COLLOQUIUM MATHEMATICUM

VOL. LXIII

1992

FASC. 2

SCHWARTZ SPACES ASSOCIATED WITH SOME NON-DIFFERENTIAL CONVOLUTION OPERATORS ON HOMOGENEOUS GROUPS

ΒY

JACEK DZIUBAŃSKI (WROCŁAW)

Introduction. Let \mathcal{N} be a homogeneous group (cf. e.g. [3]) and let P be a homogeneous distribution on \mathcal{N} such that

$$(0.1) P: C_{c}^{\infty} \ni f \mapsto f * P \in C^{\infty}$$

is the infinitesimal generator of a semigroup of symmetric probability measures μ_t on \mathcal{N} which are absolutely continuous with respect to Haar measure, $d\mu_t(x) = h_t(x) dx$. It is well known (cf. e.g. [3]) that if P is supported at the identity, then h_t belongs to the space $\mathcal{S}(\mathcal{N})$ of rapidly decreasing functions. Let

$$Pf = \int_{0}^{\infty} \lambda \, dE_P(\lambda) f$$

be the spectral resolution of P. In [7] A. Hulanicki has proved that if P is supported at the identity and m is a Schwartz function on \mathbb{R}^+ , i.e.,

$$\sup_{\lambda} |(1+\lambda)^k m^{(l)}(\lambda)| \le C_{k,l} \quad \text{for all } k, l \in \mathcal{N} \cup \{0\},\$$

then

$$\int_{0}^{\infty} m(\lambda) \, dE_P(\lambda) f = f * \check{m} \,,$$

where \check{m} is in $\mathcal{S}(\mathcal{N})$. This is deduced, by means of a functional calculus, from the fact that for the rapidly decreasing function $m(\lambda) = e^{-\lambda}$ the function $\check{m} = h_1$ is in $\mathcal{S}(\mathcal{N})$.

The aim of this paper is to examine a similar situation where the distribution P is of the form

(0.2)
$$\langle P, f \rangle = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{f(0) - f(x)}{|x|^{Q+1}} \Omega(x) \, dx \, ,$$

Research supported in part by DNS-P/05/61/90-2.

	,	
т	D 7 TID A MOUTE	
	DDIUDANSKI	

where $\Omega \neq 0$, $\Omega \geq 0$ is a symmetric function smooth on $\mathcal{N} - \{0\}$ and homogeneous of degree 0, |x| is a homogeneous norm on \mathcal{N} smooth away from the origin, and Q is the homogeneous dimension of \mathcal{N} . These distributions and the convolution semigroups they generate have been investigated by P. Głowacki in [4] and [5]. The kernels h_t are smooth but their decay at infinity is mild. The basic observation in our present considerations is that if

$$f * q^{(N)} = \int_{0}^{\infty} e^{-\lambda^{N}} dE_{P}(\lambda) f$$

then the decay of $q^{(N)}$ at infinity increases with N (cf. [1]). Thus by working with $e^{-\lambda^N}$ instead of $e^{-\lambda}$ we are able to give a characterization of the functions m such that \check{m} is in $\mathcal{S}(\mathcal{N})$ (cf. Theorem 4.1).

Acknowledgements. The author wishes to express his gratitude to P. Głowacki and A. Hulanicki for their remarks.

Preliminaries. A family of *dilations* on a nilpotent Lie algebra \mathcal{N} is a one-parameter group $\{\delta_t\}_{t>0}$ of automorphisms of \mathcal{N} determined by

$$\delta_t e_j = t^{d_j} e_j$$

where e_1, \ldots, e_n is a linear basis for \mathcal{N} and d_1, \ldots, d_n are positive real numbers called the *exponents of homogeneity*. The smallest d_j is assumed to be 1.

If we regard \mathcal{N} as a Lie group with multiplication given by the Campbell– Hausdorff formula, then the dilations δ_t are also automorphisms of the group structure of \mathcal{N} and the nilpotent Lie group \mathcal{N} equipped with these dilations is said to be a *homogeneous group*.

