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Abstract Black holes are among the most intriguing

objects in nature. They are believed to be fully described by

General Relativity (GR), and the astrophysical black holes

are expected to belong to the Kerr family, obeying the no-

hair theorems. Alternative theories of gravity or parameter-

ized deviations of GR allow black hole solutions, which have

additional parameters other than mass and angular momen-

tum. We analyze a Schwarzschild-like metric, proposed by

Johannsen and Psaltis, characterized by its mass and a defor-

mation parameter. We compute the absorption cross section

of massless scalar waves for different values of this deforma-

tion parameter and compare it with the corresponding scalar

absorption cross section of the Schwarzschild black hole.

We also present analytical approximations for the absorp-

tion cross section in the high-frequency regime. We check

the consistence of our results comparing the numerical and

analytical approaches, finding excellent agreement.

1 Introduction

The no-hair theorems establish a paradigm in black hole (BH)

physics: BHs belong to the Kerr family [1], so that the astro-

physical BH candidates are fully described by two parame-

ters – their mass and total angular momentum [2]. Although

this no-hair paradigm has not been refuted by experimental

tests of General Relativity (GR) [3–8], the strong field regime

of GR is being put to test [9–15], and several works propose

deviations to standard GR solutions, by including parameters

beyond mass and total angular momentum.

Generalizations of GR solutions have been proposed over

the years. Among the approaches are the bumpy BH [16,17]

and the modified bumpy BH formalism [18], each of them
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with advantages and limitations. To surpass the pathologies

of bumpy solutions, in 2011 Johannsen and Psaltis proposed,

without the constraint of satisfying the Einstein’s equations,

a Schwarzschild-like spacetime with an additional param-

eter [19]. They applied the Newman–Janis algorithm and

obtained a rotating version of their static solution. Since then,

many works analyzed the Johannsen–Psaltis (JP) spacetime,

e.g. including charge in the BH spacetime [20], and com-

puting of the photon orbits in this geometry [21]. General-

izations of JP metric [22], and new parametrized solutions

[23,24] have also been proposed.

The decade of 1970 brought a powerful method to ana-

lyze the behavior of fields in BH spacetimes, allowing the

study of the absorption and scattering of fields by BHs [25–

27]. The first works investigated the field equations analyti-

cally and the range of validity of the solutions were restrict to

some limiting (low- or high-frequency) regimes. With numer-

ical methods the absorption and scattering problems became

treatable in the whole frequency range. This numerical tech-

nique has been extensively revisited along the years [28–34].

We study a massless scalar field propagating in the vicinity

of a non-spinning JP spacetime. We consider a plane wave

impinging from infinity and discuss how the JP deformation

parameter influences the absorption by the BH. In the eikonal

limit, we use the geodesic equation to obtain high-frequency

approximations, comparing them to our numerical results.

The remaining of this paper is organized as follows. In

Sect. 2 we present the static Johannsen–Psaltis BH (JPBH)

and point out some properties of the corresponding space-

time. In Sect. 3 we exhibit the photon orbit equation and solve

it to determine the classical absorption cross section, which

we use to check the consistency of the numerical results in the

high-frequency limit. In Sect. 4 we investigate the massless

scalar field, obtaining the radial and angular equations. In

Sect. 5 we compute numerically the partial and total absorp-

tion cross sections of the massless scalar field for the JPBH.
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We conclude with our final remarks in Sect. 6. We make use

of natural units G = c = ℏ = 1, and signature (+ − −−).

2 Non-spinning Johannsen–Psaltis BH

In order to investigate a new class of Schwarzschild-like

objects, the JP line element [19], namely

ds2 =
[

1 + h(r)
]

(

f (r)dt2 −
1

f (r)
dr2

)

− r2dΩ2, (1)

has been introduced, where f (r) ≡ 1 − 2M/r and dΩ2 =
dθ2 + sin2 θ dφ2 is the line element of an unit sphere. The

usual Schwarzschild line element is recovered for a vanishing

deformation function h(r). Following Ref. [19], we chose

h(r) to be a power series of M/r , namely

h(r) =
∞
∑

k=0

εk

(

M

r

)k

. (2)

The asymptotic flatness of the spacetime, together with the

experimental data of Lunar Laser Ranging [35] and Cassini

experiments [36] imply in constrains to h(r), reducing it to

h J P (r) = ε
M3

r3
, (3)

with ε3 ≡ ε. Hence, the non-spinning JP line element (1)

takes the form

ds2 =
[

1 + ε

(

M

r

)3
]

[

f (r)dt2 −
1

f (r)
dr2

]

− r2dΩ2.

