
transactions of the
american mathematical society
Volume 331, Number 2, June 1992

SCHUBERT CALCULUS IN COMPLEX COBORDISM

PAUL BRESSLER AND SAM EVENS

Abstract. We study the structure of the complex cobordism ring of the flag
variety of a compact connected Lie group. An explicit procedure for determin-
ing products of basis elements is obtained, generalizing the work of Bernstein-
Gel'fand-Gel'fand on ordinary cohomology and of Kostant-Kumar on K-
theory. Bott-Samelson resolutions are used to replace the classical basis of Schu-
bert cells.

1.  INTRODUCTION

Let G be a connected compact Lie group with maximal torus F and let
X = G/T be its generalized flag variety. The study of the geometry and topology
of X is crucial for a number of problems related to the representation theory
and topology of G. An important aspect of this study is the intersection theory
of algebraic cycles on X, classically known as the Schubert calculus. In the
case where G = U(n), this problem generalizes the nineteenth century work of
Schubert on intersections of algebraic cycles in the Grassmannian.

A 1973 paper of Bernstein, Gel'fand, and Gel'fand [BGG] gave a procedure
for determining the intersection pairings in terms of the rational cohomology of
X (see also [D]). This work extended results of Borel, Bott and Samelson, and
Kostant and has recently been extended to Kac-Moody groups by Kostant and
Kumar (see also [A] and [K]). Kostant-Kumar [KK] studied an analogous prob-
lem for the complex AMheory of the flag variety. Much of this work focused
on the algebro-geometric properties of the flag variety.

In this paper we take a more topological point of view. As a consequence
we are able to extend the classical results to all complex-oriented multiplicative
cohomology theories. Examples of such theories are ordinary cohomology, K-
theory, elliptic cohomology, and complex cobordism. These additional theories
contain more subtle topological information, which is interpreted in terms of
the coefficients of their formal group laws. In addition, we are able to unify
the study of ordinary cohomology and ^-theory, which previously had been
studied by parallel but distinct methods.

The problem of the Schubert calculus may be described as follows. The flag
variety is a smooth projective variety, endowed with the structure of a CW-
complex by the Bruhat cellular decomposition. The cells Xw (called Schubert
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800 PAUL BRESSLER AND SAM EVENS

cells) are indexed by elements w of the Weyl group W. The dimension of the
cell Xw is equal to twice the length of the corresponding word. The Schubert
cells form a free basis for the cohomology of G/T and the classical Schubert
calculus determines the multiplicative structure of H*(G/T; Z) in terms of
this basis. In the analogous problem for AT-theory cells are represented by their
structure sheaves.

In general the cells Xw do not determine classes in h*(G/T) for an arbitrary
generalized cohomology theory. However, for a multiplicative cohomology the-
ory h* with complex orientation we construct a family of elements in h*(G/T)
which

1. generalize the classes determined by Xw (in ordinary cohomology and
./Í-theory);

2. generate h*(G/T) as a module over the ring of coefficients h* ;
3. arise from classical geometric objects.

These elements descend to h*(G/T) from MU*(G/T) under the complex ori-
entation MU —> h . In MU*(G/T) they are represented by the Bott-Samelson
resolutions of singularities.

An algebra generated by operators which are in one-to-one correspondence
with the simple reflections in the Weyl group acts on h*(G/T). In fact any
resolution class arises by applying a product of these operators to the resolution
of the zero dimensional Schubert variety. Using a geometric description of the
operators we define analogous operators on h*(G/T). The formula of Brumfiel-
Madsen for transfer in bundles of homogeneous spaces yields an expression
for the operators in terms of the Euler classes of line bundles on G/T. The
formulas which we obtain generalize those known in cohomology and K-Xheory.

The operators enable us to express the resolution classes in terms of the
characteristic classes. We also describe a recursive procedure for calculation of
products of resolution classes with the Euler classes of line bundles which leads
to a procedure for calculation of products of resolution classes. The algorithm
yields Schubert calculus for any complex oriented cohomology theory but differs
from the known algorithm for complex AT-theory.

