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SCHUR INDICES AND THE GALOIS GROUP

EUGENE SPIEGEL

Abstract. In this note we show that the order of the Schur index of an irreducible

representation divides the order of a certain subgroup of the Galois group of a

cyclotomic extension of the ground field.

For F a field, G a finite group of exponent n and x an irreducible character of G,

we let mp(x) denote the Schur index of x over F. A famous theorem of Brauer

states that mF(x) = 1 if f„ G F where f„ denotes a primitive «th root of unity. In

1975, Goldschmidt and Isaacs [3] showed that p \ m^Oc) if /» is a prime with the

property that the/7-Sylow subgroup of Gal(F(fn)|F) is cyclic, except possibly when

p = 2 and V^T £ F. Fein [2] showed that the exceptional case of the previous

theorem cannot hold if -1 is a sum of two squares in F.

In this note we strengthen the previous results by showing

Theorem. Let F be afield of characteristic 0, n a positive integer and Gal(F(f„)|F)

» Hi X H2 X • • • X Hk with H¡ cyclic and \H¡\ | |/7,_,|, i = 2,. . . , k. Let G be a

finite group of exponent n and x on irreducible character of G. Then

™F(X) \\H2\    if mF(x) * 2 (mod 4)

and

mF(x)\ 2|H2\    if mF(x) * 2 (mod 4).

Before proving the theorem, we need an elementary lemma.

Lemma. Suppose T = F, X T2 X • • • XTk with T¡ finite cyclic groups and

\T¡\ I |ïf_i|, / = 2, . . ., k. Let a, b G T each be of order r with <a> n <*> = {c}

«a> is the group generated by a). Then r\ \T2\.

Proof. Write H = T2X ■ ■ ■ xTk. Then | T2\ is the exponent of H. Write

a = (f„ A,), b = (t2, h¿ with /, G T„ A, G H. Let ¿, = |<A,>|, /' = 1, 2. Then s,\r and

a" = (/,", e), b*> = (#, e). As <a> n <6> = {*}, (|<«">|, |<¿,2>|) = 1 and

(r/j,, r/ij) = L Thus (s2r, i,r) = sxs2. But (s2r, sxr) = r(sv s^, so r = sls2/(sl, s^

and r is the least common multiple of s, and s2. Hence H contains an element of

order r and/-| IT^I-

Proof of theorem. Let L = Q(Ç„) n F. Then L is a finite extension of Q and

Gal(L(£„)|L) as Gal(F(í„)|F). But F an extension of L implies WfCOl^Oc) and so

it is sufficient to show that mL(x)\ \H2\, and we henceforth suppose that F is a finite

extension of Q.
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Suppose now that 9s||»v(x) w»h q a prime. Then there is a rational prime/? and

a prime P lying over p in F so that localization at P gives qs\\mF (x). Assume that

qs ¥= 2 or p ^ 2.

Let «f>: Ga\(FP(Q\FP) -» Gal(F(f„)|F) given by #0) = °Uj„) for a G

Gal(Fp(^„)\FP), <¡> is an injection. Write n = pet with (/,/?) = 1. Then FP($,) is a

cyclic extension of F¿, since it is a totally unramified extension. If p = 2, the Schur

subgroup of FP has at most two elements [5, Theorem 5.5] and so qs =£ 2 or p ¥= 2

implies/» ¥= 2 and FP($pe) is a cyclic extension of Fp. Because FP(£n) = FP(Çpe, f,),

Ga\(FP($n)\FP) is generated by two elements and thus so is the subgroup

Gal(FP(Q\L) where L = FP(x) C FP(Q. We can now write Ga\(FP($n)\L) as the

internal direct product of two cyclic groups Ax and A2. Let 5, be the fixed field of

A,

We now show that qs\ \A¡\ for i = 1, 2. If not, we can suppose without loss of

generality, that q"\\ \A¡\ with 0 < u < s.

Since deg(S2|L) = Ax, by Theorems 4.21 and 9.23 of Albert [1], q*~u\\ms$x). But

S2(Q = FP($„) and Gal(S2(ín)|S2) « A2 is cychc. If q is odd, by the theorem of

Goldschmidt and Isaacs [3], q \ ms (x) giving a contradiction. If q = 2 and p ^ 2

then -1 is a sum of two squares [4, Lemma 2.2], in Qp c FP and so by the theorem

of Fein [2], q \ ms (x) again giving our contradiction. Hence we can assume qs\ \A¡\

for i = 1, 2.

Let a, c A¡ for /' = 1, 2 be elements of order <?*. <a,> n <a2) = {e} since

Ax f) A2 = {e}. Then fX^i) and ^(o2) are again elements in Gal(F(f„)|F) of order

qs with <<Ko"i)> n <<K°2)> = {e}- By lhe lemma 9J| |/f2| and the theorem is

established.

We remark that the proof shows that qs\ \H2\ unless qs = 2 and/) = 2.
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