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Abstract

We prove the existence of a solution for the second order system of partial
differential equations ∂tf = ν · ∆f + g · ∇f + h · f + k by a Montel space
version of Arzelà–Ascoli and bound all Schwartz semi-norms. We find that for
the Euler and the Navier–Stokes equations the vorticity remains a Schwartz
function as long as the classical solution exists. Our approach is not affected
by viscosity. It treats the hyperbolic Euler and the parabolic Navier–Stokes
equation simultaneously.
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1. Introduction

The motion of (incompressible) fluids in Rn or Tn := Rn/Zn (n = 2, 3) are
described by the Euler (ν = 0) and Navier–Stokes (ν > 0) equations

∂tu(x, t) = ν∆u(x, t)− u · ∇u(x, t)−∇p(x, t) + F (x, t) (1a)

div u(x, t) = 0 (1b)

with initial conditions

u(x, t0) = u0(x). (1c)

Here x ∈ Rn or Tn is the position vector and t ≥ t0 is the time; t0 ∈ R is the ini-
tial starting time and without loss of generality t0 = 0. Then u = (u1, . . . , un)

t

is the velocity field of the fluid, p is the pressure, and F = (F1, . . . , Fn)
t are

externally applied forces [1]. Reasonable initial conditions [1] are

u0 = (u0,1, . . . , u0,n)
t ∈ S(Rn,Rn) resp. C∞(Tn,Rn),
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i.e., all u0,i shall be Schwartz functions

S(Rn) := {f ∈ C∞(Rn) | ∥xα · ∂βf(x)∥∞ < ∞ for all α, β ∈ N
n
0},

resp. smooth periodic functions. A physically reasonable solution u and p of (1)
must fulfill the smoothness condition

u1, . . . , un, p ∈ C∞(Rn × [0,∞)) resp. C∞(Tn × [0,∞))

and the bounded energy condition
∫
|u(x, t)|2 dx < C for all t ≥ t0 [1].

With F = 0, taking the curl of (1) gives

∂tω(x, t) = ν∆ω(x, t)− u(x, t) · ∇ω(x, t) + ω(x, t) · ∇u(x, t)

ω(x, t0) = ω0(x) := rotu0(x)
(2)

with the vorticity ω(x, t) := rotu(x, t) (= curlu(x, t) = ∇ × u(x, t)), and we
have

ω · ∇u = (ω1∂1 + ω2∂2 + ω3∂3)





u1

u2

u3



 =





∂1u1 ∂2u1 ∂3u1

∂1u2 ∂2u2 ∂3u2

∂1u3 ∂2u3 ∂3u3









ω1

ω2

ω3



 = ∇u · ω.

(3)
More on the Euler and the Navier–Stokes equations can be found e.g. in [2–34]
and references therein.

In this paper we investigate Schwartz function valued vorticity solutions of
the Euler and Navier–Stokes equations. Since the initial values fulfill u0 ∈
S(R3,R3) [1] it is interesting if the solution u of (1) resp. the vorticity ω of (2)
stay in S(R3,R3) or how they leave this space.

The spatial decay (asymptotics) of u and ω has been investigated before.
A classical result is that unless the Dobrokhotov–Shafarevich conditions [21]
are fulfilled, the spacial decay in u does not decay faster than O(|x|−4). This
especially covers the instantaneous breakdown of u being a Schwartz function.
For further studies see e.g. [35–39]. For the vorticity ω such a spreading was
never observed, see e.g. [33, Ch. 4.11]. In [29, Prop. 3.1] it was shown that for
the Navier–Stokes equation the vorticity remains a Schwartz function for small
times. We also want to mention the works [40–46].

In this paper we show that the vorticity for the Euler and the Navier–Stokes
equation remains a Schwartz function as long as the smooth solution exists
(Theorem 7.1). Our approach is not affected by the Laplace operator and treats
the Euler and the Navier–Stokes equations at the same time. It also covers the
anisotropic Laplace operator ν ·∆ := ν1∂

2
1 + · · ·+ νn∂

2
n with ν = (ν1, . . . , νn) ∈

[0,∞)n.
Let n,m ∈ N. In what follows ∥f∥∞ := supx∈Rn |f(x)| is the supremum-

norm on Rn and xα := xα1

1 · · ·xαn
n , ∂α := ∂α1

1 · · · ∂αn
n , and |α| := α1 + · · ·+ αn

are multi-index notations with α = (α1, . . . , αn) ∈ Nn
0 . By T ∗ ≤ ∞ we denote

the maximal time a classical solution of a PDE exists, i.e., the classical solution
exists for all t ∈ [0, T ∗) and T ∗ is maximal with this property. We denote by

C∞
b (Rn,Rm) := {f ∈ C∞(Rn,Rm) | ∥∂αf∥∞ < ∞ for all α ∈ N

n
0}

2



the set of all smooth bounded functions and by

S(Rn,Rm) := {f ∈ C∞(Rn,Rm) | ∥xα · ∂βf(x)∥∞ < ∞ for all α, β ∈ N
n
0}

we denote the set of all Schwartz functions. Here, for functions f = (f1, . . . , fn)
t

by |f | we denote |f |(x) :=
√

f2
1 (x) + · · ·+ f2

n(x) and ∥xαf(x)∥∞ := supx∈Rn |xα|·
|f |(x) for all α ∈ Nn

0 .
We study (1) and (2) via the initial value problem

∂tf(x, t) = ν∆f(x, t) + g(x, t) · ∇f(x, t) + h(x, t) · f(x, t) + k(x, t)

f(x, 0) = f0(x),
(4)

and the functions g(x, t) = (g1(x, t), . . . , gn(x, t))
t, h(x, t) = (hi,j(x, t))

m
i,j=1,

and k(x, t) = (k1(x, t), . . . , km(x, t))t with n,m ∈ N are known vector resp.
matrix functions.

To show the existence of solutions of (4) we split it into the following four
simpler parts and glue them together in a Trotter type [47] fashion.

Example 1.1 (heat equation). Let ν > 0 and for all t > 0 let Θν,t(x) :=
1√
πνt

· exp
(
− x2

4νt

)
be the heat kernel. Then for f0 ∈ S(R) the convolution

f(x, t) := (Θν,t ∗ f0)(x) =

∫

y∈R

f0(x− y) ·Θν,t(y) dy ∈ C1([0,∞),S(R,R))

(5)
solves the initial value problem

∂tf(x, t) = ν ·∆f(x, t) on R× [0,∞)

f(x, 0) = f0(x) on R. ◦

In higher dimensions for the anisotropic Laplace operator ν · ∆ = ν1∂
2
1 +

· · ·+ νn∂
2
n we set Θν,t := Θ

(1)
ν1,t

· · ·Θ
(n)
νn,t

where Θ
(i)
νi,t

is the one-dimensional heat
kernel acting resp. depending only on the xi-coordinate.

