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Abstract

We study the pointwise behavior of the Fourier transform of the spec-
tral measure for discrete one-dimensional Schrödinger operators with sparse
potentials. We find a resonance structure which admits a physical inter-
pretation in terms of a simple quasiclassical model. We also present an
improved version of known results on the spectrum of such operators.

1 Introduction

Let H be the Hamiltonian of a quantum mechanical system, acting on a Hilbert
space H. If the initial state is denoted by ψ (so ψ ∈ H and ‖ψ‖ = 1), then∣∣〈ψ, e−itHψ〉∣∣2 is the probability of finding the system again in the state ψ at
time t. Clearly, 〈ψ, e−itHψ〉 = ρ̂ψ(t), where ρψ is the spectral measure of ψ and
the hat denotes the Fourier transform. It is therefore interesting to study the
Fourier transform of the spectral measures of H.
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Usually, one does not analyze dynamical properties directly, but rather tries
to connect them to the spectral properties of H. For instance, the time aver-
age (1/2T )

∫ T
−T |ρ̂(t)|2 dt is related to the continuity properties of ρ with respect

to Hausdorff measures [7]. These properties, in turn, can be (and have been)
studied successfully for many interesting models. In this paper, however, we
are interested in the pointwise behavior of ρ̂(t) as t→ ±∞. Clearly, this quan-
tity carries additional information which gets lost in the averaging process. In
particular, it is often interesting to know whether limt→±∞ ρ̂(t) = 0 (the mea-
sures ρ with this property are called Rajchman measures). On the other hand,
the pointwise behavior of ρ̂(t) is usually difficult to analyze and it may depend
in a subtle way on number theoretic properties of ρ. For example, a classical
result of Salem says that a Cantor set with ratio of dissection θ > 2 does not
support non-zero Rajchman measures precisely if θ is a Pisot number, that is, if
θ is an algebraic integer whose conjugates are strictly less than one in absolute
value (see [10, Chapter III]). Furthermore, Lyons [9] characterized the Rajch-
man measures as the measures annihilating all Weyl sets, and the property of
being a Weyl set again depends on arithmetic properties. However, there are
also two obvious remarks that can be made: an absolutely continuous mea-
sure is Rajchman (by the Riemann-Lebesgue Lemma), while a point measure is
not Rajchman (by Wiener’s Theorem). So the distinction between Rajchman
and non-Rajchman measures really concerns the singular continuous part of a
measure.

In this paper, we will discuss one specific model where the pointwise behavior
of ρ̂(t) can be analyzed rather completely. Indeed, the estimates we will prove
below cannot be substantially improved as this would be inconsistent with the
spectral properties – compare the discussion following Theorem 1.2.

We will study discrete one-dimensional Schrödinger operators with sparse
potentials. These potentials can lead to singular continuous spectra, as was first
shown by Pearson in his celebrated paper [12]. Pearson’s results were recently
improved and extended in [4, 11, 14, 15].

The discrete Schrödinger equation reads

y(n− 1) + y(n+ 1) + V (n)y(n) = Ey(n) (n ∈ N); (1)

let H : `2(N)→ `2(N) be the associated Schrödinger operator, that is, (Hy)(n)
equals the left-hand side of (1) (where we put y(0) := 0). The potential V will
have the form

V (n) =
∞∑
m=1

gmδn,xm , (2)

where the gn are bounded and x1 < x2 < · · · is a rapidly increasing sequence
of natural numbers. It is easy to see that the essential spectrum of H contains
the interval [−2, 2] if xn − xn−1 → ∞. There may also be essential spectrum
outside [−2, 2]; in fact, this part of σess also admits a rather explicit description
along the lines of [11]. In this paper, however, we are only interested in the part
of the spectrum in (−2, 2).
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In a sense, ρ̂(t) contains more information on the dynamics of the quantum
system than the spectral properties of H. Still, it is comforting to know that in
the situations we will analyze below, it is also possible to determine the spectral
properties of H.

Theorem 1.1 Suppose xn−1/xn → 0 and sup |gn| <∞. Then:
a) If

∑
g2
n <∞, then H is purely absolutely continuous on (−2, 2).

b) If
∑
g2
n =∞, then H is purely singular continuous on (−2, 2).

This dichotomy was already observed by Pearson [12], but under much stronger
assumptions on the rate of growth of the xn’s. Part a) of Theorem 1.1 is due to
Kiselev, Last, and Simon [4]; they also proved the statement of part b) under
the additional assumption that gn → 0. In the generality stated, part b) is new;
probably, it can be extended even further to situations where each barrier is
supported by a finite number of sites and these numbers are bounded. Note,
however, that new phenomena (like spectra of mixed type) occur if the supports
are allowed to grow [11, 15]. The proof of Theorem 1.1b) combines ideas from
[4, 11, 12, 14, 15].

We will prove below general estimates on ρ̂(t) under the sole assumption that
xn−1/xn → 0 and sup |gn| < ∞ (see Theorems 4.3 and 5.1). However, for the
discussion of these results, it is better to specialize and draw some conclusions
whose relevance is more obvious. The following Theorem contains three such
conclusions.

Theorem 1.2 Suppose that sup |gn| <∞.
a) If 1

n ln xn
xn−1

→∞, then limt→±∞(f dρ)̂ (t) = 0 for all f ∈ C∞0 (−2, 2).
b) Fix ε > 0 (arbitrarily small) and define the resonant set R by

R =
⋃
n∈N

[(1− ε)xn, xn(lnxn)1+ε].

Suppose that for some C > 0, µ > 0, we have xn ≤ Cx1−µ
n+1 for all n ∈ N. Then:

(i) For every m ∈ N and every f ∈ C∞0 (−2, 2), there exists a constant C so that

|(f dρ)̂ (t)| ≤ C(1 + |t|)−m

for all t with |t| /∈ R.
(ii) For every γ < min{1/2, µ} and every f ∈ C∞0 (−2, 2) with 0 /∈ supp f , there
exists a constant C so that

|(f dρ)̂ (t)| ≤ C(1 + |t|)−γ

for all t.

Here, ρ is the spectral measure associated with the vector δ1 ∈ `2 (δ1(1) = 1
and δ1(n) = 0 if n 6= 1). Since δ1 is a cyclic vector for H, any other spectral
measure ρψ is absolutely continuous with respect to ρ.
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Some comments on Theorem 1.2 are in order. First of all, Killip and one of
us have shown [3] that

HRaj := {ψ ∈ `2 : ρψ is a Rajchman measure}

is a reducing subspace for H. So, since C∞0 (−2, 2) is dense in L2((−2, 2), dρ),
part a) of Theorem 1.2 tells us that the Schrödinger operator H is purely Ra-
jchman on (−2, 2), that is, E((−2, 2))`2 ⊂ HRaj (where E denotes the spectral
projection of H).

Simon [16] has obtained earlier a very general result which goes in the
same direction. Roughly speaking, it states that for many models with sin-
gular continuous spectrum, one can achieve that Hsc = HRaj (and, in fact,
ρ̂(t) = O(|t|−1/2 ln |t|)) by making the potential sufficiently sparse. However,
there is little control on the rate with which the barrier separations have to
increase. Simon’s techniques are quite different from ours.