The homogeneous dimension of \mathcal{N} is the number Q defined by

$$d(\delta_t x) = t^Q dx$$

where dx is a right-invariant Haar measure on \mathcal{N} .

We fix a homogeneous norm on \mathcal{N} , that is, a continuous positive symmetric function $x \mapsto |x|$ which is, moreover, smooth on $\mathcal{N} - \{0\}$ and satisfies

$$|\delta_t x| = t|x|$$
, $|x| = 0$ if and only if $x = 0$.

Let

$$X_j f(x) = \frac{d}{dt} \bigg|_{t=0} f(x \cdot te_j)$$

be left-invariant basic vector fields. If $I = (i_1, \ldots, i_n)$ is a multi-index $(i_j \in \mathbb{N} \cup \{0\})$, we set

$$X^{I}f = X_{1}^{i_{1}} \dots X_{n}^{i_{n}}f, \quad |I| = i_{1}d_{1} + \dots + i_{n}d_{n}.$$

A distribution R on \mathcal{N} is said to be a *kernel of order* $r \in \mathbb{R}$ if R coincides with a C^{∞} function away from the origin, and satisfies

$$\langle R, f \circ \delta_t \rangle = t^r \langle R, f \rangle$$
 for $f \in C^{\infty}_{c}(\mathcal{N}), t > 0$.

If R is a kernel of order r then there exists a function Ω_R homogeneous of degree 0 and smooth away from the origin such that

(1.1)
$$\langle R, f \rangle = -\int_{\mathcal{N}} \frac{\Omega_R(x)}{|x|^{Q+r}} f(x) dx \quad \text{for } f \in C_c^{\infty}(\mathcal{N} - \{0\}).$$

Note that if R_1 and R_2 are kernels of order $r_1 > 0$, $r_2 > 0$ respectively, then $R_1 * R_2$ is a kernel of order $r_1 + r_2$. Indeed, decompose R_j as $R_j = \psi R_j + (1 - \psi)R_j$, j = 1, 2, where $\psi \in C_c^{\infty}(\mathcal{N})$, $\psi \equiv 1$ in a neighbourhood of the origin. Since ψR_j has compact support and $(1 - \psi)R_j$ is smooth and belongs (with its all derivatives) to $L^2(\mathcal{N}) \cap L^1(\mathcal{N})$ our statement follows.

We say that a kernel R of order r > 0 satisfies the *Rockland condition* if for every non-trivial irreducible unitary representation π of \mathcal{N} the linear operator π_R is injective on the space of C^{∞} vectors of π . It is easily seen that if R satisfies the Rockland condition, then $R^N = R * R * \ldots * R$ (N times), has the same property.

If a kernel R of order r > 0 has compact support, i.e., $\Omega_R \equiv 0$ (cf. (1.1)), then R is supported at the origin. Hence

(1.2)
$$R = \sum_{|I|=r} a_I X^I.$$

We call a differential operator R on \mathcal{N} a *Rockland operator* if R is of the form (1.2) and satisfies the Rockland condition.

We say that a function φ on \mathcal{N} belongs to the *Schwartz class* $\mathcal{S}(\mathcal{N})$ if for every $M \ge 0$

(1.3)
$$\|\varphi\|_{(M)} = \sup_{|I| \le M, \, x \in \mathcal{N}} (1+|x|)^M |X^I \varphi(x)|$$

is finite.

We denote by $\mathcal{S}(\mathbb{R}^+)$ the space of all functions $m \in C^{\infty}([0,\infty))$ such that for each $k \ge 0$

$$\sup_{k \in [0,\infty), 0 \le l \le k} (1+\lambda)^k |m^{(l)}(\lambda)| < \infty,$$

where $m^{(l)}(\lambda) = (d^l/d\lambda^l)m(\lambda)$.