Example 1.2 (transport equation). Let f0 ∈ S(R) and g ∈ C([0,∞),R). Then

f(x, t) := f0

(

x+

∫ t

0

g(s) ds

)

∈ C1([0,∞),S(R,R)) (6)

is a solution of the initial value problem

∂tf(x, t) = g(t) · ∇f(x, t) on R× [0,∞)

f(x, 0) = f0(x) on R. ◦

Note, that if g also depends on x, then the previous simple formula does not
hold but serves for the ansatz

f(x, t) ≈ f0

(

x+

∫ t

0

g(x, s) ds

)

∈ C1([0,∞),S(R,R)) (7)

for small times t.

3



Example 1.3 (“stretching equation”). Let f0 ∈ S(R) and h ∈ C([0,∞), C(R,R)).
Then

f(x, t) := exp

(∫ t

0

h(x, s) ds

)

· f0(x) ∈ C1([0,∞),S(R,R)) (8)

is a solution of the initial value problem

∂tf(x, t) = h(x, t) · f(x, t) on R× [0,∞)

f(x, 0) = f0(x) on R. ◦

Example 1.4 (“addition equation”). Let k ∈ C([0,∞),S(R)) and f0 ∈ S(R).
Then

f(x, t) = f0(x) +

∫ t

0

k(x, s) ds ∈ C1([0,∞),S(R,R)) (9)

solves the initial value problem

∂tf(x, t) = k(x, t) on R× [0,∞)

f(x, 0) = f0(x) on R. ◦

Each of the initial value problems ∂tf = Aif , i = 1, . . . , 4, in Examples 1.1
to 1.4 gives a time-evolution or in higher dimensions at least an approximate
time evolution f(x, t) = Ei(t, t0)f0. In all four time evolutions, when f0 ∈ S(R),
then also f = Ei( · , t0)f0 ∈ C([0,∞),S(R,R)). Our aim is to show that (4)
with f0 ∈ S(Rn,Rm) also possesses such a Schwartz valued solution and to give
explicit bounds on all semi-norms. The four (approximate) solutions Ei(t, t0)f0
will be glued together in the Trotter fashion [47] by using a Schwartz valued
version of the Arzelà–Ascoli Theorem (Lemma 2.1), i.e.,

f( · , t) = lim
N→∞

E4(t,
N−1
N

t) · · ·E1(t,
N−1
N

t)E4(
N−1
N

t, N−2
N

t) · · ·E1(
1
N
t, 0)f0

where the convergence is controlled in the Schwartz space S(Rn,Rm).
The paper is structured as follows. In Section 2 we give for completeness of

the paper the Schwartz function valued version of the Arzelà–Ascoli Theorem
(Lemma 2.1). In Section 3 the family {fN}N∈N of approximate solutions of
(4) is defined. In Section 4 the cover covRf of a function f is introduced, i.e.,
|f | ≤ covRf . It is used in Section 5 to prove the main theorem (Theorem 5.1).
Theorem 5.1 is applied in Section 6 to Burgers’ equation and in Section 7 to the
Euler and the Navier–Stokes equations.

2. The Schwartz Function Valued Arzelà–Ascoli Theorem

A set M ⊂ S(Rn) is bounded if for all α, β ∈ Nn
0 there are Cα,β > 0 with

sup
f∈M

∥xα · ∂βf(x)∥∞ ≤ Cα,β < ∞.

S(Rn) is a complete Montel space and every bounded set is relatively compact.
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In the proof of the Arzelà–Ascoli Theorem it is crucial that the continuous
functions are (real- or) complex-valued to apply the Bolzano–Weierstraß The-
orem since R and C have the Heine–Borel property: Every bounded sequence
has a convergent subsequence resp. bounded and closed sets are compact. But
every Montel space also has the Heine–Borel property, i.e., the classical proof
of the Arzelà–Ascoli Theorem [48–50], see e.g. [51, pp. 85–86], can be literally
used for S(Rn). While this was known before, for the sake of completeness of
the paper and to make it self-contained we briefly state and prove the result.

Lemma 2.1 (S(Rn)-valued version of Arzelà–Ascoli). Let n,m ∈ N, T > 0,
and {fN}N∈N ⊂ C([0, T ],S(Rn,Rm)). Assume that

(i) supN∈N,t∈[0,T ] ∥x
α · ∂β

xfN (x, t)∥∞ < ∞ for all α, β ∈ Nn
0 , and

(ii) {fN}N∈N is equi-continuous, i.e., for all ε > 0 exists δ = δ(ε) > 0 such
that for all N ∈ N we have

|t− s| < δ ⇒ ∥fN (x, t)− fN (x, s)∥∞ ≤ ε.

Then {fN}N∈N is relatively compact in C([0, T ],S(Rn,Rm)).

Proof. It is sufficient to prove the result for m = 1. Then it holds in one
component of fN and by choosing subsequences it holds in all components.

Let {tk}k∈N ⊂ [0, T ] be a dense countable subset such that for every ε > 0
there is a k(ε) ∈ N with

sup
t∈[0,T ]

inf
1≤k≤k(ε)

|t− tk| ≤ ε.

Let t ∈ [0, T ]. Since {fN ( · , t)}N∈N is a bounded set in the complete Montel
space S(Rn), it has a convergent subsequence. Let (N1,i)i∈N ⊆ N be such that
(fN1,i

( · , t1))i∈N converges in S(Rn). Take a subsequence (N2,i)i∈N of (N1,i)i∈N

such that (fN2,i
( · , t2))i∈N converges in S(Rn). Hence, by the diagonal process

of choice we get a subsequence (fNi
)i∈N with Ni := Ni,i which converges in

S(Rn) for all tk.
Let ε > 0. By the equi-continuity of {fN}N∈N there is a δ = δ(ε) > 0 such

that |t − s| < δ implies ∥fN (x, t) − fN (x, s)∥∞ ≤ ε. Hence, for every t ∈ [0, T ]
there exists a k with k ≤ k(ε) such that

∥fNi
(x, t)− fNj

(x, t)∥∞ ≤ ∥fNi
(x, t)− fNi

(x, tk)∥∞ + ∥fNi
(x, tk)− fNj

(x, tk)∥∞

+ ∥fNj
(x, tk)− fNj

(x, t)∥∞

≤ 2ε+ ∥fNi
(x, tk)− fNj

(x, tk)∥∞.