Theorem 1.2b) shows that under a stronger assumption on the xn’s, we also
get information on the rate with which (f dρ)̂ goes to zero. Namely, according
to part (i), the Fourier transform decays very rapidly off the resonant set R.
Part (ii) is especially interesting if the xn grow so rapidly that xn ≤ Cx

1/2
n+1.

Then µ = 1/2, and Theorem 1.2b) says that for arbitrary m ∈ N, δ > 0,

|(f dρ) (̂t)| ≤

{
C(1 + |t|)−m |t| /∈ R
C(1 + |t|)−1/2+δ |t| ∈ R

. (3)

This conclusion can also be proved under weaker assumptions on the increase
of xn if there is some regularity in the way in which the xn’s tend to infinity.
For example, if xn = [exp(an)] with a > 1, then (3) also holds.

These estimates must be rather accurate, at least if
∑
g2
n =∞. Indeed, The-

orem 1.1b) then shows that the spectral measure is purely singular on (−2, 2),
so (f dρ)̂ /∈ L2. This means, first of all, that on the resonant set, the exponent
of (1 + |t|) cannot be smaller than −1/2. By the same token, our definition of
the resonant set is close to optimal in that it cannot be true that for all large
n, the interval containing xn is smaller than Cx1−ε

n , with ε > 0. Indeed, if such
an estimate held, then (writing In = [xn − Cx1−ε

n , xn + Cx1−ε
n ])∫

In

|(f dρ) (̂t)|2 dt ≤ C0x
1−ε
n

(
x−1/2+δ
n

)2

= C0x
2δ−ε
n .

Hence by taking δ < ε/2, we see that (f dρ)̂∈ L2. As mentioned above, this
conclusion contradicts the fact that ρ is singular. Since our intervals have a size
of ≈ xn(lnxn)1+ε, we may be off by at most a factor which is o(xεn) for all ε > 0.

Note also that the intervals contained in R are disjoint and large for large
n, but there are also huge gaps between them, so that the complementary set
of non-resonant times covers a considerable portion of the real line.

Theorem 1.2b) very neatly supports a naive quasiclassical picture of quan-
tum motion under the influence of a sparse potential. Namely, play the following
game: Start with a particle localized at the origin n = 1 at time t = 0, and let
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it move towards the first barrier (which is at x1). When the particle hits the
first barrier, it is either reflected or transmitted (the corresponding probabilities
should presumably be determined from the reflection and transmission coeffi-
cients from stationary scattering theory, but this is quite irrelevant here). In the
case of reflection, the particle returns to the origin, while in the case of trans-
mission, it moves on to the second barrier, where it is again either transmitted
or reflected.

Recalling that |ρ̂(t)|2 is the probability of finding the particle again at n = 1
at time t if it was initially at n = 1, we see that the above model suggests
that ρ̂ should have a resonance structure since return to the origin is possible
only at certain times. Because of the spreading of the wave packets, we should
not expect very sharp resonances. Of course, mathematically speaking, there is
little reason to have much confidence in this simplistic model, and indeed the
actual analysis proceeds along different lines. Still, the final result (compare
equation (3)) is exactly what the model predicts!

We can now also understand the role of the assumption 0 /∈ supp f in The-
orem 1.2b)(ii): Namely, the spreading of wave packets under the free evolution
is slower for wave packets localized (in energy) around E = 0. Our methods
also work if 0 ∈ supp f is allowed, but one obtains weaker estimates. In par-
ticular, under the same assumptions as above (µ = 1/2), one can prove that
(f dρ) (̂t) = O(|t|−1/6+ε) for every ε > 0. See [6] for details on this.

Our approach for proving Theorem 1.2 depends on a representation of the
Fourier transform of the spectral measure as a rather complicated looking limit
of (an increasing number of) series of integrals (= Theorem 2.3). This formula
is completely general, but if (and probably only if) the potential is sparse, it is
also useful because most of the integrals are oscillatory and hence small. These
terms will be estimated in Sect. 4, the result being Theorem 4.3. There are other
terms which cannot be treated in this way; these contributions are discussed in
Sect. 5. Armed with these estimates, we can then prove Theorem 1.2 in Sect.
6; in fact, this result is a rather straightforward consequence of Theorems 4.3,
5.1. Finally, in Sect. 7, we prove Theorem 1.1.

It is also possible to treat the case of unbounded gn’s with our methods,
although the technical difficulties increase and the results are somewhat less
satisfactory. See again [6] for further information.

Acknowledgment: C.R. acknowledges financial support by the Heisenberg
program of the Deutsche Forschungsgemeinschaft.

2 Preliminaries

In this section, we collect some basic material that will be needed in the sequel.
First of all, we will use a Prüfer type transformation (compare [4, 5]) to rewrite
the Schrödinger equation (1). So, suppose that E ∈ (−2, 2), and let y be the
solution of (1) with initial values y(0) = 0, y(1) = 1 (say). Write E = 2 cos k
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with k ∈ (0, π) and define R(n) > 0, ψ(n) by(
y(n− 1) sin k

y(n)− y(n− 1) cos k

)
= R(n)

(
sin(ψ(n)/2− k)
cos(ψ(n)/2− k)

)
.

In fact, the angle ψ(n) is defined only modulo 4π. One then checks that R and
ψ obey the equations

R(n+ 1)2

R(n)2
= 1− V (n)

sin k
sinψ(n) +

V (n)2

sin2 k
sin2(ψ(n)/2),

cot (ψ(n+ 1)/2− k) = cot(ψ(n)/2)− V (n)
sin k

.

There is no problem with the singularities of cot because we can as well use a
similar equation with tan instead of cot. Actually, a tiny bit of information got
lost when we passed from (1) to these new equations. This is reflected in the
fact that now ψ(n + 1) is only determined modulo 2π by the equations. We
must in fact impose the additional requirement that sin(ψ(n)/2) and sin(ψ(n+
1)/2−k) have the same sign (and if sin(ψ(n)/2) = 0, then cos(ψ(n+1)/2−k) =
cos(ψ(n)/2)). Fortunately, these points will not cause any inconvenience.

Note that the evolution of R,ψ is especially simple if V = 0: R is constant
and ψ(n+1) = ψ(n)+2k. If the potential is sparse (that is, of the form (2)), we
use a slightly different notation in that we write Rn = R(xn) and ψn = ψ(xn);
also, it is often useful to make the dependence on k explicit. We then have that
R(m) = Rn for xn−1 < m ≤ xn and

R2
n+1

R2
n

= 1− gn
sin k

sinψn +
g2
n

sin2 k
sin2(ψn/2), (4)

ψn = ψ(xn−1 + 1) + 2k(xn − xn−1 − 1), (5)

cot (ψ(xn−1 + 1)/2− k) = cot(ψn−1/2)− gn−1

sin k
. (6)

As a second tool, we need a representation of the spectral measure as a weak
star limit of absolutely continuous measures involving the solutions of (1). We
again use the spectral measure associated with δ1, and we denote this measure
by ρ. In other words, ρ(M) = ‖E(M)δ1‖2, where E(·) is the spectral resolution
of H.