Semigroups generated by P^N . Let P be the operator defined by (0.1) and (0.2). Since P is positive and self-adjoint we can investigate, for

each natural N, the semigroup $\{T_t^{(N)}\}_{t>0}$ generated by P^N . Obviously

(2.1)
$$T_t^{(N)}f = \int_0^\infty e^{-t\lambda^N} dE_P(\lambda)f$$

It has been proved by P. Głowacki [5] that the operator P satisfies the following subelliptic estimate:

(2.2)
$$\|X^{I}f\|_{L^{2}} \leq C_{I}(\|P^{k}f\|_{L^{2}} + \|f\|_{L^{2}}),$$

where $|I| \leq k$.

Using (2.2) and a standard calculation (cf. [1]) we deduce that there are C^{∞} functions $q_t^{(N)}$ on \mathcal{N} such that

(2.3)
$$T_t^{(N)}f = f * q_t^{(N)},$$

(2.4) $X^{I}q_{t}^{(N)} \in L^{2} \cap C^{\infty}(\mathcal{N})$ for every multi-index I.

In virtue of the homogeneity of P, we get

(2.5)
$$q_t^{(N)}(x) = t^{-Q/N} q_1^{(N)}(\delta_{t^{-1/N}} x).$$

(2.6) THEOREM. For every natural N > 0 and every multi-index I there is a constant $C_{I,N}$ such that

(2.7)
$$|X^{I}q_{t}^{(N)}(x)| \leq C_{I,N}t(t^{1/N} + |x|)^{-Q-N-|I|}$$

Moreover, if $|\overline{x}| = 1$, then

(2.8)
$$\lim_{t \to \infty} t^{Q+N} q_1^{(N)}(\delta_t \overline{x}) = \Omega_{P^N}(\overline{x})$$

Proof. We first assume that N > Q. It has been proved in [1] that if I is a multi-index, $k \in \mathbb{N}$ and $\varphi \in C_{c}^{\infty}(\mathcal{N} \times \mathbb{R} - \{(0,0)\})$, then

(2.9)
$$\sup_{t>0} \|\varphi X^I P^{Nk} q_t^{(N)}\|_{L^2} < \infty.$$

Since $P^N q_t^{(N)} = -\partial_t q_t^{(N)}$ the inequality (2.9) implies that

(2.10)
$$|X^{I}q_{t}^{(N)}(x)| \leq Ct \quad \text{for } 1/2 < |x| < 2, \ t \in (0,1).$$

Using (2.10) and (2.5), we get

(2.11)
$$|X^{I}q_{1}^{(N)}(x)| \leq C_{I,N}(1+|x|)^{-Q-N-|I|} \text{ for } N > Q,$$

which, by (2.5), gives (2.7) for N > Q. In order to show that (2.7) holds for every

In order to show that (2.7) holds for every natural N > 0, we use the "principle of subordination". Let l be a natural number such that $2^l N > Q$. Set $M = 2^l N$. Then

$$q_1^{(M/2)}(x) = \int_0^\infty \frac{e^{-s}}{(\pi s)^{1/2}} q_{1/(4s)}^{(M)}(x) ds = \int_0^\infty \frac{e^{-s}}{(\pi s)^{1/2}} (4s)^{Q/M} q_1^{(M)}(\delta_{(4s)^{1/M}}x) ds$$

Consequently, for every multi-index I

$$X^{I}q_{1}^{(M/2)}(x) = \int_{0}^{\infty} \frac{e^{-s}}{(\pi s)^{1/2}} (4s)^{(Q+|I|)/M} (X^{I}q_{1}^{(M)})(\delta_{(4s)^{1/M}}x) \, ds \, .$$

According to (2.11), we have

$$\begin{aligned} |X^{I}q_{1}^{(M/2)}(x)| &\leq C \int_{0}^{\varepsilon} (4s)^{(Q+|I|)/M} s^{-1/2} \, ds \\ &+ C \int_{\varepsilon}^{1} (4s)^{(Q+|I|)/M} s^{-1/2} (4s)^{-(M+Q+|I|)/M} |x|^{-M-Q-|I|} \, ds \\ &+ C \int_{1}^{\infty} \frac{e^{-s}}{(\pi s)^{1/2}} (4s)^{(Q+|I|)/M} (4s)^{-(M+Q+|I|)/M} |x|^{-M-Q-|I|} \, ds \end{aligned}$$

Setting $\varepsilon = |x|^{-M}$, we obtain

$$|X^{I}q_{1}^{(M/2)}(x)| \le C|x|^{-Q-M/2-|I|}$$
.