Thus lim
i,j→∞

sup
t∈[0,T ]

∥fNi
(x, t)−fNj

(x, t)∥∞ ≤ 2ε and since ε > 0 was arbitrary we

have lim
i,j→∞

sup
t∈[0,T ]

∥fNi
(x, t)−fNj

(x, t)∥∞ = 0. So for every x ∈ Rn the sequence

5



fNi
(x, · ) converges uniformly on [0, T ] to a continuous function f(x, · ). Hence

by construction f( · , tk) ∈ S(Rn) for all tk dense in [0, T ]. But

∥xα · ∂βf(x, t)∥∞ ≤ sup
s∈[0,T ],N∈N

∥xα · ∂βfN (x, s)∥∞ < ∞

for all α, β ∈ Nn
0 implies f( · , t) ∈ S(Rn) for all t ∈ [0, T ].

3. The Approximate Solutions fN

Definition 3.1. Let N ∈ N and T > 0. A decomposition ZN of [0, T ] is
a set ZN = {t0, t1, . . . , tN} with t0 = 0 < t1 < · · · < tN = T and we set
∆ZN := maxi=1,...,N |ti − ti−1|.

We use the following type of functions.

Definition 3.2. Let d ∈ N0, n ∈ N, and T > 0. We denote by

Cd([0, T ],S(Rn))

all functions f : Rn × [0, T ] → R such that

(i) for every x ∈ Rn we have f(x, · ) ∈ Cd([0, T ],R),

(ii) f( · , t), ∂tf( · , t), . . . , ∂
d
t f( · , t) ∈ S(Rn) for all t ∈ [0, T ], and

(iii) ∂i
t∂

α
x f ∈ C(Rn × [0, T ],R) for all i = 0, 1, . . . , d and α ∈ Nn

0 .

We will always denote by ∂t the time derivative and we will therefore abbre-
viate the spatial derivatives ∂α = ∂α

x . (iii) implies by the Theorem of Schwarz
that the order of the derivatives ∂t, ∂1, . . . , ∂n can be arbitrary.

Definition 3.3. Let n,m ∈ N, f0 ∈ S(Rn,Rm), and t0 ∈ R. We define the
following time evolutions E1, . . . , E4 for all t ∈ [t0,∞):

(i) Let ν = (ν1, . . . , νn) ∈ [0,∞)n. Then we define

E1(t, t0)f0 := Θν,t−t0 ∗ f0

with Θν,t := Θ
(1)
ν1,t

· · ·Θ
(n)
νn,t

where Θ
(i)
νi,t

is the one-dimensional heat kernel
acting resp. depending only on the xi-coordinate.

(ii) For g = (g1, . . . , gn) ∈ C([t0,∞), C∞
b (Rn,Rn)) we define

E2(t, t0)f0 := f0

(

x+

∫ t

t0

g( · , s) ds

)

.

(iii) For h = (hi,j)
m
i,j=1 ∈ C([t0,∞), C∞

b (Rn,Rm×m)) we define

E3(t, t0)f0 :=

(

1 +

∫ t

t0

h( · , s) ds

)

· f0.
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(iv) For k = (k1, . . . , km) ∈ C([t0,∞),S(Rn,Rm)) we define

E4(t, t0)f0 := f0 +

∫ t

t0

k( · , s) ds.

We see that the Ei’s are (approximate) time evolutions ∂tf = Aif with
respect to the operators A1 = ν · ∆, A2 = g · ∇, the multiplication operator
A3 = h·, and the addition operator A4 = +k. By the Trotter approach [47] as
an approximate solution of ∂tf = (A1 + · · ·+A4)f we can therefore take

E4(tN , tN−1)E3(tN , tN−1)E2(tN , tN−1)E1(tN , tN−1)E4(tN−1, tN−2) · · ·E1(t1, t0)f0.

Definition 3.4. Let n,m ∈ N, T > 0, f0 ∈ S(Rn,Rm), and let ν, g, h, and k
be as in Definition 3.3. For each N ∈ N let ZN be a decomposition of [0, T ]. We
define the functions fN : Rn × [0, T ] → Rm piece-wise on each interval [ti, ti+1]
by the following:

(i) For t ∈ [t0, t1] we set

fN ( · , t) := E4(t, t0)E3(t, t0)E2(t, t0)E1(t, t0)f0.

(ii) For t ∈ [ti, ti+1] with i = 1, . . . , N − 1 we set

fN ( · , t) := E4(t, ti)E3(t, ti)E2(t, ti)E1(t, ti)fN ( · , ti).

The following ensures that we can apply the Arzelà–Ascoli Theorem to the
family {fN}N∈N.

Lemma 3.5. fN ∈ C([0, T ],S(Rn,Rm)) and C1 in t ∈ (ti, ti+1).

Proof. For all f ∈ S(Rn,Rm) and t ≥ t′ ≥ 0 we have Ej(t, t
′)f ∈ S(Rn,Rm),

j = 1, . . . , 4, and from Definition 3.3 we also have C1 in t ∈ (ti, ti+1).

4. The Cover of a Function

For the approximate solutions fN ’s we need to bound all semi-norms

∥xα · ∂βfN (x, t)∥∞

to apply the Arzelà–Ascoli Theorem. To handle these extensive calculations,
we introduce the cover covRf of a function f , i.e., |fN ( · , t)| ≤ covRfN ( · , t).

Definition 4.1. Let n,m ∈ N and R ≥ 0. We introduce the cover covR of a
Schwartz function f ∈ S(Rn,Rm) as the map

covR : S(Rn,Rm) → C(Rn,R)

defined by
(covRf)(x) := max

y∈Rn:∥y∥2≥∥x∥2−R
∥f(y)∥2.

7



The cover has the following general properties.

Lemma 4.2. Let n,m ∈ N, R,R′ ≥ 0, a, b ∈ R, and f, f ′ ∈ S(Rn,Rm). The
cover cov has the following general properties:

(i) covRf is non-negative, radial symmetric, decreases with increasing ∥x∥2,
and fulfills |f | ≤ cov0f .

(ii) If |f | ≤ |f ′|, then covRf ≤ covRf
′.

(iii) covRf ≤ covR+R′f .

(iv) covR(af + bf ′) ≤ |a| · covRf + |b| · covRf
′.

(v) covR(covR′f) = covR+R′f .

(vi) For d ∈ N let Cd > 0 be such that |f |(x) ≤ Cd

1+∥x∥d
2

for all x ∈ Rn. Then

(cov0f)(x) ≤
Cd

1 + ∥x∥d2

for all x ∈ Rn.