The classical operators from ordinary cohomology and A"-theory satisfy the
so-called braid relations. In a previous paper, we showed that these two theories
were essentially the only theories in which braid relations were satisfied. As a
consequence of this fact, two different resolutions for the same Schubert variety
may define different classes in h*(G/T), if h is not ordinary cohomology or K-
theory. However, one can still determine the product of two resolution classes
in terms of a basis. The difference between two resolutions may be regarded as
more delicate information about the resolutions than appears in cohomology or
A"-theory.

This paper is organized as follows. After recalling some facts about multi-
plicative cohomology theories with complex orientation we give a short account
of Quillen's geometric interpretation of complex cobordism. In the follow-
ing sections we use this description of MU to define a family of classes in
MU*(G/T) and give a procedure for calculating cup and cap products. The re-
sulting formulas describe Schubert calculus for any multiplicative cohomology
theory with complex orientation.
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SCHUBERT CALCULUS 801

2. Complex oriented cohomology theories
In this section we recall the basic properties of multiplicative generalized

cohomology theories with complex orientation.
A multiplicative cohomology theory h is a functor from topological spaces

to graded rings satisfying the Eilenberg-Steenrod axioms except for the dimen-
sion axiom and some additional axioms for the product [Dy]. A multiplicative
cohomology theory h is complex oriented if complex vector bundles are ori-
ented for h. In a complex oriented cohomology theory the Euler class and
the Chern classes of complex vector bundles are defined and satisfy the usual
properties. Examples of complex oriented cohomology theories are ordinary
cohomology, complex K-theory, elliptic cohomology, and complex cobordism.
Complex cobordism is the universal complex oriented theory, so for any such
theory there is natural transformation MU —> h .

A complex orientation of a proper map of (smooth) manifolds

f: M ^ N
is a factorization

M^E ^ N
where F is a complex vector bundle and / as an embedding with a stably
complex normal bundle. A compact manifold is said to be complex oriented
if and only if the map to a point is complex oriented (equivalently the tangent
bundle is stably complex).

Let h be a complex oriented theory. A proper complex oriented map

f: M ^ N
induces the Gysin homomorphism

fi:h*(M)^h*~k(N)
of degree k = dim M - dim A.

Given proper choices of complex orientations the Gysin homomorphism sat-
isfies the following properties:

1. The projection formula holds (i.e. with notations as above f is a map of
h*(N) modules).

2. Naturality (i.e.  (f ° g)* = f ° g*).
3. Base change. Consider a Cartesian square

W   -£    Y
el It
X    Â    Z

Then foi^e.og*.
To a cohomology theory h with complex orientation corresponds a formal

group law defined over the coefficient ring h*, i.e. a power series OF over h*.
The group law expresses the Euler class of the tensor product of two complex
line bundles in terms of the Euler classes of each, so

X(Lx®L2)=F(x(Lx),x(L2)).
For example the group law of ordinary cohomology is additive, i.e.

F(X, Y) = X + Y,
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802 PAUL BRESSLER AND SAM EVENS

and the group law of complex A"-theory is multiplicative, i.e.

P{X, Y) = X + Y + uXY,
where m is a unit. As Quillen showed in [Q] the group law associated with
complex cobordism is the universal group law.

3. Geometric interpretation of complex cobordism
In this section we recall a geometric definition of complex cobordism and

of the corresponding homology theory of complex bordism and describe the
associated notions (e.g. the induced maps, products, duality) in terms of these
definitions.

We define the (co)bordism groups for a smooth manifold (not necessarily
compact). All maps will be assumed to be smooth.

Complex bordism theory MU was originally defined by geometric means
as bordism classes of maps of stably complex manifolds. More precisely for
a space X the underlying set of the group MUq(X) is the set of equivalence
classes of maps

M-^X.
Here M is a closed, stably almost complex manifold. This means that M is a
compact smooth manifold without boundary of dimension q with IM stably
complex. Two such maps (M, f) and (N, g) are equivalent (bordant) if and
only if their disjoint union extends to a map

W-*X
of a compact stably almost complex manifold W of dimension q + 1, whose
boundary is the union of M and A. Moreover, the stably almost complex
structures on M and A induced by the embedding into W and the original
ones are required to be equivalent. The Abelian group structure on MU»(X) is
given by the operation of disjoint union. By a theorem of Rene Thom the result-
ing groups coincide with those obtained by a homotopy-theoretic construction
[S].

