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Introduction. This paper is concerned with extremal problems in the
family of bounded analytic functions in a multiply-connected domain D, and
it is concerned with extremal problems for the mean modulus ^c\f\ds of
meromorphic functions f in D taken over the boundary C of D. These two
types of problems are shown to be closely related, and solutions are obtained
simultaneously for both types by a method of contour integration. An alto-
gether analogous method was exploited by Grunsky in his thesis [8](2) for
the investigation of schlicht functions in a multiply-connected domain. Thus
it is interesting to remark that the fundamental distortion theorems of
schlicht conformai mapping theory have been developed by Grunsky by a
method which we are able to apply here to obtain the fundamental distortion
theorems for bounded functions. It will appear, then, that the generalization
of Schwarz's lemma to multiply-connected domains and the generalization
of the Koebe distortion theorem can be carried out by a unified technique(3).

We shall find in addition to this that, while the recent papers of Bergman
and Schiffer [5, 16] have developed a close relationship between the theory
of schlicht canonical mappings and the Bergman kernel function [3], we are
able to develop here a relationship between the theory of bounded functions
and the Szegö kernel function [19]. Thus the Szegö kernel function does for
the theory of distortion of bounded functions what the Bergman kernel func-
tion does for the theory of distortion of schlicht functions. We point out that
both these kernel functions are actually differentials, and that in the Szegö
case one is dealing with length and in the Bergman case one is dealing with
area. Thus the mean modulus <fc \f\ ds, or ffo \f\ 2dxdy, should be thought
of as a length, or area, and not as a mean modulus.

All these remarkable relationships are brought to light by using the simple
boundary relations satisfied  by the classical domain functions,  such as
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mit vor geschriebenen Anfangsgliedern, Acta Math. vol. 42 (1920) pp. 145-171, in which extremal
problems for tf\f\ds, taken over the unit circle, are related by the same method of contour
integration which we use here to the coefficient problem of bounded functions in the unit circle.
Riesz's results, which he proves by special techniques applicable only in the unit circle, play
relative to the present paper the same role that the classical area principle in simply-connected
domains plays for Grunsky's thesis.
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2 P. R. GARABEDIAN [September

Green's function, and their derivatives. We merely express quantities upon
which we intend to obtain bounds by means of the Cauchy integral theorem,
and use the boundary relations in analyzing the resulting contour integrals.
However, it is not always easy to show the existence of the necessary domain
functions for this process in the case of bounded functions. Thus we require
in most cases the use of the variational technique of Grunsky [9] and Ahlfors
[l], to whom the most far-reaching work on Schwarz's lemma is due. Fol-
lowing Ahlfors, we solve a variational problem for a simple subclass of the
class of all bounded analytic functions, and utilize the properties of the
extremal function of the subclass, which we find by the variational method,
in order to use the method of contour integration. This technique follows the
pattern of the calculus of variations, where one sets up a field of extremals
satisfying Euler's differential equation and thus proves an inequality. The
Ahlfors variational method yields precisely the material necessary for the
proof of the inequality we are seeking.

We give, in the simplest case, an alternative proof of existence of the
necessary domain functions which depends upon the Jacobi inversion prob-
lem for Abelian integrals. This proof has some importance in finding the
extremal functions for our problems explicitly, but many of the more inter-
esting problems in bounded functions, for example, the generalization of the
Pick-Nevanlinna interpolation theory to multiply-connected domains, lead
to such complicated generalizations of the Jacobi problem that we are not
able to base a satisfactory theory upon this method of attack.

One of the most interesting theorems which we are able to prove as a
consequence of our results concerning bounded functions is that the upper
bound in Schwarz's lemma can be expressed in terms of the Szegö kernel
function. Since, as Bergman has pointed out, the kernel functions of complete
orthonormal systems of analytic functions are among the most easily com-
puted domain functions in conformai mapping, we have here a result of
practical importance. We obtain one of the most effective necessary and
sufficient conditions known for the solution of the problem of Painlevé con-
cerning the existence of bounded, non-constant analytic functions in the
exterior of a given compact set.

We have pointed out that the mean modulus J>c \f\ds of meromorphic
functions/ in D is related to the length of the image of D in conformai map-
ping, a fact which will be evident to those who are familiar with Szegö's paper
[19J. We note that from this view point the variational method which Schiffer
has used on extremal problems involving area [15] leads to a formal but
highly instructive motivation of our work. Application of this method shows
intuitively that the problem of minimum length analogous to Schiffer's
problem of maximum area is related to extremal maps on Riemann surfaces
bounded by non-concentric circles of unit radius. We note in this connection
that the formulas derived in this paper for the Ahlfors variation of zeros of
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1949] SCHWARZ'S LEMMA AND THE SZEGÖ KERNEL FUNCTION 3

extremal bounded functions are parallel to the relations derived by Gara-
bedian and Schiffer [7] for the Schiffer variational method.

We summarize the contents of the paper. In Chapters I and II known
material is developed which is perhaps not standard technique for the modern
student, but is essential to an understanding of the proofs we shall give
further on. In Chapter III the method of contour integration is used to
extend Schwarz's lemma, and the relation to the Jacobi problem is developed.
In Chapter IV we determine the Szegö kernel function in terms of the more
standard domain functions, and show the relations which exist between this
function and Schwarz's lemma. Formulas are derived relating the Szegö and
Bergman kernel functions. Chapter V is devoted to an application of these
results to the problem of Painlevé. In Chapter VI we extend the Pick-
Nevanlinna theory of interpolation [20] to multiply-connected domains;
for the implications of this result, we refer to the applications by Heins [il]
of this theory for simply-connected domains. In the final Chapter VII, we
treat a problem for meromorphic functions with bounded boundary values.

I. The Jacobi inversion problem. In this chapter we state a number of
fundamental results concerning the Jacobi inversion problem in the theory
of Abelian integrals. We shall have use for these results later in this paper.
For a detailed discussion and for proofs we refer to Neumann [12].

Let S be a closed Riemann surface of genus p, and denote by ax, • • • , ap
and bx, • • • , bv a system of canonical cuts on 5. Let ux, • ■ ■ , up be the
normalized set of integrals of the first kind on 5 such that each uv has a period
§,„xt over any closed path on 5 crossing aß once and crossing no other canonical
cut, where 5r/1 = 0 for v^p. and ô„„ = l. We denote the period of w, on a closed
path crossing b„, but not crossing any other canonical cut, by bp„,
v, n = l, ■ • ■ , p. The functions ux, ■ • • , uv are single-valued on the surface
Sah obtained from 5 by deleting the canonical cuts ax, • • • , ap, bx, • ■ • , bp.

We define the Riemann theta-function

CO /      p P \

(1) d{ux, • • ■ , up\ =        X)        exP ( X bijmimj + 2 X uimA

corresponding to the Riemann surface .S. The series representing
0{ • • • , uk, • • • } converges for all values of the uk, as can be shown by using
the fact that the quadratic form

V

(2) X Re {bij}mimj
»,î=i

is negative-definite.
We suppose that 5 is represented as a covering surface of the f-plane of

q sheets with suitable branch-points. On this surface 5 we seek to determine
p points fi, • • • , ?p satisfying the system of equations
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4 P. R. GARABEDIAN [September

(3) 2~2 «rif J = F„ r - 1, • • • , p.
M-l

This is the inversion problem of Jacobi, in which it is desired to find the f„
on 5 as functions of the Vv. It is most convenient to determine one branch of
the functions u, on Sat and then to add suitable periods of these integrals to
the Vv so that no loss of generality is involved in thus restricting the uv. That
is to say, it is sufficient to solve the problem

p p
(4) 2~2 M-(f/0 = V* + r**i + 2~2 SA*. v = l, ■ ■ ■ , p,

J.-.1 ß-X

on Sat in order to solve the problem (3) on S, where the r, and su are properly
chosen integers.

It is found that a solution of the Jacobi problem always exists, and that
either this solution is unique or else one £„ in the solution can be chosen
arbitrarily.