(vii) For d ∈ N let Cd > 0 be such that |f(x)| ≤ Cd

1+∥x∥d
2

for all x ∈ Rn. Then

(covRf)(x) ≤
Cd

1 + rd
with r := max{0, ∥x∥2 −R}

for all x ∈ Rn.

Proof. (i)-(iv): Follows immediately from the Definition 4.1.
(v): By (i) we have that covR′f is radial symmetric and decreases with

increasing ∥x∥2. Hence, for fixed x ∈ Rn there is a y ∈ Rn with ∥y′∥2 ≥ ∥x∥2−R′

such that |f(y′)| = (covR′f)(x). But in covR+R′f we have the restriction ∥y∥2 ≥
∥x∥2 −R−R′, i.e., a larger range for y and hence the inequality holds.

(vi): Since ad(x) :=
Cd

1+∥x∥d
2

is non-negative, radial symmetric, and decreases

with increasing ∥x∥2 we have cov0ad = ad and since |f | ≤ ad we have that (ii)
implies cov0f ≤ cov0ad = ad.

(vii): Set ad(x) :=
Cd

1+∥x∥d
2

. Then

(covRf)(x)
(v)
= covR(cov0f)

(vi)

≤ covRad

and since ad is non-negative, radial symmetric, decreases with increasing ∥x∥2
we have covRad = Cd

1+rd
with r := max{0, ∥x∥2 −R}.

We use the cover cov to bound the Schwartz semi-norms for the approximate
time evolution from E1, . . . , E4. Hence, we collect in the following the special
properties connected to the Ei’s.
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Lemma 4.3. Let n,m ∈ N, R,R′ ≥ 0, t0, t ∈ R with t ≥ t0, and f ∈
S(Rn,Rm). Let ν, g, h, and k be as in Definition 3.3. The cover cov has
the following special properties:

(i) covR(E1(t, t0)f) ≤ E1(t, t0)covRf .

(ii) With G(t, t0) :=
∫ t

t0
∥g( · , s)∥∞ ds we get

|E2(t, t0)f | ≤ covG(t,t0)f.

(iii) With H(t, t0) :=
∫ t

t0
∥h( · , s)∥∞ ds we have

covR(E3(t, t0)f) ≤ (1 +H(t, t0)) · covRf.

(iv) covR(E4(t, t0)f) ≤ covRf +
∫ t

t0
covRk( · , s) ds.

Proof. (i): Follow immediately from the fact that E1(t, t0) is the convolution
with the non-negative heat kernel Θν,t−t0 .

(ii): Since E2(t, t0) is a translation, each point x ∈ Rn with ∥x∥2 = r is
moved to some x′ ∈ Rn with ∥x′∥2 ≤ r +G(t, t0) which proves the inequality.

(iii): Follows immediately from taking the supremum of 1 +
∫ t

t0
h( · , s) ds.

(iv): We have

covR(E4(t, t0)f) = covR

(

f +

∫ t

t0

k( · , s) ds

)

Lem. 4.2(iv)

≤ covRf + covR

(∫ t

t0

k( · , s) ds

)

Lem. 4.2(iv)

≤ covRf +

∫ t

t0

covRk( · , s) ds.

We want to bound all semi-norms in the Schwartz space. Hence, we also
have to look at derivatives of the approximate solutions fN .

Lemma 4.4. Let n,m ∈ N, d ∈ N0, and f0 ∈ S(Rn,Rm). Let ν, g, h, and k
be as in Definition 3.3. Set

f(x, t) := E4(t, 0)E3(t, 0)E2(t, 0)E1(t, 0)f0

=

(

1 +

∫ t

0

h(x, s) ds

)

(Θν,t ∗ f0)

(

x+

∫ t

0

g(x, s) ds

)

+

∫ t

0

k(x, s) ds

= (1 +H) · F (x+G) +K

(10)

with F := Θν,t ∗ f0, H :=
∫ t

0
h( · , s) ds, G :=

∫ t

0
g( · , s) ds, Gj :=

∫ t

0
gj( · , s) ds,

and K :=
∫ t

0
k( · , s) ds. Then for i1, . . . , id ∈ {1, . . . , n} we have

∂id . . . ∂i1f(x, t) =

(

1 +H +

d∑

r=1

∂irGir

)

· (∂id . . . ∂i1F )(x+G) + ∂id . . . ∂i1K
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+

d∑

r=1

∑

jr ̸=ir

∂irGjr · (∂id . . . ∂ir+1
∂jr∂ir−1

. . . ∂i1F )(x+G)

(11)

+O(t2) + o(d− 1, t)

where o(d− 1, t) is the set of functions
∫ t

0
{derivatives of h or g} ·Θν,t ∗ (∂

γf0)
with γ ∈ Nn

0 and |γ| ≤ d− 1, i.e., the growth in t is at most linear.

Proof. We prove (11) by induction over d ∈ N0.
d = 0: Clear, since (10) = (11).
d → d+ 1: Assume (11) holds for some d ∈ N0. Let i1, . . . , id+1 ∈ {1, . . . , n}.

Then we have

∂id+1
. . . ∂i1F

= ∂id+1
[∂id . . . ∂i1F ]

= ∂id+1

[(

1 +H +

d∑

r=1

∂irGir

)

· (∂id . . . ∂i1F )(x+G)

+

d∑

r=1

∑

jr ̸=ir

∂irGjr · (∂id . . . ∂ir+1
∂jr∂ir−1

. . . ∂i1F )(x+G)

+ ∂id . . . ∂i1K +O(t2) + o(d− 1, t)

]

=

(

∂id+1
H +

d∑

r=1

∂id+1
∂irGir

)

· (∂id . . . ∂i1F )(x+G)

︸ ︷︷ ︸

∈o(d,t)

+

(

1 +H +

d∑

r=1

∂irGir

)

·

n∑

jd+1=1

(δjd+1,id+1
+ ∂id+1

Gjd+1
)

× (∂jd+1
∂id . . . ∂i1F )(x+G)

+
d∑

r=1

∑

jr ̸=ir

∂id+1
∂irGjr · (∂id . . . ∂ir+1

∂jr∂ir−1
. . . ∂i1F )(x+G)

︸ ︷︷ ︸

∈o(d,t)

+

d∑

r=1

∑

jr ̸=ir

∂irGjr ·

n∑

jd+1=1

(δjd+1,id+1
+ ∂id+1

Gjd+1
)

