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SCHUR–WEYL DUALITY FOR TWIN GROUPS

STEPHEN DOTY AND ANTHONY GIAQUINTO

Abstract. The twin group TWn on n strands is the group generated
by t1, . . . , tn−1 with defining relations t2i = 1, titj = tjti if |i−j| > 1. We
find a new instance of semisimple Schur–Weyl duality for tensor powers
of a natural n-dimensional reflection representation of TWn, depending
on a parameter q. At q = 1 the representation coincides with the natural
permutation representation of the symmetric group, so the new Schur–
Weyl duality may be regarded as a q-analogue of the one motivating the
definition of the partition algebra.

1. Introduction

Let E = C
n with standard basis {e1, . . . , en}. The symmetric group on n

letters, realized as the Weyl group Wn of permutation matrices in GL(E),
acts as permutations on the basis. The transposition (i, j) acts as a re-
flection, sending ei − ej to its negative and fixing pointwise the orthogonal
complement (with respect to the standard bilinear form 〈ei, ej〉 = δij). The
line spanned by e1 + · · · + en is fixed pointwise by Wn and its orthogonal
complement (e1 + · · ·+ en)

⊥ is an irreducible (n− 1)-dimensional reflection
representation of Wn. Study of the centralizer algebra EndWn

(E⊗r) leads to
the partition algebra of [Mar91,Mar94,Jon94,Mar96] and the corresponding
Deligne category [Del07].

We are interested in q-analogues of the above picture. One such, pre-
viously studied in [DG21], is obtained by replacing the above representa-
tion Wn → GL(E) with the Burau representation Bn → GL(E) of Artin’s
braid group Bn. This is done by replacing the standard bilinear form with
a q-analogue. In effect, we perturb the eigenvalues of the generating re-
flections si = (i, i + 1) from (1,−1) to parameters (q1, q2); thus the rep-
resentation C[Bn] → GL(E) factors through the quotient map C[Bn] →
Hn(q1, q2), where Hn(q1, q2) is the two-parameter Iwahori–Hecke algebra of
[BW89,Big06].

In this paper, we study a second q-analogue of the situation of para-
graph one, related to that of the preceding paragraph through the algebra
Hn(q1, q2). Keeping E the same, we introduce certain operators Si, pre-
serving the bilinear form, which act on E as reflections fixing (qei − ei+1)

⊥

pointwise. This gives a reflection representation ρ : TWn → O(E) of the
twin group TWn defined in the Abstract. The twin group TWn and the
braid group Bn are both covering groups of Wn, respectively obtained by
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omitting the quadratic relation and cubic braid relation from the standard
Coxeter presentation of Wn. As long as [n]q = 1+ q+ · · ·+ qn−1 6= 0, where
q = −q2/q1 is the negative ratio of the eigenvalues, E = L⊕ F decomposes
as the direct sum of the line L spanned by e1 + · · · + en and its orthogo-
nal complement F = (e1 + · · · + en)

⊥, and these subspaces are irreducible
for both Bn and TWn. In case q = 1 we recover the situation of the first
paragraph.

The twin group TWn has previously appeared in a variety of contexts.
It serves as an analogue of Artin’s braid group Bn in the study of doodles
[Kho97], which are configurations of a finite number of closed curves on a sur-
face without triple intersections, and it appeared in [Gia91,Gia92,GGS92]
in relation to certain constructions of quantum groups.

When E = L ⊕ F, the rth tensor power E⊗r is a semisimple C[TWn]-
module, with TWn acting diagonally. Our main result is a combinatorial
description of its centralizer EndTWn

(E⊗r) in case q avoids a certain well-
defined set of algebraic numbers in the union of the positive real axis and
the unit circle. The centralizer is isomorphic to a homomorphic image of
the two-parameter partial Brauer algebra PBr(n, δ

′), where δ′ 6= 0, studied
in [MM14,Hd14], and is isomorphic to that algebra if n > r. The parameter
δ′ can be any nonzero scalar (all the corresponding partial Brauer algebras
are isomorphic). This leads to the new Schur–Weyl duality statement of
Theorem 8.6, extending the Schur–Weyl duality of [MM14,Hd14].

The main technical fact underlying our results is Theorem 6.1, that (under
certain restrictions on q) the image ρ(TWn) of the representation is Zariski-
dense in O(L)⊕O(F). This enables an easy proof of Theorem 8.6 and also
gives another new instance (Theorem 8.9) of Schur–Weyl duality for the
commuting actions of the group TWn and the Brauer algebra Br(n− 1) on
F⊗r; this is a new variant of Brauer’s original result in [Bra37].

Sections 2–5 derive the main properties of the twin group and its reflection
representation E; an appendix also constructs an explicit orthonormal basis
and applies it to obtain an alternative proof of the conclusion of Theorem 6.1,
under stronger hypotheses. Section 6 is devoted to proving the density result
of Theorem 6.1 under the weaker hypotheses needed for the main results.
Section 7 defines the partial Brauer algebra and gives its presentation by
generators and relations (due to [MM14]) and the main results are deduced
in Section 8.

2. Preliminaries

The ground field is always C in this paper, unless stated otherwise. Begin
with the two-parameter [BW89, Big06] Iwahori–Hecke algebra Hn(q1, q2),
defined by generators T1, . . . , Tn−1 subject to the relations

TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi if |i− j| > 1(1)

(Ti − q1)(Ti − q2) = 0.(2)
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Although it is easy to eliminate one of the parameters, carrying both causes
no trouble. We assume that q1q2 6= 0, so that the generators Ti are invertible
elements in Hn(q1, q2), with

Ti
−1 = (Ti − q1 − q2)/(q1q2).

Artin’s braid group Bn may be defined by generators σ1, . . . , σn−1 subject
to defining relations

(3) σiσi+1σi = σi+1σiσi+1, σiσj = σjσi if |i− j| > 1.

The algebra Hn(q1, q2) is isomorphic to the quotient algebra of the group
algebra C[Bn] via the quotient map determined by σi 7→ Ti, with kernel the
ideal generated by the (σi − q1)(σi − q2) for i = 1, . . . , n− 1.

Let E be an n-dimensional complex vector space with basis e1, . . . , en.
Consider the action of Hn(q1, q2) defined on generators by

(4)
Ti · ei = (q1 + q2)ei + q1ei+1, Ti · ei+1 = −q2ei

Ti · ej = q1ej if j 6= i, i+ 1.

In other words, if we set Q =

[

q1 + q2 −q2
q1 0

]

then Ti acts on E via the n×n

block diagonal matrix

T i =





q1Ii−1 0 0
0 Q 0
0 0 q1In−i−1



 .

The T i satisfy the defining relations of Hn(q1, q2), so the map defined on
generators by Ti 7→ T i is a representation Hn(q1, q2) → End(E). By com-
posing with the quotient map C[Bn] → Hn(q1, q2) given above, we obtain a
C[Bn]-module structure on E. This is essentially the Burau representation;
it differs from the standard definition [Bur35, Jon87, BLM94] by a simple
change of parameters (see [DG21]).