By (2.4) and (2.5), we have

$$|X^{I}q_{t}^{(M/2)}(x)| \leq Ct(t^{2/M} + |x|)^{-Q-M/2-|I|}$$

Iterating the procedure described above, we get (2.7) for every natural N>0. We next show (2.8). From (2.7) and (2.5) it follows that

(2.13)
$$|X^{I}q_{t}^{(N)}(x)| \leq C_{N,I}t \quad \text{for } 1/2 < |x| < 2, \ t \in (0,1), \ N > 0.$$

Note that $(1/t)q_t^{(N)}(x)$ converges weakly to $\Omega_{P^N}(x)/|x|^{Q+N}$ for 1/2 < |x| < 2 as $t \to 0$. The estimate (2.13) and the Arzelà theorem imply that this convergence is uniform. Applying the Taylor expansion, we get

(2.14)
$$q_t^{(N)}(\bar{x}) = t\Omega_{P^N}(\bar{x}) + o(t).$$

From (2.14) and (2.5) (cf. [2]), we obtain (2.8), which completes the proof.

Functional calculus. In this section we introduce some notation and recall some facts we shall need later.

Let $U = \{x \in \mathcal{N} : |x| < 1\}$ and $\tau(x) = \inf\{n \in \mathbb{N} \cup \{0\} : x \in U^n\}$. For every $\alpha \ge 0$ the function $w_\alpha = (1 + \tau(x))^\alpha$ is submultiplicative. Moreover, there are constants c, C, a, b such that a < 1, 2 < b and

(3.1)
$$c\tau(x)^a \le |x| \le C\tau(x)^b \quad \text{for } |x| > 1$$

(cf. [7], Lemma 1.1).

Denote by \mathcal{M}_{α} the *-algebra of Borel measures μ on \mathcal{N} such that $\int_{\mathcal{N}} w_{\alpha}(x) d|\mu|(x) < \infty$.

If A is a self-adjoint operator on $L^2(\mathcal{N})$, E_A is its spectral resolution and m is a bounded function on \mathbb{R} , then we denote by m(A) the operator $\int_{\mathbb{R}} m(\lambda) dE_A(\lambda)$. If $Af = f * \psi$, then $m(\psi)$ is the abbreviation for m(A).

The following theorem, due to A. Hulanicki (cf. [7]), is the basic tool of the present paper.

(3.2) THEOREM. Suppose that $\psi = \psi^* \in \mathcal{M}_{\alpha} \cap L^2(\mathcal{N}), \ \alpha > \beta + \frac{1}{2}bQ + 2,$ $k > 3(\beta + \frac{1}{2}bQ + 3), \ d > 0.$ Then there is a constant C such that for every $m \in C_c^{\infty}(-d,d)$ with m(0) = 0 there exists a measure $\nu \in \mathcal{M}_{\beta}$ such that $m(\psi)f = f * \nu$ and $\int_{\mathcal{N}} w_{\beta}(x) d|\nu|(x) \leq C||m||_{C^k}.$

Main result. The main result of this paper is

(4.1) THEOREM. Let $m \in \mathcal{S}(\mathbb{R}^+)$. Then $m(P)f = f * \check{m}$ with $\check{m} \in \mathcal{S}(\mathcal{N})$ if and only if the function m satisfies the following condition:

(*) for every natural N > 0 if $m^{(N)}(0) \neq 0$ then P^N is a differential operator.