Proposition 2.1 Let w be a Herglotz function (that is, a holomorphic mapping
from C

+ = {z ∈ C : Im z > 0} to itself), and let I ⊂ R a bounded, open interval.
Suppose that w extends continuously to C+ ∪ I and that Im w(E) > 0 for all
E ∈ I. Then∫

f(E) dρ(E) = lim
n→∞

1
π

∫
f(E)

Im w(E)
|y(n,E)− w(E)y(n+ 1, E)|2

dE

for all continuous functions f with support in I. Here, y is the solution of (1)
with the initial values y(0, E) = 0, y(1, E) = 1.
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Basically, this result is from [13]; the special case w ≡ i has been known before
[1, 8]. The proof we give below does not depend on the methods used in these
papers; it is based on an idea of Atkinson (unpublished manuscript).

Proof of Proposition 2.1. Let y be as above, and also introduce v as the
solution of (1) with the initial values v(0, E) = 1, v(1, E) = 0. In fact, the
spectral parameter E will also take complex values in this proof, and in that
case we usually denote it by z instead of E. Fix N ∈ N, write f(n, z) =
v(n, z)−MN (z)y(n, z) and determine MN from the (non-selfadjoint) boundary
condition f(N, z) = w(z)f(N + 1, z) (z ∈ C+). A brief computation shows that

MN (z) =
v(N, z)− v(N + 1, z)w(z)
y(N, z)− y(N + 1, z)w(z)

. (7)

Moreover, there is Green’s identity

N∑
n=1

(
g(n)(τh)(n)− (τg)(n)h(n)

)
=
(
g(n)h(n+ 1)− g(n+ 1)h(n)

)∣∣∣n=N

n=0
.

Here, g, h are arbitrary functions from N0 to C, and (τy)(n) is short-hand for
the left-hand side of (1). If we apply this to

N∑
n=1

|f(n, z)|2 =
1

z − z

N∑
n=1

(
f(n, z)(τf)(n, z)− (τf)(n, z)f(n, z)

)
with the function f from above, we obtain

N∑
n=1

|f(n, z)|2 =
Im MN (z)

Im z
− |f(N + 1, z)|2 Im w(z)

Im z
.

This equation together with (7) show that MN is a Herglotz function. Clearly,
Im MN ≥ Im z

∑N
n=1 |f(n, z)|2, which is precisely the condition for MN to lie

inside the Weyl circle KN (z) (see, for example, [2, Sect. 9.2] and [18, Sect.
2.4]). By standard Weyl theory, the Weyl circles shrink to a point as N → ∞,
and this point is nothing but the m-function of the half-line problem: m(z) =
〈δ1, (H − z)−1δ1〉. In particular, we have that MN (z)→ m(z) for fixed z ∈ C+.
It now follows that the measures associated with MN converge (in a sense that
will be made precise shortly) to ρ. This part of the argument is similar to the
construction of the spectral measure ρ in standard Weyl theory (compare the
discussion in [2, Sect. 9.3]) and will thus only be sketched. Write down the
Herglotz representation of MN :

MN (z) = aN + bNz +
∫
R

(
1

t− z
− t

t2 + 1

)
dρN (t).

Here aN ∈ R, bN ≥ 0, and ρN is a positive Borel measure with
∫ dρN (t)

t2+1 < ∞.
By analyzing the asymptotics of MN (iy) as y → ∞, one can in fact show that
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bN = 0. It is nice to have finite measures, so we introduce dµN (t) = dρN (t)
t2+1 and

write MN as

MN (z) = aN +
∫
R

tz + 1
t− z

dµN (t).

Note that Im MN (i) = µN (R); since this sequence is bounded (even convergent),
the Banach-Alaoglu Theorem shows that the µN converge on a subsequence to
a limit measure µ in the weak star topology (where the finite, complex Borel
measures on R are viewed as the dual of C0(R)). By passing to the limit in the
equation

Im MN (z)
Im z

− Im MN (i) =
∫
R

(
t2 + 1
|t− z|2

− 1
)
dµN (t),

we thus see that

Im m(z)
Im z

− Im m(i) =
∫
R

(
t2 + 1
|t− z|2

− 1
)
dµ(t).

Since the measure associated with a Herglotz function is already determined by
the imaginary part of that function, we must have that dµ(t) = dρ(t)

t2+1 . In partic-
ular, this measure is the only possible weak star limit point of the µN ’s, and thus
it was not necessary to pass to a subsequence. Rather, we have dρN (t)

t2+1 →
dρ(t)
t2+1

in the weak star topology.
Finally, a computation using (7) and constancy of the Wronskian W (n) =

v(n)y(n + 1) − v(n + 1)y(n) shows that for all E ∈ I, the limit MN (E) ≡
limε→0+MN (E + iε) exists and

Im MN (E) =
Im w(E)

|y(N,E)− y(N + 1, E)w(E)|2
.

By general facts on Herglotz functions, the measures ρN are therefore purely
absolutely continuous in I with density (1/π) Im MN (E). �

Corollary 2.2 Suppose f is a continuous function with support contained in
(−2, 2). Then ∫

f(E) dρ(E) =
2
π

lim
n→∞

∫ π

0

f(2 cos k)
sin2 k

R2(n, k)
dk.

Proof. We want to apply Proposition 2.1 with I = (−2, 2) and

w(z) =
z

2
+ i

√
1− z2

4
,

but we first have to check that this is a Herglotz function. More precisely, we
will choose the square root on z ∈ (−2, 2) so that Im w > 0 there and then
continue holomorphically to the upper half-plane. The continuation is possible
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because the branch points of (w − z/2)2 = z2/4 − 1 are z = ±2, neither of
which is in the upper half-plane. By the monodromy theorem, the continuation
is also unique. Moreover, w(z) extends continuously to the closure of C+ (in
the Riemann sphere C∞), and then the image of R ∪ {∞} is the closed curve

(−∞,−2) ∪ {2eiϕ : π ≥ ϕ ≥ 0} ∪ (2,∞) ∪ {∞} (8)

Therefore, the set {w(z) : z ∈ C+} must be contained in one of the two regions
into which the sphere is divided by (8). It now follows easily that this image
must actually be contained in the region contained in the upper half-plane, so
w(z) is a Herglotz function, as required.

Now the claim follows from Proposition 2.1 together with the substitution
E = 2 cos k. �

We now use Corollary 2.2 to derive a formula for the Fourier transform of
ρ. Since we are interested only in the part of the operator on (−2, 2), we will
study

(f dρ)̂ (t) =
∫ ∞
−∞

f(E)e−itE dρ(E),

with f ∈ C∞0 (−2, 2).

Theorem 2.3

(f dρ)̂ (t) =

lim
N→∞

∞∑
n1,... ,nN=−∞

∫ π

0

g(k)

 N∏
j=1

c(nj , gj/ sin k)

 ei(
∑N
l=1 nlψl(k)−2t cos k) dk,

(9)

where g ∈ C∞0 (0, π) and

c(0, a) = 1, c(n, a) =
(

1 +
2i
a

n

|n|

)−|n|
(n 6= 0).

Proof. By Corollary 2.2 and (4), we have

(f dρ)̂ (t) =
2
π

lim
N→∞

∫ π

0

f(2 cos k) sin2 k

R2
1(k)

e−2it cos k ×

N∏
j=1

(
1− gj

sin k
sinψj(k) +

g2
j

sin2 k
sin2(ψj(k)/2)

)−1

dk.