︸ ︷︷ ︸

=∂irGjr ·(1+∂id+1
Gid+1

)=∂irGjr+O(t2) for jd+1=id+1;

=∂irGjr ·∂id+1
Gjd+1

∈O(t2) for jd+1 ̸=id+1

× (∂jd+1
. . . ∂ir+1

∂jr∂ir−1
. . . ∂i1F )(x+G)

+ ∂id+1
. . . ∂i1K +O(t2) + o(d− 1, t)
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=

(

1 +H +

d∑

r=1

∂irGir

)

· (1 + ∂id+1
Gid+1

)

︸ ︷︷ ︸

=1+H+
∑d+1

r=1
∂irGir+O(t2)

·(∂id+1
. . . ∂i1F )(x+G)

+

n∑

jd+1 ̸=id+1

(

1 +H +

d∑

r=1

∂irGir

)

· ∂id+1
Gjd+1

︸ ︷︷ ︸

=∂id+1
Gjd+1

+O(t2)

·(∂jd+1
∂id . . . ∂i1F )(x+G)

+

d∑

r=1

∑

jr ̸=ir

∂irGjr · (∂id+1
. . . ∂ir+1

∂jr∂ir−1
. . . ∂i1F )(x+G)

+ ∂id+1
. . . ∂i1K +O(t2) + o(d, t)

=

(

1 +H +

d+1∑

r=1

∂irGir

)

· (∂id+1
. . . ∂i1F )(x+G)

+

d+1∑

r=1

∑

jr ̸=ir

∂irGjr · (∂id+1
. . . ∂ir+1

∂jr∂ir−1
. . . ∂i1F )(x+G)

+ ∂id+1
. . . ∂i1K +O(t2) + o(d, t)

which proves (11) for d+ 1 and hence by induction (11) for all d ∈ N0.

5. The Existence of a Schwartz Function Valued Solution

The next result is the main theorem of this article. It completely solves
the Schwartz function regularity problem of (4) with explicit bounds for the
Schwartz function semi-norms ∥xα · ∂βf(x, t)∥∞

Theorem 5.1. Let n,m ∈ N, d ∈ N0, and ν = (ν1, . . . , νn) ∈ [0,∞)n. Fur-
thermore, let g ∈ Cd([0,∞), C∞

b (Rn,Rn)), h ∈ Cd([0,∞), C∞
b (Rn,Rm×m)),

and k ∈ Cd([0,∞),S(Rn,Rm)). Set H(t1, t0) :=
∫ t1

t0
∥h( · , s)∥∞ ds, G(t1, t0) :=

∫ t1

t0
∥g( · , s)∥∞ ds, and G′(t1, t0) :=

∫ t1

t0
∥∇g( · , s)∥∞ ds for all t1 ≥ t0 ≥ 0. For

f0 ∈ S(Rn,Rm) the initial value problem

∂tf = ν ·∆f + g · ∇f + h · f + k

f( · , 0) = f0

11



has a solution f ∈ Cd+1([0,∞),S(Rn,Rm)) with the covers

|∂βf( · , t)| ≤ B|β|( · , t) := exp
(
H(t, 0) + b2 ·G′(t, 0)

)

× E1(t, 0)covG(t,0)(max
β

∂βf0)

+

∫ t

0

exp
(
H(t, s) + b2 ·G′(t, s)

)

× E1(t, s)covG(t,s)

(

max
β

∂βk( · , s)

)

ds

+Bd−1( · , t)

(12)

for all β ∈ N0 such that

∥xα · ∂βf(x, t)∥∞ ≤ sup
x∈Rn

∥x∥
|α|
2 ·B|β|(x, t) < ∞

for all α, β ∈ Nn
0 and t ≥ 0. Therein, Bd( · , t) is a linear combination of bounds

Bj for j ≤ d− 1 with coefficients as integrals over ∂γg and ∂γh with |γ| ≤ d.

Proof. Let N ∈ N, T > 0, and ∆ZN be a decomposition of [0, T ]. Take the
fN ’s from Definition 3.4, i.e., fN ∈ C([0, T ],S(Rn,Rm) by Lemma 3.5.

We look at the family {fN}N∈N and want to use Lemma 2.1 to find an
accumulation point f for N → ∞ with ∆ZN → 0. Since T > 0 is arbitrary,
it is sufficient that we bound the semi-norms at t = T . Additionally, since
|∂βfN |( · , T ) ≤ cov0(∂

βfN )( · , T ) we have

∥xα · ∂βfN (x, T )∥∞ ≤ ∥xα · cov0(∂
βfN )(x, T )∥∞.

We will proceed via induction over b = |β| ∈ N0.
b = 0: We have

|fN ( · , tN )|

Lem. 4.2(i)

≤ cov0fN ( · , tN )

Dfn. 3.4= cov0E4(tN , tN−1) . . . E1(tN , tN−1)fN ( · , tN−1)

Lem. 4.3(iv)

≤ cov0E3(tN , tN−1) . . . E1(tN , tN−1)fN ( · , tN−1)

+

∫ tN

tN−1

cov0k( · , s) ds

Lem. 4.3(iii)

≤ exp(H(tN , tN−1)) · cov0E2(tN , tN−1)E1(tN , tN−1)fN ( · , tN−1)

+

∫ tN

tN−1

cov0k( · , s) ds

Lem. 4.3(ii)

≤ exp(H(tN , tN−1)) · covG(tN ,tN−1)E1(tN , tN−1)fN ( · , tN−1)
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+

∫ tN

tN−1

cov0k( · , s) ds

Lem. 4.3(i)

≤ exp(H(tN , tN−1)) · E1(tN , tN−1)covG(tN ,tN−1)fN ( · , tN−1)

+

∫ tN

tN−1

cov0k( · , s) ds

and applying Definition 3.4 and Lemma 4.3 (i-iv) on the time interval [tN−1, tN−2]
in the same way gives

≤ exp(H(tN , tN−2)) · E1(tN , tN−2)covG(tN ,tN−2)fN ( · , tN−2)

+ exp(H(tN , tN−1)) ·

∫ tN−1

tN−2

E1(tN , tN−1)cov0k( · , s) ds

+

∫ tN

tN−1

cov0k( · , s) ds

and proceeding gives finally

≤ exp(H(tN , t0)) · E1(tN , t0)covG(tN ,t0)f0

+

N∑

i=0

exp(H(tN , tN−i)) ·

∫ tN−i

tN−1−i

E1(tN , tN−i)covG(tN ,tN−i)k( · , s) ds

which converges by Riemann integration for N → ∞ with ∆ZN → 0 to

→ B0(x, T ) = exp(H(T, 0)) · E1(T, 0)covG(T,0)f0 (13)

+

∫ T

0

exp(H(T, s)) · E(T, s)covG(T,s)k( · , s) ds.