One method of determining the complex values in the f-plane of the points
Çu on 5 is the following. We let A and B be two complex numbers which are
covered on S, respectively, by points alt • • • , ap and by points ßx, ■ ■ ■ , ßP.
We suppose that the a, can be connected to the /3„ by paths fí„ on S which do
not cut the canonical slits bx, ■ • ■ , bp. We pick any p points *», • • • , xp of
Sab and set

p
(5) X, = J2 "A**), v = 1, • • • , p.

e=l

Then the f„ determined from the system of equations (4) satisfy the condition

r     (f„ - A)(Xg - B)

¿i   (f„ - B)(xu - A)
= Jj 0{ ' ' ' ■ Vk - «kM, • ■ ■ }e{ ■ ■ ■ , Xk - uk(ßa), • • • }

~ ,=i e{ • • •, vk - «*(&,), • • • }e{ ■ ■ ■, xk - «*(«,), • • • } '
For p different choices of the constants A, B we obtain p equations for the
determination of the f„. Of course, these equations will not be independent in
the case when the f„ are not uniquely determined.

We remark that it is necessary here to choose the arbitrary constants
involved in the normal integrals of the first kind u,(Ç) in a suitable fashion in
order that the equations we have written be valid in this simple form. This
choice is made by requiring that the Riemann constants R~x, • • • , K, satisfy
relations of the form

p
(7) K, = r,iri + X SA»> v = 1, • ■ • , p,
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1949] SCHWARZ'S LEMMA AND THE SZEGÖ KERNEL FUNCTION 5

where r, and s„ are integers. The K, are defined by

(8)    K'=-2-+ StT + 7iftß-2-dui '
v = 1, • • • , p,

where X and p lie on opposite sides of the cut Z»M on S^, ¿t = l, • • • , p, and
<r„ and X„ lie on opposite sides of the cut b, on S^ at the intersection of b,
with a„ v = 1, • ■ ■ , p. For p ^ 2 the constants involved in the definition of
the w„ can be chosen so that the conditions (7) are satisfied. The case p = l
leads, of course, to the far simpler problem of the inversion of elliptic integrals,
which we shall not discuss.

We point out that it is more convenient to express our problem in the
equivalent form

(9) 2 |   "du, = V,-X„ v=l,---,p,
(1-1 J   Xp

and in this way we avoid all topological discussion of the periods, since the
path of integration can be chosen to have a homology type such that these
cancel. Finally, if the determinant

(10)
du,(Çp)

díu

does not vanish, we can apply the implicit function theorem to investigate
solutions of (3) for values of V, near the initial values.

II. The method of Lagrange multipliers. We shall prove in some detail a
necessary condition for a real function of several real variables to have a
minimum when conditions are imposed upon the manifold over which the
real variables range. Our purpose is to express the well known results on
Lagrange multipliers in a form convenient for applications in this paper.

Let u(x)=u(xx, • • • , x„), vx(x) =Vx(xx, • • ■ , xn), • • • , vm(x) =vm(xx, • • -,
xn) be real functions of the real variables xx, • • • , x„ which are continuous
with all their derivatives of the first two orders in a neighborhood of the
origin. Suppose that

(11) «(0) = î«i(0)-= vm(0) = 0

and suppose that

(12) u(x) ^ 0

for small values of the x{ satisfying the conditions

(13) Vj(x) = 0, j = 1,- ■ • ,m,
(14) Xi^O, i = 1, • • • , n.
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6 P. R. GARABEDIAN [September

That is, suppose that u(x) has a relative minimum at the origin under the
conditions (13) and (14). Then there exist real numbers X0, Xi, • • • , Xm, not
all zero, such that

du         *        dv¡
(15) Xo-+ X h-SO, i = 1, • • • , n,

dXi        ,-=i      dXi

where the partial derivatives are to be evaluated at the origin.
The proof is most easily carried out by a geometrical discussion of the loca-

tion of the vectors

tdu       dvx dvml7~'  T-' •••»T-V i=l,---,n,
dXi       dXi dXiJ

in the (m + l)-dimensional Euclidean space Em+1 of coordinates [y0, • • • , ym].
We wish to prove that there is a vector X= [X0, • • • , Xm] in Em+x making an
angle of not less than ninety degrees with each of the vectors U,. It suffices to
show that the Ui all lie in a half-space of Em+1 situated on one side of a
hyperplane Em through the origin.

Suppose this is not the case. Then the linear combinations

(17) U = X XiUi•=i
of the Ui with positive coefficients x¿ span the entire space Em+x. In particular,
we can find vectors of the form U which describe the surface Sm of a small
w-sphere in Em+x. For the corresponding values of the Xi, we find that the
vector [u(x), Vx(x), ■ • • , ^(x)] describes a surface Sm close to Sm. The defini-
tion of Sm is made precise by associating with each point of Sm a vector U
whose coefficients Xi are successively normalized to be as small as possible.
That is, if the representation (17) of U is not uniquely determined we mini-
mize xx. If this does not fix the representation, we minimize x2 with xx already
a minimum, and so on. We use these minimal x¡ in forming 2m. They are seen
to depend continuously upon our point of Sm. For example, xx is the distance
of the point U of Sm to the space spanned by the vectors £/2, • • • , Un,
measured in the direction of Ux and divided by the length of Ux. Such a
distance is a continuous function of U. Note that we mean by the space
spanned by U2, • • • , Un the space of combinations (17) with xx = 0, x2
¡SO, • • • , #»¡£0. The continuity proof for the remaining x,- can be carried
out thus after continued projection of Sm into the space of the U¡ with j = i.

We find from the continuity of the *< that 2OT is a continuous image of Sm.
Sm is also close to Sm, since we have by Taylor's theorem with remainder

• ' ' - ■ " du
(18) u(x) = 2Zxí-+o(x),

i=i       dXi
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1949] SCHWARZ'S LEMMA AND THE SZEGÖ KERNEL FUNCTION 7

A       dVj
(19) Vj(x) = ¿J Xi-1- o(x), j — 1, • • • , m,

t-i      dXi

where the symbol o(x) denotes terms of higher order than the first in the
variables Xi. Hence, if the sphere Sm is sufficiently small, the surface Sm will
enclose the origin, and there will exist a point x= [xlt • • ■ , xn] with non-
negative coordinates Xi such that [u(x), Vx(x), • • ■ , vm(x)] lies on the nega-
tive yo-axis in Em+1. The rigorous formulation of these intuitive statements
can be made using the topological notions of homotopy and the degree of a
mapping [2]. Our condition may be expressed in the form

(20) u(x) < 0,
(21) Vj(x) = 0, j = 1, • • • , m,

(22) Xi ̂  0, i = 1, • • •', ».
This contradicts the hypotheses (12), (13), and (14). Hence the vector X^O
exists satisfying (15).

Note that if for some Xi the condition (14) can be dropped, then in the
corresponding relation (15) equality holds.

III. Schwarz's Lemma. Let D be a finite domain of the z-plane bounded
by n analytic curves &, C2, • • • , Cn, and denote by C the entire boundary,
X"-i C„ of D. Let JZl be the class of functions/(z) regular in D and continu-

ous in D + C, except at the point zi£.D, where/(z) is to have an expansion

(23) f(z) =-- + y^1— +a0 + ax(z - Zx) + • ■ • .
(z — Zi)2        (z — Zi)

Let tin be the class of analytic functions F(z) in D satisfying | F(z) \ ^ 1
there and with expansions

(24) F(z) = aF(z - zx) + bx(z - Zx)2 + ■ ■ ■ , aF > 0,

about z = zi. We introduce the quantities I and a defined by the relations

(25) I =   inf   lt,

(26) a =    sup   ap,

where

(27) I, = £ | f(z) | ds

and s is the arc length parameter along C. It is clear from the theory of
normal families of analytic functions that the word "supremum" may be
replaced by "maximum" in (26). It will appear in the course of our work that
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8 P. R. GARABEDIAN [September

the word "infimum" in (25) may similarly be replaced by "minimum."
We now apply Cauchy's theorem to obtain an inequality between I and

a. We have

(28) aF = ^-£ F(z)f(z)dz = ^ <( \ f(¿) I äs = |- •
ItnJ c ¿irJ c 2ir

Hence for each FCO^

(29) aF ^ l/2w,

and it follows that

(30) a ^ l/2w.

We make the conclusion (29) for every FC.ilH, and therefore it is neces-
sary to define the integral (28) over C even when F is not continuous in
D + C. This is done quite easily. For F is bounded and therefore has a non-
tangential limit almost everywhere on C [13]. We select a sequence of con-
tours in D converging to C and we apply the Lebesgue theorem to the se-
quence of integrals so defined. This process yields the generalized Cauchy
formula (28), which we can now use on C by defining F almost everywhere on
C by its nontangential limits.

We shall now show that (30) may always be replaced by the equality

(31) a = 1/2-K,

and in the process we shall find the extremal functions/o(z) and Fo(z) yielding
respectively the minimum and maximum values of l/=jfc \f(z)\ds and
aF = F'(zx).

