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Schubert calculus for algebraic cobordism

By Jens Hornbostel at Wuppertal and Valentina Kiritchenko at Moscow

Abstract. We establish a Schubert calculus for Bott–Samelson resolutions in the
algebraic cobordism ring of a complete flag variety G=B extending the results of Bressler–
Evens [4] to the algebro-geometric setting.

1. Introduction

We fix a base field k of characteristic 0. Algebraic cobordism W
�ð�Þ has been

invented some years ago by Levine and Morel [14] as the universal oriented algebraic
cohomology theory on smooth varieties over k. In particular, its coe‰cient ring W

�ðkÞ is
isomorphic to the Lazard ring L (introduced in [12]). In a recent article [15], Levine and
Pandharipande show that algebraic cobordism W

nðXÞ allows a presentation with genera-
tors being projective morphisms Y ! X of relative codimension nð:¼ dimðX Þ � dimðYÞÞ
between smooth varieties and relations given by a refinement of the naive algebraic cobord-
ism relation (involving double point relations). A recent result of Levine [13] which relies on
unpublished work of Hopkins and Morel asserts an isomorphism W

nð�ÞGMGL2n;nð�Þ
between Levine–Morel and Voevodsky algebraic cobordism for smooth quasiprojective
varieties. In particular, algebraic cobordism is representable in the motivic stable homotopy
category.

In short, algebraic cobordism is to algebraic varieties what complex cobordism
MU �ð�Þ is to topological manifolds.

The above fundamental results being established, it is high time for computations,
which have been carried out only in a very small number of cases (see e.g. [22] and [23]).
The present article focuses on cellular varieties X , for which the additive structure of
W
�ðXÞ is easy to describe: it is the free L-module generated by the cells (see the next section

for more precise definitions, statements, proofs and references). So, additively, algebraic
cobordism for cellular varieties behaves exactly as Chow groups do. Of course, algebraic
K-theory also behaves in a similar way, but we will restrict our comparisons here and
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below to Chow groups. There is a ring homomorphism W
�ðXÞ !MU 2�

�

XðCÞan
�

which
for cellular varieties is an isomorphism (see Section 2.2 and the appendix). However, com-
putations in W

�ðXÞ become more transparent and suitable for algebro-geometric applica-
tions if they are done by algebro-geometric methods rather than by a translation of the al-
ready existing results for MU 2�

�

XðCÞan
�

(e.g. those of Bressler and Evens, see [4] and
below), especially if the latter were obtained by topological methods which do not have
counterparts in algebraic geometry.

Let us concentrate on complete flag varieties X ¼ G=B where B is a Borel subgroup
of a connected split reductive group G over k. In the case where G ¼ GLnðkÞ, the cobord-
ism ring W

�ðXÞ may be described as the quotient of a free polynomial ring over L with gen-
erators xi being the first Chern classes of certain line bundles on X and explicit relations.
More precisely, we show (see Theorem 2.6):

Theorem 1.1. The cobordism ring W�ðXÞ is isomorphic to the graded ring L½x1; . . . ; xn�
of polynomials with coe‰cients in the Lazard ring L and deg xi ¼ 1, quotient by the ideal S

generated by the homogeneous symmetric polynomials of strictly positive degree

W
�ðXÞF L½x1; . . . ; xn�=S:

This generalizes a theorem of Borel [2] on the Chow ring (or equivalently the singular
cohomology ring) of a flag variety to its algebraic cobordism ring.

The Chow ring of the flag variety has a natural basis given by the Schubert cycles.
The central problem in Schubert calculus was to find polynomials (later called Schubert
polynomials) representing the Schubert cycles in the Borel presentation. This problem was
solved independently by Bernstein–Gelfand–Gelfand [1] and Demazure [10] using divided

di¤erence operators on the Chow ring (most of the ingredients were already contained in a
manuscript of Chevalley [8], which for many years remained unpublished). Explicit formu-
las for Schubert polynomials give an algorithm for decomposing the product of any two
Schubert cycles into a linear combination of other Schubert cycles with integer coe‰cients.

The complex (as well as the algebraic) cobordism ring of the flag variety also has
a natural generating set given by the Bott–Samelson resolutions of the Schubert cycles
(note that the latter are not always smooth and so, in general, do not define any cobordism
classes). For the complex cobordism ring, Bressler and Evens described the cobordism
classes of Bott–Samelson resolutions in the Borel presentation using generalized divided

di¤erence operators on the cobordism ring [3], [4] (we thank Burt Totaro from whom we
first learned about this reference). Their formulas for these operators are not algebraic
and involve a passage to the classifying space of a compact torus in G and homotopy the-
oretic considerations (see [3], Corollary–Definition 1.9, Remark 1.11, and [4], Proposition
3). One of the goals of the present paper is to prove an algebraic formula for the general-
ized divided di¤erence operators (see Definition 2.2 and Corollary 2.3). This formula in
turn implies explicit purely algebraic formulas for the polynomials (now with coe‰cients
in the Lazard ring L) representing the classes of Bott–Samelson resolutions. Note that
each such polynomial contains the respective Schubert polynomial as the lowest degree
term (but in most cases also has non-trivial higher-order terms). We also give an algorithm
for decomposing the product of two Bott–Samelson resolutions into a linear combination
of other Bott–Samelson resolutions with coe‰cients in L.
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We now formulate our main theorem (compare Theorem 3.2), which can be viewed
as an algebro-geometric analogue of the results of Bressler–Evens [4], Corollary 1, Propo-
sition 3. Let I ¼ ða1; . . . ; alÞ be an l-tuple of simple roots of G, and RI the corresponding
Bott–Samelson resolution of the Schubert cycle XI (see Section 3 for the precise defini-
tions). Recall that there is an isomorphism between the Picard group of the flag variety
and the weight lattice of G such that very ample line bundles map to strictly dominant
weights (see, for instance, [5], 1.4.3). We denote by LðlÞ the line bundle on X correspond-
ing to a weight l, and by c1

�

LðlÞ
�

its first Chern class in algebraic cobordism. For each ai,
we define the operator Ai on W

�ðX Þ in a purely algebraic way (see Section 3.2 for the rig-
orous definition for arbitrary reductive groups). Informally, the operator Ai can be defined
in the case G ¼ GLn by the formula

Ai ¼ ð1þ saiÞ
1

c1
�

LðaiÞ
� ;

where sai acts on the variables ðx1; . . . ; xnÞ by the transposition corresponding to ai. Here
we use that the Weyl group of GLn can be identified with the symmetric group Sn so that
the simple reflections sai correspond to elementary transpositions (see Section 2 for more
details). Note that the c1

�

LðaiÞ
�

can be written explicitly as polynomials in x1; . . . ; xn using
the formal group law (see Section 2).

Theorem 1.2. For any complete flag variety X ¼ G=B and any tuple I ¼ ða1; . . . ; alÞ
of simple roots of G, the class of the Bott–Samelson resolution RI in the algebraic cobordism

ring W
�ðX Þ is equal to

Al . . .A1Re;

where Re is the class of a point.

This theorem reduces the computation of the products of the geometric Bott–
Samelson classes to the products in the polynomial ring given by the previous theorem.
Note that in the cohomology case, analogously defined operators Ai coincide with the
divided di¤erences operators defined in [1], [10], so our theorem generalizes [1], Theorem
4.1, and [10], Theorem 4.1, for Schubert cycles in cohomology and Chow ring, respectively,
to Bott–Samelson classes in algebraic cobordism.

Note that in the case of Chow ring, the theorem analogous to Theorem 1.2 has two
di¤erent proofs. A more algebraic proof using the Chevalley–Pieri formula was given
by Bernstein–Gelfand–Gelfand ([1], Theorem 4.1, see also Section 4 for a short overview).
Demazure gave a more geometric proof by identifying the divided di¤erence operators with
the push-forward morphism for certain Chow rings ([10], Theorem 4.1, see also Section 3).
At first glance, it seems that the former proof is easier to extend to the algebraic cobord-
ism. Indeed, we were able to extend the main ingredient of this proof, namely, the alge-
braic Chevalley–Pieri formula (see Proposition 4.3). However, the rest of the Bernstein–
Gelfand–Gelfand argument fails for cobordism (see Section 4 for more details) while the
more geometric argument of Demazure can be extended to cobordism with some extra
work. For the complex cobordism ring, this was done by Bressler and Evens [3], [4]. To
describe the push-forward morphism, they used results from homotopy theory, which are
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not (yet) applicable to algebraic cobordism. In our article, we also follow Demazure’s
approach. A key ingredient for extending this approach to algebraic cobordism is a for-
mula for the push-forward in algebraic cobordism for projective line fibrations due to
Vishik (see Proposition 2.1). In general, push-forwards (sometimes also called ‘‘transfers’’
or ‘‘Gysin homomorphisms’’) for algebraic cobordism are considerably more intricate than
the ones for Chow groups. Consequently, their computation, which applies to any
orientable cohomology theory, is more complicated.

Using the ring isomorphism W
�ðX ÞFMU 2�

�

X ðCÞan
�

for cellular varieties, it seems
possible to deduce our Theorem 1.2 from the results of Bressler–Evens [3], [4] on complex
cobordism (the main task would be to compare our algebraically defined operators Ai with
theirs). We will not exploit this approach. Instead, all our proofs are purely algebraic or
algebro-geometric. Conversely, we note that all our proofs concerning the algebraic co-
bordism ring of the flag variety (such as the proof of Proposition 4.3) may be easily trans-
lated to proofs for the analogue statements concerning the complex cobordism ring.

The article [4] does not contain any computations. It would be interesting to do
some computation using their algorithm and then compare them with our approach,
which we consider to be the easier one due to our explicit formula for the product of a
Bott–Samelson class with the first Chern class (see formula 5.1) based on our algebraic
Chevalley–Pieri formula. (Note also that the notations of [4] are essentially consistent
with [1], but not always with [16]. We rather stick to the former than to the latter.)