2.1. Remark. Set q = −q2/q1. There are well-known algebra isomorphisms

Hn(q1, q2) ∼= Hn(−1, q), Hn(q1, q2) ∼= Hn(1,−q)

defined by sending Ti 7→ −q1Ti, Ti 7→ q1Ti respectively. Moreover, the map
Ti 7→ q−1/2Ti defines an algebra isomorphism

Hn(−q−1/2, q1/2) ∼= Hn(−1, q),

so Hn(−q−1/2, q1/2) ∼= Hn(q1, q2). The algebra Hn(−q−1/2, q1/2), the “bal-
anced” form of the Iwahori–Hecke algebra, is often preferred in the theory of
quantum groups. We choose to work with the generalized Burau represen-
tation because it makes sense in general, including in all the one-parameter
versions of Hn(q1, q2).
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3. The decomposition E = L⊕ F

By direct computation, we notice the following explicit eigenvectors for the
T i operators defined in the previous section.

3.1. Lemma. Assume that q1q2 6= 0 and set q = −q2/q1. For any i =
1, . . . , n− 1 the operator T i has eigenvectors:

(a) e1, . . . , ei−1, ei + ei+1, ei+2, . . . , en with eigenvalue q1.
(b) qei − ei+1 with eigenvalue q2.

In particular, T i is diagonalizable if and only if q1 6= q2. Moreover, the
vector ℓ0 := e1 + · · · + en is a simultaneous eigenvector for all the T i.

Proof. Parts (a), (b) are easily checked. Observe that ei+ei+1 and qei−ei+1

are linearly dependent if and only if q = −1, which proves the diagonaliz-
ability claim, as q = −1 ⇐⇒ q1 = q2. �

3.2. Remark. If q1 = q2 then the T i have only one eigenvalue and the
corresponding eigenspace has dimension n− 1.

As in [DG21, §3] we consider the following Hn(q1, q2)-submodules of E:

L = Cℓ0 = C(e1 + · · · + en), F =
⊕n−1

i=1 C(qei − ei+1).

Since q 6= 0, the spanning vectors qei − ei+1 are linearly independent, so
dimF = n− 1.

We aim now to show that E = L ⊕ F under suitable hypotheses. The
following result is standard; see e.g., [Mat99, Exercise 1.4].

3.3. Proposition. Suppose that q1q2 6= 0. Set q = −q2/q1 and [n]q =
1 + q + · · ·+ qn−1.

(a) E = L⊕ F if and only if [n]q 6= 0.
(b) If n > 2 then F is irreducible as an Hn(q1, q2)-module if and only if

[n]q 6= 0. (If n = 2 then F is irreducible for any q.)

Proof. For (a), observe that the determinant of the matrix with the columns
qe1 − e2, . . . , qen−1 − en, ℓ0 is equal to [n]q. For (b), a direct argument can
be found in [DG21]. �

3.4. Remark. As [n]1 = n, the decomposition E = L⊕ F holds at q = 1.

4. Orthogonal group

Recall that we always assume that q1q2 6= 0 (hence q 6= 0). We will need the
nondegenerate symmetric bilinear form 〈−,−〉 on E defined by the rule

(5) 〈ei, ej〉 = δijq
j−1

extended bilinearly, where q = −q2/q1. Let J = diag(1, q, . . . , qn−1) be the
matrix of the form with respect to the {ei}-basis.
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Observe that 〈qei−ei+1, ℓ0〉 = 0 for all i = 1, . . . , n−1. Thus F ⊂ L⊥ (the
orthogonal complement with respect to the form). Since dimL⊥ = n− 1 by
the standard theory of bilinear forms, it follows by dimension comparison
that F = L⊥.

Now we consider certain orthogonal operators on E. Assume from now
on that q1 6= q2. (This is equivalent to assuming that q 6= −1.) Then we
may define elements Si ∈ Hn(q1, q2) by

(6) Si =
1

q1−q2

(

2Ti − (q1 + q2)
)

for i = 1, . . . , n−1. A simple calculation with the defining quadratic relation
in Hn(q1, q2) shows that

(7) S2
i = 1.

Let Si ∈ End(E) be the corresponding linear operator, defined by replacing
Ti by its image T i. The T i-eigenvectors are also Si-eigenvectors, and the T i-
eigenvalues q1, q2 have been “deformed” to Si-eigenvalues 1,−1 respectively.

Recall [Bou02, Ch. 5, §2, Nos. 1–2] that a linear endomorphism s in
End(E) is:

• a pseudo-reflection if 1− s has rank 1.
• a reflection if, additionally, s2 = 1.

Lemma 3.1 and the fact that S2
i = 1 implies that Si is a reflection, so the

group generated by the Si is a reflection group.

Let O(E) be the orthogonal group of operators S ∈ End(E) preserving
the bilinear form 〈−,−〉, in the sense that 〈Sv, Sw〉 = 〈v,w〉 for all v,w ∈ E.

4.1. Lemma. Assume that q1 6= q2 (equivalently, q 6= −1).

(a) Si · ℓ0 = ℓ0.

(b) Si belongs to O(E); i.e., S
T

i JSi = J .
(c) Hn(q1, q2) is generated, as an algebra, by the Si.

Proof. (a) follows immediately from Lemma 3.1, as ℓ0 is a sum of Si-fixed
points.

(b) By Lemma 3.1, E = E1 ⊕ E−1, where E1, E−1 are the eigenspaces
belonging to the Si-eigenvalues 1,−1 respectively. By definition, the ei are
pairwise orthogonal with respect to the form. Notice that the eigenvectors
ei + ei+1 and qei − ei+1 are also orthogonal. It follows that E1 ⊥ E−1.
Given any v,w ∈ E, write v = v1 + v−1, w = w1 + w−1 (uniquely) where
v1, w1 ∈ E1, v−1, w−1 ∈ E−1. Then

〈Si · v, Si · w〉 = 〈v1 − v−1, w1 − w−1〉
= 〈v1, w1〉+ 〈v−1, w−1〉
= 〈v1 + v−1, w1 + w−1〉 = 〈v,w〉.

Thus Si preserves the form, which implies the result.
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(c) This is immediate from the fact that the mapping

Ti 7→ 1
q1−q2

(

2Ti − (q1 + q2)
)

= Si

is invertible, with inverse given by

Si 7→ q1−q2
2 Si +

q1+q2
2 = Ti.

So any linear combination of products of Si’s is expressible as a linear com-
bination of products of Ti’s, and vice versa. �

Now define e′i = q−(i−1)/2ei. Then the basis {e′1, . . . , e′n} is orthonormal
with respect to the form; that is,

〈e′i, e′j〉 = δij

where δij is the usual Kronecker delta function. For each i = 1, . . . , n − 1
we define

fi =
√
q e′i − e′i+1.

Notice that fi is a nonzero scalar multiple of the Si-eigenvector qei − ei+1

in Lemma 3.1, hence is itself an Si-eigenvector (of eigenvalue −1).

4.2. Lemma. Assume that q 6= −1. Then Si is the reflection in the complex
hyperplane Hi = f⊥i , so

Si · v = v − 2
〈fi, v〉
〈fi, fi〉

fi

for any v ∈ E. In particular,

(a) Si · e′i = e′i −
2
√
q

1+q fi =
1−q
1+qe

′
i +

2
√
q

1+q e
′
i+1.

(b) Si · e′i+1 = e′i+1 +
2

1+q fi =
2
√
q

1+q e
′
i − 1−q

1+qe
′
i+1.

(c) Si · e′j = e′j for all j 6= i, i+ 1.

Proof. The displayed formula is standard [Bou02, Ch. 5, §3]. It can also be
verified by direct computation from the definition of Si and equations (4).