The dual cohomology theory MU called complex cobordism was given a geo-
metric description by D. Quillen [Q]. We present an outline of his construction
below.

For a manifold X of dimension n an element in MU"~q(X) is represented
by a differentiable, proper map

M -> X
of a (not necessarily compact) manifold M of dimension q together with an
equivalence class of complex orientations. Two such maps are equivalent if and
only if they are bordant as maps with complex orientations.

A differentiable map of manifolds

X -^ Y
induces a map

g,:MU,(X)^MUt(Y)
in bordism by composing:  g*[(M, f)] = [(M, g o f)]. It also induces a map

g*:MU*(Y)-^MU*(X)
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in cobordism defined as follows. Let (M, f) represent an element in MU*(Y).
The map / can be chosen to be transverse to g. Then g*[(M, f)] is repre-
sented by the left vertical arrow in the diagram

MxyX    ->     M
I if
x       X   y

Complex cobordism is a multiplicative cohomology theory. The external prod-
uct

MU*(X) <g> MU*(Y) -* MU*(X x Y)
is defined by taking the Cartesian product of maps. For a space X, MU*(X)
is a (graded) commutative ring with unit under cup product defined by

[(M,f)][(N,g)] = A*[(MxN,fxg)],
where A is the diagonal embedding of X into X x Y. Thus the cup product
is represented by the "geometric intersection of cycles." The unit element is
represented by the identity map. Similarly there is a cap product pairing

MU*(X) 0 MUt{X) -» MU*(X)
given by the fiber product of maps.

A compact stably almost complex manifold X has a fundamental class in
MUt(X) represented by the identity map. Poincaré duality can be described as
follows. Let (M, f) represent an element in MU*(X). The complex orienta-
tion of / and the stably almost complex structure on X induce a stably almost
complex structure on M. With this structure (M, f) represents an element
in MU*(X) of complementary (with respect to the dimension of X) degree
which is the Poincaré dual.

For a proper complex oriented map

X ^Y
the Gysin map

/,: MU*(X) -» MU*-(dimX-dimY)(Y)

is defined by composing with /. In presence of Poincaré duality this is the
adjoint to the induced map in bordism.

Stably complex vector bundles are oriented in complex cobordism. For a
vector bundle £-»! with the zero section Ç the Thom class Ue in MU*(XE)
is defined by Ue = C ( 1 ), where Xe denotes the Thom space of E and Ç
denotes the zero section. The Euler class x(E) in MU*(X) is defined by
X(E) = C*C*(1) • Thus the Euler class is represented by the inclusion of the
submanifold of zeros of a generic section.

4. Geometry and topology of the flag variety

In what follows G is a compact simply-connected Lie group. We fix a maxi-
mal torus F c G. The complexified Lie algebras of G and F will be denoted
by g and t respectively. Let ¿% denote the set of roots of G and choose a sys-
tem of positive roots ¿?+ with simple roots A - {ax, ... , a¡}. The compact
group G can be embedded in a complex group Gc with Lie algebra g. In Gc
we choose the Borel subgroup B containing F and having ¿%+ for the roots.
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The isomorphism
G/T - Gc/B

induces a complex structure on G/T. The tangent bundle of the flag manifold
decomposes into a sum of line bundles

TG/F=  0 L(-a).

Here and in what follows the line bundle L(k) is defined by

L(k) = G xj-Q
for an integral weight X of t (cf. [BH]).

Let W denote the Weyl group of G. The flag variety decomposes into a
union of 5-orbits (under the left 5-action):

Gc/B =  (J Xw
wew

where Xw — BwB and dimX,,, = 2l(w) (l(w) denotes the length of the word
w) [BGG]. This decomposition gives G/T a structure of a CW complex. The
closure Xw of the cell Xw is an algebraic subvariety of G/T (often singular)
called a Schubert variety. Its boundary is a union of cells corresponding to all the
words which are smaller than w in Bruhat ordering [BGG, §2]. Consequently
the integral cohomology of the flag variety is free with basis Xw , w £ W and
is concentrated in even degrees.