(4.2) Remark. Note that if $\check{m} \in \mathcal{S}(\mathcal{N})$ for some $m \in L^{\infty}(\mathbb{R}^+)$, then $m \in C^{\infty}(0,\infty)$ and $\sup_{\lambda>1} \lambda^k |m^{(s)}(\lambda)| < \infty$ for every s, k > 0. This is a consequence of the following two facts:

(i)
$$\int_{0}^{\infty} \lambda^{N} m(\lambda) \, dE_{P}(\lambda) f = f * (\check{m} * P^{N}) \, dE_{P}(\lambda)$$

(ii)
$$\frac{d}{dt}\Big|_{t=1} \int_{0}^{\infty} m(t\lambda) \, dE_P(\lambda) f = f * \frac{d}{dt}\Big|_{t=1} (\check{m}_t) \,,$$

where $\check{m}_t = t^{-Q}\check{m}(\delta_{t^{-1}}x).$

(4.3) PROPOSITION. Assume that $F \in C_c^{\infty}(\varepsilon, \delta)$, $0 < \varepsilon < \delta < \infty$. Then there is a unique function $\check{F} \in \mathcal{S}(\mathcal{N})$ such that

$$\int_{0}^{\infty} F(\lambda) dE_{P}(\lambda) f = f * \check{F}.$$

Moreover, for each natural M there are constants C, k = k(M) such that

(4.4)
$$\|\check{F}\|_{(M)} \le C \|F\|_{C^{k(M)}}.$$

Proof. By the definition of $\mathcal{S}(\mathcal{N})$ (cf. (1.3)), the proof will be complete if we show (4.4). Let N > 0 be a natural number. Then

(4.5)
$$\int_{0}^{\infty} F(\lambda) dE_{P}(\lambda) f = \int_{0}^{\infty} F_{N}(\lambda) dE_{P^{N}}(\lambda) f,$$

where $F_N(\lambda) = F(\lambda^{1/N})$. Put $n(\lambda) = F_N(-\log \lambda)/\lambda$. Clearly, $n \in C_c^{\infty}(e^{-\delta^N}, e^{-\varepsilon^N})$. Moreover, by (4.5) and (2.3),

(4.6)
$$F(P)f = F_N(P^N)f = T_1^{(N)}n(q_1^{(N)})f = \{n(q_1^{(N)})f\} * q_1^{(N)}$$

Applying (4.6), (3.2), (2.7), (3.1) with sufficiently large N, we get (4.4).

Proof of Theorem (4.1). Suppose that $F \in \mathcal{S}(\mathbb{R}^+)$ and $F(\lambda) = 0(\lambda^{l+1})$ as $\lambda \to 0$, for some natural l > 0. Let $\zeta(\lambda)$ be a C^{∞} function with compact support contained in (1/2, 2) and with

$$\sum_{j=-\infty}^{\infty} \zeta(2^j \lambda) = 1 \quad \text{ for } \lambda > 0 \,.$$

Let $F_j(\lambda) = \zeta(2^j \lambda) F(\lambda)$, $\widetilde{F}_j(\lambda) = F(2^{-j} \lambda) \zeta(\lambda) = F_j(2^{-j} \lambda)$. Then for each natural k > 0 there is a constant C such that

(4.7)
$$\|\widetilde{F}_{j}\|_{C^{k}} \leq C2^{-(l+1)j} \quad \text{for } j \geq 0.$$

Since $F \in \mathcal{S}(\mathbb{R}^+)$, we conclude that for every natural k and r there is a constant C such that

(4.8)
$$\|\widetilde{F}_{j}\|_{C^{k}} \leq C2^{rj} \text{ for } j < 0.$$

Now we turn to proving that for every function m satisfying (*) there exists a function \check{m} in $\mathcal{S}(\mathcal{N})$ such that $m(P)f = f * \check{m}$. It is sufficient to find a function \check{m} on \mathcal{N} such that

(4.9)
$$m(P)f = f * \check{m}$$
 and $\|\check{m}\|_{(M)}$ is finite for every $M > 0$.