(4)

The spacetime described by the line element (4) is asymp-

totically flat, with spherical symmetry, and with a timelike

Killing vector field associated to it. The event horizon loca-

tion is at rh = 2M , as in the case of Schwarzschild spacetime.

It is important to emphasize that the metric associated to the

line element (4) is not required to be a solution of Einstein’s

equations [19], and that a gravity theory which field equations

have the line element (4) as a solution is still unknown.

We can look for the singularities of the non-spinning met-

rics associated to the line element (4) obtaining the Kre-

tschmann scalar K = Rμνσρ Rμνσρ , namely

K =
1

(

M3ε

r3 + 1
)6

(

48M2

r6
−

80M4ε

r8
+

432M5ε

r9

+
184M6ε2

r10
−

1016M7ε2

r11
+

1908M8ε2

r12

+
160M9ε3

r13
−

804M10ε3

r14
+

1632M11ε3

r15

+
69M12ε4

r16
−

176M13ε4

r17
+

432M14ε4

r18

+
16M15ε5

r19
+

16M16ε5

r20
+

4M18ε6

r22

)

. (5)

Fig. 1 Kretschmann scalar, given by Eq. (5), for some non-negative

(top panel) and negative (bottom panel) values of the deformation

parameter ε

This scalar plays an important role in BH physics, enabling

us to determine the spacetime singularities. By analyzing

Eq. (5) for positive values of ε, we note that the scalar K

diverges at r = 0, as in Schwarzschild spacetime (ε = 0).

When considering ε < 0, the Kretschmann scalar diverges

for two different radii: the usual r = 0 and the additional

radius r = |ε|1/3 M , which defines a surface-like singularity.

In Fig. 1, we plot the Kretschmann scalar for positive (top

panel) and negative (bottom panel) values of the deformation

parameter ε.

If ε is sufficiently negative, the surface-like singularity

lies outside the BH event horizon, being located on the event

horizon for ε = −8, as it can be seen in Fig. 2, and outside

the event horizon for ε < −8. Therefore, if the deforma-

tion parameter is smaller than −8, the line element (4) is

associated to a naked singularity, and then violates the cos-

mic censorship conjecture [37]. Throughout this paper we

consider ε > −8.
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Fig. 2 Kretschmann scalar for ε = −8, with the surface-like singular-

ity located on the event horizon of the JPBH

3 Light-like trajectories

We can obtain the trajectories of particles in a curved space-

time with covariant metric components gμν , considering the

Lagrangian

L =
1

2
gμν ẋμ ẋν, (6)

where the overdot represents a derivative with respect to the

affine parameter. The 4-velocity ẋμ is normalized to unity

for massive particles (ẋμ ẋμ = 1) and has vanishing norm

(ẋμ ẋμ = 0) for massless particles, so that for photons we

have

L = 0. (7)

Since the line element (4) is spherically symmetric, with-

out loss of generality we may evaluate Eq. (7) in the equa-

torial plane (θ = π/2), and obtain the orbit equation for

massless particles, given by

(

du

dφ

)2

= −u2

(

1 − 2Mu

1 + εM3u3

)

+
1

b2
(

1 + εM3u3
)2

, (8)

where u(φ) ≡ 1/r(φ) and b is the impact parameter [2].

Equation (8) allows an unstable circular orbit (also called

light ring or light sphere) at r = rc. To determine the critical

radius rc for different values of the deformation parameter ε,

we impose that du/dφ = 0, and d2u/dφ2 = 0. We plot the

light sphere radius (rc) for several JPBHs in Fig. 3.