Part (c) is immediate once one notices that the e′j for j 6= i, i + 1 belong
to the 1-eigenspace of Si. Moreover, we have

〈fi, fi〉 = 1 + q, 〈e′i, fi〉 =
√
q, 〈e′i+1, fi〉 = −1

which gives the formulas in (a), (b). �

For concreteness, the action in Lemma 4.2 of Si on the orthonormal basis
e′1, . . . , e

′
n is given by the n× n block matrix

Si =





Ii−1 0 0
0 Q 0
0 0 In−1−i



 where Q =
1

1 + q

[

1− q 2
√
q

2
√
q −(1− q)

]

where Ik is the k × k identity matrix. Notice that the action of the Si

depends only on q = −q2/q1 and Q is a 2×2 orthogonal matrix, in the sense
that QTQ is the 2× 2 identity matrix.
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5. Twin group

Let Wn be the Weyl group of GL(E), which we identify with the set of n×n
permutation matrices. Then Wn

∼= Sn, the symmetric group on n letters,
generated by s1, . . . , sn−1 subject to the standard Coxeter relations: s2i = 1,
sisi+1si = si+1sisi+1, and sisj = sjsi if i 6= j.

Let TWn be the twin group [Kho97] on n strands; that is, the group
generated by t1, . . . , tn−1 subject to the defining relations

(8) t2i = 1, titj = tjti if |i− j| > 1.

We have a quotient mapping TWn ։ Wn (with kernel the subgroup gener-
ated by all (titi+1)

3) defined by ti 7→ si.

Since the Si satisfy the defining relations of TWn, the linear mapping

ρ : TWn → GL(E) defined by ti 7→ Si

is a representation. This is the analogue of the Burau representation adapted
to the twin group.

5.1. Remark. Unless q = 1, the operators Si do not satisfy the braid rela-
tions. A calculation from the definition of Si reveals that

SiSi+1Si − Si+1SiSi+1 = − (1−q)2

(1+q)2
(Si − Si+1)

holds in Hn(q1, q2). In particular, SiSi+1Si = Si+1SiSi+1 if and only if
q = 1. Thus the representation ρ factors through Wn at q = 1, giving the
natural n-dimensional permutation representation of Wn; at q 6= 1 we have
deformed the natural representation away from Wn to a representation of
TWn.

The linear extension of ρ to the group algebra C[TWn] factors through
Hn(q1, q2), via ti 7→ Si 7→ Si. As each Si belongs to O(E) it follows that the
image of the representation ρ is contained in O(E); in other words, ρ is an
orthogonal representation of TWn. Note that

O(E) ∼= On(C) = {A ∈ GLn(C) : A
TA = I}

when the operators are expressed as matrices with respect to the orthonor-
mal basis {e′1, . . . , e′n}.

Since all the ρ(ti) = Si fix ℓ0 by Lemma 4.1, the line L is isomorphic to
C, the trivial C[TWn]-module.

5.2. Lemma. Suppose that q 6= −1. Any Hn(q1, q2)-module V becomes a
C[TWn]-module by defining ti · v = Si · v, for any v ∈ V . Its submodule
structure is the same, regarded as a module for either algebra.

Proof. This follows from Lemma 4.1(c) and the fact that the linear trans-
formation (on Hn(q1, q2)) defined by Ti 7→ Si is invertible. �
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Assume henceforth that [n]q 6= 0. Combining Proposition 3.3 and Lemma
5.2, we conclude that

(9) E = F⊕ L

as C[TWn]-modules, where L and F are irreducible C[TWn]-submodules.
Hence

(10) ρ(TWn) ⊂ O(L)×O(F)

where O(L), O(F) are taken with respect to the restriction of the bilinear
form.

5.3. Lemma. Suppose that q 6= −1 and [n]q 6= 0. The action of the Si on F

is given by

Si · w = w − 2
〈fi, w〉
〈fi, fi〉

fi

for any w ∈ F. Hence, Si acts on F as reflection in the hyperplane f⊥i =
{w ∈ F : 〈fi, w〉 = 0}. In particular,

(a) Si · fi−1 = fi−1 +
2
√
q

1+q fi.

(b) Si · fi = −fi.

(c) Si · fi+1 = fi+1 +
2
√
q

1+q fi.

(d) Si · fj = fj for all j 6= i− 1, i, i + 1.

Hence the Si-eigenspace of eigenvalue −1 is spanned by fi, and the Si-
eigenspace of eigenvalue 1 is spanned by

fi−1 +
√
q

1+q fi, fi+1 +
√
q

1+q fi, and fj for all j 6= i− 1, i, i + 1.

Proof. Given v ∈ E, there exist unique u ∈ L, w ∈ F such that v = u + w.
As Si · u = u, Lemma 4.1 says that

Si · (u+ w) = u+ Si · w.

On the other hand, Lemma 4.2 in light of the equality 〈fi, u〉 = 0 says that

Si · (u+ w) = u+ w − 2
〈fi, u+ w〉
〈fi, fi〉

fi = u+w − 2
〈fi, w〉
〈fi, fi〉

fi

and the first claim follows by comparing the right hand sides of the two
displayed equalities. Formulas (a)–(d) then follow immediately. (They also
follow from Lemma 4.2 by a routine calculation.) They in turn imply the
claims about the eigenvectors, which implies the final claim. �

Since (under the hypotheses of the lemma) the Si act as reflections on
F, we call it the reduced reflection representation. We record the following
observation for later use.



SCHUR–WEYL DUALITY FOR TWIN GROUPS 9

5.4. Lemma. Suppose that q 6= −1 and [n]q 6= 0. The matrix of the or-
thogonal projection E ։ L with respect to the orthonormal basis e′1, . . . , e

′
n

is
1

[n]q

(

q(i+j−2)/2

)

i,j=1,...,n

and this projection is an endomorphism of E commuting with the action of
O(E) and thus also with the action of TWn.

Proof. Let P be the projection operator. Then we have

P (e′j) =
〈ℓ0, e′j〉
〈ℓ0, ℓ0〉

ℓ0 =
q(j−1)/2

[n]q
ℓ0 =

q(j−1)/2

[n]q

n
∑

i=1

q(i−1)/2e′i.

This proves the first claim, and the rest follows from Lemma 5.2 and the
definitions of the actions. �

6. Density

The main result of this section is the following density result, which is the
central technical result of the paper. Recall the “quantum factorial” notation

[n]!q = [1]q[2]q · · · [n]q
for any positive integer n.

6.1. Theorem. Let ρ : TWn → O(E) be the reflection representation, de-
fined on generators by sending ti to Si for all i = 1, . . . , n− 1. Assume that
[n]q 6= 0, [n− 2]!q 6= 0, and

q 6= −λ±
√
−1− 2λ

1 + λ

for any λ = cos(2kπ/m) with m ∈ Z≥0. Then the image ρ(TWn) is Zariski-
dense in O(L)× O(F). Hence the image of the reduced reflection represen-
tation TWn → O(F) is Zariski-dense in O(F).

6.2. Remark. Set w±(λ) = (−λ±
√
−1− 2λ)/(1+λ). As w+(λ)w−(λ) = 1,

we have w−(λ) = 1/w+(λ). If λ = cos(2kπ/m) for some k,m then λ is a
real number satisfying −1 ≤ λ ≤ 1. There are two cases to consider:

(i) If −1 < λ ≤ −1
2 then w+(λ) is real and satisfies w+(λ) ≥ 1. Also

w+(λ) → ∞ as λ → −1. In this case w−(λ) = 1/w+(λ) is also real
and satisfies 0 < w−(λ) ≤ 1.