It has been proved by P. Głowacki [4] that P satisfies the Rockland condition. Hence, if $r \in W_m = \{l \in \mathbb{N} : l > 0, m^{(l)}(0) \neq 0\}$, then by our assumption P^r is a positive Rockland operator. Then a theorem of G. Folland and E. M. Stein (cf. [3]), asserts that $q_t^{(r)}$ belongs to the Schwartz space $\mathcal{S}(\mathcal{N})$. Let N be the smallest element in W_m . Put

(4.10)
$$F(\lambda) = m(\lambda) + \gamma e^{-\lambda^N} + \eta e^{-2\lambda^N},$$

where

$$\gamma = \frac{-2m(0)N! - m^{(N)}(0)}{N!} \,, \qquad \eta = \frac{m^{(N)}(0) + m(0)N!}{N!} \,.$$

One can check that

$$F(0) = F'(0) = F^{(2)}(0) = \ldots = F^{(N)}(0) = 0, \quad F \in \mathcal{S}(\mathbb{R}^+).$$

The equality (4.10) and the above-mentioned theorem of Folland and Stein imply that $\check{m} \in \mathcal{S}(\mathcal{N})$ if and only if $\check{F} \in \mathcal{S}(\mathcal{N})$. Note that if $s \in W_F = \{l \in \mathbb{N} : l > 0, F^{(l)}(0) \neq 0\}$ then P^s is a Rockland operator. Iterating this procedure, we find that for every l > 0 there is a function $F \in \mathcal{S}(\mathbb{R}^+)$ such that

(4.11)
$$F(0) = F'(0) = F^{(2)}(0) = \dots = F^{(l)}(0) = 0,$$

 $\|\check{m}\|_{(M)}$ is finite if and only if $\|\check{F}\|_{(M)}$ is finite.

By the homogeneity of P and the definition of F_j , we have

$$\int_{0}^{\infty} F(\lambda) dE_P(\lambda) f = \sum_{j=-\infty}^{\infty} f * \check{F}_j = \sum_{j=-\infty}^{\infty} f * (\widetilde{F}_j)_{2^j}^{\vee},$$

where $(\widetilde{F}_j)_{2^j}^{\vee}(x) = 2^{-jQ}(\widetilde{F}_j)^{\vee}(\delta_{2^{-j}}x)$. By Proposition (4.3),

$$\sum_{j=-\infty}^{\infty} \|(\widetilde{F}_j)_{2^j}^{\vee}\|_{(M)} \leq \sum_{j\geq 0} \|\widetilde{F}_j\|_{C^{k(M)}} (2^j)^{-Q+M} + \sum_{j<0} \|\widetilde{F}_j\|_{C^{k(M)}} (2^j)^{-Q-M}.$$

Using (4.7), (4.8) and (4.11) we get (4.9).

It remains to show that the condition (*) is necessary. Let N be the smallest non-zero natural number such that $m^{(N)}(0) \neq 0$ and P^N is not a differential operator (i.e., the function Ω_{P^N} is non-zero), and let $r = \inf W_m$. We consider two cases: r = N and r < N.

For r = N let $F(\lambda)$ be defined by (4.10). We first show that

(4.12)
$$|\check{F}(x)| \le C(1+|x|)^{-Q-N-1/2}.$$

Indeed,

 $\sup_{x \in \mathcal{N}}$

$$\begin{split} \sup_{x \in \mathcal{N}} |\check{F}(x)| (1+|x|)^{Q+N+1/2} &\leq \sup_{x \in \mathcal{N}} \sum_{j=-\infty}^{\infty} |(\widetilde{F}_j)_{2^j}^{\vee}(x)| (1+|x|)^{Q+N+1/2} \\ &\leq C \sup_{x \in \mathcal{N}} \sum_{j=-\infty}^{\infty} |(\widetilde{F}_j)_{2^j}^{\vee}(x)| + C \sup_{x \in \mathcal{N}} \sum_{j=-\infty}^{\infty} |(\widetilde{F}_j)_{2^j}^{\vee}(x)| \, |x|^{Q+N+1/2} \\ &\leq C \sup_{x \in \mathcal{N}} \sum_{j=-\infty}^{\infty} |(\widetilde{F}_j)^{\vee}(\delta_{2^{-j}}x)| 2^{-jQ} \\ &+ C \sup_{x \in \mathcal{N}} \sum_{j=-\infty}^{\infty} |(\widetilde{F}_j)^{\vee}(\delta_{2^{-j}}x)| \left(\frac{|x|}{2^j}\right)^{Q+N+1/2} 2^{j(Q+N+1/2)} 2^{-jQ} \,. \end{split}$$