Since MU* is also even graded the Atiyah-Hirzebruch spectral sequence

H*(G/T; MU*) => MU*(G/T)
collapses at the F2 term and there is an isomorphism of abelian groups

MU*(G/T) 2 H*(G/T) <g> MU*.
It follows from the universal property of M U that we can restrict our atten-
tion to the complex cobordism theory. Indeed, by naturality of the Atiyah-
Hirzebruch spectral sequence, the above spectral sequence collapses at the F2
term for any complex oriented theory h . The ring structure of h*(G/T) is
obtained by specialization using the Thom class.

The Schubert cycles Xw which generate the associated graded group
H*(G/T) ® MU* of MU*(G/T) do not have canonical liftings to cobordism
classes. However, we can use the resolutions of singularities of Schubert vari-
eties to represent liftings. We will use cobordism classes given by Bott-Samelson
resolutions of singularities of Schubert varieties (also known as the canonical
resolutions). They appeared in the context of Schubert calculus in the work of
Bott-Samelson [BS], Demazure [D], and Arabia [A].

The Weyl group W of G is generated by reflections sx, ... , s¡ which are
in one to one correspondence with the simple roots. We shall also consider
subgroups H\, ... , H[ of G of minimal rank. Hk can be described as the
subgroup containing F with roots ak and -ak . The complexified Lie algebra
of Hk is g„t ©t© g_QA , where g,t denotes the ak root space. There is an
embedding

SU(2) -» Hk
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such that the intersection of the image of the maximal torus of SU(2) with F
is the one parameter subgroup of F, t h-> exn(tX*k), X*k denoting the element
of t dual to the fundamental weight Xk . We shall identify the flag manifold of
SU(2) with CP1 , thinking of the latter as the projectivization of the standard
representation of SU(2). The inclusion of SU(2) into Hk induces isomor-
phism of the respective flag manifolds.

We give a brief account of the construction and the properties of the Bott-
Samelson resolutions below. A detailed study is presented in the paper by Bott
and Samelson in Chapter 3.

Let I = (ii, ... , i„) be a multi-index with 1 < ij < I. The space R¡ of the
resolution is given by

Ri = //,, xTHl2xT--- xTHJT

where F acts by multiplication on the right on Hik and by multiplication on
the left (by the inverse) on H¡k+Í . There is a map

R¡ ^ G/T

induced by group multiplication:

{hi,..., hn)*hi ■h„-T.

Suppose the multi-index / indexes a decomposition of a word w £ W into a
product of simple reflections

w = sit • sh ■ ■ ■ sin

with l(w) = n (such a decomposition is called reduced). Then (R¡, r¡) is a
resolution of singularities of Xw , i.e., R¡ is smooth and the map r¡, is proper
and birational [D].

Let / be as before and let J = (ix, ... , i„-X). Then R¡ is fibered over
Rj by (hi,... , hn) *-*■ (hi,... , h„-X) with fiber H¡JT isomorphic to CP1 .
We now give an alternative description of R¡. Consider the space //,, x T
■ ■ ■ xT Hin , xT Hjn . This is a principal //,„ bundle over Rj . The group //,„
has an irreducible complex two dimensional representation with highest weight
Xi„, which, when restricted to SU(2) (cf. the description of H¡n), is just the
standard representation. The associated vector bundle V(J, i„) over Rj splits
into the sum of line bundles:

V(J,in) = L(Xin)®L(kin-aill),

where L(X) denotes the line bundle on Rj associated to the character ex of
the right-most torus in the definition of Rj (and is equal to r}L(X)). Then R¡
is isomorphic to the projectivization of V(J, i„).

This makes h*(R¡) easily computable for any complex oriented theory h by
standard techniques. For example h*(R¡) is generated (as an algebra over the
ring of coefficients) by the degree two part. The latter fact plays an important
role in what follows.