This paper is organized as follows. In the next section, we give some further back-
ground on algebraic cobordism, in particular the formula for the push-forward mentioned
above. In the case of the flag variety for GLn, we describe the multiplicative structure of its
algebraic cobordism ring. In the third section, we recall the definition of Bott–Samelson
resolutions and then express the classes of Bott–Samelson resolutions as polynomials with
coe‰cients in the Lazard ring. Section 4 contains an algebraic Chevalley–Pieri formula and
a short discussion of why the proof of [1] for singular cohomology does not carry over to
algebraic cobordism. The final section contains an algorithm for computing the products of
Bott–Samelson classes in terms of other Bott–Samelson classes as well as some examples
and explicit computations.

Our main results are valid for the flag variety of an arbitrary reductive group G, but
it can be made more explicit in the case G ¼ GLn using the Borel presentation given by
Theorem 2.6. So we will use the flag variety for GLn as the main illustrating example when-
ever possible. One might conjecture that the algebraic cobordism rings of flag varieties with
respect to other reductive groups G also allow a Borel presentation as polynomial rings
over L in certain first Chern classes modulo the polynomials fixed by the appropriate
Weyl groups (at least when passing to rational coe‰cients), because the corresponding
statement is valid for singular cohomology resp. Chow groups (compare [2] resp. [9]).

After most of our preprint was finished, we learned that Calmès, Petrov and Zainoul-
line are also working on Schubert calculus for algebraic cobordism. It will be interesting to
compare their results and proofs to ours (their preprint is now available, see [7]).

We are grateful to Paul Bressler and Nicolas Perrin for useful discussions and to
Michel Brion and the referee for valuable comments on earlier versions of this article.
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2. Algebraic cobordism groups, push-forwards and cellular varieties

We briefly recall the geometric definition of algebraic cobordism [15] and some of its
basic properties as established in [14]. For more details see [14], [15]. Recall that (up to
sign) any element in the algebraic cobordism group W

nðXÞ for a scheme X (separated, of
finite type over k) may be represented by a projective morphism Y ! X with Y smooth
and n ¼ dimðX Þ � dimðYÞ, the relations being the ‘‘double point relations’’ established in
[15]. In particular, W�ðXÞ only lives in degreese dimX , which we will use several times
throughout the paper. Similar to the Chow ring CH�, algebraic cobordism W

� is a functor
on the category of smooth varieties over k, covariant for projective and contravariant for
smooth and more generally lci morphisms, which allows a theory of Chern classes. How-
ever, the map from the Picard group of a smooth variety X to W

1ðXÞ given by the first
Chern class is neither a bijection nor a homomorphism any more (unlike the corresponding
map in the Chow ring case). Its failure of being a group homomorphism is encoded in a
formal group law that can be constructed from W

�. More precisely, any algebraic orientable
cohomology theory allows by definition a calculus of Chern classes, and consequently the
construction of a formal group law. A formal group law is a formal power series Fðx; yÞ in
two variables such that for any two line bundles L1 and L2 we have the following identity
relating their first Chern classes:

c1ðL1 nL2Þ ¼ F
�

c1ðL1Þ; c1ðL2Þ
�

:

E.g. the formal group law for CH� is additive, that is, Fðxþ yÞ ¼ xþ y. Algebraic cobord-
ism is the universal one among the algebraic orientable cohomology theories. In what fol-
lows, Fðx; yÞ will always denote the universal formal group law corresponding to algebraic
cobordism unless stated otherwise.

In this and in many other ways—as the computations below will illustrate—algebraic
cobordism is a refinement of Chow ring, and one has a natural isomorphism of functors
W
�ð�ÞnL ZGCH�ð�Þ (see [14] where all these results are proved). Here and in the sequel,

L denotes the Lazard ring, which classifies one-dimensional commutative formal group
laws and is isomorphic to the graded polynomial ring Z½a1; a2; . . .� in countably many
variables [12], where we put ai in degree �i. When considering polynomials pðx1; . . . ; xnÞ
over L with degðxiÞ ¼ 1, we will distinguish the (total) degree and the polynomial degree of
pðx1; . . . ; xnÞ.

Note that the Lazard ring is isomorphic to the algebraic (as well as complex) cobord-
ism ring of a point. In particular, its elements can be represented by the cobordism classes
of smooth varieties. In what follows, we use this geometric interpretation.

We will also use repeatedly the projective bundle formula, which can be found e.g. in
[14], Section 1.1, and [16], 3.5.2.

2.1. A formula for the push-forward. Let X be a smooth algebraic variety, and
E ! X a vector bundle of rank two on X . Consider the projective line fibration Y ¼ PðEÞ
defined as the variety of all lines in E. We have a natural projection p : Y ! X which is pro-
jective and hence induces a push-forward (or transfer, sometimes also called Gysin map)
p� : W

�ðYÞ ! W
�ðX Þ. We now state a formula for this push-forward. Note that this formula
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is true not only for algebraic cobordism but for any orientable cohomology theory, as the
proofs remain true in this more general case.

Consider the ring of formal power series in two variables y1 and y2 with coe‰cients
in W

�ðXÞ. Define the operator A on this ring by the formula

Að f Þ ¼ ð1þ sÞ
f

F
�

y1; wðy2Þ
� ;

where ½sð f Þ�ðy1; y2Þ :¼ f ðy2; y1Þ. Here F is the universal formal group law (or more gen-
erally, the one of the orientable cohomology theory one considers) and w is the inverse for
the formal group law F , that is, w is uniquely determined by the equation F

�

x; wðxÞ
�

¼ 0
(we use the notation from [14], 2.5). The operator A is an analog of the divided di¤erence

operator introduced in [1], [10]. In the case of Chow rings, our definition coincides with the
classical divided di¤erence operator, since the formal group law for Chow rings is additive,
that is, Fðx; yÞ ¼ xþ y and wðxÞ ¼ �x. Though Að f Þ is defined as a fraction, it is easy to
write it as a formal power series as well (see Section 5). Such a power series is unique since
F
�

y1; wðy2Þ
�

¼ y1 � y2 þ � � � is clearly not a zero divisor. E.g. we have

Að1Þ ¼
xþ wðxÞ

xwðxÞ
¼ q

�

x; wðxÞ
�

¼ �a11 � a12
�

xþ wðxÞ
�

þ � � � ;

where x ¼ F
�

y1; wðy2Þ
�

, and qðx; yÞ is the power series uniquely determined by the equa-
tion Fðx; yÞ ¼ xþ y� xyqðx; yÞ. In particular, since F

�

x; wðxÞ
�

¼ 0 by definition of the
power series wðxÞ, we have xþ wðxÞ � xwðxÞq

�

x; wðxÞ
�

¼ 0 which justifies the second equal-
ity. For the last equality, we used computation of the first few terms of Fðx; yÞ and wðxÞ
from [14], 2.5. Here a11, a12 etc. denote the coe‰cients of the universal formal group law,
that is,

Fðx; yÞ ¼ xþ yþ a11xyþ a12xy
2 þ � � � :

The coe‰cients aij are the elements of the Lazard ring L
�, e.g. a11 ¼ �½P

1�,
a12 ¼ a21 ¼ ½P

1�2 � P
2 (see [14], 2.5). We also have

Aðy1Þ ¼ y2Að1Þ þ
Fðx; y2Þ � y2

x
¼ y2q

�

x; wðxÞ
�

� y2qðx; y2Þ þ 1 ¼ 1þ a12y1y2 þ � � � :

The pull-back p� : W�ðXÞ ! W
�ðY Þ gives W�ðYÞ the structure of an W

�ðX Þ-module. Recall
that by the projective bundle formula we have an isomorphism of W�ðXÞ-modules

W
�ðYÞG p�W�ðXÞl xp�W�ðXÞ;

where x ¼ c1
�

OEð1Þ
�

. Since the push-forward is a homomorphism of W�ðXÞ-modules, it is
enough to determine the action of p� on 1Y and on x. The following result is a special case
of [21], Theorem 5.30, which gives an explicit formula for the push-forward p� for vector
bundles of arbitrary rank.
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Proposition 2.1 ([21], Theorem 5.30). Let x1 and x2 be the Chern roots of E, that is,
formal variables satisfying the conditions x1 þ x2 ¼ c1ðEÞ and x1x2 ¼ c2ðEÞ. Then the push-

forward acts on 1Y and x as follows:

p�ð1Y Þ ¼ ½Að1Þ�ðx1; x2Þ;

p�ðxÞ ¼ ½Aðy1Þ�ðx1; x2Þ;

where Að1Þ and Aðy1Þ are the formal power series in two variables defined above.

Since Að1Þ and Aðy1Þ are symmetric in y1 and y2, they can be written as power series in

y1 þ y2 and y1y2. Hence, the right-hand sides are power series in c1ðEÞ and c2ðEÞ and even

polynomials (as all terms of degree greater than dimX will vanish by [15]). So the right-hand

sides indeed define elements in W
�ðXÞ.

For the Chow ring and K0, analogous statements were proved in [10], Propositions
2.3 and 2.6, for certain morphisms Y ! X . Note that for both of these theories, the for-
mula for p�ðxÞ reduces to p�ðxÞ ¼ 1 since the corresponding formal group laws do not
contain terms of degree greater than two. As Vishik showed (see [21], Theorem 5.35), his
formula is equivalent to Quillen’s formula [18] for complex cobordism, as also proved by
Shinder in the algebraic setting [19].