In virtue of Proposition (4.3) there are constants C and k such that

$$|\check{F}(x)|(1+|x|)^{Q+N+1/2} \le C \sum_{j=-\infty}^{\infty} 2^{-jQ} \|\widetilde{F}_j\|_{C^k} + C \sum_{j=-\infty}^{\infty} 2^{j(N+1/2)} \|\widetilde{F}_j\|_{C^k}.$$

Applying (4.7), (4.8) (with l = N), we get (4.12).

On the other hand, there exists \overline{x} such that $|\overline{x}| = 1$ and $\Omega_{P^N}(\overline{x}) \neq 0$. By (4.12) and (4.10), we have

$$\lim_{t \to \infty} t^{Q+N} \check{m}(\delta_t \overline{x}) = -\lim_{t \to \infty} t^{Q+N} [\gamma q_1^{(N)}(\delta_t \overline{x}) + \eta q_2^{(N)}(\delta_t \overline{x})].$$

Using (2.5) and (2.8), we obtain

$$\lim_{t \to \infty} t^{Q+N} \check{m}(\delta_t \overline{x}) = -\gamma \Omega_{P^N}(\overline{x}) - 2\eta \Omega_{P^N}(\overline{x}) = -\Omega_{P^N}(\overline{x}) \frac{m^{(N)}(0)}{N!} \neq 0.$$

Hence, the function \check{m} does not belong to $\mathcal{S}(\mathcal{N})$.

In the case when r < N set $m_1(\lambda) = m(\lambda) + b_1 e^{-\lambda^r} + b_2 e^{-2\lambda^r}$, where $b_1 = -2m(0) - m^{(r)}(0)/r!$, $b_2 = m(0) + m^{(r)}(0)/r!$. Then $m_1 \in \mathcal{S}(\mathbb{R}^+)$ and $m_1(0) = m'_1(0) = \ldots = m_1^{(r)}(0) = 0$. Since P^r is a Rockland operator, by the above-mentioned theorem of Folland and Stein (cf. [3, p. 135]), we get that the kernels associated with the multipliers $e^{-\lambda^r}$ and $e^{-2\lambda^r}$ belong to $\mathcal{S}(\mathcal{N})$. Note that $N \in W_{m_1}$, $r \notin W_{m_1}$, and $N = \inf\{l \in W_{m_1} : P^l \text{ is not a differential operator}\}$. Iterating the above procedure reduces our considerations to the case r = N.

REFERENCES

- J. Dziubański, A remark on a Marcinkiewicz-Hörmander multiplier theorem for some non-differential convolution operators, Colloq. Math. 58 (1989), 77–83.
- [2] —, Asymptotic behaviour of densities of stable semigroups of measures, Probab. Theory Related Fields 87 (1991), 459–467.
- G. M. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton 1982.
- P. Głowacki, Stable semigroups of measures on the Heisenberg groups, Studia Math. 79 (1984), 105–138.
- [5] —, Stable semigroups of measures as commutative approximate identities on nongraded homogeneous groups, Invent. Math. 83 (1986), 557–582.
- [6] A. Hulanicki, A class of convolution semigroups of measures on Lie groups, in: Lecture Notes in Math. 829, Springer, Berlin 1980, 82–101.
- [7] —, A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math. 78 (1984), 253–266.
- [8] E. M. Stein, *Topics in Harmonic Analysis Related to the Littlewood–Paley Theory*, Princeton University Press, Princeton 1970.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES INSTITUTE OF MATHEMATICS, WROCŁAW UNIVERSITY PL. GRUNWALDZKI 2/4, 50-384 WROCŁAW, POLAND

Reçu par la Rédaction le 18.10.1990

. - - -