There is a critical impact parameter b = bc, so that any

photon, with impact parameter equal to bc, incoming from

spatial infinity stays trapped in the light sphere at r = rc. The

expression for the critical impact parameter bc as a function of

the JP parameter ε is cumbersome and we prefer not to show

it here. We plot the critical impact parameter for different

JPBHs in Fig. 4.

Fig. 3 Light sphere location (rc), plotted as a function of the JPBH

deformation parameter ε

Fig. 4 Critical impact parameter bc, plotted as a function of ε for

JPBHs

Fig. 5 Null geodesics with b = 5.2M , considering different choices of

ε. We note that the JPBH has a stronger influence in photon trajectories

for smaller values of the deformation parameter

In Fig. 5 we plot the photon trajectories for different

choices of the JP parameter ε, fixing the impact parame-

ter b = 5.2M . We note that, light rays are less deflected by

JPBHs with a bigger deformation parameter.
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Fig. 6 Top: classical absorption cross section, as a function of ε. Bot-

tom: geometrical representation of the classical absorption cross section

for different choices of ε

The geometrical (or classical) absorption cross section is

given by the area of a disk with radius bc, namely

σgeo = πb2
c . (9)

From Fig. 6 we notice that as the deformation parameter of

the JPBH increases, the geometrical absorption cross section

diminishes.

In Sect. 5 we use this classical analysis as a consistency

check of our numerical results in the high-frequency regime.

4 Massless scalar field dynamics

In order to study the absorption of massless scalar waves by

Schwazschild-like BHs, we consider a spin-0 field governed

by the (massless) Klein–Gordon equation,

(−g)−1/2∂μ(gμν√−g∂νΨ ) = 0, (10)

with ∂μ ≡ ∂/∂xμ and gμν being the contravariant metric

components. For the JPBH, the metric determinant g is

g = −
(

r3 + M3ε
)2

r2
sin2 θ. (11)

Due to the spherical symmetry, the massless scalar field Ψ

can be conveniently decomposed as follows

Ψ (xμ) =
ψωl(r)

r
Ylm(θ, φ)e−iωt , (12)

Fig. 7 Effective potential with ε = 1, for modes l = 0 (blue dot-

dashed line), l = 1 (red dashed line) and l = 2 (black solid line)

where Ylm(θ, φ) are the spherical harmonics with eigenval-

ues l(l+1). By substituting Eq. (12) in Eq. (10) we obtain the

ordinary differential equation for the radial function ψωl(r),

namely

f (r)
d

dr

[

f (r)
dψωl

dr

]

+
[

ω2 − Vl(r)

]

ψωl = 0, (13)

where Vl is the effective potential, given by

Vl(r) ≡
f (r)

r

d f

dr
+ f (r)

l(l + 1)

r2

[

1 + ε

(

M

r

)3
]

. (14)

Compared with the well-known Schwarzschild case, the

effective potential presents an extra ε dependent term. We

note that the only deformed contribution in Eq. (14) is mul-

tiplied by the eigenvalue l(l + 1) of the spherical harmonics,

so that the lower mode contribution (l = 0) coincides with

the Schwarzschild one for any JPBH.

By introducing the tortoise coordinate r⋆, namely

r⋆ ≡
∫

dr

f (r)
, (15)

we can rewrite Eq. (13) as a Schrödinger-like equation:

d2ψωl

dr2
⋆

+
[

ω2 − Vl

]

ψωl(r⋆) = 0. (16)

We notice in Fig. 7 that for a fixed deformation parameter

ε, the peak of the effective potential is bigger as we increase

the mode number l. For a fixed mode number l, the peak of the

effective potential increases as we increase the deformation

parameter ε, as it can be seen in Fig. 8.

In order to investigate the absorption of massless scalar

waves, we seek for solutions of Eq. (16) that are purely

incoming waves at the event horizon and a composition of

ingoing and outgoing waves at spatial infinity, i.e, that satisfy

the following boundary conditions:

ψωl(r⋆) ∼
{

e−iωr⋆ + Rωle
iωr⋆ , r⋆ → +∞,

Tωle
−iωr⋆ , r⋆ → −∞.