Equality would hold in (30) if there existed functions fo£.JZl and FoGO*,
such that

(32) —: <f Fa(z)fo(z)dz = — <f\ f,(z) | ds.
2-KÍJ c 2irJ c

The integral on the left may also be written

(33) -—£ FB(z)fo(z)z'(s)ds,
2mJ c

where z(s) is the parametric function describing the curves Cx, ■ • • , Cn. Thus
(32) will hold if and only if

r«j» Fo(z)Mz)z'(s)(34) -= 0, z G C,
i

and
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1949] SCHWARZ'S LEMMA AND THE SZEGÖ KERNEL FUNCTION

(35) I Fo(z) I - 1,
The equation (34) may be rewritten in the more convenient form

F0(z)fo(z)z'(s))

zEC.

(36) Im -Hog- -} = 0,   ± 2tt,   ± 4tt,

at points zÇ.C where f0(z) ^0.
We denote by G(z; f) the Green's function in D; that is, let G(z; f) be that

harmonic function in D with a positive logarithmic singularity at z = f and
zero boundary values. We set

(37)
dG(z; xx)        . dG(z; Xx)

4>'(z) =- + i
dx dy

where xx is any fixed point of D and z = x+iy. We find that

(38) >0, C,

and it follows from the argument principle that <p'(z) has n — 1 zeros
x2, • ■ • , xn in D. We note that for our purposes any function d>'(z) with the
property (38) on C would do as well as the particular one we have chosen. Our
choice is merely governed by the fact that Green's function leads us to the
simplest calculations. We now arrive at the final form

Í     Fo(z)f0(z))
N(z) = Im {log        ■'} =0,  ± 2t,  ± 4t, ■ ■ • , « G Cß,(39)

ju = 1, • • • , n, of (36). The function N(z) is harmonic in D except for the zeros,
Zi, z2, • ■ - , zm, of F0(z), where it has singularities of the form

(40) N(z) = - arg (z - zx) + • • • , N(z) = arg (z - Zj) + ■ ■ ■

and the points xx, • ■ • , xn, where it has singularities of the form

(41) N(z) = arg (z - Xx) + • • • , N(z) = - arg (z - *,) + • • •

i^2,

i^2.
We make the assumption that/0(z) has no zeros. A harmonic function with
the boundary behavior (39) and these singularities will exist only if there are
precisely n points z¡. Thus we require that m=n.

If the requirement m = n is fulfilled, then a harmonic function of the type
N(z) exists, but it does not necessarily have a single-valued conjugate har-
monic function N(z). We may add to the function

(42) Im log-
(z - xx) n (2 - *à

(i-2

n

(z - zi) n o - *«)
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10 P. R. GARABEDIAN [September

such a harmonic function u(z) that the sum function is of the type N(z). Here
u(z) is the solution of a Dirichlet problem with continuous boundary values
which are determined up to integral multiples of 2-7r. It is convenient to intro-
duce the harmonic functions coi(z), • • • , co„(z) in D, known as the harmonic
measures of the boundary curves Cx, • • • , Cn- wM(z) is that harmonic function
in D with boundary values 1 on Cu and zero boundary values on the re-
mainder of C. It is clear that u(z) is determined up to a linear combination
of the 03p(z) with coefficients which are integral multiples of 2ir.

We have now to determine the conditions upon the points z2, z3, • • •.., z„
that Fo(z) exist in SlZl with zeros only at Zi and these n — 1 points and with
unit modulus on C. This question can be expressed in terms of the Green's
function G(z; f) in D. If F0(z) exists, log | F0(z) | has the form

(43) log |F„(z)| = - XG(z;2il).
M=l

Thus the condition that F0(z) exist with the zeros zi, z2, • • • , z„ is that the
expression on the right have a conjugate harmonic function whose periods
about the C„ are all 27r, ¡x = 1, • • • , n. This condition we can express by the
relations

n

(44) X **{**) = 1. v = 1,2, ■ ■ • ,n,
c=i

as is well known.
We require further of the z„ that they be so located that N(z), the conju-

gate harmonic function of N(z), be single-valued. This will be so if the inte-
grals

r dN
(45) r„ = Q>   -ds, v = 1, • • • , n,

J c* dn ■ ■ •

-vanish, where d/dn denotes differentiation with respect to the inner normal
of C. To investigate the integrals (45), we introduce cuts yu in D joining x„ to
z„. We then apply Green's theorem to N(z) and co„(z) in the domain D*
bounded by the C„. and the cuts yu. We find

"    r      /    dN âcoA
(46) X # K-N-)ds = 0, v=l,---,n,

v=xJ Cß+if, \     dn dn /

where the improper integrals over y„ are to be extended over both sides of
these n cuts and are to be taken in the sense of the Cauchy principal value.
Denoting by ¿„(z) the conjugate harmonic function to co,(z), we obtain

r     dwP r *i
(47) <p   N.-ds = 2tt I     dœ„(z), v = 1, • • • , n,

J ?!     dn J n
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1949] SCHWARZ'S LEMMA AND THE SZEGÖ KERNEL FUNCTION 11

N-ds = — 2x I     d¿3v(z),        v = 1, • • • , n; p = 2, • • • , n,
Y« dn J xa

(49)

la «» »   Xa

ONydN
co„-ds = 0, P, v = 1,

ya dn

du,
(50) <b   N-ds = 2mawPuv, p, v = 1, ■ • ■ , n,

cß     dn

P, v

n.

r    dN       (o, v 9¿ p,
(51) (p   u,-ds = <

J Ca     dn (tp, v = p,

where the integers wM depend on u(z) and

r   ôœr
(52) Pa, = (f>    -ds.

J Ca dn

We conclude from (46) that we must require

dü>,(z) - 2irX I     äü>,(z) + 2rr 2~2 m-p^ = °-  " = L
Xx Jl-2 J Xa li=X ■   ■   ■

If we set wv(z) = cov(z) +ico,(z), we may summarize the conditions (44) and (53)
in the form

(54)       XI        Wl(z)dz=—      I        W,' (¿)<ÎZ + 22 <-U,(Xa)  +  imaPav\  ,
(1=2 J Xa J Xx ß-X   \n )

v = 1, • • ■ ,n.

Note that any n — 1 of the conditions (54) imply the remaining condition, and
note that by a proper determination of u(z) we may choose the mu to be any
integers.

It is well known that to each domain D of finite connectivity n there
corresponds a symmetric closed Riemann surface S of genus p = n — 1. This
surface 5 is defined by taking two replicas of D and identifying the cor-
responding points of the boundaries C. The local parameter for a point z of 5
which belongs to C is defined by mapping a small sector of D about z upon a
semi-circle so that the diameter of the circle corresponds to the points at C
near z. We then use the variable in the semi-circle as the local parameter of z.
This parameter is defined on both replicas of D by symmetry. That is, cor-
responding points of the two replicas are represented by points of the circle
which are symmetric in the diameter corresponding to C. The surface we have
so defined is a Riemann surface by virtue of the Schwarz reflection principle.

On S, if we take the curves C2, ■ • • , C„ to be the canonical cuts Oi, • • •, av
mentioned in Chapter I, the harmonic measure functions w2(z), w3(z), ■ • ■ ,
wn(z) give rise to the (»— 1) linearly independent normal integrals of the
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12 P. R. GARABEDIAN [September

first kind Ux=iriw2/2+J2, u2 = ttíw3/2+J3, • • • , up = iriwn/2+J„. Here the
Ji are constants to be determined from (7) and (8). The determination of the
zu, p = 2, • • ■ , n, from the equations (54) is upon 5 merely a special case of
the Jacobi inversion problem (3). We have shown in Chapter I how this
problem can be solved in terms of Riemann theta-functions.

In our specific case, we know there exists in D a single-valued function
f(z) with real boundary values and with gè» poles on C. We can continue
f (z) analytically by the Schwarz principle of reflection onto S, and indeed it
was by means of such functions f(z) that Schottky [17] first introduced the
Riemann surface 5 associated with D. The Schottky function f (z) maps 5
upon a covering surface of the f-plane of q sheets, and we have now merely
to determine the points f„ = f (za) by means of the formula (6). It suffices to set

iri      iridi,(xx)      tí c *i ^t, irntaPav
Vv-x = —

(55)
2 2 - T f  dib'~^2

- 2-, —-H L^. v = 2, • • • , n.
M 2 a=2

The constants J2, • • • , Jn are determined from (7). We see that the points
Z2, • • • , z„ are analytic functions of ¿x. Note that bav = ifPu,/2.

