
turbation of a closed operator To. Let h0 be an isolated eigenvalue of To of finite
multiplicity q. Then h0 is said to be stable under the perturbation Tn if and only

(1) For some e, and any {hi0 < I h01 < }, spec (Tn) for all large n
and (Tn k)- .._> (T )- strongly

(2) dim ran (-(2ri)- l 2t ’ol-
(rn- X)- dh)=q
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for n sufficiently large.

Remarks. 1. Condition (1) implies that for large n, the whole circle

ho[ =- lies in the resolvent set of Tn, see [29].

2. P,, --(2ri)-1J (T,- t)-1

is the projection onto all eigenvectors and generalized eigenvectors for T, with
eigenvalue in the circle ([29, 41]). Under the condition of stability, it follows
that P, --> P in norm, see [29].

3. If T, is replaced by a family T(h) indexed by small reals or small complex
numbers with larg Xl 00, we modify the definition in the obvious way.

In this section, we are interested in stability of eigenvalues of-A + V under
the peurbation H0() + V for B0 small. We are interested in this not only for
its own sake as a natural question but also because we have ceain applications
in mind in [7], especially to Borel summability of the ground state energy of
atoms. Here we consider only the one body case; consideration ofn-body prob-
lems is left to [7], but because of the interest in Borel summability we deal with
the possibility of complex B0.

It appears necessary to develop a new method for proving stability in order
to handle complex B0 and also to handle real B0 without restricting to a fixedL
subspace. One previous method, applicable to anharmonic oscillators [49], is to
prove norm resolvent convergence of T, to T. However this fails here (see
Theorem 6.3). Two other methods [41, 49] work for positive peurbations of a
self-adjoint operator for any eigenvalue below the essential spectm: these can
be used to accommodateHo) + V ifwe fixL and deal only with real Bo. Our
strategy here is to use the resolvent equations (Ho -A):

(H0) + V- -’= (H0)- -’(I + V(Ho)- -I)-i

(H0 - V- E)-I (H0 E)-I(I -- V(H0 E)-I)-I.

The resolvents with V fail to converge in norm; as we shall see this is due to the
failure of the resolvents without V to convergence in norm. There is no apriori
reason that V(Hod) E)-I cannot converge to V(Ho E)-’ in norm and this is
precisely what we will prove. Condition (1) will then follow immediately and
condition (2) will follow by further arguments.
Our main results are the following:

Definition. p-L + L consists of those functions V with the property that
for any e > 0, V can be written as V + V. with IIVll -< and ( + 1) Vx
L(IR) (with p (x + y)/).

For example, any function going to zero at oo lies in p-L + L,.

THEOREM 6.1. Let V p-L + L (real-valued) and let Ho(X) be Ho(8)
with Bo (0, 0, h). Then any negative eigenvalue of-A + V is stable as h ---> 0
(k real) under the perturbation Ho(h) + V.

THEOREM 6.2. Let V p-L + L be azimuthally symmetric but not nec-

essarily real-valued. Let Ho(h) be as above with [arg x} _< 0o < -. Fix m. Then
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any eigenvalve Co, of (-A + V) (Lz m) with larg Col > 200 is stable as
h 0 (larg h <- 00) under the perturbation Ho(h) + V (Lz m).

Remark. The conclusion of Theorem 6.1 is stronger than that of Theorem
6.2 even for azimuthally symmetric potentials since Theorem 6.1 says, in par-
ticular, that for small h, the ground state will have rn 0 if-A + V has a
discrete ground state. Theorem 6.2 does not imply this since no uniformity in rn
is claimed.

We begin with a negative result which motivates the need for our rather
involved arguments.

THEOREM 6.3. Let V L2 + L and let Ho(h) be as above (h real). Then
Ho(h) + V does not converge in norm resolvent sense to Ho + V.

Proof. Suppose to the contrary that H(h) Ho(h) + V converges to
H Ho + V in norm resolvent sense. LetE < inf o-(H). Then by Theorem 2.3,
E < inf (r(H(h)). Let PN be the operator of multiplication by the characteristic
function of {-11V)[ -< N}. Then IIe[v(n(h) E)- v(n E)-q II -< Nil
(H(h) E)-’ (H E)-’I[---> 0 for each N. Moreover, by Theorem 2.3 again

i1(1 PN)V[(H(h) E)-1 (H E)-I]II _< 211(1 Pu)V(H E)-,ll--, 0

as N ---> o since V(H E)-1 is compact. Thus under the contrary hypothesis
V(H(h) E)- V(H- E)- in norm. It follows that (1 V(H(h) E)-)-I---
(1 V(H E)-)-1 in norm since E (r(Ho) and thus that (Ho(h) E)-’
(H(h)- g)-l(1 V(H(h)- E)-’)-’---> (no- g)-l.

Write Ho(h) p + IIo(h), Ho p + Io, where o(h) and/-]ro are "2 dimen-
sional operators". Diagonalizingp by a Fourier transform, we have on L(IW)
(R) L2(dk)

(x)---II(k +/o(X)- E)-l-(k +/o- E)-II 0.

By looking at functions b (R) q(k) with q peaked near k 0, we see that
ll(.o(X) E)-1 (/7/o E)-IIIL,(t) --< o(h) so ([Iro(h) E)-’ converges to
(Ho E)-’ in norm resolvent sense. Since, for h 4: 0,/-/o(h) (Lz m) has com-
pact resolvent, while/7/o (L m) does not, this is clearly impossible. Thus,
we have established by contradiction that Ho(h) + V does not converge to
H0 + V in norm resolvent sense.