If we identify W
�ðY Þ with the polynomial ring W

�ðX Þ½x�=
�

x2 � c1ðEÞxþ c2ðEÞ
�

by
the projective bundle formula, we can reformulate Proposition 2.1 as follows:

p�
�

f ðxÞ
�

¼
�

A
�

f ðy1Þ
��

ðx1; x2Þ

for any polynomial f with coe‰cients in W
�ðXÞ (where f ðy1Þ in the right-hand side is re-

garded as an element in W
�ðX Þ½½y1; y2��). In this form, Proposition 2.1 is consistent with the

classical formula for the push-forward in the case of Chow ring (cf. [16], Remark 3.5.4).
Indeed, since the formal group law for Chow ring is additive, we have

Að1Þ ¼
1

y1 � y2
þ

1

y2 � y1
¼ 0 and Aðy1Þ ¼

y1

y1 � y2
þ

y2

y2 � y1
¼ 1:

Definition 2.2. We define an W
�ðXÞ-linear operator Ap on W

�ðYÞ as follows. We
have an isomorphism

W
�ðX Þ½½y1; y2��=

�

y1 þ y2 � c1ðEÞ; y1y2 � c2ðEÞ
�

GW
�ðY Þ

given by f ðy1; y2Þ 7! f
�

x; c1ðEÞ � xÞ
�

. Then the operator A on W
�ðX Þ½½y1; y2�� descends

to an operator Ap on W
�ðYÞ, which can be described using the above isomorphism as

follows:

Ap : f
�

x; c1ðEÞ � x
�

!
�

A
�

f ðy1; y2Þ
���

x; c1ðEÞ � x
�

:

We also define an W
�ðXÞ-linear endomorphism sp of W�ðYÞ by the formula

sp : f
�

x; c1ðEÞ � x
�

¼ f
�

c1ðEÞ � x; x
�

:
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The operator Ap is well-defined since A preserves the ideal

�

y1 þ y2 � c1ðEÞ; y1y2 � c2ðEÞ
�

:

Indeed, for any power series f ðy1; y2Þ symmetric in y1 and y2 (in particular, for
y1 þ y2 � c1ðEÞ and y1y2 � c2ðEÞ) and any power series gðy1; y2Þ, we have Að fgÞ ¼ fAðgÞ.
The operator Ap decreases degrees by one, and its image is contained in

p�W�ðX ÞHW
�ðY Þ;

which can be identified using the above isomorphism for W
�ðXÞ with the subring of

symmetric polynomials in y1 and y2. Proposition 2.1 tells us that the push-forward
p� : W

�ðYÞ ! W
�ðX Þ is the composition of Ap with the isomorphism p�W�ðX ÞGW

�ðX Þ,
which sends (under the above identifications) a symmetric polynomial f ðy1; y2Þ into the
polynomial g

�

c1ðEÞ; c2ðEÞ
�

such that gðy1 þ y2; y1y2Þ ¼ f ðy1; y2Þ. Hence, we get the fol-
lowing corollary, which we will use in the sequel.

Corollary 2.3. The composition p�p� : W
�ðY Þ ! W

�ðYÞ is equal to the operator Ap:

p�p� ¼ Ap:

In the special case Y ¼ G=B and X ¼ G=Pi (and this is the main application we have,
see Section 3.2), the topological analogue of this formula appeared in [3], Corollary–
Definition 1.9, for a di¤erent definition of Ap.

2.2. Algebraic cobordism groups of cellular varieties. We start with the definition
of a cellular variety. The following definition is taken from [11], Example 1.9.1, although
other authors sometimes consider slight variations.

Definition 2.4. We say that a smooth variety X over k is ‘‘cellular’’ or ‘‘admits a
cellular decomposition’’ if X has a filtration j ¼ X�1 HX0HX1 H � � �HXn ¼ X by closed
subvarieties such that the Xi � Xi�1 are isomorphic to a disjoint union of a‰ne spaces Adi

for all i ¼ 0; . . . ; n, which are called the ‘‘cells’’ of X .

Examples of cellular varieties include projective spaces and more general Grassmann-
ians, and complete flag varieties G=B where G is a split reductive group and B is a Borel
subgroup.

The following theorem is a corollary of [22], Corollary 2.9. We thank Sascha Vishik
for explaining to us how it can be deduced using the projective bundle formula. The
main point is that for d ¼ dimX and i an arbitrary integer, one has for A ¼ W that
W

iðXÞ ¼: Wd�iðX Þ is isomorphic to Hom
�

Aðd � iÞ½2ðd � iÞ�;MðXÞ
�

using that in the nota-
tion of loc. cit. Hom

�

Aðd � iÞ½2d � 2i�;MðXÞ
�

is a direct summand in

Hom
�

MðPd�iÞ;MðXÞ
�

¼ Ad�iðP
d�i � XÞ ¼

Ld�i

j¼0

Ad�i�jðX Þ;

and it is not di‰cult to see that it corresponds to the summand with j ¼ 0.
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Theorem 2.5. Let X be a variety with a cellular decomposition as in the definition

above. Then we have an isomorphism of graded abelian groups (and even of L-modules)

W
�ðX ÞG

L

i

L½di�

where the sum is taken over the cells of X. There is a basis in W
�ðXÞ given by resolutions of

cell closures (choose one resolution for each cell).

The second statement of this theorem follows from the first one if we show that the
cobordism classes of resolutions of the cell closures generate W

�ðXÞ. This can be deduced
from the analogous statement for the Chow ring using [14], Theorem 1.2.19, Remark 4.5.6.
For complex cobordism of topological complex cellular spaces, the corresponding theorem
simply follows from an iterated use of the long exact localization sequence which always
splits as everything in sight has MU �-groups concentrated in even degrees only. Note
also that in the topological case, the Atiyah–Hirzebruch spectral sequence degenerates for
these spaces, which allows it to transport information from singular cohomology to com-
plex cobordism. As Morel points out, the analogous motivic spectral sequence invented by
Hopkins–Morel (unpublished) converging to algebraic cobordism does not in general de-
generate even for the point SpecðkÞ, because the one converging to algebraic K-theory
does not.

We now turn to the ring structure. First, we note that if k ¼ C, then there is a map of
graded rings and even of L-algebras W�ðX Þ !MU 2�

�

X ðCÞan
�

by universality of algebraic
cobordism [14], Example 1.2.10. Using the geometric description of push-forwards both for
W
� and MU � and the fact that the above morphism respects push-forwards [14] as well as

[15], we may describe this map explicitly by mapping an element ½Y ! X � of W�ðXÞ to
½Y ðCÞan ! X ðCÞan� in MU 2�

�

X ðCÞan
�

. As both product structures are defined by taking
cartesian products of the geometric representatives and pulling them back along the diago-
nal of X resp. XðCÞan, we see that this map does indeed preserve the graded L-algebra
structure. Also, for any embedding k ! C we obtain a ring homomorphism from algebraic
cobordism over k to algebraic cobordism over C.

For the flag variety of GLn, this is an isomorphism by Theorem 2.6 below which is
also valid for MU �, as both base change from k to C and complex topological realization
respect products and first Chern classes. For general cellular varieties, it is still an isomor-
phism. This is probably known to the experts, we provide a proof in the appendix.

For some varieties X , the ring structure of W�ðXÞ can be completely determined using
the projective bundle formula [14], Section 1.1. This is the case for the variety of complete
flags for G ¼ GLn (see Theorem 2.6 below) and also for Bott–Samelson resolutions of
Schubert cycles in a complete flag variety for any reductive group G (see Section 3).

2.3. Borel presentation for the flag variety of GLn. We now turn to the case of the
complete flag variety X for G ¼ GLnðkÞ. The points of X are identified with complete flags

in kn. A complete flag is a strictly increasing sequence of subspaces

F ¼ ff0g ¼ F 0
HF 1

HF 2
H � � �HF n ¼ kng
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with dimðF kÞ ¼ k. The group G acts transitively on the set of all flags, and the stabilizer of
a point is isomorphic to a Borel subgroup BHG, which makes X ¼ G=B into a homoge-
neous space under G. By this definition, X has the structure of an algebraic variety.

Note that over C, one may equivalently define the flag variety X to be the homoge-
neous space K=T under the maximal compact subgroup KHG, where T is a maximal
compact torus in K (that is, the product of several copies of S1) [2]. E.g., for G ¼ GLnðCÞ
(resp. SLnðCÞ), the maximal compact subgroup is UðnÞ (resp. SUðnÞ). This is the language
in which many of the definitions and results in [1], [2] and [4] are stated. We sometimes
allow ourselves to use those definitions and results which do carry over to the ‘‘algebraic’’
case (reductive groups over k) without mentioning explicitly the obvious changes that have
to be carried out.

There are n natural line bundles L1; . . . ;Ln on X , namely, the fiber of Li at the point
F is equal to F i=F i�1. Put xi ¼ c1ðLiÞ, where the first Chern class c1 with respect to alge-
braic cobordism is defined in [14]. Note that our definition of xi di¤ers by sign from the one
in [16]. The following result on the algebraic cobordism ring is an analog of the Borel
presentation for the singular cohomology ring of a flag variety. In fact, it holds for any
orientable cohomology theory since its proof only uses the projective bundle formula.

Theorem 2.6. Let A�ð�Þ be any orientable cohomology theory (e.g. CH�ð�Þ or

W
�ð�Þ). Then the ring A�ðX Þ is isomorphic as a graded ring to the ring of polynomials in

x1; . . . ; xn with coe‰cients in the coe‰cient ring A�ðptÞ and degðxiÞ ¼ 1, quotient by the

ideal S generated by the symmetric polynomials of strictly positive polynomial degree:

A�ðXÞFA�ðptÞ½x1; . . . ; xn�=S:

More generally, let E be a vector bundle of rank n over a smooth variety Y and FðEÞ be the
flag variety relative to this bundle. Then we have an isomorphism of graded rings

A�
�

FðEÞ
�

FA�ðptÞ½x1; . . . ; xn�=I

where I is the ideal generated by the relations ekðx1; . . . ; xnÞ ¼ ckðEÞ for 1e ke n with ek
denoting the k-th elementary symmetric polynomial.