Thus we have shown that on 5 there exist n — 1 points zu and correspond-
ing paths of integration from xa to z„ such that (54) is fulfilled. We need to
show that the zu all lie in the "upper" half D of S. Suppose that Zi, zt, • • •, zT
lie in D, but that zr+i, • • • , z„ do not. Let z*+i, • • • , z* be the points in D
symmetric to zr+i, • • • , zn. Then

f n t n

(56)   Xw-(zf) —  X u>(z*) = EU'W + 2 «»W + 2*» = i + 2*->
M—l Ifr+X M—l ß=.r+X

v = 1, • ■ • , n,

where the k, are integers. We add the absolute values of the expressions (56)
to obtain

(57)

But

(58)

X U'(Za)  —    X    «»(«f.*)
(i-l n=r+X

= X I 1 + 2*. | è ».

2~2 ) X «»(zc) + X «»C« *) ?• = »,
p=l   \ u=l u=r+l /

and thus, since w,(z) >0 for zÇzD, the inequality (57) can only hold if all terms
within each absolute value sign are of one sign. Thus either r = 0 or r = ».
But r à 1, and therefore r = n. Thus all z„ either lie in D or on C. Now if z¡,
say, lies on C¡ we have by (54)
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(59) X   «ífe) = 1 - o>t(Zj) = 0,

and since cot(z) >0, zÇ^D, we must have zkeC,k = l, • • • , n. But ziGC, and
therefore we arrive at a contradiction. Thus all zu lie in D.

The one remaining difficulty concerns the homology type of the integra-
tion paths from the x„ to the z„. If we integrate from xu to z„ along a path in
D, we find that

n

(60) X «»W = 1 + 2*„ ? = 1, • • • , n,
M-l

and clearly ¿„^0, since the left-hand sides are positive. Addition of these
equations shows that k, = 0,v=l, ■ ■ • , n. We now choose the ma, upon which
no condition has been imposed until now, so that (54) holds with the paths of
integration in D which we have selected. Thus the Jacobi determination of
the Za will give us the solution of our problem.

Having determined the z„, we set up a function F0(z) with the zeros Zi,
Z2, • • • , z„, find the analytic function N(z) +iN(z) by solving the boundary
value problem (39), and solve for/0(z) to obtain

*'(*) exp (- Ñ(z) + iN(z))
(61) /o(z) = —-j_-

We can now see, using (28) and (32), that

(62) aF g lft/2x, F G ßn,

with equality holding for and only for F0, and

(63) aFo =g W2w, f G J,v

with equality holding for and only for /0. The uniqueness of Fa follows because
it is uniquely determined in modulus and argument on C, and the uniqueness
of/o follows from that of F0 by (61).

It is necessary to make a few remarks about uniqueness in the case where
F is merely defined almost everywhere on C by radial limits. Our proof has
shown only that these radial limits are uniquely determined almost every-
where on C. However, it is a consequence of a well known theorem of the
Riesz brothers [13] that the radial limits of F on a set of C of positive meas-
ure determine F completely. Hence our proof covers this case.

From the (« — 1)-parameter family of maps .FG^ covering the unit
circle n times we have now a more or less explicit method of selecting F0 by
solving the Jacobi problem (54) in terms of Riemann theta-functions.
Furthermore, when D can be mapped on the «-times-covered unit circle with
symmetry in the real axis, then we can say that this symmetric mapping is
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Fq. In the case n = 2 a symmetric mapping on circles can always be found,
and thus we obtain the extension of Schwarz's lemma here by elementary
methods and without the use of the Jacobi inversion problem.

This property of the symmetric mapping F0 is proved as follows. We
suppose that the original domain D and the image domain by F0 are both
symmetric in the real axis, we suppose that all the contours C, intersect the
real axis, and we suppose that zi, • • • , z„ lie on the real axis and are separated
from one another there by the contours C„. We have

(64) Fo(z) = F0(z).

We choose xi to lie on the same segment of the real axis in D as zi. The
Green's function G(z; Xx) is symmetric, and it is readily verified that

(65) N(z) + iN(z) = - N(z) + iÑ(z).

Hence

r dN r dN
(66) t„ = (p    -ds = — (b    -ds = — t„      . v = 1, • • • , »,

Jc, dn Jc, dn

and therefore r, = 0, v = l, ■ • ■ , n. Thus N(z) has no periods about the C„
which is all that we require.

We summarize the principal results of this chapter in a theorem.

Theorem 1. Letf0(z) and FB(z) be extremal functions for the problems (25)
and (26). Such extremal functions exist and are uniquely determined. The
extremal quantities l anda satisfy (31). The functions /0, F0 satisfy (34), (43),
and (61), and the zeros z2, • • • , z„ of F0 solve the Jacobi inversion problem (54).

IV. The Szegö kernel function. Consider now the function

Fo(z)(f0(z)yi2
(67) K(z, zx) =

2tt

where (/o(z))1'2 is chosen so that (z — zi)(/0(z))I/2-^l as z—>zi. This function
is single-valued in D, since/o has no zeros and only a double pole there, and
since the variation of the argument of/0 on each C„ is either zero or —47r, by
(34). We find for every element xp(z) of the class R of functions regular in D
and continuous in D + C the relation

(68) *(si) = f t(z)K(z, zx)ds.

Indeed, we have by (34), (35), and (67)

(69) (f t(z)K(z, zx)ds = —<f ^(z)FZz)(f0(z)yi2ds
J c 2irJ c
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= — (f Hz)(fo(z)y2dz.
2lClJ  C

But by the residue theorem we have

(70) I-I £ Hz)(f0(z)y2dz = xb(zx).
¿■KlJ c

Hence formula (68) is proved.
We can now state that among all functions ip(z)(E.R with ^(zi) = l, the

function

(71) K(z, zx)/K(zx, zx)

yields the minimum L of the integral

(72) L* = f   \ W) \2ds.

In fact, we have by Schwarz's inequality

1 = iKzi)2 = { 4' *{z)R(tíiidés\

(73) á £ K(z, Zx)K(z, zx)ds- £ \ 4>(z) \2ds
Jc J c

= K(zx, zx)<£ \4>(z)\2ds.

Therefore

(74) £ ] xb(z) \2ds à-= L,
J c K(zx, zx)

and equality holds only for the function (71).
For the study of the indefinite integral of the function/0(z) it is convenient

to know that its residue ö_i at the pole at z = zi vanishes. We have by (34)
and (35)

1    f    *h \ J" VfoFoz'l 1     r      2
a-x =-(b fo(z)dz     =-<f>     -\F0ds       =-(b foF0dz = 0.

2iriJc 2tJ c L    i    J 2-KÍJ c
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This relation implies, incidentally, the obvious fact that  F0 maximizes
| .F'(zi) | among all functions F(z) in D with | F(z) | g 1 there, regardless of
where F(zi) lies in the unit circle.

We define the functions

(76) M(z, zx) =wf £(f, zi)2¿r,

(77) N(z, zx) = - J Vo(f.R,

which have periods about the contours C„. We find that

M'(z, zx)z' = 4tt2K(z, zx)2z'

= Flfoz'
F0foz'= FBi-

(78) -»m
= - /o(z)z' = N'(z, zx)z'

for zGC. Thus the multiple-valued functions

(79) *(z, zi) = N(z, zx) + M(z, zx),

(80) *(z, zi) = N(z, zx) - M(z, zx)

have constant imaginary or real part, respectively, on each Cu. $ and ^ are
therefore multiple-valued Schottky functions and they may be expressed in
terms of the derivatives of Green's function and the harmonic measures.