By Lemma 4.2(vi) and (vii) we have that

∥xα · fN (x, T )∥∞ ≤ sup
x∈Rn

∥x∥
|α|
2 ·B0(x, T ) < ∞

for all α ∈ Nn
0 .

d → d+ 1: Assume for all i = 0, . . . , d we have bounds Bi with

|∂βfN (x, T )| ≤ B|β|(x, T )

such that
∥xα · ∂βfN (x, T )∥∞ ≤ sup

x∈Rn

∥x∥
|α|
2 ·B|β|(x, T ) < ∞

for all N ∈ N and all α, β ∈ Nn
0 with |β| ≤ d. We show that such a bound Bd+1

also exists.
From Lemma 4.4 we have that ∂βf( · , tN ) gives an induction from ti to ti−1

where the derivative ∂β applies to fN again, gives contributions of order ∆Z2
N ,

13



contributions from lower derivatives linear in ∆ZN . In the limit ∆ZN → 0
by Riemann integration (13) the ∆Z2

N contributions vanish and the o(d,∆ZN )
contributions become a sum over the covers B0, . . . , Bd. Hence, to shorten the
calculations, we only drag O(∆Z2

N ) and o(d,∆ZN ) through the calculations:

max
β∈Nn

0
:|β|=b

|∂βfN ( · , tN )|

Lem. 4.2(i)

≤ cov0(max
β

∂βfN ( · , tN ))

Def. 3.4= cov0(max
β

∂βE4(tN , tN−1) . . . E1(tN , tN−1)fN ( · , tN−1))

Lem. 4.3(iv)

≤ cov0(max
β

∂βE3(tN , tN−1) . . . E1(tN , tN−1)fN ( · , tN−1))

+

∫ tN

tN−1

cov0(max
β

∂βk( · , s)) ds

Lem. 4.4
≤ (1 +H(tN , tN−1) + b ·G′(tN , tN−1))

× cov0E2(tN , tN−1)E1(tN , tN−1)(max
β

∂βfN ( · , tN−1))

+ b(b− 1) ·G′(tN , tN−1)

× cov0E2(tN , tN−1)E1(tN , tN−1)(max
β

∂βfN ( · , tN−1))

+

∫ tN

tN−1

cov0(max
β

∂βk( · , s)) ds+O(∆Z2
N ) + o(d,∆ZN )

b+b(b−1)=b2

= (1 +H(tN , tN−1) + b2 ·G′(tN , tN−1))

× cov0E2(tN , tN−1)E1(tN , tN−1)(max
β

∂βfN ( · , tN−1))

+

∫ tN

tN−1

cov0(max
β

∂βk( · , s)) ds+O(∆Z2
N ) + o(d,∆ZN )

Lem. 4.3
≤ (1 +H(tN , tN−1) + b2 ·G′(tN , tN−1))

× E1(tN , tN−1)covG(tN ,tN−1)(max
β

∂βfN ( · , tN−1))

+

∫ tN

tN−1

cov0(max
β

∂βk( · , s)) ds+O(∆Z2
N ) + o(d,∆ZN )

1 + y ≤ ey

≤ exp(H(tN , tN−1) + b2 ·G′(tN , tN−1))

× E1(tN , tN−1)covG(tN ,tN−1)(max
β

∂βfN ( · , tN−1))

+

∫ tN

tN−1

cov0(max
β

∂βk( · , s)) ds+O(∆Z2
N ) + o(d,∆ZN )

and proceeding with this on each interval [ti, ti−1] we finally get

≤ exp
(
H(tN , t0) + b2 ·G′(tN , t0)

)
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× E1(tN , t0)covG(tN ,t0)(max
β

∂βfN ( · , t0))

+

N∑

i=1

exp
(
H(tN , tN+1−i) + b2 ·G′(tN , tN+1−i)

)

×

∫ tN+1−i

tN−i

E1(tN , tN+1−i)covG(tN ,tN+1−i)(max
β

∂βk( · , s))ds

+O(∆Z2
N ) + o(d,∆ZN )

which converges for N → ∞ with ∆ZN → 0 by Riemann integration to

→ exp
(
H(T, 0) + b2 ·G′(T, 0)

)
· E1(T, 0)covG(T,0)(max

β
∂βf0)

+

∫ T

0

exp
(
H(T, s) + b2 ·G′(T, s)

)

× E1(T, s)covG(T,s)(max
β

∂βk( · , s))ds

+Bd( · , T )

which is the bound Bd+1 with

∥xα · ∂βfN ( · , T )∥∞ ≤ ∥xα ·Bd+1(x)∥∞ < ∞

for all α, β ∈ Nn
0 with |β| = d + 1. In summary, we have shown that for the

family {fN}N∈N on [0, T ] Lemma 2.1(i) is fulfilled.
It remains to show that condition (ii) of Lemma 2.1 is fulfilled. Since all fN

are piece-wise differentiable, it is sufficient to show that ∂tfN is bounded. But
this follows immediately from the bounds B0, B1, . . . and hence there exists a
constant L > 0 such that

sup
t∈[0,T ]

∥∂tfN ( · , t)∥∞ ≤ L < ∞

for all N ∈ N, i.e., fN are all Lipschitz in t ∈ [0, T ] with a Lipschitz constant
independent on N , x, and t. Condition (ii) in Lemma 2.1 is then fulfilled since
Lipschitz continuity implies equi-continuity.

Since conditions (i) and (ii) of Lemma 2.1 are fulfilled {fN}N∈N is rela-
tively compact. Hence, there exists a subsequence (Ni)i∈N ⊆ N such that fNi

converges on Rn × [0, T ] to a function f ∈ C([0, T ],S(Rn,Rm)), i.e.,

sup
t∈[0,T ]

∥
∥xα · ∂βfNi

(x, t)− xα · ∂βf(x, t)
∥
∥
∞

i→∞
−−−→ 0 (14)

for all α, β ∈ Nn
0 .