(ii) If −1
2 < λ ≤ 1 then w+(λ), w−(λ) are non-real conjugate complex

values, so both lie on the unit circle |z| = 1 in the complex plane.

In particular, all the hypotheses of Theorem 6.1 hold if q is chosen to be any
complex number not on the positive real axis or the unit circle.
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The proof of Theorem 6.1 will take up the rest of this section. Here is an
outline of the strategy. We know that ρ(TWn) ⊂ O(L)×O(F). Since O(L)
is finite, its Lie algebra is zero and so we have

LieO(E) = LieO(F) ∼= son−1(C).

Hence the dimension of the Lie algebra of O(E) is dim son−1(C) =
(n−1

2

)

.
Put

G = ρ(TWn), G = the Zariski-closure of G in O(F).

Under the stated assumptions on q, we will use the defining matrices Si

to find
(n−1

2

)

linearly independent elements of LieG. This forces LieG =

son−1(C) and hence justifies the conclusion G = O(F).

For i = 1, . . . , n− 1, recall from Lemma 4.2 that Si = ρ(ti) is given (with
respect to the orthonormal basis e′1, . . . , e

′
n) by the block diagonal matrix

Si = diag(Ii−1, Q, In−1−i), where Q =

[

a b
b −a

]

and a = (1− q)/(1 + q), b = 2
√
q/(1 + q). Notice that a2 + b2 = 1. Since Si

squares to 1 and SiSj = SjSi for all |i− j| > 1, understanding G = ρ(TWn)
requires studying the products

Si,i+1 := SiSi+1 for i = 1, . . . , n− 2.

A direct calculation shows that

Si,i+1 =





Ii−1 0 0
0 R 0
0 0 In−2−i



 where R =





a ab b2

b −a2 −ab
0 b −a



 .

We need to study the powers of this matrix.

The next step arises from classical geometry in three-dimensional eu-
clidean spaces. Assume for the moment that q > 0 is a real number and
that our vector space E = L⊕ F is over the real numbers. We restrict our
attention to the three-dimensional subspace

V = Re′i ⊕ Re′i+1 ⊕Re′i+2
∼= R

3.

We know that Si is reflection in f⊥i for each i. Let θ/2 be the angle between
fi and fi+1 and let n be the unit vector in the direction of the cross-product
fi × fi+1. Then Si,i+1 is the composition of the two reflections, hence a
rotation. In fact, it is the rotation in the plane orthogonal to n. By the
classical Rodrigueś rotation formula [Rod40], we have

R = I + (sin θ)N + (1− cos θ)N2

where I is the identity matrix, n = (n1, n2, n3) in local coordinates of V ∼=
R
3, and where

N =





0 −n3 n2

n3 0 −n1

−n2 n1 0




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is the “cross-product” matrix representing the linear map x 7→ n × x on
V ∼= R

3. Since n is proportional to the cross-product

fi × fi+1 = (1,
√
q, q),

after normalization we get n = [3]
−1/2
q (1,

√
q, q) and hence

N =
1

√

[3]q





0 −q
√
q

q 0 −1
−√

q 1 0



 .

It is well known that N ∈ so(3) = so3(R) and that R = exp(θN). Further-
more, N satisfies the relation N3 = −N .

Now we revert to the general case q ∈ C. Motivated by the above consid-
erations, for each i = 1, . . . , n − 2, define

Ni = diag(0i−1, N, 0n−2−i)

where 0k denotes a k × k zero matrix. Then Ni ∈ son(C). Consider the
one-parameter subgroup Gi consisting of all matrices of the form

(11) R(α) = exp(αNi) = I + (sinα)Ni + (1− cosα)N2
i (α ∈ C).

Note that R(0) = I is the identity matrix; more generally

(12) R(2kπ) = I for all k ∈ Z.

The complex sine function is surjective, so for any z ∈ C, there exists an
α ∈ C such that z = sinα. As sin2 α + cos2 α = 1, it follows that cos z =√
1− z2 for the appropriate choice of the square root. Hence, for any z ∈ C

there is an α ∈ C for which

(13) R(α) = I + zNi + (1−
√

1− z2)N2
i .

In this sense, R(α) depends not on α but only on z = sinα and a choice of
the square root. More precisely, we have

α = −
√
−1 log(z

√
−1 +

√

1− z2)

(where
√
−1 is the imaginary unit) and we have already chosen the square

root of 1− z2 in choosing α.

6.3. Lemma. Fix any i = 1, . . . , n− 2. Then Si,i+1 ∈ Gi. Hence, the cyclic

subgroup generated by Si,i+1 is contained in Gi.

Proof. The assertion holds if and only if there exists a value z ∈ C such that

R = I3 + z N + (1−
√

1− z2)N2.

A calculation shows that

z =
2
√

q [3]q
[2]2q

and
√

1− z2 =
−[2]q2

[2]2q
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gives a solution, which corresponds to

α = −
√
−1 log

(

2
√

−q [3]q − [2]q2

[2]2q

)

.

This proves the claim. �

6.4. Lemma. Fix any index i in the range 1, . . . , n− 2. For α as above, we
have

S
k
i,i+1 = R(α)k = I + zUk−1(cosα)N + (1− Tk(cosα))N

2

for all k ≥ 0, where Tk, Uk are the Chebyshev polynomials of the first and
second kind, respectively.

Proof. This follows from the well known properties of Chebyshev polynomi-
als. As Si,i+1 = R(α) we have

S
k
i,i+1 = R(α)k = exp(kαN) = I + sin(kα)N + (1− cos(kα))N2

and the result follows from the standard trigonometric definition of Cheby-
shev polynomials (see e.g. [MH03]), which defines the polynomials Uk−1, Tk

in order that (sinα)Uk−1(cosα) = sin(kα) and Tk(cosα) = cos(kα) for all
nonnegative integers k. �

6.5. Corollary. Fix any index i in the range 1, . . . , n− 2. With z = sinα =

2
√

q [3]q/[2]
2
q as above, S

k
i,i+1 = I if and only if

Uk−1(cosα) = 0 and Tk(cosα) = 1,

which happens if and only if α = 2lπ/k for some l ∈ {0, 1, . . . , k − 1}.

Proof. The joint equations Uk−1(cosα) = 0, Tk(cosα) = 1 are equivalent to
the conditions sin(kα) = 0, cos(kα) = 1, which in turn are equivalent to the
single equality exp(kα

√
−1) = 1. The result follows. �

6.6. Remark. For all i, the last proof shows that Si,i+1 = R(α) has order
k if and only if α is an integer multiple of 2π/k.

6.7. Corollary. The matrix Si,i+1 = R(α) has finite order if and only if

q =
−λ±

√
−1− 2λ

1 + λ

for some λ = cos(2lπ/k) with l ∈ {0, 1, . . . , k − 1}.

Proof. Finite order occurs if and only if α = 2lπ/k with l ∈ {0, 1, . . . , k−1}.
For any such α, we have cosα = −[2]q2/[2]

2
q = −(1 + q2)/(1 + q)2. Since

z = sinα,
√

1− z2 = cosα = −(1 + q2)/(1 + q)2

as previously noted. Setting λ = cosα =
√
1− z2 in the above and solving

for q gives the result. �
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6.8. Remark. An interesting question is to characterize the reflection group
generated by the Si in case q has one of the values in Corollary 6.7. We do
not know whether the group is finite, for example, except when n = 3, in
which case it is a finite dihedral group.