Indeed, 3? and ^ each have just one pole at Zi, and the residue in both
cases is 1. We set Zx=Xx+iyx, z = x+iy and define

d       1/3 d\ d 1 / a d \
dz       2 \dx dyj' dzx       2 \dxx dyx/'

d         1 / d              d \-=—(- + i-).
3zi        2 \dxx dyx/dyx

Now let H(z; f) be the conjugate harmonic function of the Green's function
G(z; f) and let

(82) *(*; f) - G(z; {) + iH(z; f).
Then d<j>(z; zx)/dxx has a simple pole of residue 1 at zi and has imaginary
boundary values. Likewise, —id<p(z; zx)/dyx has a simple pole of residue 1 at
Zi and has real boundary values. Hence &+id<p/dyx and ^—d<p/dxx may be
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expressed as linear combinations of the functions w,(z) with pure imaginary
and real coefficients, respectively. It follows that N—dd>/dzx and M+d<p/dzx
are expressible in terms of the w,(z). Applying the operator d/dz, we verify
the explicit formulas(4)

(83) M'(z, zx) =
- 2

| W¡ (Za

(84) N'(z, zx) =
w,i Mil

d*G(z;zt)
dzdzx

d*G(Zn; zx)
dZadZx

d*G(z; zx)

dzdzx

d2G(zu; zx)

dzhdzx

wl (z)

Wl (Za)

w', (z)

WÍ (Za)

where the indices v and p run from 2 to ». Here we carry out the verification
by constructing the coefficients of the w'„(z) in the formula for M'(z, zx) so
that M'(za, zx)=0, p = 2, • ■ ■ , n. The formula for N'(z, zx) is then obtained
by using the negative conjugates of these coefficients, as we see from our
discussion of 3> and 1îr. We must assume that

(85) Ik'iOlMo
for the formulas (83) and (84) to be valid, and when this is not the case our
representation becomes somewhat more complicated.

Inspection of (76) and (77) shows that

(86)
M'(z, zx)\112

V      N'(z, zx) J
Thus our extremal functions may all be expressed in terms of Green's func-
tion and the harmonic measures. Note that from the property (78) alone we
can conclude that

(87) M'(z, zx)/N'(z, zx)

maps D upon the unit circle covered 2» times. We derive further from (86)
the interesting relation

(88)
whence by (31) we have

(89)

a = 2irK(zx, Zx) = 2t/L,

IL = 4tt2.

(4) In this paper we use for determinants the notation customarily employed for matrices
in order to avoid confusion with the notation for absolute value.
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It is well known that there exist complete systems {ip,(z)} of polynomials
and rational functions regular in D by means of which every function
x[/(z)SR can be approximated uniformly in each closed subdomain of D
[20]. We remark that any complete system each of whose elements is analytic
in a domain D containing D + C would serve us just as well as the polynomials
and rational functions. We assume that such a system has been ortho-
normalized over C so that

(90) £ yp,(z)xba(z)ds = b-,a= j

Szegö [19] has shown that among all functions

1, v = p,

V 7* p.

(91) m = £ ak^k(z)
k-X

with

(92) xb(zx) = 1

and m fixed, the function

(93) Km(z, zx)/Km(zx, zx)

gives the minimum value Km(zx, Zi)-1 to the integral

(94) j>j4>(z)\2ds,

where
m

(95) Km(z, zx) = X ik(zW(^.
*=i

From this property he concludes that Km(z, Zx) converges uniformly in every
closed subdomain of D to a functionKs(z, Zi), the Szegö kernel function of D.
Szegö treats only the case of a simply-connected domain D, but the general-
ization of his proofs is in part readily made for multiply-connected domains.
For the details of this technique, see also Bergman [3].

We shall prove somewhat differently the convergence of the sequence
Km(z, Zx), and we shall show that the limit function Ks(z, zx) is given by

(96) Ks(z, zx) = K(z, zx).

Indeed, we have shown that K(z, zx) K(zlt zi)-1 minimizes (94) among all
functions xp(z)(E.R satisfying (92) and we have shown that the minimum
value is

(97) L = 1/K(zx, zx).
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Since the Ca are analytic curves, and since K(z, Zx) is analytic across them,
we can approximate K(z, Zt) uniformly in D + C by linear combinations of
the functions ip,(z). Thus we see that the minimum value Km(zx, zx)~l of (94)
for functions (91) tends to K(zx, zi)_l as m tends to infinity, or

(98) lim Km(zx, zx) = K(zx, zx).
m-*w

From (68) we find, since Km(zx, Zx) is real, that

<p  | K(z, zx) — Km(z, zx) \2ds = K(zx, zi) + Km(zx, zi) — 2 Re [Km(zx, Zx) )
(99) J c

= K(zx, zx) — Km(zx, zx) = €,»,

where em—»0 as m—»=o. We conclude that

(100) | K(t, zx) - Km(t, zx) |2 =S tmK(t, t), t G D,

by (73), and this proves our statement. Here K(z, t) is the function (67)with
normalization point at t(E.D rather than at ZiG-D.

The result may be expressed in the form

(101) K(z, zx) = X ^h(z)^k(zx).

We have shown that the Szegö kernel function Ks(z, z) is independent of the
orthonormal system \4'v(z) } and that it may be expressed in terms of Green's
function and the harmonic measures. In fact, from (83) and (101) we obtain

(102) Ka(z, zx)2 = -
| wl (zu

d2G(z; zi)

âzôzi

d2G(Za-, Zx)

dzud

wl (z)

W'v (Za)
aOZx

Schiffer [16] has shown that the Bergman kernel function K~b(z, Zx) is given by

(103)
2   d2G(z;zi)

KB(z, zx) =-——
ir       dzdZx

Hence the square of the Szegö kernel function is closely related to the Berg-
man kernel function in multiply-connected as well as in simply-connected
domains.

A further consequence of our investigation follows from (88). We have

(104) a = 21rXU*(zi)|2-

The right-hand side of this equation is readily computed numerically fora
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given domain, and hence we have a method of obtaining the upper bound in
Schwarz's lemma in specific cases.

As a final note on kernel functions, we remark that if we add to the class
R of functions xp(z) regular in D the functions with a simple pole at z = Zi,
and if we construct a kernel function K+(z, Zx) for the extended class Rx by
means of a complete orthonormal system {\l,(z)}, we obtain, for zo^Zi,

K+(z, zo) = X $k(z)xpk(zo)

(105) *"' t _
= ÜT(z,Zo)+T(/o(z)/o(zo))1/2.

Thus we find a kernel function construction of/o(z). And (105) is proved by
showing that/j/2 is orthogonal to every function xpeR, so that adjunction
of (fo/l)112 to the system {xp,} complete for R yields a system {$,} complete
for Rx- We have

£ i>(z)(fo(z)y'2ds = i"2£    4^-^-)    (Fo)ll2(z')ll2ds(106) Jc J±
= —£ xP(z)(f0(z)yi2Fa(z)dz = 0.

IJ c

Combining (67), (89), and (105) we obtain

1 K(z, zx) _
(107) FB(z) =-^—Í-(/o(zo))1'2,

2irK(zlt zx)  K+(z, z0) — K(z, z0)

which expresses F0(z) in terms of kernel functions up to a constant factor.
By contour integration we derive a property of the extremal functions

M'(z, Zx) and N'(z, Zx). We have

0 = £ (M'(z, zx))ll2(M'(z, z0))ll2dz

= £ (M'(z, zx)z'yi2(M'(z, z0)z'y2ds

(108)
(N'(z, zx)z')ll2(N'(z, z0)z'yi2ds

c

= 2tí[í(N'(z0, zx))1'2 + i(N'(zx, z0))1/2],

whence

(109) N'(zx, zo) = N'(zo, zx).

Either by considering the integral

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1949] SCHWARZ'S LEMMA AND THE SZEGÖ KERNEL FUNCTION 21

(110) <h (M'(z, zx))w(N'(z, z0)y2dz

or by using (101) we can also show that

(111) M'(zx, zo) = M'(za, zx).

In particular, we find that N'(zlt z0) is analytic in z0, while M'(zx, Zo) is
anti-analytic in zo. By the identity K(zu, zx) =0 we obtain a second proof that
zß is an anti-analytic function of Zx, m = 2. The Jacobi inversion problem (54)
yielded the first proof.

Ahlfors [l ] has shown by variational methods that there exists a harmonic
function

(112) h(z)-G(z; zx) + ¿ Wz)
c=l

with dh/dn<0 on C whose critical points are precisely the zeros Z2, z%, • • ■ , z„
of Fa(z). We define an analytic function p(z) by the relation

(113) Re {p(z)} = h(z),

and we find

(114) p'(z)-+ b0 + bo(z - zx) + ■ ■ ■
Z — Zx

near z = zi in D and

(115) ip'(z)z' = dh/dn < 0

on C. Now the function

p'(z) 1 d_x
(116) «V7T = 7-r2 + -f-- + d0 + dx(z-zx) + ---

F0(z)       (z — zx)2      (z — zi)

is regular in D except at z = Zi, since the critical points of p are the zeros
Z2, • ■ • , z„ of F<>. From (115) we find

ap'(z)  F0(z)z'di?) :;'    .   >o, zee,
F0(z)        i

and comparison with (34) yields the identity

(118) /.(*) = ap'(z)/F0(z).