Proof. The proof of [16], Theorem 3.6.15, for the Chow ring case can be slightly
modified so that it becomes applicable to any other orientable theory A�. Namely, for an
arbitrary oriented cohomology theory A�, it is more convenient to dualize the geometric
argument in [16], Theorem 3.6.15, because we can no longer use that ciðEÞ ¼ ð�1Þ

i
ciðE

�Þ
for a vector bundle E (which is used implicitly several times in the proof of [16], Theorem
3.6.15). That is, we start with the variety of partial flags

Pi ¼ fF
n�i

HF n�iþ1
H � � �HF n ¼ kng

(e.g. P1 is the variety of hyperplanes in kn and Pn�1 ¼ X ). The proof of the more general
case is completely analogous to the proof of [16], Proposition 3.8.1. Note that the proof of
[16], Proposition 3.8.1 does not really use [16], Theorem 3.6.15 as an induction base (de-
spite the claim in the proof) and in fact gives another proof for [16], Theorem 3.6.15, which
is also applicable to an arbitrary oriented cohomology theory. r
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Remark 2.7. The proof immediately implies that the class of a point in A�ðX Þ

is equal to xn�1
n xn�2

n�1 � � � x2. Since xn�1
n xn�2

n�1 � � � x2 ¼
1

n!

Q

i>j

ðxi � xjÞ modS (which is easy to

show by induction on n using that ðxn � xn�1Þ � � � ðxn � x1Þ ¼ nxn�1
n modS) we also have

that the class of a point can be represented by the polynomial Dn ¼
1

n!

Q

i>j

ðxi � xjÞ.

Note that the proof also gives an explicit formula for the classes of one-dimensional
Schubert cycles X1 ¼ Xsg1

; . . . ;Xn�1 ¼ Xsgn�1
in X corresponding to the simple roots

g1; . . . ; gn�1 of GLn (see the beginning of Section 3 for the definition of the Schubert cycles
Xw for w in the Weyl group of G). The cycle Xk consists of flags

F ¼ ff0g ¼ F 0
HF 1

HF 2
H � � �HF n ¼ kng

such that all F i except for F k are fixed. Then the class of Xk is equal to the class of a point
divided by xkþ1. Indeed, to get the class of Xk HX we should take the point in Pn�k�1 cor-
responding to the fixed partial flag fF kþ1

HF kþ2
H � � �HF n ¼ kng and then take a line in

a fiber of the projective bundle Pn�k ! Pn�k�1 over this point. Namely, the line will consist
of all hyperplanes in F kþ1 that contain the fixed codimension two subspace F k�1. Again it
is easy to show by induction on n that the polynomial xn�1

n xn�2
n�1 � � � x2=xk is equal to

2Dn=ðxkþ1 � xkÞ modulo the ideal S.

Note that the Borel presentation for singular cohomology implies, in particular, that
the Picard group of the flag variety is generated (as an abelian group) by the first Chern
classes of the line bundles L1; . . . ;Ln, the only nontrivial relation being

P

c1ðLiÞ ¼ 0. In
what follows, we will also use the following alternative description of the Picard group of
X . Recall that each strictly dominant weight l of G defines an irreducible representation
pl : G ! GLðVlÞ and an embedding G=B! PðVlÞ. Hence, to each strictly dominant
weight l of G we can assign a very ample line bundle LðlÞ on X by taking the pull-
back of the line bundle OPðVlÞð1Þ on PðVlÞ. The map l 7! LðlÞ extended to non-dominant
weights by linearity gives an isomorphism between the Picard group of X and the weight
lattice of G [5], 1.4.3. In particular, for the line bundles above, we have Li ¼ Lð�eiÞ, where
ei is the weight of GLn given by the i-th entry of the diagonal torus in GLn.

We now compute c1
�

LðaiÞ
�

as a polynomial in x1; . . . ; xn. Let g1; . . . ; gn�1 be the sim-
ple roots of G (that is, gi ¼ ei � eiþ1). We can express the line bundles LðgiÞ in terms of the
line bundles L1; . . . ;Ln. Since Li ¼ Lð�eiÞ and gi ¼ ei � eiþ1, we have that the line bundle
LðgiÞ is isomorphic to L�1i nLiþ1. In particular, we can compute

c1
�

LðgiÞ
�

¼ c1ðL
�1
i nLiþ1Þ ¼ F

�

wðxiÞ; xiþ1
�

:

E.g. by the formulas for Fðx; yÞ and wðxÞ from [14], 2.5, the first few terms of c1
�

LðgiÞ
�

look as follows:

c1
�

LðgiÞ
�

¼ �xi þ xiþ1 þ a11x
2
i � a11xixiþ1 þ � � � ;

where a11 ¼ �½P
1�.
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In what follows, we will use the isomorphism W GS n. The simple reflection sa for
any root a ¼ ei � ej acts on the weight lattice (spanned by the weights e1; . . . ; en, which
form an orthonormal basis) by the reflection in the plane perpendicular to ei � ej and hence
permutes the weights e1; . . . ; en by the transposition ði jÞ.

3. Schubert calculus for algebraic cobordism of flag varieties

In this section, we assume that G is an arbitrary connected split reductive group un-
less we explicitly mention that G ¼ GLnðkÞ, and X ¼ G=B is the complete flag variety for
G. We now investigate the ring structure of W�ðX Þ in more geometric terms.

3.1. Schubert cycles and Bott–Samelson resolutions. Recall that the flag variety X is
cellular with the following cellular decomposition into Bruhat cells. Let us fix a Borel sub-
group B. For each element w A W of the Weyl group of G, define the Bruhat (or Schubert)
cell Cw as the B-orbit of the point wB A G=B ¼ X (we identify the Weyl group with
NðTÞ=T for a maximal torus T of G inside B). The Schubert cycle Xw is defined as the clo-
sure of Cw in X . The dimension of Xw is equal to the length of w [1]. Recall that the length
of an element w A W is defined as the minimal number of factors in a decomposition of w
into the product of simple reflections. Recall also that for each l-tuple I ¼ ða1; . . . ; alÞ of
simple roots of G, one can define the Bott–Samelson resolution RI (which has dimension
l) together with the map rI : RI ! X . Bott–Samelson resolutions are smooth. Conse-
quently, for any I the map rI : RI ! X represents an element in W

�ðX Þ which we denote
by ZI .

Denote by sa A W the reflection corresponding to a root a, and by sI the product
sa1 � � � sal . If the decomposition sI ¼ sa1 � � � sal defined by I is reduced (that is, sI cannot be
written as a product of less than l simple reflections, or equivalently, the length of sI is
equal to l), then the image rI ðRI Þ coincides with the Schubert cycle XsI (which we will
also denote by XI ). The dimension of XI in this case is also equal to l and the map
rI : RI ! XI is a birational isomorphism. In this case, the variety RI is a resolution of sin-
gularities for the Schubert cycle XI .

Bott–Samelson resolutions were introduced by Bott and Samelson in the case of
compact Lie groups, and by Demazure in the case of algebraic semisimple groups [10].
There are several equivalent definitions, see e.g. [6], [10], [16]. We will use the definition
below (which follows easily from [6], 2.2), since it is most suited to our needs. Namely, RI

is defined by the following inductive procedure starting from Rj ¼ pt ¼ SpecðkÞ (in what
follows we will rather denote Rj by Re). For each j-tuple J ¼ ða1; . . . ; ajÞ with j < l, denote
by JW f j þ 1g the ð j þ 1Þ-tuple ða1; . . . ; aj; ajþ1Þ. Define RJWf jþ1g as the fiber product
RJ �G=Pjþ1

G=B, where Pjþ1 is the minimal parabolic subgroup corresponding to the root
ajþ1. Then the map rJWf jþ1g : RJWf jþ1g ! X is defined as the projection to the second
factor. In what follows, we will use that RJ can be embedded into RJWf jþ1g by sending
x A RJ to

�

x; rJðxÞ
�

A RJ �G=Pjþ1
G=B.

In particular, one-dimensional Bott–Samelson resolutions are isomorphic to the cor-
responding Schubert cycles. It is easy to show that any two-dimensional Bott–Samelson
resolution RI for a reduced I is also isomorphic to the corresponding Schubert cycle.
More generally, RI is isomorphic to XI if and only if all simple roots in I are pairwise dis-
tinct (in particular, the length of I should not exceed the rank of G). The simplest example
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where RI and XI are not isomorphic for a reduced I is G ¼ GL3 and I ¼ ðg1; g2; g1Þ (where
g1, g2 are two simple roots of GL3).

It is easy to show that RJWf jþ1g is the projectivization of the bundle r�Jp
�
jþ1E,

where E is the rank two vector bundle on G=Pjþ1 defined in the next subsection and
pjþ1 : G=B! G=Pjþ1 is the natural projection. This is the definition used in [4]. In the
topological setting, the vector bundle r�Jp

�
jþ1E splits into the sum of two line bundles [4]

but in the algebro-geometric setting this is no longer true (though r�Jp
�
jþ1E still contains a

line subbundle, as follows from the proof of Lemma 3.4).

This definition of RI allows to describe easily (by repeated use of the projective
bundle formula) the ring structure of the cobordism ring W

�ðRI Þ. It also implies that RI is
cellular with 2 l cells labeled by all subindices JH I .

The cobordism classes ZI of Bott–Samelson resolutions generate W
�ðXÞ but do not

form a basis. The following proposition is an immediate corollary of Theorem 2.4. An
analogous statement for complex cobordism is proved in [4], Proposition 1, by using the
Atiyah–Hirzebruch spectral sequence (as mentioned in Section 2).

Proposition 3.1. As an L-module, the algebraic cobordism ring W
�ðX Þ of the flag

variety is freely generated by the Bott–Samelson classes ZIðwÞ, where w A W and IðwÞ defines
a reduced decomposition for w (we choose exactly one IðwÞ for each w).