The factors in the product can be expanded in a Fourier series:

1
1− a sinψ + a2 sin2(ψ/2)

=
∞∑

n=−∞
c(n, a)einψ,
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with the coefficients c(n, a) defined in the statement of the Theorem. This can
be checked by summing the series. As the convergence is uniform in ψ, we
may interchange the order of integration and summation. Finally, the factor
2/π sin2 kR−2

1 (k) can be absorbed by g, and the claim now follows. �

3 Estimates on the Prüfer angle

The integrals from (9) contain rapidly oscillating exponentials. As usual, we will
exploit this by integrating by parts. We will then need the following estimates
on the derivatives of the Prüfer angles ψn.

From now on and throughout the rest of this paper, we assume that the
potential is given by (2) and that xn−1/xn → 0 and sup |gn| <∞.

Lemma 3.1

ψ′n(k) = 2xn (1 +O(xn−1/xn))∣∣∣ψ(j)
n (k)

∣∣∣ ≤ Cjxjn−1 (j ≥ 2)

These estimates hold uniformly for k from a compact subset of (0, π).

The estimates on the first two derivatives were also proved in [4]. Since we will
integrate by parts many times (not only once, as in [4]), we really need Lemma
3.1 in full generality. Actually, in Sect. 7, we will also need a slightly different
version of the first statement (which will be more accurate for small gn’s), but
this will be discussed later.

Proof. Let θn = ψ(xn−1 + 1). Then (6) says that

cot
(
θn
2
− k
)

= cot
ψn−1

2
− gn−1

sin k
.

We differentiate this equation and solve for θ′n to obtain

θ′n = 2 +
1

sin2 ψn−1
2 +

(
cos ψn−1

2 − gn−1
sin k sin ψn−1

2

)2 ψ
′
n−1 −

gn−1
cos k
sin2 k

sin2 ψn−1
2

sin2 ψn−1
2 +

(
cos ψn−1

2 − gn−1
sin k sin ψn−1

2

)2 .

Now the gn’s are bounded and sin k is bounded away from zero (since k varies
over a compact subset of (0, π)). Taking (5) into account, we therefore obtain

ψ′n = 2(xn − xn−1) +O(1)ψ′n−1 +O(1),

where the constants implicit in O(1) only depend on sup |gn| and inf sin k. The
xn’s grow more rapidly than exponentially, so the claim on ψ′n follows by iter-
ating this equation.
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To prove the assertion on the higher derivatives, we note that ψ(j)
n = θ

(j)
n for

j ≥ 2. Thus, for these j,

ψ(j)
n =

 ψ′n−1

sin2 ψn−1
2 +

(
cos ψn−1

2 − gn−1
sin k sin ψn−1

2

)2


(j−1)

−

 gn−1
cos k
sin2 k

sin2 ψn−1
2

sin2 ψn−1
2 +

(
cos ψn−1

2 − gn−1
sin k sin ψn−1

2

)2


(j−1)

.

Denote the denominator by D, that is,

D = sin2 ψn−1

2
+
(

cos
ψn−1

2
− gn−1

sin k
sin

ψn−1

2

)2

.

If the derivatives are evaluated using the product rule j−1 times, we get a sum
of many terms. Fortunately, it suffices to observe the following facts:
(i) The only term containing ψ(j)

n−1 is ψ(j)
n−1/D.

(ii) Everything else is of the form

D−m

(∏
i

(
ψ

(ri)
n−1

)pi)
f(ψn−1, k),

where f is a bounded function, m ≤ j, and the numbers ri, pi satisfy
∑
i ripi ≤ j.

We can now complete the proof by induction on j. By the induction hy-
pothesis (and a direct argument for j = 2), the above remarks imply that∣∣∣ψ(j)

n

∣∣∣ ≤ Cj (∣∣∣ψ(j)
n−1

∣∣∣+ xjn−1

)
.

The claimed estimates follow by iterating this. �

4 Non-resonant terms

The heading of this section refers to those terms from (9) for which the expo-
nential is rapidly oscillating as a function of k. It is useful to first make explicit
in the notation the largest index j with nj 6= 0. To this end, we denote the
expression from the right-hand side of (9), with no limit taken, by IN (t) (so
(f dρ)̂ (t) = limN→∞ IN (t)). Also, let

JN (t) =
∑

n1,... ,nN∈Z
nN 6=0

∫ π

0

g(k)

 N∏
j=1

c(nj , gj/ sin k)

 ei(
∑N
l=1 nlψl(k)−2t cos k) dk.

Then IN (t) = JN (t) + IN−1(t).

11



We can now describe our general strategy for estimating (9). By Lemma
3.1, the derivative of the phase is roughly equal to

N∑
j=1

njψ
′
j(k) + 2t sin k ≈ 2

N∑
j=1

njxj + 2t sin k.

Since the xj ’s are rapidly increasing, we may expect this to be of the order
2nNxN + 2t sin k. So if |t| is either much larger or much smaller than xN
(and if N is not too small), the exponential will be heavily oscillating and the
corresponding contribution to (9) will be small. If |t| is of the order of xN
(“resonance”), a different treatment is necessary (see the next section). Of
course, the above reasoning is not literally true because the nj ’s with j < N

can be so large in absolute value that, due to cancellations,
∑N
j=1 njxj is much

smaller that |nN |xN . This difficulty is overcome by suitably cutting off the
series over the nj ’s.

So, everything depends on the relative size of |t| and xN . Let

a = max
k∈supp g

sin k,

and fix ε > 0 (arbitrarily small). We first study the case when

|t| ≤ 1− ε
a

xN .

More specifically, we will analyze JN (t), assuming this inequality. The series
will be cut off at

M = [bxN/xN−1] ,

where [x] denotes the largest integer ≤ x, and b > 0 will be chosen later. So we
have to distinguish two (sub-)cases:
a) |nj | ≤M for all j ∈ {1, 2, . . . , N − 1};
b) |nj | > M for some j ∈ {1, 2, . . . , N − 1}.

Before we go on, a general remark on the notation we will use may be helpful.
Namely, the term “constant” will refer to a number that is independent of t,N ,
and the nj ’s (later, we will sum over these latter parameters, anyway). It may
depend, however, on the other parameters of the problem, which are sup |gn|,
the xn’s and the function g ∈ C∞0 (−2, 2). It may also depend on additional
parameters we introduce like the ε from above. A constant is usually denoted
by C; the actual value of C may change from one formula to the next. Also, we
sometimes write a . b instead of a ≤ Cb.

Now let us start with case a). Abbreviate

ϕ(k) =
N∑
j=1

njψj(k)− 2t cos k.

12



Using Lemma 3.1, we then see that

|ϕ′| ≥ |nNψ′N | −
N−1∑
j=1

|njψ′j | − 2(1− ε)xN

≥ 2 (|nN | − 1 + ε)xN − C|nN |xN−1 − 2Cb(xN/xN−1)
N−1∑
j=1

xj .

If N is sufficiently large and if b is chosen sufficiently small, then we may further
estimate this by, let us say,

|ϕ′| ≥ ε|nN |xN . (10)

In order to obtain good estimates, we must now integrate by parts sufficiently
many times. To do this, we introduce the differential expression

L =
−i
ϕ′(k)

d

dk
.