LEMMA 6.4. (a) For h real and E [0, ), (Ho(h) E)-’ converges strongly
to (Ho E)-’ as h ---> O.

(b) Let ho,m(h) Ho(h) (Lz m). Let [arg x[ _< 0o < -- and arg E > 20o.
Then (ho,m(h) E)-’ converges strongly to (ho.m E)- as Ih]--> O.

Proof. Ilno(x) no) 611--’ 0 for any 6 c Since c is a core for Ho,
[[[(Ho(h) E)-1 (Ho E)-’] 711 0 for a dense set oft/whenever we have a
uniform bound on II(no(X) E)-’ll, This type of uniform bound also allows us to
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go from a dense set oft/to all r/. In case (a), the required uniform bound comes
from the fact that H0(k) is self-adjoint and positive. In case (b) we note that with
0 arg k

e-’Oho,m(h) e-’(-a)+ e’0jhl/4- [him
is sectorial up to the constant Ihlm.
LEMMA 6.5. Let (1 + p)W be Ho-bounded. Then W(Ho E)-p is bound-

ed.

Proof. W(Ho- E)-x Wx(Ho- E)- + 4i(xW)(Ho E)-px

+ 2W(no- E)-- 8 W(no- E)-ap

by a straightforward calculation. Each term is bounded.

LEMMA 6.6. (a) Under the hypothesis of Theorem 6.1, V(Ho(X) E)-’ con-
verges in norm as h -o 0 to V(Ho E)-’ for E . [0, o).

(b) Under the hypothesis of Theorem 6.2., V(m (ho,m(k) E)-1 converges as
h 0 ([arg hi -< 0o) in norm to V(m)(ho,m E)-’ for [arge > 20o where V(m,
V (Lz m),

Proof. We prove (a). The proof of (b) is similar if one uses the quadratic
estimates of[49]. Suppose that we show that IIW (no(X)-

o for any v with (1 + p) V L. Then, by a limiting argument we get the

result for V p-L + L. Now with ao -- (0, 0, 1) x r

V(Ho(h) E)- v(no E)-1 v(no E)-l[2ho hao]

(Ho(k) E)-x= V,(Ho E)-’[2ho ko) + h](Ho(h) E)-1.

By Lemma 6.5,

V,(Ho -’-"E) ao and V(Ho- E)--do
are bounded while ho)(Ho(h) E)- is bounded by an elementary esti-
mate.

Proofof Theorems 6.1 and 6.2. We prove Theorem 6.1. The other is simi-
lar. Since E r(Ho + V)\r(Ho) if and only if + V(Ho E)- is not in-
vertible, and V(Ho(X) E)- -o V(Ho E)- in norm, we have that for any E
r(Ho + V), the operator + V(Ho(h) E)- is invertible for h small. Moreover
(1 + V(Ho(h) E)-)- (1 + V(Ho E)-)- in norm. Since (Ho(h) E)-
(Ho E)- strongly, we see that (Ho(h) + V E)- -o (Ho + V E)- strongly
as h 0. This proves condition (1) for stability.
By the above, for E . r(Ho + V), V(Ho(h) + V E)- V(Ho + V E)- in

norm and thus using AVB A’VB’ A(VB VB’) + (AV- A’V) B’ we see
that

(Ho(k) E)-’ V(Ho(h) + V- E)-I---- (Ho E)
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equivalently

(no(k) + V- E)-1 (no(h) E)-1--+ (no + V- E)- (no E)-
in norm. Integrating around the circle [E Eo e, and using the analyticity of
(Ho E)- and (Ho(h) E)- inside, we obtain norm convergence of the projec-
tions and so condition 2.

APPENDIX. A theorem of Lieb

THEOREM A. 1.
Theorem 2.5. Let

In a preprint version of this paper, we conjectured the inequality (5.1) which
was subsequently proven by E. H. Lieb. We are endebted to Prof. Lieb for
encouraging us to give his proof here.

Let a (ox-:) and let V obey the hypotheses of2

Then

H= -(7- i)2 + V.

inf spec (H) _< I ol + inf spec (-A + V) (5.1)

Proof. By adding er to V and taking e to zero, we can suppose, without
loss, that Eo -= inf spec (-A + V is an eigenvalue. Let g be the corresponding
eigenvector. Also suppose that Bo (0, 0, Bo). For - (cz, c, 0), let

q7 (x, y) exp B.[(x c) + c)] + (cy c)

Notice that is the vacuum" for H() centered at g and that

e-’7 is the.vacuum,centered at where is the pseudomomentum of
3. Let be the trial vector g. Then, by a simple direct calculation

(h7, Hh7) (Eo + IB01)(h7, h7) + a() (A.1)

where

a(-d) I Vigil" [c (7- i-d)c] dax

Igl" div [c (7- ta)c] d3x

by an integration_ by__parts. By another calculation (or using the covariance re-
lating p and 7r), qV(V- i)7 is only a function of (x cx, y c). Thus the
derivative with respect to x can be changed to a derivative with respect to c.
We see that c(-) is the divergence of a function which goes to zero at infinity

since 0 is a Gaussian. Thus, / a(b) dc dc 0. In particular, a(-) -< 0 for
d

some - and so (A.1) implies (5.1).

Note. In [70], Hogreve et al have made a conjecture which includes (5.1)
as a special case. A more general special case is the following conjecture which
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places (5.1) in an interestin_qg light" Let be the Pauli matrices and let/-/(’)- i)2 + V + B where 7 x a, and the operator is viewed as
acting on L(R3, C2). Then [70] conjectures the paramagnetic inequality

inf spec o-(/-/()) _< inf spec (-A + V)

for arbitrary .
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