The resolution R¡ is a complex manifold and the map r¡ is a holomorphic
map, and, therefore, naturally complex oriented.
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Definition. Z/ is the complex cobordism class represented by the pair (R¡ ,r¡).
By Ze we shall denote the cobordism class represented by the inclusion of the
zero dimensional cell which corresponds to the empty multi-index.

The resolution class corresponding to a reduced decomposition of w £ W
descends to the class of the Schubert variety Xw in ordinary cohomology and
complex AMheory. In ordinary cohomology this is an immediate consequence
of the birationality of the map r¡. In AMheory this is a subtle fact which follows
from the normality of Xw and vanishing of certain derived functors (cf. e.g.
[Ku]). In ordinary cohomology, if the multi-index / indexes a nonreduced
product of reflections the corresponding resolution class descends to zero. The
cobordism classes corresponding to different choices of reduced decompositions
are different and, in fact, usually specialize to different classes under the Thom
class map. This is related to the results in [BE2] (see the remark at the end of
the paper). The facts that the ordinary cohomology is free on the basis of the
Schubert classes, and that the Atiyah-Hirzebruch spectral sequence degenerates
at E2, imply

Proposition 1. The collection of cobordism classes Z¡ generates MU*(G/T) as
a module over the coefficient ring. In fact it is freely generated by any subcollec-
tion, containing exactly one class Z¡ per element w £ W, so that I indexes a
reduced decomposition of w .

The flag variety naturally maps to the classifying space of the maximal torus.
This map can be described as the inclusion of the fiber of the bundle

BT -» BG.
Alternatively, it is the classifying map of the F-principal bundle

G -» G/T.
The induced homomorphism in cohomology is called the "characteristic homo-
morphism"

X: H*(BT) - H*(G/T).
The cohomology ring of BT with complex coefficients can be naturally identi-
fied with the completion of the ring of complex valued polynomial functions on
the complexified Lie algebra of F, where the linear functions are assigned de-
gree two. The integral linear functions are weights X of t, which exponentiate
to characters ^ on I. The characteristic homomorphism maps a weight X to
the Euler class of the line bundle L(X) on G/T associated to the character ex .

The characteristic homomorphism is surjective in rational cohomology. Con-
sequently it is surjective in any complex oriented theory h whose coefficients
form an algebra over the rational numbers. In that case there is a short exact
sequence

0 -» (h*(BT)f) -» h*(BT) -» h*(G/T) -» 0
which identifies the kernel of the characteristic homomorphism with the ideal
in h*(BT) generated by the Weyl group invariants of positive degree.

5. Operators on MU*(G/T)

In this section we define operators A¡ which generate an algebra acting on
MU*(G/T).  This action makes MU*(G/T) into a cyclic module generated
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by the class Ze represented by the inclusion of the zero dimensional cell. The
operators allow us to express the resolution classes in terms of the image of the
characteristic homomorphism. They will be used in conjunction with the cap
product formula to describe the multiplicative structure of MU*(G/T).

For each i = I, ... , I there is a holomorphic fiber bundle

Tti-.G/T^G/H
with fiber isomorphic to CP1 . Using these we define a family of operators A¡
(MU*-module endomorphisms) on MU*(G/T) by

A¡ = n* o n» : MU*(G/T) -» MU*~2(G/T).
These operators appear in the work of Bernstein-Gelfand-Gelfand, Kostant-
Kumar, and Demazure and play an essential role in Schubert calculus, as a
consequence of the following proposition.

Proposition 2. Let I = (ix, ... , in) and J = (ix, ... , in+x). Then
1- AiK+lZI = Zj,
2.  A2 = Ai(l)A,.

Proof. 1. By definition 7r,n+1*Z/ is represented by the map (R¡, 7iin+i or/).
Since 7c,n+1 is a submersion it is transverse to 7cin+1 o r¡. Therefore Air¡+lZ¡ is
represented by the left vertical arrow in the diagram

Hi, xT-- xTH¡JT *G/H¡n+I G/T    -» R[

G/T *Hl      G/Hln+¡
There is an isomorphism

Hit xT--- xT HinJT ^ H¡, xT--- xT Hin/T xG/H¡r¡+t G/T,

(hi,,..., hill+,) * (hh ,... ,hi, -hi2---hin+l).
2. This follows directly from the projection formula.