For all integers i, j with 1 ≤ i < j ≤ n − 1, define elements Li,j in

Lie(ρ(TWn)) as follows. First set Li,i+1 =
√

[3]q Ki. The scaling factor
√

[3]q is present for convenience to clear denominators. Next, inductively
define Li,j+1 = [Li,j, Lj,j+1] for j = i+1, . . . , n−2. For all 1 ≤ i < j ≤ n−1
set ei,j = ei,j − ej,i, where ei,j is the matrix unit with a 1 in row i, column
j and 0 elsewhere.

6.9. Lemma. The Lie algebra elements Lr,s are given by the formula

Lr,s = (−1)t
(

q(t−1)/2 [t− 1]q er,s−1 + qt er,s − q1/2 [t]q er,s+1

−
t−2
∑

i=1

q(i+1)/2 er+i,s−1 +

t
∑

j=1

q(j−1)/2 er+j,s+1

)

where t = s− r.

Proof. A straightforward induction on t proves the formula. The base case,
t = 1, is the definition of the elements Lr,r+1 given above. Then assuming
the result for some Lr,s, the formula for Lr,s+1 is derived from the defini-
tion Lr,s+1 = [Lr,s, Ls,s+1] by computing the bracket using the matrix unit
commutator formulas [eij , ekl] = δjkeil − δileki. �

Next we investigate the independence of the elements Lr,s. It will be
helpful to consider a total order on the indexing set

Ω = {(r, s) | 1 ≤ r < s ≤ n− 1}.
For (i, j), (k, l) ∈ Ω, define (i, j) ≻ (k, l) if either j > l or both j = l and
i < k. Note that the order ≻ first compares column indices. Elements in a
given column have greater indices than all those in preceding columns, and
elements in the same column are ordered inversely by their row index.

6.10. Lemma. Suppose that [n − 2]!q 6= 0. Then the elements Lr,s with
1 ≤ r < s ≤ n− 1 are linearly independent.

Proof. Suppose that
∑

cr,sLr,s = 0. We will show that each cr,s = 0 starting
with c1,n−1, the term with subscript of maximal order, and proceeding in
decreasing order according to the coefficient’s subscript and ending at c1,2.

Lemma 6.9 implies that the coefficient of e1,n in the sum
∑

cr,sLr,s is,
up to a sign, equal to

√
q[n − 2]q c1,n−1. As q and [n − 2]q are assumed

to be non-zero it follows that cn−1,1 = 0. Next, consider the coefficient of
e2,n in the sum. Since c1,n−1 = 0 the coefficient of e2,n is, up to a sign,√
q [n − 3]q c2,n−1. It follows that c2,n−2 = 0. Moving inductively through
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the subsequent indices in Ω in descending order, from (3, n − 3) down to
(1, 2) similarly shows that all cr,s = 0. �

6.11. Remark. If [j]q = 0 for some j = 1, . . . n− 2, then the explicit depen-
dence relation

L1,j+1 +
∑j−1

i=1 q
(j−i)/2 (L1,j+1 + L2,j+1) = 0

holds. We do not know whether the image ρ(TWn) is dense in that case.

Proof of Theorem 6.1. Lemma 6.10 implies Theorem 6.1 by a dimension
comparison, as the Lr,s form a set of

(n−1
2

)

linearly independent elements in
the Lie algebra LieO(E) ∼= son−1(C) (see the remarks at the beginning of
this section). �

7. The partial Brauer algebra

Recall [Bra37,HR05] that the Brauer algebra Br(δ) with parameter δ ∈ C

is the algebra with basis indexed by the pairings of a finite set

r = {1, . . . , r, 1′, . . . , r′}
of 2r elements, where we define a pairing to be a set partition in which all
the subsets have cardinality two. Each basis element is typically pictured as
an undirected graph on 2r vertices, arranged in two rows with the numbers
1, . . . , r (resp., 1′, . . . , r′) labeling the top (resp., bottom) row vertices in
order from left to right; an edge connects two vertices if and only if they are
paired. For example, the diagram

depicts the pairing

{{1, 2′}, {2, 5}, {1′ , 3}, {3′, 7}, {4, 8′}, {4′, 5′}{6, 6′}, {7′, 8}}.
The product of two basis elements d1, d2 is obtained by stacking d1 above
d2, identifying (and removing) the middle rows of vertices, and pairing two
elements from the remaining two rows if and only if there is a path between
them. Closed loops in the middle rows are also removed. If d1 ◦ d2 is the
resulting graph, the product d1d2 is defined by

d1d2 = δN d1 ◦ d2
where N is the number of such interior loops. This makes Br(δ) into an
associative algebra. If all edges in a diagram connect one endpoint in the
top row to one in the bottom row then the diagram depicts a permutation;
the subalgebra spanned by such diagrams is isomorphic to the group algebra
C[Sr] of the symmetric group Sr.

Let PBr(δ, δ
′) be the two-parameter “partialization” of Br(δ) as defined

in [MM14,Hd14]; cf. also [KM06]. The idea is to allow graphs with pairings
and, possibly, a number of isolated vertices. In other words, the subsets
of the underlying set partition have cardinality at most two. The resulting
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(larger) algebra is the partial Brauer algebra, also known as the “rook Brauer
algebra”. The multiplication is again given by stacking, but a second pa-
rameter δ′ is introduced in order to track the number of non-loops (isolated
vertices or connected paths) in the deleted middle row. Multiplication of
basis elements is defined by

(14) d1d2 = δN1δ′N2 d1 ◦ d2
whereN1 andN2 is the number of removed loops and non-loops, respectively.
(The use of two parameters in this context goes back at least to Mazorchuk
[Maz02].) This makes PBr(δ, δ

′) into an associative algebra. It contains
Br(δ) as a subalgebra (the span of the set of diagrams with no isolated
points) and also contains the partial permutation algebra PPr(δ

′), spanned
by the partial diagrams in which no two vertices in the same row are ever
paired. The algebra PPr(δ

′) was studied in [DG21]; it is closely related to
the symmetric inverse semigroup (also known as the rook monoid) studied
by Munn [Mun57,Mun57b], Solomon [Sol02], and others. PPr(δ

′) is the
partialization of C[Sr] in the same sense that PBr(δ, δ

′) is the partialization
of Br(δ).

If we set δ′ = δ then PBr(δ, δ) is a subalgebra of the partition alge-
bra Pr(δ) of [Mar91,Mar94,Mar96, Jon94]. The paper [HR05] provides a
convenient comprehensive summary of many basic properties of Pr(δ).

7.1. Theorem ([KM06,MM14]). Let si, ei (for i = 1, . . . , r− 1) and pj (for
j = 1, . . . , r) be defined by

si = · · · · · · , ei = · · · · · · ,

pj = · · · · · ·
depicting the pairings

{{i, (i + 1)′}, {i + 1, i′}} ∪ {{j, j′} : j 6= i, i+ 1},
{{i, i + 1}, {i′, (i+ 1)′}} ∪ {{j, j′} : j 6= i, i+ 1},

and the partial pairing

{{j}, {j′}} ∪ {{k, k′} : k 6= j}
respectively. Then

(a) The symmetric group algebra C[Sr] is generated by the si subject to
the defining relations

s2i = 1, sisi+1si = si+1sisi+1, sisj = sjsi if |i− j| > 1.