Hence also

(119) K(z, zx)2 = -^-F0(z)p'(z).
Air2
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We shall investigate these ideas and differentials of the type p'(z)dz further
in Chapter VI.

We have now the following theorem.

Theorem 2. In the notation of Theorem 1 let (67) hold. Then for every
xpeR we have (68) and the function K(z, zx) K(zx, Zi)-1 yields the minimum L of
the integral (72) among all functions xpeR with \p(zx) = 1. (101) holds, where the
expression on the right is the Szegö kernel function of a complete system {xpk}
orthonormalized according to (90). The identities (88) and (89) hold. All our
extremal functions can be related to Green's function and the harmonic measures
by identities of the form (76), (77), (83), (84), (86), and (105).

V. The problem of Painlevé. We are now in a position to attack the prob-
lem of Painlevé. We suppose given a compact set E, and we ask for necessary
and sufficient conditions upon E that there exist a nonconstant bounded an-
alytic function in the domain D complementary to E which contains the
point at infinity. The analogous problem for the existence of bounded har-
monic functions has been solved by use of the notion of capacity and by the
introduction of Tschebyscheff polynomials (see Nevanlinna [13]).

We choose a sequence of domains Dn contained in D and bounded by
analytic curves C(n) such that Dn converges to D. By the convergence we
mean that any closed subdomain of D is contained in all Dn for all n greater
than a sufficiently large n0. We might choose the CM to be a suitable set of
level curves of the Green's functions Gn(z; «) of polygonal domains Dn ex-
hausting D from within.

We let an be the quantity (26) for the domain Dn and for a point Zi con-
tained in all the Dn. Then it is clear from the theory of normal families of
analytic functions [l ] that a necessary and sufficient condition that there exist
a non-constant bounded analytic function in D is

(120) a = lim an > 0.
n—»»

This is really a mere restatement of the problem of Painlevé, but we shall
transform it by means of our previous results to obtain an effective necessary
and sufficient condition.

We point out that for an infinite domain we require of all functions fejn
that they have expansions

(!•>      a*
(121) /(z)= - + -+•••

zl      z3

about the point at infinity. This additional requirement results from the fact
that/o(z)¿z is an invariant differential with respect to conformai mappings.
Similarly, K(z, Zx)2dz is an invariant differential, so that we have near
infinity
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(122) K(z, zx) = — + 4 + • • • .
z       z-

Hence the functions of class R in infinite domains, such as the D„, are re-
quired to vanish at infinity. This change of normalization, resulting as it does
from the invariance of the differentials f0(z)dz and K(z, zx)2dz, does not alter
the validity of the results of Chapters III and IV for infinite domains.

Let us prove a property of monotonicity of the functions / and L defined
by (25) and (74). If Dx is any domain of finite connectivity contained in any
other domain D2 of finite connectivity, then we see immediately that

(123) on è «2,

with strong inequality holding unless Dx = D2. Here we assume that our
domains both contain the point Zi at which ax and a2 are evaluated. Denoting
by the subscripts 1, 2 quantities associated with Dx, D2, respectively, we ob-
tain from (31) and (88) the striking inequalities

(124) lx à h,
(125) Lx ^ L2.

It follows that

(126) KV(zx, zx) è £(2)(zi. zi),

where now the superscripts indicate the domain of definition of the symbol.
The analogue of this inequality is proved directly for the Bergman kernel
function, and is one of the most powerful tools for the investigation of con-
formal mapping by Bergman's methods. But for the Szegö kernel function
and for extremal problems with the mean modulus of analytic functions over
the boundary of the domain it becomes a much less obvious result.

We return to the problem of Painlevé. We may reword our necessary and
sufficient condition by means of the formula (88), or by means of the formula
(31). We find that a nonconstant bounded analytic function exists in D if
and only if

(127) lim K^(zx, zx) > 0,
n—►»

where KM is the Szegö kernel function of Dn. The limit exists by the mono-
tonicity theorem we have just proved. Another necessary and sufficient con-
dition is

(128) lim In > 0.
n->«°

We may now draw a conclusion from the first condition (127). We have
shown that if there exists a sequence C(n) of curves converging to E and a
nonconstant function xp vanishing at infinity in D with uniformly bounded
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mean modulus

(129) IÎ° = £     | xP(z) Us
JcM

over the C<n), then there exists a bounded analytic function in D not a con-
stant. If the C(n) can be chosen to have uniformly bounded lengths, then this
condition,

(130) lim sup Li    < oo,
n—»»

is considerably weaker than the condition of boundedness in D. We obtain
from (88) the inequality

(131) a = lim «„ è 2T rs   •
»-.» hmsupL*'

n—»»

In connection with the condition (128) we remark that if zi= »  the
normalization condition (23) for the class 7*1 = 7«, becomes

<?i      a2
(132) /(z) = i + _ + _+...,

z       z¿

since fodz is a differential. We find in consequence of this that, if a™ denotes
the quantity (26) for zi = »,

(133) K+W(z, ») =  (f0n))m/2Ta™

is the Szegö kernel function of the class of all analytic functions in Dn with
normalization point at infinity. The proof is quite analogous to the similar
proofs carried out in Chapter IV. The condition (128) now reads

(134) lim K+in)(oo, oo) < ».
n—»w

We find as a consequence of these considerations that if an analytic function
g(z) exists in D with

(135) lim/     \g(z)\ds = 0, gf»^«,

theu no nonconstant bounded analytic function exists in D.
If E consists of the interiors of a number of closed disjoint analytic

curves Cx, • • • , C„, then we have

a
(136) lim Km(zx, zx) = K(zx, zi) = — •

m—>K 2x
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Thus it is to a certain degree natural to consider the rational function
Km(z, zx) to be the analogue of the wth Tschebyscheff polynomial for the
case of the problem of Painlevé. Here the mean modulus plays the role which
the maximum modulus plays for the Tschebyscheff polynomials. The prin-
cipal difficulty in this analogy is that the integral L$ is not defined for a
general domain D complementary to a compact set E, so that one has to
resort to the cumbersome process of exhaustion by interior domains.

An advantage of the result presented here is, however, that K(z, zx) is
one of the most readily computed domain functions in the theory of conformai
mapping for the case of smoothly bounded regions.

Theorem 3. The conditions (127) and (134) are necessary and sufficient
for the existence of a nonconstant bounded analytic function in the exterior D of a
compact set E.

VI. The Pick-Nevanlinna theory of interpolation. We seek in this chapter
to extend our results on Schwarz's lemma to obtain the analogue for multiply-
connected domains of the interpolation theory developed by Nevanlinna for
simply-connected domains [20]. We succeed in doing this by combining the
method we developed in Chapter III with a new improvement which Ahlfors
has recently found of the method he employed in the paper [l]. It is to be
noted that this combination of methods yields a most elegant and general
formulation for the solution of problems of the type we treat in this paper.

We investigate the class ß of analytic functions F(z) in D satisfying the
conditions

(137) F(zí) =ti, i=l,---,k'

(138) \F(z)\ SÉ 1, zGZX
We ask for the region of variation A of the value F(z0) at a (¿ + l)st point z0
of D when F ranges over the set ñ.

A has a number of very simple properties which we immediately verify.
Firstly, A is convex. For if Fx(z0) is in A and F2(z0) is in A, then clearly

(139) pxFx(z0) + PiFi(z<>) G A,        Px + Pi= I,       Px, Pi = 0,

since {pxFx+ßiFi} Gß. Furthermore, A is convex with respect to all circles
which have a point exterior to the unit circle. For if ta lies on the arc between
Fx(z0) and ^(zo) of the circle T through the point t0 exterior to the unit circle,
we apply the preliminary transformation Toi the unit circle onto itself taking,
in its analytic continuation, t0 into the point at infinity. The function F3
with F3(z0) =to may now be defined by a relation

(140) F3 = T-i{nxT(Fx) + p2T(F2)},

since T carries F into a straight line. A is closed by the theory of normal
families, and we have shown that if A does not consist of a single point, and is
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not empty, then A has an interior point, which we again call to. For this is
an evident consequence of the strong type of convexity we have established.
We apply a map To of the unit circle upon itself taking t0 into the origin, and
we maintain that T0(A) is star-like with respect to the origin. This follows
directly from the convexity.