Corollary 1. Z¡ = A¡, o ■ ■ ■ o AinZe , where Ze denotes the class represented by
the inclusion of the zero dimensional Schubert variety.

Corollary 2. The operators A¡ acting on ordinary cohomology satisfy A2 - 0.
Proof. This follows from the observation that A¡(1) is an element of degree
-2 of the ring of coefficients.

The operators defined above allow us to relate the classes of the form Z/ to
the characteristic classes of line bundles on G/T as follows. For a complex
vector bundle F let x(F) denote the Euler class of F (in MU). The Euler
characteristic of the flag variety is equal to the order of the Weyl group. Then

\W\Ze = x(TG/T)=   [J x(L(-a)).

The first equality follows from the fact that there is a vector field with the num-
ber of simple zeros equal to the Euler characteristic. Since the flag manifold is
path connected all points define the same cobordism class. The second equality
follows from the Whitney sum formula.
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Proposition 2 implies that all resolution classes Z/ are generated from Ze
by repeated application of operators Ai. That isif I = (ix, ... ,in)

Zi = Ai,o-.- oAinZe.

Using the above expression for Ze we obtain

Zj = ^-Ain---Alt   n X(L(-aj)).

The operators A¡ have natural liftings to operators C, on MU*(BT). Let

Pi.BT^ BH¡
be the CP1 fiber bundle induced by the inclusion T —► H¡. Then define

Ci = p* oPj, : MUj(BT) -» MUj~2(BT).

Naturality properties imply that the characteristic homomorphism intertwines
the actions of C, and yl,.

The operators C, act on MU*(BT) by the formula in Proposiion 3 below.
The formula is derived in [BE2] using homotopy theoretic considerations.

Proposition 3 [BE2].

6. Cup product formula and Schubert calculus
In the preceding section we developed a method for expressing resolution

classes in terms of the image of the characteristic homomorphism. We shall
presently describe a method for computing the products of resolution classes
with characteristic classes of line bundles on G/T. Combined with the results
of the previous section this yields a method for computing products of resolution
classes.

Let I = (ii, ... , in) be a multi-index with 1 < i¡ < I. Recall that the
cobordism class Z¡ £ MU*(G/T) is represented by the map

r,:R,^G/T.

Let L(X) be the line bundle associated to a weight X. It has the Euler class
X(L(X)) in MU*(G/T). The cup product formula expresses #(F(A)) U Z¡ in
terms of other resolution classes.

Lemma 1.
X(L(X)) UZ; = n.x(r,L(k)).

Proof. The equality is a direct consequence of the projection formula for the
Gysin homomorphism. We can rewrite the right-hand side as

r,.X(rIL(k)) = r,.r*x(L(k)) = x(L(k))ör„(l) = x(L(k)) UZ;.

Lemma 1 shows that the cup product formula comes from a formula for
Euler classes in MU*(R¡). The line bundle r^L(k) will be simply denoted by
L(k).
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We establish some notation which will be used to perform calculations in
MU*(R¡). Given a multi-index / = (ix, ... , i„) we define new multi-indices
I<k , I>k, Ik by

I<k  = (h > •• • > 4-1 ) ,  J>k —  (4+1 , ■■■ , in) ,
I    = (il, ••• , ik-\ , ik+l , •■• , in)-

There is a natural projection

n<k '• Ri —> Ri<k

given by
(hh,... , «¿J >-* (A,,,... ,hik_,).

A subindex J of / of length k is determined by a one-to-one order preserving
map

tr:{l,...,fc}-{l,...,«}
by the rule jm = ia^m). For the subindex J of / of length k there is a natural
embedding

ij,i- Rj -* R¡
defined by converting a A:-tuple (h¡, , ... , hjk) to the «-tuple having him in the
z'CT(m)th slot for 1 < m < k and the identity element elsewhere. Observe that
rj =rIoijj.