(b) The Brauer algebra Br(δ) is generated by the si, ei for i = 1, . . . , r−1
subject to the defining relations

e2i = δei, eiei±1ei = ei, eiej = ejei if |i− j| > 1,

siei = eisi = ei, siei±1ei = si±1ei, eiei±1si = eisi±1,

eisj = sjei if |i− j| > 1.
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together with the relations in part (a).
(c) The partial permutation algebra PPr(δ

′) is generated by the si, pj
for i = 1, . . . , r − 1 and j = 1, . . . , r subject to the defining relations

p2i = δ′pi, pipj = pjpi if i 6= j, pisipi = pipi+1,

sipi = pi+1si, sipj = pjsi if j 6= i, i+ 1

together with the relations in part (a).
(d) The partial Brauer algebra PBr(δ, δ

′) is generated by the si, ei for
i = 1, . . . , r − 1 along with the pj for j = 1, . . . , r subject to the
defining relations

eipiei = δ′ei, eipipi+1 = δ′eipi, pipi+1ei = δ′piei,

pieipi = pipi+1, eipi = eipi+1, piei = pi+1ei,

eipj = pjei if j 6= i, i+ 1

along with the relations in parts (a), (b), and (c).

7.2. Remark. (i) Part (a) of Theorem 7.1 is standard. Presentations similar
to those in (b), (c) were known earlier [BW89, Naz96, Sol02]. A slightly
different presentation of PPr(δ

′) was derived in [DG21]; its equivalence with
the presentation in part (c) is easy to check. The book [GM09] gives a wealth
of results on the semigroups related to the theorem.

(ii) We use ei for cup-cap diagrams (as is common in the literature) and
pi for projection diagrams. Warning: those notations are transposed in
[MM14]. The published version of [MM14, Prop. 5.2] includes a redundant
relation (see [KM06, Lemma 5.2]) which we have omitted.

(iii) As explained in [Hd14], there are several other interesting subalgebras
of PBr(δ, δ

′); e.g., the Motzkin algebra [BH14].

A special case of the following was observed in [MM14, §6.2]; see [DG21,
Cor. 8.7] for a similar result in a different context.

7.3. Lemma. For any δ′ 6= 0, PBr(δ, δ
′) ∼= PBr(δ, 1) as algebras.

Proof. The isomorphism is PBr(δ, δ
′) → PBr(δ, 1) is given by mapping pj

to pj/δ
′ for all j. That this defines an isomorphism follows from the defining

relations in Theorem 7.1. �

7.4. Remark. The representation theory of PBr(δ, δ
′) is worked out in

[MM14], using a Morita equivalence result (cf. [Hd14] for another approach).
In particular, it is shown that PBr(δ, δ

′) is cellular [GL96] and generically
semisimple; the cell modules are indexed by the set

Λr = {λ ⊢ k : 0 ≤ k ≤ r}

of partitions of the integers 0, 1, . . . , r.
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8. Schur–Weyl duality

Now we can formulate and prove our main results. We will need the following
general fact, which is presumably known. We include a proof since we were
unable to find a suitable reference.

8.1. Lemma. Let G be a subgroup of GL(V ). Then for any r ≥ 1, we have
the equality EndG(V

⊗r) = EndG(V
⊗r), where G is the Zariski-closure of G

in GL(V ).

Proof. It suffices to show that EndG(V
⊗r) ⊂ EndG(V

⊗r), the reverse in-
clusion being obvious. Fix any A ∈ EndG(V

⊗r), and define a map F :
End(V ) → End(V ⊗r) by

F (g) := A(g ⊗ · · · ⊗ g)− (g ⊗ · · · ⊗ g)A.

Fix a basis {vl}l=1,...,n of V , and identify End(V ) ∼= Mn(C) via the basis;
similarly identify End(V ⊗r) ∼= Mnr(C) via the corresponding basis

{vj1 ⊗ vj2 ⊗ · · · ⊗ vjr}j1,...,jr=1,...,n

of V ⊗r. Then F vanishes on G, so its matrix coordinate functions Fi,j also
vanish on G, for any multi-index pair i = (i1, i2, . . . , ir), j = (j1, j2, . . . , jr).
But Fi,j is a complex-valued polynomial function on End(V ) = Mn(C) which

vanishes on G, hence it vanishes on G. So F itself vanishes on G. This
implies that

A(g ⊗ · · · ⊗ g)− (g ⊗ · · · ⊗ g)A = 0

for any g ∈ G. In other words, A ∈ EndG(V
⊗r), as required. �

In the following, we always assume that [n]q 6= 0, so that the orthogonal
decomposition E = F⊕L holds. Hence, by Lemma 5.2, Proposition 3.3, and
[Che55, p. 88] the module E⊗r is semisimple as a C[TWn]-module. Recall
that 〈ℓ0, ℓ0〉 = [n]q and define

u0 = [n]−1/2
q ℓ0.

The assumption [n]q 6= 0 implies that the restriction of the bilinear form
to F is nondegenerate (i.e., F is a non-isotropic subspace of E). Fix any
orthonormal basis u1, . . . ,un−1 of F. Then

{u0} ∪ {u1, . . . ,un−1}
is an orthonormal basis of E which is compatible with the decomposition
E = L⊕F in the sense that L = Cu0 and F =

⊕n−1
j=1 Cuj.

Define linear endomorphisms si, ei (for i = 1, . . . , r − 1) and pj (for

j = 1, . . . , r) of E⊗r on basis elements u = uk1 ⊗ · · · ⊗ ukr (where kα ∈
{0, . . . , n− 1} for all α) as follows:

(i) si(u) is the same tensor but with the factors in tensor positions i, i+1
interchanged.
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(ii) ei(u) is δki,ki+1
times the vector obtained by replacing the factors of

u in tensor positions i, i + 1 by u0 ⊗ u0 + · · ·+ un−1 ⊗ un−1.
(iii) pj(u) is the same tensor but with the factor in tensor position j

replaced by π(uj), where π is the orthogonal projection E ։ L in
Lemma 5.4.

The endomorphism ei defined in (ii) is independent of the chosen orthonor-
mal basis {u1, . . . ,un−1}. Indeed, ei corresponds with the identity map
idE ∈ End(E) under the canonical isomorphism

End(E) ∼= E∗ ⊗E ∼= E⊗E

coming from the identification E∗ ∼= E arising from the given bilinear form.
It is also possible (see [Hd14]) to define the action diagrammatically by a
uniform description of the action of any partial Brauer diagram.

8.2. Lemma. The diagonal action of the twin group TWn on E⊗r commutes
with the operators si, ei, and pj for i = 1, . . . , r − 1, j = 1, . . . , r.

Proof. That the diagonal TWn-action commutes with si is obvious, and
commutativity with ei is clear because the Si act as orthogonal matrices
in O(E), so we can appeal to the classical fact [Bra37] that the diagonal
O(E)-action commutes with ei. For the commutativity with pj , see Lemma
5.4. �

8.3. Proposition ([MM14, Prop. 5.1]). Suppose that [n]q 6= 0. Regard E =
L⊕F as a representation of O(F) by restriction from O(E) to O(F). Then
the centralizer algebra EndO(F)(E

⊗r) for the diagonal action of O(F) ∼=
On−1(C) on E⊗r is the algebra Z(r) generated by si, ei, and pj for i =
1, . . . , r − 1, j = 1, . . . , r.

Proof. The action of O(E) on L is trivial; hence the same is true of its
restriction to O(F). So L ∼= C as C[O(F)]-modules. This precisely matches
the situation addressed in [MM14, Prop. 5.1]. �

8.4. Proposition. Suppose that [n]q 6= 0. Let O(E) ∼= On(C) act naturally
on E and diagonally on E⊗r, with O(L)×O(F) acting by restriction. Then:

(a) EndO(L)×O(F)(E
⊗r) = Z(r).