We wish to investigate the extremal functions Fo such that Fo(z0) lies on
the boundary of A. By applying the preliminary transformation T0 and using
the star-like property of A we see that it is sufficient to consider the problem
of finding

(141) max¡F(z0)|, arg F(z0) fixed,
FGsîo

and the associated extremal functions F0. Here Oo refers to the transform of
the class ß under the transformation T0. However, for the sake of simplifying
the notation, and with no loss of generality, we shall take £2o now to be fi
itself.

Let H(z; f) denote the conjugate harmonic function of the Green's func-
tion G(z; f) of D. We suppose at first that there is a competing function F(z)
of the form

(142) F(z) = exp I- X [G(z; f ¡) + iH(z; f,) A

for the problem (141). Then there is an extremal function Fo of this type for
the problem (141) posed in the subclass H of Q of functions F of the type (142)
with less than Q zeros, for some large integer Q. Let (142) be this extremal
function. Then, for points f * near the f y we have

m

(143) Z[G(zo;ri*)-G(z„;r,)] = 0
¡=i

if
m

(144) X [G(zr, ? H - G(Zi; f ¡) ] - 0, i = 1, ■ ■ ■ , k,
3=1

m

(145) X [H(zí; fi*) - H(zr, fi) - H(zo; tf) + H(z0; fa] = 0, i = I, ■ ■ ■ , k,
j=i

(146) X k(r**)-M,(fi)] = 0, v= 1, ••• ,n- 1.
J'-l

We wish to rewrite the conditions (145) so that the fy, £/ appear as inde-
pendent variables rather than as parameters. For this purpose we introduce
the Neumann's function N(x; u, v) of D. N(x; u, v) is harmonic in D except
at x = u, where it has a positive logarithmic singularity, and at x = v, where
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it has a negative singularity, and

(147) dN/dn = 0 on C.

We denote by N(x; u, v) the conjugate harmonic function of N(x; u, v). N
and N are determined up to constants which in no way affect our calcula-
tions. For the sake of definiteness we normalize so that J>c (N+iN)ds = 0.
We draw a slit y i from z0 to each Zi,i = l, ■ • • , k, and apply Green's theorem
to the domains £>¿ obtained from D by deleting the slits y<. We have

(148)

1   f   dG(z; ti) -
H(z0; fy) - H(zí-, fy) = — *- N(z; z0, z,)ds

2-ïïJ yi       dn
1    r   dG(z; ¡If) _ _

= — <b   -— N(z; zo, Zi)ds - iV(fy; z0, z¿),
2irJ c        dn

where the integral over y i is to be extended over both sides of the slit. Now in
consequence of (146) we have

n2t\      1 xr**iM äm.1™    **  m(149) — <b-\N(z; zo, Zi)ds = 0,
2rJ c L      dn dn     J

since N = const, on each C„ Therefore we may replace the conditions (145)
by the simpler conditions

m

(150) X [N(ï?; zo, Zi) - F(fy; zo, *<)] = 0, i = 1, ■ ■ • , k.
i-i

Thus, as usual [7], variational formulas for H lead to Neumann's func-
tion. We conclude by the results of Chapter II that there exist real param-
eters X,-, pi, and Vi, not all zero, such that

k k n—1

(151)    h(z) = X X<G(*; zt) + X »<Ñ(z; z0, Zi) + X »M$ + *oG(z; z»)

has critical points at fi, • ■ • , fOT. We define

dh-i ■
dx dy
dh dh

(152) p'(z) =-i

Since

(153) p'(z)z'(s) = imaginary on C,

we find from the argument principle that p'(z) has at most (k+n — 1) zeros
inD.

Now to a zero of F0 of order v corresponds a critical point of h of order at
least v. For suppose fi = f/2 = • • • =f„ = 0, say, and set
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(154) ft*   + • - • + f *   = Su
(155) ft« + . . . + ft« = fe

(156) ft*' + . .. + ft*' = {,.
We consider the series expansion of

(157) ¿ G(zo; m = X G(f * ; «„) = Re la, + ¿ X «iff*} ,
y-i y-i v ¿-1 j-i *

for example, and write
V

(158) ]CG(z0; ft;*) = Re {va0 + ai£i -f • • • + a£, + higher order terms}.
j-i

Similar developments are to be found for the remaining terms in (143),
(144), (146), and (150). We now see from (154), (155), (156) that we can in-
troduce &,•••, £, as independent variables instead of ft*, • • • , ft*. For if
the ßi are the symmetric functions of the ft* such that JJi-i (i —f»*)=*'
—ßxt"~l+ • • ■ +( — l)vß„ then the £< are polynomials in the ßi and the ßi are
polynomials in the £,-. Therefore any choice of the £¿ determines the ßt, which
in turn determine the ft*, and conversely. Furthermore, the functions
Xi-i £*' are of higher order than the first in £i, • • • , £, for l>v, so that (158)

is justified. With power series representations of the form (158), the considera-
tion of Chapter II show that the first (v — 1) derivatives of p'(z) vanish at
ft= • • • =ft = 0. This method of Ahlfors proves, then, the statement we
have made.

Thus Fo has at most (k+n—1) zeros, and these lie at the zeros of p'(z).
We have tacitly assumed that no /,- vanishes, and certainly a preliminary
transformation of the unit circle can be made to bring this about. However,
this is not necessary, since the problem becomes simpler if certain h vanish.
Indeed, the interpolation requirement at such a z< does not enter into the
relations (143), (144), (146), and (150), for we have a logarithmic singularity
at this point, and addition of finite terms does not destroy this singularity.
In this case, therefore, p'(z) will have fewer critical points, while the bound
on the number of zeros of F0 will continue to be (k+n — 1).

We may now introduce a fictitious zero ft) of F0 on the boundary C of D.
This is permissable if Q is chosen greater than (k+n — 1). Since

(159) G(2;ft) = 0, zGAfoGC,
we can add a term in ft to the variational equations (143), (144), (146),
(150) with a varied position ft* of ft. We require only that ft* lie on the
inner normal n to C at ft. This corresponds to conditions of the form (14) in
Chapter II. We conclude that the signs of the X,, ¿u;, and »t can be chosen so
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that

(160) dh/dn gO on C.

We now set

(161) /„(«) = P'(z)/Fo(z).

fo is analytic in D except for possible poles at z0, Zi, • • • , z*. We have also

/o(z)Fo(z)z'(j) dh
t 3»

Hence we have all the necessary tools for the application of the method of
contour integration of Chapter III.

Let F be a competing function of class Q for the problem (141). We find

Xo

(163) F0(Z0)

{F„(zo) - F(z„)} = Re{—y (Fo - F)f0dz\

- <f>   | fa\ is - Re {-£ Ffodzi è 0.2tt

Now if F^Fo, then F^F0 on C, and we have Xq^O. We obtain, indeed,

(164) - Xo Re {-—-} > 0
Fq(zq) - F(z„)\

Fo(zo)       ?

Now arg F0(zo) =arg F(zo), and hence we have

(165) | F(zo) | < | Fo(zo) |,        Xo < 0,
or

(166) | F(zo) | > | Fo(zo) |,        Xo > 0.

In the case of the second alternative, the function F0(z) is the unique com-
peting function of the type (142) for the problem (141), for if a second such
function existed we could use it in the role of F to arrive at a contradiction.

We have assumed so far that a competing function of the type (142)
exists. We shall now justify this assumption and we shall also show that the
alternative (166) never occurs. We proceed by induction upon the number k
of the interpolating conditions.

If k = 1, we may assume without loss of generality that tx = 0. A competing
function of the type (142) exists, and indeed we may use here the extremal
function Fo of Chapter III multiplied by a suitable factor of unit modulus.
Also, Fq multiplied by a suitable factor yields a competing function, and since
we thus do not have uniqueness in the class of functions (142), the case (166)
is impossible for k = l. A minor difficulty in this argument is found if Zo is
one of the zeros Z2, • • • , zn of the extermal function of Chapter III. However,
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we may in this case take an extremal function for another point of normaliza-
tion, and after a suitable linear transformation of the unit circle onto itself is
made which leads to satisfaction of the interpolation condition, all goes
through as before.

Hence for k = l the extremal functions F0 corresponding to boundary
points of A have the form (142) with m = n, and they are unique. We suppose
that for k = ko the same statement holds, except that we only have m^k0
+n—l. We prove the result for k = k0 + l.