A pair (Rj, ijj) represents an element of MU*(R¡). We shall denote it
as well as the integral cohomology class it determines by [Rj]. In view of the
observation above we have

Lemma 2.  r¡t[Rj] = Zj.

Thus the classes of the form [Rj] are precisely the classes we use to obtain
the expression for x(L(k)).

A complex line bundle is determined up to isomorphism by its first Chern
class cx (L) in integral cohomology. The group of line bundles on R¡ denoted
Pic(Ri) is isomorphic to H2(R¡ ; Z), which is free and has a convenient basis
of elements, whose liftings to MU*(Rj) can be chosen to be [R¡k].

The isomorphism
Pic(R,)^H2(Rr,Z)

is given by the first Chern class. H2(R¡; Z) is free with basis consisting of
classes [R¡k] with 1 < k < n. Therefore we can choose a basis for Pic(R¡)
consisting of line bundles Lk , where 1 < k < n , satisfying

d(Lk) = [RIk\.

Take Lk to be the line bundle associated with the divisor RJk (cf. [GH]). This
means Lk has a section which intersects the zero section transversally on R¡k
so that

X(Lk) = [R[k]
in complex cobordism. This basis connects line bundles with a geometric basis
for MU*(R¡). In ordinary cohomology, the Euler class of a line bundle on R{
is a linear combination of [R¡k ] but for a general complex oriented theory, it
is a sum of products of [R¡k ] computed using the formal group law associated
to the theory.
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Proposition 4. Let k be a weight. Let I = (ii,..., i„) be a multi-index and let
s¡ denote the corresponding product of reflections. Then the line bundle L(k) on
R¡ decomposes as

L(k) = ($Lk(S,^).
k=i

Proof. Let

L(A) = (g)Ff*
k=i

be the decomposition of the line bundle L(X) in terms of the basis consisting
of the line bundles Lk described above. To compute the exponents ak we use
ordinary cohomology.

Taking the first Chern class of both sides of the above formula we obtain
n

cx(L(k)) = Y,°k[Rp]-
k=\

Poincaré duality implies that the coefficients ak are exactly the solutions of
the system of linear equations (over the integers) obtained by multiplying both
sides of the above by the classes [R¡j] for 1 < j < n :

n

ci(L(k))[RiJ] = ¿2ak[RIk][Rij].
k=l

The intersection numbers which appear in the equations are determined in the
Lemmas 3 and 4 following the proposition giving

n

-(k,aij) = üj +   ^2  ak(aik,aij).
k=j+\

Lemma 5 shows that the same system of equations is satisfied by -(s¡>kk, a¡k).
Therefore the ak 's are given by

ak = ~(si>kk, aik).

Lemma 3.  cx(n*<kr* L(k))[R¡¡] = -(k, a(y) if j < k and is zero otherwise.
Proof. Using the projection formula as in Lemma 1 it is easy to see that

cx(n*<kr*1<kL(X))[Rh]

is equal to the degree of the line bundle /*,-.) ,n*.kr*^L(X) on /?,;. If j > k,
then r¡<k o n<k o it¡.)j is a constant map. Therefore, if j > k , the line bundle
'(V) in<kri<kLW is trivial, hence of degree zero. If j < k , then

n<k ° n<k° i{ij),i = nr

If j < k consider the line bundle r* L(k) on /?,;. By Proposition 1 the map

r^-.Ri^G/T
can be identified with the inclusion

v.HJT^G/T.
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Under the identification of //¡,/F with CP1 (cf. discussion in §4) the line bun-
dle i*L(k¡j) corresponds to cfCPi(-l)—the tautological line bundle of degree
-1. A line bundle associated to a weight k is a tensor power of i*L(kij) with
exponent the multiplicity of Ai; in k which is precisely (k, a¡j ). Consequently
it has degree -(k, a,y).

Lemma 4. The following integral cohomology intersection numbers arise:
if j>k then [RIk][Rlj] = 0;
if j = k then [R1k][Rij]=l;
if j <k then [Äj*][Äjj = (ah , ai}) .