There is no canonical choice for a decomposition IðwÞ of a given element w in
the Weyl group. From the geometric viewpoint it is more natural to consider all Bott–
Samelson classes at once (including those for non-reduced I ) even though they are not
linearly independent over L. So throughout the rest of the paper we will not put any restric-
tions on the multiindex I .

3.2. Schubert calculus. We will now describe the cobordism classes ZI as polyno-
mials in the first Chern classes of line bundles on X . This allows us to compute products
of Bott–Samelson resolutions and hence achieves the goal of a Schubert calculus for alge-
braic cobordism.

We first define operators Ai on W
�ðXÞ following the approach of the previous section

(see Definition 2.2). These operators generalize the divided di¤erence operators on the Chow
ring CH�ðXÞ defined in [1], [10], [8] to algebraic cobordism.

We first define operators Ai for GLn since in this case the Borel presentation allows
us to make them more explicit. We start with the subgroup B of upper triangular matrices
and the diagonal torus, which yields an isomorphism W GSn. Under this isomorphism, the
reflection sa with respect to a root a ¼ ei � ej goes to the transposition ði jÞ (see the end of

Section 2). For each positive root a of G, we define the operators sa and ÂAa on the ring of
formal power series L½½x1; . . . ; xn�� as follows:

ðsa f Þðx1; . . . ; xnÞ ¼ f ðxsað1Þ; . . . ; xsaðnÞÞ;

ÂAa ¼ ð1þ saÞ
1

F
�

xiþ1; wðxiÞ
� :
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It is easy to check that ÂAa is well-defined on the whole ring L½½x1; . . . ; xn�� (see Section 5).
Note also that under the homomorphism L½½x1; . . . ; xn�� ! L½x1; . . . ; xn�=SGW

�ðXÞ the
power series F

�

xiþ1; wðxiÞ
�

maps to c1
�

LðgiÞ
�

(see the end of Section 2), so our definition
for additive formal group law reduces to the definition of divided di¤erence operator
on the polynomial ring Z½x1; . . . ; xn� (see [16], 2.3.1). Finally, we define the operator
Aa : W

�ðXÞ ! W
�ðX Þ using the Borel presentation by the formula

Aa

�

f ðx1; . . . ; xnÞ
�

¼ ÂAað f Þðx1; . . . ; xnÞ

for each polynomial f A L½x1; . . . ; xn�. Again, by degree reasons the right-hand side is a
polynomial. The operator Aa is well defined (that is, does not depend on a choice of a poly-
nomial f representing a given class in L½x1; . . . ; xn�=S) since for any polynomial h and any
symmetric polynomial g we have ÂAaðghÞ ¼ gÂAaðhÞ.

We now define Ai ¼ Aai for an arbitrary reductive group G and a simple root ai.
Denote by Pi HG the minimal parabolic subgroup corresponding to the root ai. Then
X ¼ G=B is a projective line fibration over G=Pi. Indeed, consider the projection
pi : G=B! G=Pi. Take the line bundle LðrÞ on G=B corresponding to the weight r, where
r is the half-sum of all positive roots or equivalently the sum of all fundamental weights
of G (the weight r is uniquely characterized by the property that ðr; aÞ ¼ 1 for all simple
roots a). Then it is easy to check that the vector bundle E :¼ pi�LðrÞ on G=Pi has rank
two and G=B ¼ PðEÞ. Note that tensoring E with any line bundle L on G=Pi does not
change PðEÞ ¼ PðEnLÞ so the property PðEÞ ¼ X does not uniquely define the bundle
E. However, the choice E ¼ pi�LðrÞ (suggested to us by Michel Brion) is the only uniform
choice for all i, since LðrÞ is the only line bundle on X with the property P

�

pi�LðrÞ
�

¼ X

for all i. We now use Definition 2.2 to define an W
�ðG=PiÞ-linear operator Ai :¼ Api on

W
�ðXÞ. For G ¼ GLn, this definition coincides with the one given above. This is easy

to show using that G=Pi for ai ¼ gi is the partial flag variety whose points are flags
F ¼ ff0g ¼ F 0

H � � �HF i�1
HF iþ1

H � � �HF n ¼ kng.

Let I ¼ ða1; . . . ; alÞ be an l-tuple of simple roots of G. Define the element RI in
W
�ðXÞ by the formula

RI :¼ Al . . .A1Ze:

In the case G ¼ GLn, we can also regard RI as a polynomial in L½x1; . . . ; xn�=S.
Similar to [1], Theorem 3.15, or [4], page 807, one may describe Ze for general G using
the formula

Ze ¼ Re :¼
1

jW j

Q

a ARþ
c1
�

LðaÞ
�

;

where Rþ denotes the set of positive roots of G (recall that jRþj ¼ dimX ¼: d). As in the
Chow ring case, there is also the formula

Ze ¼
1

d!
LðrÞd :
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Both formulas immediately follow from the analogous formulas for the Chow ring [1], The-
orem 3.15, Corollary 3.16, since WdðXÞFCHdðXÞ (as follows from [14], Theorem 1.2.19,
Remark 4.5.6).

Note that for GLn, the formula for Re reduces to Re ¼ Dn since
c1
�

Lðei � ejÞ
�

¼ xj � xi þ higher-order terms, and hence the equality Ze ¼ Re follows
from Remark 2.7. In particular, by the same remark Re modulo S has a denominator-free
expression xn�1

n xn�2
n�1 � � � x2.

We now prove an algebro-geometric version of [4], Corollary 1, Proposition 3, using
our algebraic operators Ai.

Theorem 3.2. The cobordism class ZI ¼ ½rI : RI ! X � of the Bott–Samelson resolu-

tion RI is equal to RI .

Proof. The essential part of the proof is the formula for the push-forward as stated
in Corollary 2.3. Once this formula is established it is not hard to show that AiZI ¼ ZIWfig

for all I by exactly the same methods as in the Chow ring case [16] and in the complex
cobordism case [4]. Namely, we have the following cartesian square:

G=B�G=Pi
G=B ���!

p2
G=B

p1

?
?
?
y

?
?
?
y
pi

G=B �������!
pi

G=Pi:

E.g., if G ¼ GLn we get exactly the diagram of [16], proof of Lemma 3.6.20. Using this
commutative diagram and the definition of Bott–Samelson resolutions, it is easy to
show that p�i pi�ZI ¼ ZIWfig [4], proof of Proposition 2.1. We now apply Corollary 2.3
and get that Ai ¼ p�i pi�. It follows by induction on the length of I that ZI ¼ Al . . .A1Ze.

r

Remark 3.3. Note that if we apply the base change formula [14], Definition
1.1.2(A2), to the cartesian diagram from the proof of Theorem 3.2, we get p1�p

�
2 ¼ p�i pi�,

where the right-hand side is precisely the definition of the ‘‘geometric’’ operator denoted Ai

in [4], while the left-hand side is the operator denoted di in [16], proof of Theorem 3.6.18.
Hence Manivel and Bressler–Evens consider the same operators.

We now compute the action of the operator Ai on polynomials in the first Chern
classes (this computation will be used in Sections 4 and 5). Consider the operator si :¼ spi
again defined as in Definition 2.2. Note that si corresponds to the simple reflection si :¼ sai
in the following sense:

Lemma 3.4. For any line bundle LðlÞ on X , we have

si
�

c1
�

LðlÞ
��

¼ c1
�

LðsilÞ
�

:
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Proof. Since X ¼ PðEÞ (recall that E ¼ pi�LðrÞ), the bundle p�i E on X admits the
usual short exact sequence

0! tE ! p�i E ! OEð1Þ ! 0;

where tE is the tautological line bundle on X (that is, the fiber of tE at the point
x A X ¼ PðEÞ is the line in E represented by x). Note that in our case PðEÞ ¼ PðE dualÞ
since E is of rank two (thus hyperplanes in E are the same as lines in E). It is easy to
show that there is an isomorphism of line bundles

t�1E nOEð1Þ ¼ LðaiÞ:

(Moreover, one can show that tE ¼ Lðr� aiÞ and OEð1Þ ¼ LðrÞ.) Indeed,

t�1E nOEð1ÞFHom
�

tE ;OEð1Þ
�

can be thought of as the bundle of tangents along the fibers of pi. The latter is the line bundle
associated with the B-module pi=b, which has weight �ai (see [5], Remark 1.4.2, for an
alternative definition of the line bundles LðlÞ in terms of the one-dimensional B-modules).
Here pi and b denote the Lie algebras of Pi and B, respectively.

By definition, si switches c1ðtEÞ and c1
�

OEð1Þ
�

. Hence, si
�

c1
�

LðaiÞ
��

¼ c1
�

Lð�aiÞ
�

.
Since the Picard group of G=Pi can be identified with the sublattice fl j ðl; aiÞ ¼ 0g of the
weight lattice of G (this follows from [5], remark after Proposition 1.3.6, combined with [5],
Proposition 1.4.3) we also have si

�

c1
�

LðlÞ
��

¼ c1
�

LðlÞ
�

for all l perpendicular to ai. These
two identities imply the statement of the lemma. r

This lemma allows us to describe explicitly the action of si and hence of Ai on any
polynomial in the first Chern classes. Indeed, since for any weight l we have sil ¼ lþ kai
for some integer k, we can compute c1

�

LðsilÞ
�

¼ c1
�

LðlÞnLðaiÞ
k
�

as a power series in
c1
�

LðlÞ
�

and c1
�

LðaiÞ
�

using the formal group law. This will be used in the proof of Prop-
osition 4.3 below and in Subsection 5.1.

4. Chevalley–Pieri formulas

A key ingredient for the classical Schubert calculus is the Chevalley–Pieri formula for
the product of the Schubert cycle with the first Chern class of the line bundle on X , see e.g.
[1], Proposition 4.1, and [10], Proposition 4.2. We now establish analogous formulas for the
products of ZI and RI with c1

�

LðlÞ
�

(without using that ZI ¼ RI ). At the end of this sec-
tion, we explain why in the case of algebraic cobordism this alone is not enough to show
that ZI ¼ RI , hence justifying our di¤erent approach of the previous two sections.