We now show that the accumulation point f solves (4) and is in Cd+1 in
t, i.e., f ∈ Cd+1([0, T ],S(Rn,Rm)). By Definition 3.4 of the fN we have that
each fN is piece-wise differentiable in t and taking the derivative ∂tfN we find
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∥
∥
∥
∥
xα · ∂t∂

βfNi
(x, t)− xα · ∂β

[

ν∆f(x, t) + (g(x, t) · ∇)f(x, t)

+ h(x, t) · f(x, t) + k(x, t)
]
∥
∥
∥
∥
∞

i→∞
−−−→ 0 (15)

for all α, β ∈ Nn
0 uniformly in t ∈ [0, T ]. Hence, with α = β = 0 we have that f

solves (4) and for every fixed x ∈ Rn the function G(t) = f(x, t) is continuous
in t. Now let x ∈ Rn and α = β = 0, then (14) implies

f(x, t)

= lim
i→∞

fNi
(x, t) (16a)

since the fNi
are piece-wise differentiable ∂tfNi

(x, t) is Riemann integrable in t

= lim
i→∞

∫ t

0

∂tfNi
(x, s) ds (16b)

where (14) implies we can interchange integration and the limit i → ∞

=

∫ t

0

lim
i→∞

∂tfNi
(x, s) ds (16c)

and then (15) implies

=

∫ t

0

ν∆f(x, s) + (g(x, s) · ∇)f(x, s) + h(x, s) · f(x, s) + k(x, s)
︸ ︷︷ ︸

integrand (I)

ds (16d)

for all t ∈ [0, T ]. Since g, h, and k are Cd in t and f is C0, we have that the
integrand (I) is C0 in t. Hence, f is an integral over a C0 function and therefore
C1 in t. Continuing this argument we see that f is Cd+1 in t since the integrand
(I) is at least Cd in t.

Since T > 0 was arbitrary, {fN}N∈N has an accumulation point f for all
T > 0 and all accumulation points fulfill (4) with f is Cd+1 in t.

Remark 5.2. In the standard approach via weak solutions and Sobolev theory
one usually works with spaces Lp([0, T ], Lq(Rn)), 1 ≤ p, q ≤ ∞, or more gen-
erally Lp([0, T ], X), X a Banach space with norm ∥ · ∥X . Then Lp([0, T ], X) is
equipped with the Lp-norm ∥F∥Lp of F (t) := ∥f( · , t)∥X and therefore it is also
a Banach space. For regularity in t one then has additional work to do.

But in our approach we do not work in a Banach space X but in a Montel
space, i.e., we do not have a single norm ∥ · ∥X but a family of semi-norms, here
∥xα · ∂βf(x, t)∥∞. The convergence of our approximation is (14), i.e., uniform
on Rn × [0, T ] for all derivatives. (14) takes care of all spatial derivatives and
therefore by (16) also of the time derivatives. We demonstrated this explicitly
in (16) for clarity but this argument also follows from [52, Thm. 7.17]. ◦

Remark 5.3. From (12) we see that ∥xα·∂βf( · , t)∥∞ depend only on ∥xγ ·∂δf0∥∞
for all γ, δ ∈ Nn

0 with |γ| ≤ |α| and |δ| ≤ |β|. Hence, weaker conditions on the
initial value f0 is possible since S(Rn) is dense in any W p,k(Rn) with k ∈ N0

and p ∈ [1,∞). ◦
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6. Burgers’ Equation

For Burgers’ equation we have from Theorem 5.1 the following.

Theorem 6.1. Let u0 ∈ S(R,R). Then there exist maximal T1, T2 > 0 such
that Burgers’ equation

∂tu = −u · ∂xu

u( · , 0) = u0

(17)

has a unique classical solution u ∈ C∞((−T1, T2),S(R,R)). (−T1, T2) is the
maximal interval such that u ∈ C((−T1, T2), C

∞
b (R,R)).

Proof. The C∞
b solution of Burgers’ equation is unique, i.e., there exists a

maximal time interval (−T1, T2) such that u ∈ C∞((−T1, T2), C
∞
b (R,R)). Set

n = m = 1, ν = 0, g = u, h = 0, and k = 0 in (4). Then Theorem 5.1 shows
that there exists a f ∈ C∞((−T1, T2),S(R,R)) that solves (4). By uniqueness
of u from Burgers’ equation we have f = u.

Since for Burgers’ equation we have u( · , t) ∈ S(R,R) we can in theory
calculate all moments of u for all times t ∈ (−T1, T2). The simplicity of (17)
allows us to calculate the time-dependent moments explicitly.

Theorem 6.2. Let u0 ∈ S(R,R). Then for all p ∈ N and k ∈ N0 the time-
dependent moments sk,p(t) :=

∫

R
xku(x, t)p dx of the solution u of Burgers’

equation (17) are

sk,p(t) =

k∑

i=0

sk−i,p+i(0)

i!
· ti ·

i−1∏

j=0

(p+ j) · (k − j)

1 + (p+ j)2
∈ R[t].

Proof. We proceed via induction over k ∈ N0.
k = 0: We have

∂ts0,p(t) = ∂t

∫

R

u(x, t)p dx = −p

∫

R

u(x, t)p · ∂xu(x, t) dx

with partial integration since u( · , t) is a Schwartz function

= p

∫

R

∂x[u(x, t)
p] · u(x, t) dx = p2

∫

R

u(x, t)p · ∂xu(x, t) dx

= −p · ∂ts0,p(t)

which gives ∂ts0,p(t) = 0 and therefore s0,p(t) = s0,p(0).
k − 1 → k: We have

∂tsk,p(t) = ∂t

∫

R

xk · u(x, t)p dx

= −p

∫

R

xk · u(x, t)p · ∂xu(x, t) dx
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= p

∫

R

∂x(x
k · u(x, t)p) · u(x, t) dx

= p · k

∫

R

xk−1 · u(x, t)p+1 dx+ p2
∫

R

xk · u(x, t)p · ∂xu(x, t) dx

= p · k · sk−1,p+1(t)− p2 · ∂tsk,p(t)

=
p · k

1 + p2
· sk−1,p+1(t)

and solving this induction gives

sk,p(t) = sk,p(0) +
p · k

1 + p2

∫ t

0

sk−1,p+1(τ1) dτ1

= sk,p(0) +
p · k

1 + p2

∫ t

0

[

sk−1,p+1(0) +
(p+ 1)(k − 1)

1 + (p+ 1)2

∫ τ1

0

sk−2,p+2(τ2) dτ2

]

dτ1

...

=

k∑

i=0

sk−i,p+i(0)

i!
· ti ·

i−1∏

j=0

(p+ j) · (k − j)

1 + (p+ j)2

which proves the statement.

In Burgers’ equation as a transport equation when u0 ≥ 0 then the classi-
cal solution remains non-negative. But from the moments in Theorem 6.2 we
observe the following.