(b) For any δ′ 6= 0, Z(r) is generated by si, ei, and δ′ pj for i = 1, . . . , r−
1, j = 1, . . . , r.

Proof. (a) Since O(L) ∼= {±1} is the cyclic group of order 2, the action of
O(L)×O(F) differs from the action of O(F) only by signs, so

EndO(L)×O(F)(E
⊗r) = EndO(F)(E

⊗r).

The result then follows from Proposition 8.3.

(b) Scaling any generator by a nonzero scalar does not affect the central-
izer algebra Z(r). �
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8.5. Proposition. Assume that [n]q 6= 0, [n− 2]!q 6= 0, and that

q 6= −λ±
√
−1− 2λ

1 + λ

for any λ = cos(2kπ/m) with m ∈ Z≥0. Then EndTWn
(E⊗r) = Z(r).

Proof. Let G be the image of the representation ρ : TWn → GL(E). By
Theorem 6.1 and Lemma 8.1 we have

EndTWn
(E⊗r) = EndG(E

⊗r) = EndG(E
⊗r)

and the result follows from Lemma 8.4(a). �

8.6. Theorem. Assume that [n]q 6= 0, [n− 2]!q 6= 0, and that

q 6= −λ±
√
−1− 2λ

1 + λ

for any λ = cos(2kπ/m) with m ∈ Z≥0. Let 0 6= δ′ be a complex number.
Regarded as a (C[TWn],PBr(n, δ

′))-bimodule, E⊗r satisfies Schur–Weyl du-
ality, in the sense that the enveloping algebra of each action is equal to the
full centralizer of the other. Here TWn acts diagonally and the generators
si, ei, pj of PBr(n, δ

′) act as si, ei, δ
′pj respectively. Finally, the action of

PBr(n, δ
′)) is faithful if and only if n > r.

Proof. We just have to put the pieces together. Proposition 8.5 computes the
centralizer algebra Z(r) = EndTWn

(E⊗r) and by verifying that the defin-
ing relations in Theorem 7.1 are satisfied by the generators of Z(r), part
(c) shows that it is a homomorphic image of the algebra PBr(n, δ

′). This
proves one half of Schur–Weyl duality. The other half follows by standard
arguments in the theory of semisimple algebras, since the enveloping algebra
of the orthogonal group (or its restriction to TWn) action on the semisim-
ple module E⊗r is a semisimple algebra. The final claim follows from the
dimension comparison in [MM14, Thm. 5.3(iii)]. �

8.7. Remark. There are a number of interesting choices of the scaling pa-
rameter δ′ in Theorem 8.6:

(i) Taking δ′ = 1 recovers an analogue of the Schur–Weyl duality result
of [MM14] in which the action of the orthogonal group On−1(C) has been
replaced by the action of the twin group TWn. This connects the represen-
tations of PBr(n, 1) to those of TWn.

(ii) If we take δ′ = n in the theorem, the corresponding algebra PBr(n, n)
is contained in the partition algebra Pr(n) at parameter n.

(iii) Choosing δ′ = [n]q clears denominators in the corresponding pseudo-
projections [n]qpj . By Lemma 5.4, the entries of the matrix of [n]qpj with
respect to the {e′i}-basis depend only on nonnegative integral powers of

√
q.

Recall that the irreducible polynomial representations of On(C) are typ-
ically indexed by the set of all partitions λ with not more than n boxes
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in the first two columns of the corresponding Young diagram. Replacing
n by n − 1 we can index the irreducible polynomial On−1(C)-modules by
the set of partitions λ satisfying the condition λ′

1 + λ′
2 ≤ n− 1, where λ′ is

the conjugate partition. This gives the following immediate consequence of
Theorem 8.6. The set Λr is defined in Remark 7.4.

8.8. Corollary. Under the same hypotheses as in Theorem 8.6, we have a
decomposition

E⊗r ∼=
⊕

λ∈Λr :λ′

1
+λ′

2
≤n−1

T λ ⊗Bλ

as (C[TWn],PBr(n, δ
′))-bimodules, where T λ, Bλ are irreducible represen-

tations of TWn, PBr(n, δ
′) respectively.

We obtain a second new instance of Schur–Weyl duality involving the twin
group (for tensor powers of F) as an immediate consequence of Theorem 6.1
and the classical result of [Bra37].

8.9. Theorem. Let u1, . . . ,un−1 be any orthonormal basis of F with respect
to the restriction of the bilinear form 〈−,−〉. Assume the hypotheses of
Theorem 8.6. Regarded as a (C[TWn],Br(n − 1))-bimodule, F⊗r satisfies
Schur–Weyl duality, with the generator ei of Br(n− 1) acting by

uj1 ⊗ · · ·ujr 7→ δji,ji+1

n−1
∑

k=1

uj1 ⊗ · · ·uji−1
⊗ uk ⊗ uk ⊗ uji+2

⊗ · · ·ujr .

and the si acting by swapping places i, i+1 as usual, for each i = 1, . . . , r−1.
The action of Br(n− 1) is faithful if and only if n− 1 ≥ 2r.

Proof. By [Bra37], the actions of On−1(C) and Br(n− 1) on F⊗r commute,
where F is regarded as the (natural) vector representation of On−1(C). Let
G be the image of the representation TWn → O(F). By Lemma 8.1 we have

EndTWn
(F⊗r) = EndG(F

⊗r) = EndOn−1(C)(F
⊗r).

The result now follows by [Bra37]. �

Appendix A. An explicit orthonormal basis of F

The proof of Schur–Weyl duality in Section 8 requires an orthonormal basis
of F, which exists by general principles (e.g., [Vin03, Thm. 5.46]). It is
sometimes useful to have an explicit orthonormal basis, so we now construct
one using the Gram–Schmidt orthogonalization procedure applied to the
basis {f1, . . . , fn−1}. As an application, in Proposition A.5 we obtain a
simpler proof of the density conclusion in Theorem 6.1, under somewhat
stronger hypotheses.

To begin the orthogonalization procedure, it is useful to observe that

(15) 〈fi, fj〉 = δij [2]q − (δi,j+1 + δi,j−1)
√
q.
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In particular, 〈fi, fj〉 = 0 unless i = j or i, j are adjacent integers. Thus,
the matrix of 〈−,−〉 with respect to the basis {fi} is a banded tridiagonal
(n− 1)× (n− 1) matrix of the form

An−1 =















a b
c a b

. . .
. . .

. . .

c a b
c a















where a = [2]q, b = c = −√
q. An easy inductive argument shows that

(16) detAn−1 = [n]q.

For any k ≤ n− 1, let Fk = Cf1 ⊕ · · · ⊕Cfk and let Ak be the matrix of the
restriction of 〈−,−〉 to Fk. The matrix Ak is the upper left k× k submatrix
of An−1. Put F0 = 0, d0 = 1, and set

dk = detAk = [k + 1]q for all k ≥ 1.

We obtain the following result from the standard Gram–Schmidt orthogo-
nalization procedure (see e.g. [Vin03, Thm. 5.47]).

A.1. Lemma. Suppose that dk = [k + 1]q 6= 0 for k = 1, . . . , n − 1 (that

is, [n]!q 6= 0). Then there exists a unique orthogonal basis v1, . . . ,vn−1 of F
such that

vk ∈ fk + Fk−1, for all k = 1, . . . , n− 1.