By LðDÞ denote the line bundle corresponding to the divisor D. For each l-tuple
I as above, denote by I j the ðl � 1Þ-tuple ða1; . . . ; âaj; . . . ; alÞ. For each root a, define the
linear function ð�; aÞ (that is, the coroot) on the weight lattice of G by the property
sal ¼ l� ðl; aÞa for all weights l. (The pairing ða; bÞ is often denoted by ha; b4i or by
ha; bi.) Note that by definition ðl; aÞ ¼ ðwl;waÞ for all elements w of the Weyl group.
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Proposition 4.1. Geometric Chevalley–Pieri formula

(1) for Bott–Samelson resolutions: In the Picard group of RI we have

r�I LðlÞ ¼
Nl

j¼1

LðRI jÞðl;bjÞ

where bj ¼ sl � � � sjþ1aj.

(2) for Schubert cycles ([1], Proposition 4.1, [10], Proposition 4.4, [8]): In the Chow

ring of X we have

c1
�

LðlÞ
�

XI ¼
P

j

ðl; bjÞXI j

where the sum is taken over j A f1; . . . ; lg for which the decomposition defined by I j is

reduced.

The first part of this proposition was proved in [4], Proposition 4, in the topological
setting (for flag varieties of compact Lie groups). It is not hard to check that the proof car-
ries over to algebro-geometric setting. We instead provide a shorter proof along the same
lines. Our proof is based on the following lemma:

Lemma 4.2 ([10], Proposition 2.1). Let p : RI ! RI l be the natural projection (com-

ing from the fact that we defined RI as a projective bundle over RI l ). Then we have an iso-

morphism

r�I LðlÞG p�r�I lLðsllÞnLðRI l Þðl;alÞ

of line bundles on RI .

Proposition 4.1(1) now follows from Lemma 4.2 by induction on l. The base l ¼ 1,

that is r�1LðlÞ ¼ O
P

1ð1Þðl;a1Þ, follows from the fact that r1 : R1 ! X maps R1 isomorphically
to P1=BGP

1, which can be regarded as the flag variety for SL2. Then the weight l restricted
to SL2 is equal to ðl; a1Þ times the highest weight of the tautological representation of
SL2, which corresponds to the line bundle O

P
1ð1Þ on P

1. To prove the induction step, plug

the induction hypothesis for r�
I lLðsllÞ ¼

Nl�1

j¼1

LðRI j; l Þðsll; sl�1���sjþ1ajÞ into the lemma and use

ðsll; sl�1 � � � sjþ1ajÞ ¼ ðl; bjÞ (since s
2
l ¼ e) and p�RI j; l ¼ RI j .

Proposition 4.1(1) was used in [4] to establish an algorithm for computing c1
�

LðlÞ
�

ZI

in W
�ðXÞ [4]. We now briefly recall this algorithm. By the projection formula we have

c1
�

LðlÞ
�

ZI ¼ ðrIÞ�
�

c1
�

r�I LðlÞ
��

:

Note that the usual projection formula with respect to smooth projective morphisms
f : X ! Y holds for algebraic cobordism as well. This follows from the definition of prod-
ucts via pull-backs along the diagonal and the base change axiom (A2) of [14] applied to

the cartesian square obtained from Y �!
diag

Y � Y  �
p�id

X � Y .
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One can now use Proposition 4.1(1) and the formal group law to compute c1
�

r�I LðlÞ
�

in terms of the Bott–Samelson classes in W
�ðRI Þ by an iterative procedure (since the

multiplicative structure of W
�ðRI Þ can be determined by the projective bundle formula

and the Chern classes arising this way again have the form c1
�

LðlÞ
�

for some l). After
c1
�

r�I LðlÞ
�

is written as
P

JHI

aJ ½RJ � for some aJ A L, it is easy to find ðrIÞ�
�

c1
�

r�I LðlÞ
��

since
ðrI Þ�½RJ � ¼ ZJ .

However, this procedure is rather lengthy, and we will not use it. Instead, we will
prove a more explicit formula for c1

�

LðlÞ
�

ZI (see formula (5.1) below) using our algebraic
Chevalley–Pieri formula together with Theorem 3.2.

Proposition 4.3. Algebraic Chevalley–Pieri formula:

(1) cobordism version: Let A1 ¼ Aa1 ; . . . ;Al ¼ Aal be the operators on W
�ðXÞ corre-

sponding to a1; . . . ; al . Then we have

c1
�

LðlÞ
�

A1 . . .AlRe ¼
Pl

j¼1

A1 . . .Aj�1

c1
�

LðljÞ
�

� c1
�

LðsjljÞ
�

c1
�

LðajÞ
� Ajþ1 . . .AlRe

in W
�ðX Þ, where lj ¼ sj�1 � � � s1l and sj ¼ saj is the reflection corresponding to the root aj.

(2) Chow ring version ([1], Corollary 3.7): Let A1 ¼ Aa1 ; . . . ;Al ¼ Aal be the opera-

tors on CH�ðXÞ corresponding to a1; . . . ; al . Then

c1
�

LðlÞ
�

A1 . . .AlRe ¼
Pl

j¼1

ðl; s1 � � � sj�1ajÞA1 . . . ÂAj . . .AlRe

in CH�ðXÞ.

Proof. First, note that
c1
�

LðljÞ
�

� c1
�

LðsjljÞ
�

c1
�

LðajÞ
� is a well-defined element in W

�ðXÞ

because sjl ¼ l� ðl; ajÞaj (and hence LðlÞ ¼ LðsjlÞnLðajÞ
ðl;ajÞ) and the formal group law

expansion for c1ðL1 nLk
2 Þ � c1ðL1Þ is divisible by c1ðL2Þ for any integer k [14], (2.5.1). Next

we show that

c1
�

LðlÞ
�

A1 � A1c1
�

Lðs1lÞ
�

¼
c1
�

LðlÞ
�

� c1
�

Lðs1lÞ
�

c1
�

Lða1Þ
� ;

where both sides are regarded as operators on W
�ðXÞ. Indeed, by definition

A1 ¼ ð1þ s1Þ
1

c1
�

Lða1Þ
� and c1

�

LðlÞ
�

s1 ¼ s1c1
�

Lðs1lÞ
�

by Lemma 3.4.

Hence, we can write

c1
�

LðlÞ
�

A1 . . .AlRe ¼
c1
�

LðlÞ
�

� c1
�

Lðs1lÞ
�

c1
�

Lða1Þ
� A2 . . .AlRe þ A1c1

�

Lðs1lÞ
�

A2 . . .AlRe;
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and then continue moving c1
�

Lðs1lÞ
�

to the right until we are left with the term
A1 . . .Alc1

�

Lðsl . . . s1lÞ
�

Re. This term is equal to zero since c1
�

Lðsl . . . s1lÞ
�

Re is the prod-
uct of more than dimX first Chern classes, and hence its degree is greater than dimX . The
Chow ring case follows immediately from the cobordism case since

c1
�

LðlÞ
�

� c1
�

LðsjlÞ
�

c1
�

LðajÞ
� ¼ ðl; ajÞ

in the Chow ring. The last identity holds because the formal group law for the Chow ring is
additive, and hence c1

�

LðlÞ
�

� c1
�

LðsjlÞ
�

¼ ðl; ajÞc1
�

LðajÞ
�

. r

The second part of this proposition was proved in [1] by more involved calculations.
A calculation similar to ours was used in [17] to deduce a combinatorial Chevalley–Pieri
formula for K-theory. It would be interesting to find an analogous combinatorial interpre-
tation of our Chevalley–Pieri formula in the cobordism case.

Note that in the case of Chow groups, the algebraic Chevalley–Pieri formula for
Al . . .A1Re is exactly the same as the geometric one for the Schubert cycle XI . Together
with the Borel presentation this easily implies that the polynomial Al . . .A1Re represents
the Schubert cycle XI whenever I defines a reduced decomposition [1]. Indeed, we can
proceed by the induction on l. Algebraic and geometric Chevalley–Pieri formulas allow us
to compute the intersection indices of Al . . .A1Re and of XI , respectively, with the product
of k first Chern classes, and the result is the same in both cases by the induction hypothesis
(for all k > 0Þ. By the Borel presentation we know that the products of first Chern classes

span
Ld

i¼1

CH iðX Þ. Hence, by the non-degeneracy of the intersection form on CH�ðX Þ (that

is, by Poincaré duality) we have that Al . . .A1Re � XI must lie in CHdðXÞ ¼ Z½pt� (that is,

in the orthogonal complement to
Ld

i¼1

CH iðX Þ). This is only possible if Al . . .A1Re � XI ¼ 0

(unless l ¼ 0, which is the induction base). Note that the only geometric input in this proof
is the geometric Chevalley–Pieri formula.