Note that L(eiϕ) = eiϕ. Therefore, we can manipulate the integrals from the
expression for JN (t) as follows.∫

g
(∏

c
)
eiϕ dk =

∫
g
(∏

c
) (
Lmeiϕ

)
dk =

∫
eiϕ
[
L′
m
(
g
∏

c
)]

dk

Here, m ∈ N may still be chosen and

L′ =
d

dk

i

ϕ′(k)

is the transpose of L. There are no boundary terms because g has compact
support. We obtain the estimate∣∣∣∣∫ g

(∏
c
)
eiϕ dk

∣∣∣∣ ≤ π max
k∈supp g

∣∣∣L′m (g∏ c
)∣∣∣ ; (11)

we expect the right-hand side to be small because ϕ′ is large by (10).
So, our next task is to control L′m (g

∏
c). Each of the m derivatives con-

tained in L′
m can act either on g or on some c(nj , gj/ sin k) or on one of the

factors 1/ϕ′. The function g is smooth, so |g(j)| ≤ Cm. Next, note that

d

dk
c(n, g/ sin k) = c(n, g/ sin k)

∓2i cos k
g ± 2i sin k

|n|,

where the signs depend on the sign of n. Since c itself decays exponentially –
|c(n, g/ sin k)| ≤ e−γ|n|, where γ > 0 depends only on sup |gn| and inf sin k – we
obtain the bound ∣∣∣∣ djdkj c(n, g/ sin k)

∣∣∣∣ ≤ Cj |n|je−γ|n|. (12)

13



Finally, (1/ϕ′)(T ) is a sum of terms of the form

C
ϕ(r1) · · ·ϕ(rs)

(ϕ′)q
, (13)

where ri ≥ 2 and

s∑
i=1

ri = q + T − 1; (14)

the ri’s need not be distinct. To bound these expressions, we use Lemma 3.1
which implies that (for 2 ≤ r ≤ m)

∣∣∣ϕ(r)
∣∣∣ ≤ Cm N∑

j=1

|nj |xrj−1 + 2|t| . (xN/xN−1)xrN−2 + |nN |xrN−1 + xN . (15)

We introduce the abbreviation AN (r) for this latter bound. Recalling that
|ϕ′| & |nN |xN (by (10)), we can thus bound (13) by (|nN |xN )−q

∏s
i=1AN (ri).

The above considerations show that L′m (g
∏
c) is a sum of many terms each

of which admits a bound of the form

Cm (|nN |xN )−P
s∏
i=1

AN (ri)
N∏
j=1

|nj |pje−γ|nj |. (16)

More precisely, such a bound results if pj derivatives act on c(nj , gj/ sin k).
Consequently, the remaining derivatives (if any) act on some factor 1/ϕ′ or on
g. For later use, we record the fact that the number of different terms of the
form (16) admits a bound of the form CNm, where C depends on m only. To

prove this, observe that the product rule, applied to
(∏N

j=1 c
)(l)

with 0 ≤ l ≤ m,

produces at most N l ≤ Nm terms. Furthermore, the number of possibilities of
distributing the remaining m− l derivatives among g and the factors 1/ϕ′ does
not depend on N .

We now claim that there are the following restrictions on the parameters:
P ≥ m, s ≥ 0, ri ≥ 2, pj ≥ 0 and

s∑
i=1

ri +
N∑
j=1

pj ≤ P.

The first inequality just says that the number of factors 1/ϕ′ increases when
derivatives act on them, and the following three relations are obvious. The last
inequality is obtained as follows.

∑
pj is the number of derivatives acting on∏

c, thus if T denotes the number of derivatives that act on some factor 1/ϕ′,
then T ≤ m −

∑
pj . Assume for the moment that these T derivatives all act

on the same factor 1/ϕ′. Then expressions of the form (13) result, and the

14



exponent q must be related to P by P = q +m− 1. Hence (14) gives

s∑
i=1

ri = P −m+ 1 + T − 1 ≤ P −
N∑
j=1

pj ,

as claimed. We need not pay special attention to the case where the T derivatives
act on different factors 1/ϕ′ because only terms of the type already handled can
arise in this way.

To simplify (16), we observe that

AN (r)
(|nN |xN )r

.
1
|nN |r

(
xN−2

xN−1

)r (
xN−1

xN

)r−1

+
1

|nN |r−1

(
xN−1

xN

)r
+

1
|nN |rxr−1

N

.

(
xN−1

|nN |xN

)r−1

.

Hence

(16) .
(
xN−1

|nN |xN

)∑(ri−1)( 1
|nN |xN

)P−∑ ri N∏
j=1

|nj |pje−γ|nj |,

and these bounds can now be summed over the range ni ∈ Z, nN 6= 0, |ni| ≤M
(actually, this latter restriction is not needed at this point). So, let

Dp =
∑
n∈Z

|n|pe−γ|n|,

and use the conditions on the various exponents (see the discussion following
(16)); we obtain

∑
n1,... ,nN
nN 6=0

(16) ≤ Cm
(
xN−1

xN

)∑(ri−1)( 1
xN

)P−∑ ri N∏
j=1

Dpj

= Cm
x
∑

(ri−1)
N−1

xP−sN

N∏
j=1

Dpj

≤ Cm
(
xN−1

xN

)P−s N∏
j=1

(
Dpjx

−pj
N−1

)

≤ Cm
(
xN−1

xN

)m/2 N∏
j=1

(
Dpjx

−pj
N−1

)
.

The last inequality holds because ri ≥ 2 and
∑s
i=1 ri ≤ P , hence s ≤ P/2, and

thus P − s ≥ P/2 ≥ m/2.
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We can now find an N0 = N0(m) so that Dp ≤ D0x
p
N−1 for all N ≥ N0,

p = 0, 1, . . . ,m. We use this observation and also replace m/2 by m to obtain∑
n1,... ,nN
nN 6=0

(16) ≤ CmDN
0

(
xN−1

xN

)m
(N ≥ N0).

Up to now, we have estimated only the typical term from the decomposition
of L′m (g

∏
c) performed above, but, as already noted, the number of such terms

is bounded by CNm, so L′m (g
∏
c) satisfies the same estimate (with a possibly

larger constant and D0 replaced by, let us say, 2D0). Because of (11), the
discussion of case a) is thus complete.

Case b) is much easier. Now |nj | > M for some j ∈ {1, . . . , N − 1}, where
M = [bxN/xN−1]. Use (12) (with j = 0) and sum over all n1, . . . , nN for which
we are in case b). This gives

∑
Case b)

∣∣∣∣∫ g
(∏

c
)
eiϕ
∣∣∣∣ . N−1∑

j=1

∑
n1∈Z

e−γ|n1| · · ·
∑
|nj |>M

e−γ|nj | · · ·
∑
nN∈Z

e−γ|nN |

. NDN
0 e
−γbxN/xN−1 ≤ (2D0)Ne−γbxN/xN−1 .

We summarize:

Lemma 4.1 Suppose that |t| ≤ (1/a − ε)xN (ε > 0). Then, for any m ∈
N, there are constants Cm, D, not depending on t or N , so that |JN (t)| ≤
CmD

N (xN−1/xN )m. Moreover, D is also independent of m.