If the first ko interpolation conditions are satisfied, then by the induction
hypothesis the possible points F(zka+x) fill a region A. If tkll+x is not in A,
further interpolation is impossible and we are through. If tka+x lies on the
boundary of A, then there is only one possible interpolating function, and this
has the form (142) with m^ko+n — 1, by hypothesis. Again we are through.
If tko+x lies interior to A, the situation is slightly more complicated. We per-
form a transformation T of the unit circle upon the upper half-plane. It is
then possible to find interpolating functions of the form

(167) F= T-i{pxT(Fx)+p2T(F2)},       px + p2=l,       Px, Pi è 0,

where Fi and F2 correspond to boundary points of A. Here px and p2 are
uniquely determined by Fi, F2 and the condition F(zk„+x) = /*o+i- However, if
we pick i>^4 different functions Ft, • ■ • , F, corresponding to boundary
points of A, then many different interpolating functions

(168) F=T-1\J2 nT(F,)\ , J2 Mí = 1,        Mi, • • • , P, è 0,v. y=i / y=i

may be set up. All the functions (168) will not be the same, since the Fy are
not identical on C and the F(Fy) have different poles there for a proper choice
of T. We seek possible values F(z0) for F's of the form (142). There must be
at least three of these, since the various functions (168) have the form (142).
Indeed, if all F(z0) for F's of the type (168) coincide, then we may set up
three problems of the type (141) after preliminary transformations Tx, T2,
and T3 of the unit circle and thus obtain the three required different values,
since the alternative (166) is excluded by the multiplicity of functions (168).
On the other hand, if all F(zô) for F's of the type (168) do not coincide, then
we may form combinations (167) of two of these F's and different choices of
T which lead to at least three different values F(zo). In both cases we get
values not all on one line. By forming further combinations of our three
interpolating functions in the upper half-plane, we obtain a triangle of values
F(zo) with interpolating functions of the form (142). Thus clearly the alterna-
tive (166) cannot occur. Therefore, we find that the boundary of the region
of values F(zo) corresponds to unique extremal functions of the form (142)
with m^ko+n. Thus our induction proof is complete.

We remark that a generalized Jacobi inversion problem can be set up from
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the relation (162), the interpolation conditions, and the conditions that F0
be single-valued. This generalized Jacobi problem is derived as in Chapter II,
and, theoretically, it determines the zeros ft, • • • , ft« of F0. However, little
is known about such inversion problems involving integrals of the third kind,
and we do not go further into this question. However, it is worth noticing
that many of the results of Chapter IV have their analogues in the present
case. Thus we may express the functions fo and Fo in terms of Green's and
Neumann's functions and the harmonic measures by formulas like (76),
(77), (83), (84), and (86).

Theorem 4. Let 0 be the class of analytic functions F(z) in D satisfying
(137) and (138), and let A be the set of values F(zo) for all Fe®- Then Ais a
closed convex set, and each function Fo corresponding to a boundary point of A
is unique and has the form (142) with m^k+n — 1. To an interior point of A
correspond infinitely many interpolating functions Fe^t-

Furthermore, supposing for the sake of simplicity that no U vanishes, the zeros
ft- of Fo lie at the critical points of a harmonic function (151) with nonpositive
normal derivative. If we define p'(z) by the relation (152) and use (161) we have
(162)./o(z) minimizes the integral

(169) f\f\ds

among all functions f(z), continuous in the closed neighborhood of C, which have
the same poles at zo, zi, • • • , z* asf0(z). If A has interior points, we have in all
cases Xo^O.

We need now to prove that for all Fe ß the integrals which we have taken
over C make sense. This follows from the fact that any Fe& has a non-
tangential limit almost everywhere on C (see Nevanlinna [13]). Thus, using
this limit to define F almost everywhere on C, we may apply the Cauchy
theorem to F even on C. We have merely to use the Lebesgue theorem and a
sequence of approximating contours to prove this statement. Thus our results
apply in full rigor to the whole class Q.

The importance of Theorem 4 for the coefficient problem of bounded
functions in multiply-connected domains is evident. Indeed, the reader will
verify that interpolation conditions may be imposed upon the derivatives of
F as well as upon the values of the function itself. This leads to Schottky
functions with higher order poles in place of the functions G and N in the
formulas (144), (150), and (151). Thus p'(z) will have higher order poles.

The coefficient problem has been treated in simply-connected domains by
Carathéodory [6] and Schur [18], We have succeeded in finding the extremal
functions for this problem in multiply-connected domains and therefore we
have a set of necessary and sufficient conditions upon the coefficients of the
power series expansion of F(z) at, say, zo, in order that ]F(z)| gl, zeD.
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However, the geometry of the coefficient domain remains to be investigated,
and we make no pretense at having a complete solution for multiply-con-
nected domains.

VIL A further normalization. We have been able to solve a very general
problem of interpolation for bounded functions, and it is clear that we could
treat even more general cases with higher derivatives and poles entering into
the picture. It is natural now to pose similar interpolation questions for the
integrals (94) and (27) in view of our results in Chapters III and IV. The first
case is quite simple to handle, for one merely sets up a linear combination of
Szegö kernel functions

m

(170) xp(z) = X «,-*(*. zí)
í=i

satisfying the interpolation conditions ^(zy)=<y, j = l, • • • , m, and verifies
by contour integration that this is the unique extremal function. For examples
of a technique of this type, see Bergman [4] and Garabedian and Schiffer [7].

The second type of integral is far more difficult to handle. In order to show
the difference between the integrals la and L$ more clearly, we shall solve a
specific minimum problem for lg in the class of analytic, rather than mero-
morphic, functions g(z).

Let RZl, zxeD, be the class of analytic functions g(z) in D, continuous in
D + C, with g(zi) = 1. Let AZl be the class of functions E(z) in D with one simple
pole,

(171) E(z) = —— +a0+ ax(z - zi) + • • • , rE > 0,
z — Zx

at z = zi and satisfying the relation

(172) lim sup | E(z) | á 1.
z-C

We pose the extremal problems

(173) X =   min  l0,

(174) r =  max rE,

and we try to find the associated extremal functions g0(z) and Fo(z).
We proceed precisely as in Chapter VI, and therefore we give few details.

First we find a function of the form
(m

G(z; zx) + iH(z; zx) - X [G(z\ z,) + M(z; zy)]
Í-2

in the class A*. This is done by taking the reciprocal of the extremal func
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tion Fo(z) of Chapter III and multiplying it by suitable functions of the
form (142), so that only the one pole at Zx remains. Next we pose the prob-
lem (174) in the restricted class of functions (175) with m^Q, where Q
is some sufficiently large fixed integer. This leads to an extremal function
F0(z) of the type (175) with m^n — 1, whose zeros z2, • • ■ ,zm lie at the
critical points of a function

n-l

(176) i)(z) = p<£(z; zi) + X M¿w¿(z).
«=i

r¡(z) is found by the method of Lagrange multipliers developed in Chapter II,
and

(176a) d-q/dn g 0 on C.

Thus we may choose po = —1, and we set

dri d-n
(177) q'(z) =T-i-.

dx dy

Finally, we set

?'(z)
(178) go(z) = rEo

Eo(z)

Thus go(z) satisfies a relation

go(z)Eo(z)z'(s)(179) ^w_^^ ^ 0> z G Cj
i

and hence go(z) is an extremal function for the problem (173), while E0 is
the extremal function for the problem (174). For

rE = — ®  E(z)g(z)dz
IirtJ c

(180)
1   f i i h^—0   \i(z)\ds = —,

¿tJ c ¿t

and equality holds if and only if E=E0 and

(181) arg g(z) m arg g0(z), zeC

We cannot show in general that the condition (181) determines g(z)
uniquely, and implies g(z)=go(z), since Fo(z) can have less than n — 1 zeros in
D. However, if £o(z) does have n — 1 zeros, then rj(z) and consequently go(z)
are uniquely determined. We have thus obtained a complete solution of the
problem (173). A Jacobi inversion problem can be found by the methods of
Chapter III for the determination of the zeros z2, • ■ • , zm of Fo-
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We introduce the functions

(182) P(z, zx) =— f'g0(r)¿f,
l'Eu J zx

(183) Q(z, zt) - - T- f go(f)£o(f)2áf,

and we have by (179)

(184) £(*, zi)z' = Q'lzTTxjz', z e C.
Therefore P and Q can be represented in terms of Green's function and the
harmonic measures. Also, we have

(185) Fo(z)2 = - Q'(z, zx)/P'(z, zx).

P'(z, Zx) has properties analogous to those of the Bergman kernel function.
Thus differentials dP and dQ with the property dP = dQ on C solve a very
wide variety of extremal problems in conformai mapping.
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