Furthermore, 〈vk,vk〉 = [k + 1]q/[k]q for all k = 1, . . . , n − 1.

Under the hypotheses of Lemma A.1, the fact that vj ∈ fj +Fj−1 in light
of (15) immediately implies that

(17) 〈fi,vi−1〉 = −√
q and 〈fi,vj〉 = 0 for all j < i− 1.

Thus the Gram–Schmidt formula yields the relation

(18) vi = fi +

√
q

〈vi−1,vi−1〉
vi−1 = fi +

q1/2[i− 1]q
[i]q

vi−1.

This can be used recursively (with v1 = f1) to compute the transition co-
efficients expressing vi as a linear combination of the fj , but it is slightly
simpler to rewrite (18) in the equivalent form

(19) [i]qvi = [i]qfi + q1/2[i− 1]qvi−1.

We summarize our conclusions.

A.2. Lemma. Define v′
i = [i]qvi and suppose that [n]!q 6= 0. Then v′

1, . . . ,v
′
n−1

is another orthogonal basis of F satisfying:

(a) v′
1 = v1 = f1.

(b) v′
i = [i]qfi + q1/2v′

i−1 for all i = 2, . . . , n− 1.
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Note that 〈v′
i,v

′
i〉 = [i]q[i + 1]q for all i. Solving the recurrence relation

in Lemma A.2 gives the explicit formulas

(20) v′
i =

i
∑

j=1

q(i−j)/2[j]qfj = −[i]qe
′
i+1 +

i
∑

j=1

q(i+j−1)/2e′j

expressing the v′
i in terms of either the {fj} or the {e′j}.

A.3. Lemma. Suppose that [n]!q 6= 0. Then

〈fi,v′
i−1〉 = −q1/2[i− 1]q, 〈fi,v′

i〉 = [i+ 1]q

and 〈fi,v′
j〉 = 0 for all j 6= i, i − 1.

Proof. The value of 〈fi,vj〉 for all j = 1, . . . , i − 1 was computed in (17),
which yields the result in those cases. Lemma A.2(b) implies that when
j = i,

〈fi,v′
i〉 = [i]q〈fi, fi〉+ q1/2〈fi,v′

i−1〉 = [i]q[2]q − q[i− 1]q = [i+ 1]q.

and similarly when j = i+ 1,

〈fi,v′
i+1〉 = [i+ 1]q〈fi, fi+1〉+ q1/2〈fi,v′

i〉
= −q1/2[i+ 1]q + q1/2[i+ 1]q = 0.

By repeating the argument, the above equality inductively implies that
〈fi,v′

j〉 = 0 for any j > i+ 1. �

By scaling the orthogonal basis v′
1, . . . ,v

′
n−1 we obtain the desired or-

thonormal basis u1, . . . ,un−1 of F, where

(21) ui = [i]−1/2
q [i+ 1]−1/2

q v′
i

Now we compute the matrices expressing the action of the operators Si,
defined in (8), with respect to the orthonormal basis {uj}.

A.4. Lemma. Suppose that [n]!q 6= 0. Then Si fixes uj for all j 6= i − 1, i
and

Si · ui−1 = aiui−1 + biui

Si · ui = biui−1 − aiui

where

ai =
[2]qi

[2]q[i]q
, bi =

2
√
q [i+ 1]

1/2
q [i− 1]

1/2
q

[2]q[i]q
.

Here a2i + b2i = 1. Moreover, ai = [i]q2 [i]
−2
q is an alternative expression for

ai.
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Proof. Observe that we know all the 〈fi,uj〉 from Lemma A.3 and the def-
inition of uj ; in particular, 〈fi,uj〉 = 0 unless j is equal to i − 1 or i. By
Lemma 5.3 we have

Si · uj = uj − 2
〈fi,uj〉
〈fi, fi〉

fi.

Hence Si ·uj = uj if j 6= i, i−1. This proves the first claim. It only remains
to calculate the ai, bi. For example,

ai = 〈Si · ui−1,ui−1〉 = 〈ui−1,ui−1〉 − 2
〈fi,ui−1〉
〈fi, fi〉

〈fi,ui−1〉

= 1− 2
[i− 1]−1

q [i]−1
q 〈fi,v′

i−1〉2
[2]q

= 1− 2q[i− 1]q
[2]q[i]q

=
[2]qi

[2]q[i]q
.

The calculation of bi is similar. The proof of the alternative formula for ai
is an easy exercise. �

The matrix of the action of Si on the orthonormal {uj}-basis is of the
block diagonal form ∆i = diag(Ii−1,∆

′
i, In−i−2), where

∆′
1 =

[

−1 0
0 1

]

and ∆′
i =

[

ai bi
bi −ai

]

if i > 1.

Hence ∆1∆2 = diag(Ii−1,∆
′
1∆

′
2, In−i−2) is a rotation matrix, where

∆′
1∆

′
2 =

[

−a2 −b2
b2 −a2

]

.

We will also need the diagonal matrices

Di = diag(1, . . . , 1,−1, 1, . . . , 1)

with the −1 appearing in the ith diagonal entry. Note that D1 = ∆1 is in
G.

We have the following variant of Theorem 6.1 (under slightly stronger
hypotheses).

A.5. Proposition. Suppose that [n]!q 6= 0. Let G be the image of the rep-

resentation TWn → O(F), and G its Zariski-closure in O(F). Suppose that
the matrix Di∆i+1 has infinite order for each i = 1, . . . , n− 2. Then for all
k = 2, . . . , n− 1:

(a) G contains diag(Ik−2,O2(C), In−1−k).
(b) Dk belongs to G.

Thus G = O(F).

Proof. As noted above, D1 = ∆1 is in G, so D1∆2 belongs to G. The group
generated by D1∆2 is an infinite cyclic subgroup of the one-parameter group
diag(SO2(C), In−3), so its Zariski-closure is equal to diag(SO2(C), In−3), and
this is contained in G. It follows that diag(O2(C), In−3) ⊂ G, proving (a)
for k = 2. This implies (b) for the case k = 2.
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For k > 2 we may assume by induction that (a), (b) hold for k − 1. In
particular, Dk−1 ∈ G. Repeat the argument to see that the Zariski-closure
of the group generated by Dk−1∆k is diag(Ik−2,SO2(C), In−1−k), and this is
contained in G. It follows that diag(Ik−2,O2(C), In−1−k) ⊂ G, which proves
(a) and (b) by induction.

LetG(k) be the group generated by ∆1, . . . ,∆k. Notice thatG = G(n−1).

Assume by induction that G(k − 1) = diag(Ok−1(C), In−k). Thus

(22) ei,j − ej,i ∈ LieG(k − 1) for all 1 ≤ i < j ≤ k − 1

and LieG(k − 1) ∼= sok−1(C) is contained in LieG(k). By (a) we know that

LieG(k) contains X = ek−1,k − ek,k−1. By taking commutators of X with

the elements in (22) we see that LieG(k) ∼= sok(C). By induction, this holds
for all k.

Hence, LieG = LieG(n− 1) = son−1(C). As G ⊂ On−1(C) and contains
reflections (elements of determinant −1; e.g., any Dk) it follows that G =
On−1(C) ∼= O(F). �

A.6. Remark. The values of q making Di∆i+1 of finite order can be ana-
lyzed by means of Chebyshev polynomials, similar to calculations in Section
6. We omit the details.
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