Proof. It suffices to prove this for large N because then validity of the bound
for all N is achieved by simply adjusting the constant. By combining the above
estimates, we obtain

|JN (t)| ≤ CmDN

[(
xN−1

xN

)m
+ e−γbxN/xN−1

]
(N ≥ N0(m)),

and the second term is much smaller than the first one for large N and can thus
be dropped. �

The opposite case (|t| much larger than xN ) can be treated using similar
ideas. It will thus suffice to provide a sketch of the argument. We fix once and
for all a sequence BN ≤ lnxN (say) that tends to infinity. In fact, the point is
that BN may go to infinity arbitrarily slowly (for instance, BN = (lnxN )ε is a
reasonable choice). We now assume that

|t| ≥ BNxN lnxN .

We can again prescribe an arbitrarily large exponent m ∈ N, and we again
distinguish two subcases:
a) |nj | ≤ (m/γ) ln |t| (where γ is from (12)) for j = 1, . . . , N . We will estimate
IN (not JN ), so we do not assume that nN 6= 0.
b) |nj | > (m/γ) ln |t| for some j ∈ {1, . . . , N}.
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In case a), we have that for sufficiently large N ,

|ϕ′| ≥ 2a0|t| −
N∑
j=1

2xj (1 +O(xj−1/xj))
m

γ
ln |t|

≥ 2a0|t| − 3xN
m

γ
ln |t|,

where a0 = mink∈supp g sin k > 0. Now x/ lnx is an increasing function of x for
x > e, so

|t|
ln |t|

≥ BNxN lnxN
lnxN + ln(BN lnxN )

,

which, for large N , is bigger than (BN/2)xN , say. Hence

|ϕ′| ≥ 2a0|t| −
6m
γBN

|t| ≥ a0|t|

for large N .
We now integrate by parts sufficiently many times (the exact number of

integrations depends on m), as above. Lemma 3.1 now gives

∣∣∣ϕ(r)
∣∣∣ ≤ Cm N∑

j=1

|nj |xrj−1 + 2|t| . xrN−1 ln |t|+ |t|,

and this estimate replaces (15). If this bound is again denoted by AN (r), then
one shows that AN (r)/|t|r . (xN−1/|t|)r−1. It is this combination, with |t| in
the denominator, that is of interest here because now |ϕ′| & |t|. Having made
these adjustments, the argument now proceeds as above; the final result is the
bound ∑

n1,... ,nN
Case a)

∣∣∣∣∫ g
(∏

c
)
eiϕ
∣∣∣∣ ≤ CmDN

(
xN−1

|t|

)m
.

As usual, the constant Cm depends on m and the sequence BN , but of course
not on t or N . Moreover, the constant D is also independent of m.

In case b), we can argue as in case b) above to obtain∑
n1,... ,nN
Case b)

∣∣∣∣∫ g
(∏

c
)
eiϕ
∣∣∣∣ ≤ CNDN

0 e
−γ(m/γ) ln |t| = CNDN

0 |t|−m.

Putting things together, this gives:

Lemma 4.2 Suppose that |t| ≥ BNxN lnxN . Then, for any m ∈ N, there are
constants Cm, D, independent of t,N , so that |IN (t)| ≤ CmD

N (xN−1/|t|)m.
Moreover, D is also independent of m.
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Proof. Combine the above estimates, just as in the proof of Lemma 4.1. �
For a large set of times t, we are in one of the two situations treated by

Lemmas 4.1 and 4.2, respectively, for every N ∈ N. In view of the physical
interpretation attempted in the Introduction, we call this set the set of non-
resonant times. More precisely, define the resonant set R by

R =
⋃
n∈N

[(
1
a
− ε
)
xn, Bnxn lnxn

]
. (17)

For a = 1 and Bn = (lnxn)ε, this reduces to the definition given in the formu-
lation of Theorem 1.2.

Theorem 4.3 For any m ∈ N, the following holds. If |t| /∈ R and if N ∈ N is
such that

BNxN lnxN < |t| < (1/a− ε)xN+1, (18)

then

|(f dρ)̂ (t)| ≤ Cm

[
DN

(
xN−1

|t|

)m
+

∞∑
n=N+1

Dn

(
xn−1

xn

)m]
.

The constant D is independent of m.

Remark. Of course, since we only assumed that xn−1/xn → 0, the series can
diverge, in which case Theorem 4.3 is vacuous.

Proof. By (9) and the definition of IN , Jn, we can write

(f dρ)̂ (t) = IN (t) +
∞∑

n=N+1

Jn(t),

where we use the N from (18). We now apply Lemma 4.2 to estimate IN (t) and
Lemma 4.1 to bound the Jn(t) (n ≥ N + 1). �

5 Resonant terms

It remains to analyze the case when t ∈ R. So suppose that

(1/a− ε)xN ≤ |t| ≤ BNxN lnxN .

The point k = π/2 (which corresponds to the energy E = 0) plays a special
role now because the second derivative of cos k is zero there. Therefore, we also
assume that π/2 /∈ supp g.

We introduce the new phase

θ(k) = 2k
N∑
j=1

njxj − 2t cos k.
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Then, using the notation from the preceding section, we have that ϕ = θ + η,
where

η(k) =
N∑
j=1

nj(ψj(k)− 2xjk).

As usual, we need information on the derivatives. By Lemma 3.1,

|η′| .
N∑
j=1

|nj |xj−1

(where we put x0 := 1). Also,

θ′ = 2
N∑
j=1

njxj + 2t sin k, θ′′ = 2t cos k.

In particular, our assumption π/2 /∈ supp g ensures that |θ′′| ≈ |t|.
We regard η as a perturbation of θ. Resonance is possible now, that is, θ′(k)

can be small, but since |θ′′| is large, this can only happen for a small set of k’s,
and outside this set, we still have oscillatory integrals.

To make these ideas precise, introduce the sets

S0 = supp g,

S1 = {k ∈ S0 : |θ′(k)| ≤ δ1xN},
S2 = {k ∈ S1 : |θ′(k)| ≤ δ2xN}, . . .

The numbers δj > 0 will be chosen later; they will satisfy 1 =: δ0 � δ1 � δ2 �
. . . . Clearly, S0 ⊂ [ε, π/2 − ε] ∪ [π/2 + ε, π − ε] for some ε > 0. By treating
these two parts of the support of g separately and replacing the actual support
with the corresponding interval, we may assume that S0 is an interval. Then
θ′′ does not change sign on S0, and hence all the sets Sn are intervals. Clearly,
S0 ⊃ S1 ⊃ S2 ⊃ · · · . It also follows that

|Sn| . δn
xN
|t|
. δn. (19)

Note also that the sets Sl depend on the nj ’s.
Our goal is to estimate IN (t). The integrals Jn(t) (n > N) do not con-

tain resonant terms, and we can use the results of Sect. 4. We must estimate∫
g (
∏
c) ei(θ+η). Using the sets Sn, we can split the integrals as follows:∫

S0

· · · =
∫
Sm

· · · +
m−1∑
l=0

∫
Sl\Sl+1

· · ·

The number m is a parameter which we leave unspecified for the time being.
The integrals over Sl \ Sl+1 are again handled by integrating by parts. More
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precisely, we have that∣∣∣∣∣
∫
Sl\Sl+1

g
(∏

c
)
ei(θ+η)

∣∣∣∣∣ =

∣∣∣∣∣
∫
Sl\Sl+1

g
(∏

c
) (eiθ)′

iθ′
eiη

∣∣∣∣∣
≤ boundary terms + |Sl| sup

k∈Sl\Sl+1

∣∣∣∣∣
(
g (
∏
c) eiη

θ′

)′∣∣∣∣∣ . (20)

Since Sl \ Sl+1 consists of at most two disjoint intervals, the boundary terms
are obtained by inserting the endpoints of these intervals into g (

∏
c) /θ′. As a

result, these boundary terms may be estimated by

|boundary terms | . e−γ
∑
|nj |

δl+1xN
.