In the cobordism case, it is not immediately clear why geometric and algebraic
Chevalley–Pieri formulas are the same (though, of course, it follows from Theorem 3.2).
But even without using RI ¼ ZI , it might be possible to show that both formulas have
the same structure coe‰cients, that is, if c1

�

LðlÞ
�

ZI ¼
P

JHI

aJZJ then necessarily

c1
�

LðlÞ
�

RI ¼
P

JHI

aJRJ with the same coe‰cients aJ A L. However, this does not lead to

the proof of RI ¼ ZI as in the case of the Chow ring. The reason is that even though there
is an analog of Poincaré duality for the cobordism rings of cellular varieties, this only yields
an equality RI ¼ ZI up to a multiple of ½pt�, which is not enough to carry out the desired
induction argument. For the Chow ring, Poincaré duality also yields only an equality up
to the class of a point, but unless I ¼ j, the di¤erence RI � ZI (where ZI now means the
Schubert cycle and not the Bott–Samelson class) cannot be a non-zero multiple of ½pt�
because the coe‰cient ring CH�ð½pt�Þ ¼ CH�ðkÞGZ is concentrated in degree zero, and
has hence no non-zero elements in the corresponding degree l � d. However, for algebraic
cobordism, the coe‰cient ring W

�ðkÞG L does contain plenty of elements of negative de-
gree, so one cannot deduce RI ¼ ZI .
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5. Computations and examples

Until now, we used the formal group law of algebraic cobordism (i.e., the universal
one) as little as possible in order to make our presentation simpler. In this section, we make
the results of the previous section more explicit using this formal group law. In particular,
we give an explicit formula for the products of a Bott–Samelson resolution with the first
Chern class of a line bundle in terms of other Bott–Samelson resolutions (see formula
(5.1) below). Using this formula, we give an algorithm for computing the product of two
Bott–Samelson resolutions.

First, we show that the operator A from Section 2 and the operator ÂAa from Section 3
are well-defined.

We use the notation of Subsection 2.1, so Fðu; vÞ is the universal formal group law and
wðuÞ is the inverse for the universal formal group law defined by the identity F

�

u; wðuÞ
�

¼ 0.

To show that the operator A ¼ ð1þ sÞ
1

F
�

y1; wðy2Þ
� is well defined on W

�ðXÞ½½y1; y2��, it is

enough to show that AðmÞ is a formal power series for any monomial m ¼ yk1
1 yk2

2 . We com-
pute Aðyk1

1 yk2
2 Þ using

y1 ¼ Fðx; y2Þ ¼ y2 þ wðxÞpðx; y2Þ and y2 ¼ F
�

wðxÞ; y1
�

¼ y1 þ wðxÞp
�

wðxÞ; y1
�

where x ¼ F
�

y1; wðy2Þ
�

and pðu; vÞ ¼
Fðu; vÞ � u

v

is a well-defined power series (since Fðu; vÞ � u contains only terms u iv j for jf 1). We
get

Aðyk1
1 yk2

2 Þ ¼ ð1þ sÞ
yk1
1 yk2

2

x
¼

yk1
1 yk2

2

x
þ

yk2
1 yk1

2

wðxÞ

¼

�

y2 þ wðxÞpðx; y2Þ
�k1

�

y1 þ wðxÞp
�

wðxÞ; y1Þ
�k2

x
þ

yk1
2 yk2

1

wðxÞ

¼ yk1
2 yk2

1 q
�

x; wðxÞ
�

þ
terms divisible by x or by wðxÞ

x
:

The second term in the last expression is a power series since the formal group law expan-
sion for wðxÞ is divisible by x [14], (2.5.1).

A similar argument shows that the operator ÂAa from Section 3 is indeed well-defined
on the whole ring L½½x1; . . . ; xn�� for any root a. By relabeling x1; . . . ; xn we can assume that
a ¼ e1 � e2. Then, for any monomial m ¼ xk1

1 xk2
2 . . . xkn

n , we have

ÂAaðmÞ ¼ xk3
3 . . . xkn

n ÂAaðx
k1
1 xk2

2 Þ:

Then exactly the same argument as the one above for A shows that ÂAaðx
k1
1 xk2

2 Þ is a power
series in x1 and x2.
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5.1. Algorithm for computing the products of Bott–Samelson resolutions. We now
produce an explicit algorithm for computing the product of the Bott–Samelson classes
ZI in terms of other Bott–Samelson classes, where I ¼ ða1; . . . ; alÞ. The key ingredient is
our algebraic Chevalley–Pieri formula (Proposition 4.3), which can be reformulated as
follows:

c1
�

LðlÞ
�

A1 . . .AlZe ¼
Pl

j¼1

A1 . . .Aj�1A
�
j

�

c1
�

LðljÞ
��

Ajþ1 . . .AlZe;

where lj ¼ sj�1 � � � s1l (in other words, c1
�

LðljÞ
�

¼ ½sj�1 . . . s1�
�

c1
�

LðlÞ
��

) and the operator
A�j is defined as follows:

A�j ¼ A�aj ¼
1

c1
�

LðajÞ
� ð1� sajÞ:

We can compute A�j on any polynomial in the first Chern classes by the same methods as Aj

(see the end of Section 3). Note that for the Chow ring Aj ¼ A�j (this follows from Lemma
3.4 and the fact that sjaj ¼ �aj and c1

�

LðajÞ
�

¼ �c1
�

Lð�ajÞ
�

for the additive formal group
law), but for the algebraic cobordism ring this is no longer true.

More generally, for any polynomial f ¼ f
�

c1
�

Lðm1Þ
�

; . . . ; c1
�

LðmkÞ
��

in the first
Chern classes of some line bundles on X , we can compute its product with A1 . . .AlZe by
exactly the same argument as in the proof of Proposition 4.3:

f � A1 . . .AlZe ¼
Pl

j¼1

A1 . . .Aj�1½A
�
j sj�1 . . . s1�ð f ÞAjþ1 . . .AlZeð5:0Þ

þ A1 . . .Al ½sl . . . s1�ð f ÞZe:

Note that the last term on the right-hand side is equal to the constant term of the polyno-
mial ½sl . . . s1�ð f Þ (which is of course the same as the constant term of f ) multiplied by
A1 . . .AlZe. In particular, for f ¼ c1

�

LðlÞ
�

this term vanishes modulo S. Here and below,
by the ‘‘constant term’’ of a polynomial in L½x1; . . . ; xn� we mean the term of polynomial
degree zero (the total degree of such a constant term might be negative since the Lazard
ring L contains elements of negative degree). Note that all elements of LH L½x1; . . . ; xn�
are invariant under the operators si, and hence commute with the operators Ai. For an
arbitrary reductive group, the constant term of an element f A W

�ðX Þ is defined as the
product of f with the class of a point.

It is now easy to show by induction on l that

fA1 . . .AlZe ¼
P

JHI

aJð f Þ

�
Q

i A InJ

Ai

�

Ze;

where aJð f Þ for the k-subtuple J ¼ ðaj1 ; . . . ; ajkÞ of I is the constant term in the expansion
for ½sl . . . sjkþ1A

�
jk
sjk�1 . . . sj1þ1A

�
j1
sj1�1 . . . s1� f , which is invariant under si (for all i) and

hence equal to ½A�jksjk�1 . . . sj1þ1A
�
j1
sj1�1 . . . s1� f . Indeed, we first use formula (5.0) above
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and then apply the induction hypothesis to all terms in the right-hand side except for the

last term, which already has the form aJð f Þ

�
Q

i A InJ

Ai

�

Ze for J ¼ j. We get

A1 . . .Aj�1½A
�
j sj�1 . . . s1�ð f ÞAjþ1 . . .AlZe

¼ A1 . . .Aj�1

P

JHInf1;...; jg

aJ
�

½A�j sj�1 . . . s1�ð f Þ
�
�

Q

i A InðJWf1;...; jgÞ

Ai

�

Ze

¼
P

J 0HI

aJ 0ð f Þ

�
Q

i A InJ 0
Ai

�

Ze;

where the last summation goes over all subsets J 0 of I that do contain j but not
1; . . . ; j � 1. Plugging this back into formula (5.0) we get the desired formula. Combining
this with Theorem 3.2, we get the following formula in W

�ðXÞ for the product of the Bott–
Samelson class ZI with the first Chern class c1

�

LðlÞ
�

in terms of other Bott–Samelson
classes:

c1
�

LðlÞ
�

ZI ¼
P

JHI

bJðlÞZInJ ;ð5:1Þ

where bJðlÞ is the constant term in the expansion for

½A�j1sj1þ1 . . . sjk�1A
�
jk
sjkþ1 . . . sl �

�

c1
�

LðlÞ
��

:

We changed the order of the si when passing from aJ to bJ since ZI ¼ Al . . .A1Ze.
Note that for J ¼ j we have bJ ¼ 0, and for J ¼ ðajÞ we have bJ ¼ ðl; bjÞ since the

constant term in A�j
�

c1
�

Lðsjþ1 . . . sllÞ
��

¼
c1
�

Lðsjþ1 . . . sllÞ
�

� c1
�

Lðsjsjþ1 . . . sllÞ
�

c1
�

LðajÞ
� is equal

to ðsjþ1 . . . sll; ajÞ (see the proof of Proposition 4.3, and Proposition 4.1 for the definition
of bi), which is equal to ðl; bjÞ. So the lowest-order terms (with respect to the polynomial
grading) of this formula give an analogous formula for the Chow ring as expected.

We now have assembled all necessary tools for actually performing the desired
Schubert calculus. Namely, to compute the product ZIZJ we apply the following procedure
(which is formally similar to the one for the Chow ring). We replace ZJ with the respective
polynomial RJ in the first Chern classes (using Theorem 3.2 together with the formula for
Ze) and then compute the product of ZI with each monomial in RJ using repeatedly for-
mula (5.1). Note that formula (5.1) allows us to make this algorithm more explicit than the
one given in [4] (see an example below).

The naive approach to represent both ZI and ZJ as fractions of polynomials in first
Chern classes and then computing their product is less useful. In particular translating the
product of the fractions back into a linear combination of Bott–Samelson classes will be
very hard, if possible at all.

5.2. Examples. We now compute the Bott–Samelson classes ZI in terms of the
Chern classes xi for the example X ¼ SL3=B where B is the subgroup of upper-triangular
matrices. We then compute certain products of Bott–Samelson classes in two ways, by
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hand and then using the algorithm above together with formula (5.1). Note that only the
second approach generalizes to higher dimensions.

In SL3, there are two simple roots g1 and g2. In X , there are six Schubert cycles
Xe ¼ pt, X1, X2, X12, X21 and X121 ¼ X (here 12 is a short-hand notation for ðg1; g2Þ,
etc.). Each XI except for X121 coincides with its Bott–Samelson resolution RI . Note that
in general RI and XI do not coincide even when XI is smooth. (By the way, for G ¼ GLn

the first non-smooth Schubert cycles show up for n ¼ 4.)