Example 6.3. For p = 1 we have the following three explicit time-dependent
moments from Theorem 6.2:

∫

R

u(x, t) dx = s0,1(t) = s0,1(0),

∫

R

x · u(x, t) dx = s1,1(t) = s1,1(0) + s0,2(0) · t,

∫

R

x2 · u(x, t) dx = s2,1(t) = s2,1(0) + s1,2(0) · t+
2s0,3(0)

5
· t2.

For the function

u0(x) :=







1 + x for x ∈ [−1, 0],

1− x for x ∈ [0, 1],

0 else

we have s0,1(0) = 1, s1,1(0) = 0, s0,2(0) =
2
3 , s2,1(0) =

1
6 , s1,2(0) = 0, s0,3 = 1

2
and therefore

∫

R

(x− t)2 · u(x, t) dx = Ls(t)((x− t)2) =
1

6
−

2

15
t2

t→±∞
−−−−→ −∞. (18)
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Since u0 ̸∈ S(R) using a mollifier we get uε
0 := Sε ∗ u0 ∈ C∞

0 (R) ⊂ S(R) for
any ε > 0. We can chose by continuity of the sp,k(0) on ε an ε > 0 small such
that the coefficient of t2 in (18) remains negative. Hence, non-negativity in the
assumed classical solution is not preserved, i.e., we have a finite breakdown. ◦

Let k ∈ N and k ≥ 2. For

∂tu = uk · ∂xu (19)

multiply (19) with k ·uk−1 to get ∂t(u
k) = uk ·∂x(u

k). This is Burgers’ equation
with v = uk. If u0 ≥ 0 we can allow k ∈ [1,∞) in (19).

7. Euler and Navier–Stokes Equations

By Beale–Kato–Majda [16] the classical solutions of the Euler and the Navier–
Stokes equations u and ω exist as long as ∥ω( · , t)∥∞ < ∞. A finite breakdown
in time can therefore be observed through a breakdown of ∥ω∥∞. For the Euler
and the Navier–Stokes equations we have from Theorem 5.1 the following.

Theorem 7.1. Let ν ∈ [0,∞), u0 ∈ C∞
b (R3,R3) with div u0 = 0 and ω0 :=

rotu0 ∈ S(R3,R3), and T ∗ > 0 be maximal such that u is the solution of the
Euler (ν = 0) resp. Navier–Stokes (ν > 0) equation (2) with ∥ω( · , t)∥∞ < ∞
for all t ∈ [0, T ∗), i.e., the unique smooth solution u exists for all t ∈ [0, T ∗).
Then ω ∈ C∞([0, T ∗),S(R3,R3)).

Proof. The (vorticity formulation of the) Euler and the Navier–Stokes equations
have a unique smooth solution u, ω ∈ C∞([0, T ∗), C∞

b (R3,R3)). Set n = m = 3,
g = u, h = ∇u, and k = 0 in (4). Then by Theorem 5.1 we have a solution
f ∈ C∞([0, T ∗),S(R3,R3)). But by the uniqueness of ω we have f = ω.

A breakdown in ∥ω∥∞ provides T ∗ < ∞ [16]. Now by Theorem 7.1 a break-
down in any ∥xα ·∂βωγ∥∞ or ∥xα ·∂βωγ∥Lp(R3) with p ∈ [1,∞), α, β, γ ∈ N3

0, and
ωγ := ωγ1

1 ·ωγ2

2 ·ωγ3

3 , γ = (γ1, γ2, γ3) ̸= 0, also provides T ∗ < ∞. By Remark 5.3
weaker conditions on ω0 are possible. Unfortunately, similar calculations as in
Theorem 6.2 or Example 6.3 for Burgers’ equation are not yet accessible to us for
the Euler or Navier–Stokes equations. With k = rotF ∈ C∞([0,∞),S(R3,R3))
in Theorem 5.1 we have that Theorem 7.1 also holds with external forces.
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[10] E. Hopf, Über die Anfangswertaufgabe für die hydrodynamische Grund-
gleichung, Math. Nachr. 4 (1951) 213–231.

20



[11] O. A. Ladyzhenskaya, The mixed problem for a hyperbolic equation, Go-
sudarstv. Izdat., Moskow (in Russian), 1953.

[12] A. A. Kiselev, O. A. Ladyzhenskaya, On the existence and uniqueness of
solutions of the non-stationary problem for a viscous incompressible fluid,
Izv. Akad. Nauk SSR Ser. Mat. 21 (1957) 655–680, english transl., Amer.
Math. Soc. Transl. 24 (1963), 79–106.

[13] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible
Flow, Gordon and Breach, New York, 1963.

[14] O. A. Ladyzhenskaya, Example of nonuniqueness in the Hopf class of weak
solutions for the Navier–Stokes equation, Izv. Akad. Nauk SSR Ser. Mat.
33 (1969) 240–247, english transl., Math. USSR-Izv. 3 (1969), 229–236.

[15] L. Caffarelli, R. Kohn, L. Nierenberg, Partial Regularity of Suitable Weak
Solutions of the Navier–Stokes Equations, Comm. Pure and Appl. Math.
35 (1982) 771–831.

[16] J. T. Beale, T. Kato, A. Majda, Remarks on the Breakdown of Smooth
Solutions for the 3D Euler Equations, Commun. Math. Phys. 94 (1984)
61–66.

[17] R. Temam, Navier–Stokes Equations, Amercian Mathematical Society,
Providence, Rhode Island, 1984.

[18] W. von Wahl, The Equations of Navier–Stokes and Abstract Parabolic
Equations, Friedr. Vieweg & Sohn, Braunschweig, Wiesbaden, 1985.

[19] P. Constantin, C. Foias, Navier–Stokes Equations, The University of
Chicago Press, Chicago, US, 1988.

[20] H.-O. Kreiss, J. Lorenz, Initial-Boundary Value Problems and the Navier–
Stokes Equations, Academic Press, Inc., Boston, 1989.

[21] S. Dobrokhotov, A. Shafarevich, Some integral identities and remarks on
the decay at infinity of the solutions to the Navier–Stokes equations in the
entire space, Russ. J. Math. Phys. 2 (1994) 133–135.

[22] R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis,
2nd Edition, Society for Industrial and Applied Mathematics, Philadel-
phia,Pennsylvania, 1995.

[23] R. Temam, Navier–Stokes equations: Theory and numerical analysis,
Amercian Mathematical Society, Providence, Rhode Island, 2001.

[24] C. Foias, O. Manley, R. Rosa, R. Temam, Navier–Stokes Equations and
Turbulence, Cambridge University Press, Cambridge, UK, 2001.

[25] A. J. Majda, A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge
University Press, Cambridge, UK, 2002.

21
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