For the second term from the right-hand side of (20), we use the by now familiar
arguments from the preceding section. We obtain the bound(

xN−1

∑
|nj |

δl+1xN
+

|t|
δ2
l+1x

2
N

)
δle
−γ
∑
|nj |.

We have used (19) here. The numerator of the first term in parantheses is a
bound on |η′|, the second ratio bounds the contribution where the derivative
acts on 1/θ′. Finally, the derivative may also act on

∏
c or g, but this leads to

contributions which are smaller than the ones already obtained.
As usual, these bounds will now be summed over the nj ’s. This gives

∑
n1,... ,nN∈Z

∣∣∣∣∣
∫
Sl\Sl+1

g
(∏

c
)
eiϕ

∣∣∣∣∣ ≤ CDN

(
δlxN−1

δl+1xN
+
δlBN lnxN
δ2
l+1xN

)
.

The bound CDN/(δl+1xN ) on the boundary terms does not occur here because
it is dominated by the second term from the right-hand side of the above in-
equality.

We also need an estimate on
∫
Sm

, but this is easy, since we clearly have that∣∣∣∣∫
Sm

g
(∏

c
)
eiϕ
∣∣∣∣ . δme−γ∑ |nj |.

After summing over the nj ’s, we thus get the bound CDNδm. Combining the
facts just established, we see that

∑
n1,... ,nN∈Z

∣∣∣∣∫
S0

g
(∏

c
)
eiϕ
∣∣∣∣ ≤ CDN ×

(
δm +

xN−1

xN

m−1∑
l=0

δl
δl+1

+
BN lnxN

xN

m−1∑
l=0

δl
δ2
l+1

)
. (21)
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Theorem 5.1 Suppose that 0 /∈ supp f and

(1/a− ε)xN ≤ |t| ≤ BNxN lnxN .

a) Then for arbitrary σ > 0, m ∈ N, there exist constants C,D, independent of
N, t, so that

|(f dρ)̂ (t)| ≤ C
∞∑

n=N+1

Dn

(
xn−1

xn

)m
+

CDN

[(
xN−1

xN

)1/2

+BN lnxN

(
xN
xN−1

)σ 1
(xN−1xN )1/2

]
.

The constant D is also independent of m and σ.
b) We also have the estimate

|(f dρ)̂ (t)| ≤ C
∞∑

n=N+1

Dn

(
xn−1

xn

)m
+ CDN

[
xN−1

x1−σ
N

+
BN lnxN
x

1/2−σ
N

]
.

Proof. a) Here, we take δl = (xN−1/xN )σl. Then (21) yields

∑
n1,... ,nN∈Z

∣∣∣∣∫
S0

g
(∏

c
)
eiϕ
∣∣∣∣ ≤ CDN ×

((
xN−1

xN

)α
+
(
xN−1

xN

)1−σ

+BN lnxN

(
xN
xN−1

)σ 1
xαN−1x

1−α
N

)
, (22)

where α = σm. The constant D is independent of m and σ. But, as in the
proof of Theorem 4.3,

(f dρ)̂ (t) = IN (t) +
∞∑

n=N+1

Jn(t);

IN (t) has just been estimated in (22), and the Jn(t) can be bounded using
Lemma 4.1. So |Jn(t)| ≤ CDn(xn−1/xn)m; also, in (22), we specialize to α =
1/2. The claim now follows since we may clearly assume that σ ≤ 1/2.

b) Proceed as in the proof of part a), but with δl = x−σlN (and again α = 1/2).
�

6 Proof of Theorem 1.2

a) The hypothesis says that xn/xn−1 = eann, where an →∞. It is now straight-
forward to check that the bounds of Theorems 4.3, 5.1a) tend to zero as N →∞,
provided the parameters are chosen appropriately. For instance, we can take
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BN = lnxN and σ ∈ (0, 1/2). (In fact, Theorem 5.1 has the additional hypoth-
esis that 0 /∈ supp f , but this causes no problems since C∞0 functions with this
property are still dense in L2((−2, 2), dρ).)

b) Here, we put BN = (lnxN )ε. Note also that a ≤ 1, so the set R defined in
Theorem 1.2b) contains the set R from (17). So, if |t| /∈ R, Theorem 4.3 applies.
We will now further estimate the bound from the statement of this Theorem.
First of all, (

xN−1

|t|

)m
≤
(
xN−1

|t|

)m( |t|
xN

)m(1−µ)

≤ Cm|t|−mµ.

As for the second term, we observe that
∞∑

n=N+1

Dn

(
xn−1

xn

)m
≤ Cm

∞∑
n=N+1

Dn

xmµn

=
CmD

N+1

xmµN+1

∞∑
n=0

Dn

(
xN+1

xN+1+n

)mµ
.

Now for sufficiently large N , we have xN+1/xN+1+n ≤ 2−n (say) for all n ≥ 0,
so the series converges for large m and the sum may be estimated by a number
that does not depend on N . Thus

∞∑
n=N+1

Dn

(
xn−1

xn

)m
≤ CmDNx−mµN+1 ≤ CmD

N |t|−mµ.

Finally, DN . xN . |t|, so (i) follows by taking m large enough.
Part (ii) follows in a similar way from Theorem 5.1b), so we will only sketch

the argument. Fix a sufficiently small σ > 0. Then, for instance,

xN−1

x1−σ
N

. x−µ+σ
N .

(
(ln |t|)1+ε

|t|

)µ−σ
.

The last term from the bound of Theorem 5.1b) is treated similarly, and the
first term has already been discussed above. The additional factors DN and
DN (lnxN )1+ε are O(|t|δ) for arbitrary δ > 0, so they do not spoil these esti-
mates. �

7 Proof of Theorem 1.1

Since, as noted above, part a) is actually a result from [4], we only need to prove
part b). First of all, absence of point spectrum is easy: the gn are bounded, so
(4) shows that for every k ∈ (0, π), there exists q > 0 so that Rn ≥ qn. But
then

∞∑
m=1

R(m)2 =
∞∑
n=1

R2
n(xn − xn−1)
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diverges, which implies that there are no `2 solutions to (1). Hence σpp ∩
(−2, 2) = ∅.