Computing ZI as a polynomial in the first Chern classes. We want to express ZI as a
polynomial in x1, x2, x3 using the formulas

Zsi1 ...sil
¼ Ail . . .Ai1Re; Re ¼

1

6
c1
�

Lðg1Þ
�

c1
�

Lðg2Þ
�

c1
�

Lðg1 þ g2Þ
�

:

Note that in computations involving the operators Aa it is more convenient not to replace
c1
�

LðaÞ
�

with its expression in terms of xi until the very end.

Let us for instance compute R1 as a polynomial in x1, x2, x3 modulo the ideal S gen-
erated by the symmetric polynomials of positive degree:

R1 ¼ A1Re ¼
1

6
ð1þ s1Þc1

�

Lðg2Þ
�

c1
�

Lðg1 þ g2Þ
�

¼
1

3
c1
�

Lðg2Þ
�

c1
�

Lðg1 þ g2Þ
�

¼
1

3
F
�

wðx2Þ; x3
�

F
�

wðx1Þ; x3
�

:

We have wðuÞ ¼ �uþ a11u
2 � a211u

3 and Fðu; vÞ ¼ uþ vþ a11uvþ a12u
2vþ a21uv

2, where

a11 ¼ �½P
1� and a12 ¼ a21 ¼ ½P

1�2 � ½P2� ([14], 2.5). Thus

1

3
F
�

wðx2Þ; x3
�

F
�

wðx1Þ; x3
�

¼
1

3
Fð�x2 þ a11x

2
2 � a11x

3
2 ; x3ÞFð�x1 þ a11x

2
1 � a11x

3
1 ; x3Þ

¼
1

3
ð�x2 þ x3 þ a11x

2
2 � a11x2x3Þð�x1 þ x3 þ a11x

2
1 � a11x1x3Þ

¼ x2
3 ;

since ðx3 � x2Þðx3 � x1Þ ¼ 3x2
3 modS, and ðx2 þ x1Þðx2 � x3Þðx1 � x3Þ ¼ �3x

3
3 ¼ 0 modS.

So the answer agrees with the one we got in Remark 2.7.

Here are the polynomials for the other Bott–Samelson resolutions:

R212 ¼ 1þ a12x
2
1 ; R121 ¼ 1þ a12x1x2;

R12 ¼ �x1 � ½P
1�x2

1 ; R21 ¼ x3 ¼ �x1 � x2;

R1 ¼ x2
3 ¼ x1x2; R2 ¼ x2

1 ;

Re ¼ �x
2
1x2:
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Note that the Bott–Samelson resolutions RI in this list coincide with the Schubert cycles
they resolve if I has lengthe 2. The corresponding polynomials RI are the classical Schu-
bert polynomials (see e.g. [16] and keep in mind that his xi is equal to our �xi) except for
the polynomial R12.

In general, polynomials RI can be computed by induction on the length of I . E.g. to
compute R212 we can use that R212 ¼ A2R21 and R21 ¼ x3. Hence,

R212 ¼ A2ðx3Þ ¼ 1þ a12x2x3 ¼ 1þ a12x
2
1 :

The middle equation is obtained using the formula Aðy1Þ ¼ 1þ a12y1y2 þ � � � from Section
2.1 and the observation that all symmetric polynomials in x2 and x3 of degree greater than
2 vanish modulo S.

Computing products of the Bott–Samelson resolutions. Let us for instance compute
Z12Z21. First, we do it by hand.

Denote by o1, o2 the fundamental weights of SL3. Applying Proposition 4.1(2) to
X121 ¼ X we get

LðlÞ ¼ LðX21Þ
ðl; g2ÞnLðX12Þ

ðl; g1Þ:

Hence, c1
�

Lðo1Þ
�

¼ X12 and c1
�

Lðo2Þ
�

¼ X21. (Note that if we instead applied Proposition
4.1(1) to R121, we would obtain the more complicated expression

r�121LðlÞ ¼ LðR21Þ
ðl; g2ÞnLðR11Þ

ðl; g1þg2ÞnLðR12Þ
ðl; g1Þ;

which does not allow us to express X12 ¼ R12 as the Chern class of the line bundle LðlÞ on
R121.)

Hence,

Z12Z21 ¼ c1
�

Lðo1Þ
�

Z21 ¼ r21�c1
�

r�21Lðo1Þ
�

by the projection formula: c1
�

LðlÞ
�

� ZI ¼ rI �c1
�

r�I LðlÞ
�

: We now apply Proposition 4.1(1)
to R21 and Lðo1Þ and get r�21Lðo1Þ ¼ LðR1ÞnLðR2Þ: Using the formal group law we com-
pute c1

�

LðR1ÞnLðR2Þ
�

¼ R1 þ R2 � ½P
1�Re: Finally, we use that rJ�½RJ � ¼ ZJ and get

that

Z12Z21 ¼ Z1 þ Z2 � ½P
1�Ze:

Similarly, we can easily compute the following products:

Z12Z12 ¼ Z2; Z21Z21 ¼ Z1;

Z12Z1 ¼ Z21Z2 ¼ Ze; Z12Z2 ¼ Z21Z1 ¼ 0;

which in particular gives us another way to compute polynomials RI .

So the only product that di¤ers from the analogous product in the Chow ring case is
the product Z12Z21.
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We now compute the product Z12Z21 using formula (5.1). We have Z12 ¼ c1
�

Lðo1Þ
�

by Proposition 4.1(1). Hence, according to formula (5.1)

Z12Z21 ¼ c1
�

Lðo1Þ
�

Z21 ¼ b1ðo1ÞZ2 þ b2ðo1ÞZ1 þ b21ðo1ÞZe;

where b1, b2 and b21 are the constant terms in A�1
�

c1
�

Lðo1Þ
��

, ½A�2 s1�
�

c1
�

Lðo1Þ
��

and
½A�2A

�
1 �
�

c1
�

Lðo1Þ
��

, respectively. We already know that

b1ðlÞ ¼ ðl; g1Þ and b2ðlÞ ¼ ðl; s1g2Þ:

It remains to compute b21ðlÞ. First, by using that LðlÞ ¼ Lðs1lÞnLðg1Þ
ðl; g1Þ and the for-

mal group law we write

A�1
�

c1
�

LðlÞ
��

¼
c1
�

LðlÞ
�

� c1
�

Lðs1lÞ
�

c1
�

Lðg1Þ
�

¼ ðl; g1Þ þ a11ðl; g1Þ c1
�

Lðs1lÞ
�

þ
ðl; g1Þ � 1

2
c1
�

Lðg1Þ
�

� �

þ terms of degf 2:

Hence,

½A�2A
�
1 �
�

c1
�

LðlÞ
��

¼ a11ðl; g1ÞA
�
2 c1

�

Lðs1lÞ
�

þ
ðl; g1Þ � 1

2
c1
�

Lðg1Þ
�

� �

þ terms of degf 1

¼ a11ðl; g1Þ ðl; s1g2Þ �
ðl; g1Þ � 1

2

� �

þ terms of degf 1;

and b21 ¼ a11ðl; g1Þ ðl; s1g2Þ �
ðl; g1Þ � 1

2

� �

. We get

c1
�

LðlÞ
�

Z21 ¼ ðl; g1ÞZ2 þ ðl; s1g2ÞZ1 þ a11ðl; g1Þ ðl; s1g2Þ �
ðl; g1Þ � 1

2

� �

Ze:

In particular, c1
�

Lðo1Þ
�

Z21 ¼ Z2 þ Z1 þ a11Ze (which coincides with the answer we have
found above by hand).

Finally, note that it takes more work to compute c1
�

LðlÞ
�

Z21 using the algorithm in
[4] because apart from certain formal group law calculations (which are more involved than
the calculations we used to find b21) one has also to compute the products R2

1 and R2
2 in

CH�ðR21Þ.

6. Appendix. Complex realization for cellular varieties

We will now prove the following result stated in Section 2:

Theorem 6.1. For any smooth cellular variety X over k and any embedding k ! C,
the complex geometric realization functor of L-algebras r : W�ðXÞ !MU �

�

XðCÞan
�

is an

isomorphism.
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Proof. Recall (see above) that the geometric realization functor coincides with the
map given by the universal property of W�, and that both sides are freely generated by (res-
olutions of the closures of) the cells. Thus it su‰ces to show that it is an isomorphism if we
pass to the induced morphism after taking

N

L

Z on both sides, which we denote by r 0. Now

by a theorem of Totaro [20], Theorem 3.1 (compare also [14], Remark 1.2.21), for cellular
varieties the classical cycle class map c : CH�ðX Þ ! H �

�

XðCÞan
�

(which is an isomor-
phism for cellular varieties X ) defined using fundamental classes and Poincaré duality (see
e.g. [16], Section A.3) factors as CH�ðXÞ !MU �

�

XðCÞan
�

nL ZGH �
�

XðCÞan
�

, and the
left arrow in this factorization is given by first taking any resolution of singularities of the
algebraic cycle and then applying ðCÞan. We also have a morphism q : W�ðXÞ ! CH�ðX Þ
which induces an isomorphism q 0 : W�ðX ÞnL Z! CH�ðX Þ by Levine–Morel [14], Theo-
rem 1.2.19, and corresponds to resolution of singularities [14], Section 4.5.1. Putting every-
thing together, we obtain a commutative square

W
�ðXÞnL Z ���!

r 0

MU �
�

X ðCÞan
�

nL Z

q 0

?
?
?
y
G G

?
?
?
y

f 0

CH�ðXÞ ��������!
G

c
H �

�

XðCÞan
�

with the vertical maps and c being isomorphisms, which finishes the proof. r
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