Proof. In the second case we have a transverse intersection at Re (one point)
so [R[k][R¡j] = 1 . In the remaining cases /?;, is contained in R¡k. The normal
bundle of Rjk in R¡ is easily seen to be n<kr¡ L(-a¡k). Then the intersection
number can be computed by

[RIk][RiJ] = cx(7Z*<kr¡<kL(-a¡k))[Rij]

in which case the answer follows from Lemma 3.

Lemma 5. Let I - (ix, ... , i„) be a multi-index with I < ij < I, and let s¡
be the corresponding product of simple reflections. Then for any weight k the
following identity holds:

n

k = S[k + 22(Si>kk, aik)a,k.
k=l

Proof. The identity is easily verified by expanding s¡k.
As an immediate corollary of the proposition we obtain the cap product

formula in ordinary cohomology.

Theorem (cf. [BGG]). Let k be a weight and let L(k) denote the associated
line bundle on G/T. Let I = (ix, ... , i„) be a multi-index indexing a reduced
decomposition of w = s¡ in the Weyl group (i.e. l(w) = n). Then the cap
product of cx (L(X)) with the homology class of the Schubert variety Xw is given
by the formula

cx(L(X))nXw = ¿2~(k, sJllalk)XSlk
k

where k satisfies 1 < k < n and l(s¡k) — l(w) - 1.

We shall now present a procedure for calculation of products /(F(A))Z/ in
complex cobordism. We have

X(L(k))nZ, = rItX(r!L(k)) = ru j      £      ma[Rv}^ ---[R,^
\a=(/| ,...,/„)

for some coefficients ma £ MU* determined by the formal group law of MU .
Thus we have to compute all products in the above summation. By induction
it suffices to compute products of the form [R¡k][Rj] where J is a submulti-
index of /. After we have computed these products we obtain a product free
expression in the above to which we can apply r¡* to obtain the final result in
terms of classes Zj .
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It remains to reduce the computation of [/?/*][/?./] to a calculation of charac-
teristic classes. Two cases arise, namely either IkUJ = I or J is a subindex of
Ik . If Ik U J = I the intersection is transverse and the homological intersection
coincides with the set theoretic one, i.e.

[RIk][Rj] = [RIknJ].

Otherwise we have J c Ik and

Rj 4 R,k W R, $ G/T.
Let v denote the normal bundle of R¡k in R¡. Then

[Rj][RIk] = ijJk,x(ijjkV).

We next observe that

ij,i^ = 0./* n*<krtM-aik)-

The following cases arise. If J c I>k then Rj is contained in the fiber of n<k .
In that case i, ¡kv is trivial and the intersection is equal to zero. If / c I<k
then

71<k ° ij ,¡k = ij,I<k

and
i) Ikv = r*jL(-aik).

Finally if neither of the above is the case there is an index m such that J<m c
I<k and J>m c I>k . Then

n<k°ij,Ik = ij<m,i<k°n<m

and for the line bundle we have

ijj*v = <mij<m,i<krï<kL(-<*ik) = <mr*j<mL(-aik).

This completes the discussion of the cap product formula in complex cobordism.
We now have the means to express a resolution class Z/ in terms of the

characteristic classes (using the operators A¡) and to calculate the products of
resolution classes with characteristic classes (using the cap product "formula"
described above). These combined yield a method for calculation of products
of resolution classes in terms of resolution classes. We summarize all of the
preceding discussion in a theorem.

Theorem. Let G be a compact connected Lie group with maximal torus T. Let
h be a multiplicative cohomology theory with complex orientation. Then there
is an algorithmic procedure for computing products in h*(G/T) in the set of
generators of the form Z/. The procedure depends only on the root system data
and the formal group law associated with the cohomology theory.

Remark. As a consequence of the above cap product formula we can give a more
geometric proof of the fact that the braid relations are not satisfied for elliptic
cohomology or cobordism (cf. [BE2, BEI, and G]). Indeed if Rj and Rj are
two distinct resolutions of the same Schubert variety, then one easily sees that
there are combinations p of characteristic classes such that p nZ¡ / pnZj .
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