Now as in [4], the main part of the proof will depend on a general criterion
for absence of absolutely continuous spectrum from [8]. Namely, if I ⊂ (−2, 2)
is an open interval and if we can find a sequence Nm → ∞ so that for almost
all E ∈ I (with respect to Lebesgue measure), limm→∞R(Nm, E) =∞, then it
will follow that σac ∩ I = ∅.

We will again work with k instead of E. Fix a compact subinterval I of
(0, π). According to what has been said above, we want to find a sequence
Nm →∞ so that RNm(k)→∞ for almost all k ∈ I.

By (4) and the fact that R1 = 1,

lnRN+1(k) =
N∑
n=1

Xn(k, ψn(k)),

where (writing un(k) = gn/ sin k)

Xn(k, ψ) =
1
2

ln
[
1− un(k) sinψ + u2

n(k) sin2(ψ/2)
]
.

For every n ∈ N, we subdivide I into subintervals I(n)
0 , I

(n)
1 , . . . , I

(n)
Nn

, so that

for l > 0, ψn(k) runs over an interval of length 2π if k varies through I
(n)
l . We

start this process of subdividing I at the right endpoint of I, so we end up with
an interval I(n)

0 at the left endpoint of I which has the property that ψn(I(n)
0 )

is an interval of length less than or equal to 2π. Since ψ′n ∼ 2xn by Lemma 3.1,
we have the estimate |I(n)

l | . 1/xn. We introduce

γn,l =
1

|I(n)
l |

∫
I

(n)
l

Xn(k, ψn(k)) dk

and Yn(k) = Xn(k, ψn(k))−γn,l (k ∈ I(n)
l ). So, in particular,

∫
I

(n)
l

Yn(k) dk = 0.
Let us now compute the second moments of Yn with respect to the probability

measure dP (k) = |I|−1 dk on I. We first consider EYmYn with m < n. Let k(n)
l

denote an arbitrary (but fixed) point in I
(n)
l , and note that |Yn| . |gn|. Also,

by inspection and Lemma 3.1 again, |dYn/dk| . |gn|xn (except, of course, at
the endpoints of the I(n)

l , where Yn need not be differentiable). It follows that

EYmYn =
1
|I|

Nn∑
l=0

∫
I

(n)
l

Ym(k)Yn(k) dk

=
1
|I|

Nn∑
l=0

∫
I

(n)
l

(
Ym(k(n)

l ) +O(|gm|xm/xn)
)
Yn(k) dk

= O(|gmgn|xm/xn).
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Next, we have that

EY 2
n =

1
|I|

Nn∑
l=0

∫
I

(n)
l

Y 2
n (k) dk

=
1
|I|

Nn∑
l=0

(∫
I

(n)
l

X2
n(k, ψn(k)) dk − γ2

n,l

∣∣∣I(n)
l

∣∣∣)

.
Nn∑
l=0

∣∣∣I(n)
l

∣∣∣ g2
n . g

2
n.

Finally, we must take a closer look at γn,l for l ≥ 1. To do this, we need the
following improved version of (the first part of) Lemma 3.1.

Lemma 7.1

ψ′n(k) = 2xn +O

(
n−1∑
i=1

|gi|xi

)

This estimate holds uniformly on compact subsets of (0, π).

Proof. Proceeding as in the proof of Lemma 3.1, we obtain a recursion for ψ′n
of the form

ψ′n = 2(xn − xn−1) + (1 +O(|gn−1|))ψ′n−1 +O(|gn−1|).

We know already that ψ′n = 2xn +O(xn−1), so if we let δn = ψ′n − 2xn, then

δn = δn−1 + an−1xn−1,

where an = O(|gn|). �
We also need the evaluation∫ 2π

0

Xn(k, ψ) dψ = π ln
(

1 +
u2
n(k)
4

)
(this is a crucial formula in this context and was already used in [12]) and the
estimate |∂Xn(k, ψ)/∂k| . |gn|. Lemma 7.1 shows that (for l ≥ 1)

∣∣∣I(n)
l

∣∣∣ =
π

xn

(
1 +O

(
n−1∑
i=1

|gi|xi/xn

))
.

We are now ready to approximately compute γn,l (l ≥ 1). Fixing, as above,
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k
(n)
l ∈ I(n)

l and writing un,l = un(k(n)
l ), we have

γn,l =
1

|I(n)
l |

∫
I

(n)
l

Xn dk =
1

|I(n)
l |

∫ 2π

0

Xn

ψ′n
dψn

=
1

2xn|I(n)
l |

∫ 2π

0

(
1 +O

(
n−1∑
i=1

|gi|xi/xn

))
Xn dψn

=
1

2π

∫ 2π

0

(
Xn(k(n)

l , ψ) +O(|gn|/xn)
)
dψ +O

(
n−1∑
i=1

|gngi|xi/xn

)

=
1
2

ln

(
1 +

u2
n,l

4

)
+O

(
n−1∑
i=1

|gngi|xi/xn

)
. (23)

To conclude the proof, we use an elementary probabilistic argument. (In
fact, it is possible to obtain more detailed information on

∑
Yn by using a more

sophisticated result like [17, Theorem 3.7.2], but the simple approach presented
below suffices for our purposes.) Namely, using the above results, we estimate

E

(
N∑
n=1

Yn

)2

=
N∑
n=1

EY 2
n + 2

∑
1≤m<n≤N

EYmYn

.
N∑
n=1

g2
n +

∑
1≤m<n≤N

|gmgn|
xm
xn

.
N∑
n=1

g2
n.

To pass the last line, we use the fact that if m < n, then xm/xn ≤ C2m−n

(say); thus we can estimate the double sum with the help of the Cauchy-Schwarz
inequality (writing |gmgn|xm/xn . |gm|2(m−n)/2 · |gn|2(m−n)/2). For later use,
we note that this estimate can in fact be carried out more carefully. Namely,
given an ε > 0, no matter how small, we can find an N0 = N0(ε) so that
xm/xn < εn−m if n > m ≥ N0. Taking this into account, we find that

∑
1≤m<n≤N

|gmgn|
xm
xn

= o

(
N∑
n=1

g2
n

)
(N →∞). (24)

The Chebysheff inequality yields

P

∣∣∣∣∣
N∑
n=1

Yn

∣∣∣∣∣ ≥
(

N∑
n=1

g2
n

)3/4
 . ( N∑

n=1

g2
n

)−1/2

,

and since the right-hand side tends to zero as N → ∞, we can extract a sub-
sequence Nm →∞ so that the corresponding probabilities are summable (over
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m). Now the Borel-Cantelli Lemma guarantees that for almost all k ∈ I, there
exists m0 = m0(k) ∈ N, so that∣∣∣∣∣

Nm∑
n=1

Yn(k)

∣∣∣∣∣ ≤
(
Nm∑
n=1

g2
n

)3/4

(25)

for all m ≥ m0. Since the intervals I(n)
0 shrink to the left endpoint of I as

n→∞, we also have that almost surely, eventually k /∈ I(n)
0 . So, recalling that

un = gn/ sin k, we now deduce from (23), (24), and (25) that for almost every
k ∈ I,

lnRNm+1(k) =
Nm∑
n=1

Xn(k) ≥ C
Nm∑
n=1

g2
n − o

(
Nm∑
n=1

g2
n

)
→∞ (m→∞).

The proof of Theorem 1.1 is complete. �
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