(17)
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Fig. 8 Effective potential, given by Eq. (14), with l = 1, for non-

negative (top panel) and non-positive (bottom panel) values of ε

The reflection and transmission coefficients are related to

Rωl and Tωl , respectively. Due to the flux conservation, the

following relation is satisfied:

|Rωl |2 + |Tωl |2 = 1. (18)

5 Absorption

The absorption cross section can be defined as the ratio

between the number of particles absorbed by the black hole

and the incident particle flux. One can use the partial waves

method to obtain the total absorption cross section of a scalar

field [38], namely:

σ =
∞
∑

l=0

σl , (19)

where σl are the partial absorption cross sections, defined as

σl ≡
π

ω2
(2l + 1)Γl(ω). (20)

The Γl in Eq. (20) are the greybody factors, which are related

to the absorption probability [39]. Considering the asymp-

totic expansion (17), the greybody factors may be written

as

Γl = |Tωl |2. (21)

The total absorption cross section is well-known for static

BHs in the low- and high-frequency regimes. In the low-

frequency regime Higuchi found that the massless scalar

absorption cross section goes to the area of the event hori-

zon for any stationary BH spacetime [40,41]. In the high-

frequency regime the absorption cross section oscillates

around the geometrical capture cross section (9), and we can

use the analytical sinc approximation (cf. Sect. 5.1) to deter-

mine the high-frequency behaviour.

In the remaining of this section we compute the total

absorption cross section using both the sinc approximation

and the numerical method discussed in Ref. [42].

5.1 Sinc approximation

Sanchez proposed, to the Schwarzschild BH case, the follow-

ing analytical approximation for the total scalar absorption

cross section, in the high-frequency regime:

σSan =
27π

4
−

A

ωrh

sin π(3
√

3)(ωrh + B), (22)

where A = 1.41 ∼
√

2 and B < 10−4 give the best fit.

This approximation has been obtained analytically in Ref.

[43] for Schwarzschild BHs, in the high-frequency regime,

based in an analytical extension of the greybody factor, and

summing over l-modes using the Poisson sum formula. Fol-

lowing Ref. [43], one can write the approximation for the

scalar absorption by a Schwarzschild BH as:

σabs = σgeo + σR P + O

(

1

ω2

)

, (23)

where σgeo is given by Eq. (9), and σR P is a sum over Regge

poles, given by

σR P = −
4π2

ω2
Re

(+∞
∑

n=1

λn(ω)γn(ω) eiπ(λn(ω)−1/2)

sin[π(λn(ω) − 1/2)]

)

. (24)

Here λn are the Regge poles and γn are the residues of the

greybody factor.

Décanini et al. generalized the Sanchez approximation

(22), for an arbitrary static and spherically symmetric BH,

obtaining that the total scalar absorption cross section in the

high frequency limit, in a four dimensional spacetime, is [43]

σ
h f

abs = σgeo

[

1 − 8πβ e−πβsinc

(

2πω

Ω0

)]

, (25)

where the sine cardinal is defined as sinc(z) ≡ sin(z)/z. The

Ω0 is the orbital frequency, which is the inverse of the critical
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Fig. 9 Top: Lyapunov exponent Λc at the unstable circular orbit radius

rc, as a function of ε. Bottom: β factor as a function of ε. When the

deformation parameter vanishes the β factor is equal to 1

impact parameter bc [44] plotted in Fig. 4. The β factor is

related to the Lyapunov exponent Λ, by [45]

β =
Λc

Ω0
, (26)

where Λc is the Lyapunov exponent at the unstable circular

orbits radius rc, as introduced in Ref. [44]. The Lyapunov

exponent Λc and the β factor are plotted in Fig. 9. Their

expressions are cumbersome for JPBH, and we prefer not

to show them here. If the deformation parameter vanishes,

β = 1 (cf. bottom panel of Fig. 9), and we recover the for

Schwarzschild case.

5.2 Numerical method

In order to obtain the total absorption cross section in the

whole frequency range, we solve the radial equation (16)

numerically, imposing the boundary conditions (17). The

integration is made from close enough to the event horizon to

a sufficiently large value of the radial coordinate. We compare

the radial solution obtained numerically with the asymptotic

solution (17), finding the reflection and transmission coef-

ficients. For more details of the numerical method and the

convergence of the solution, see Ref. [42].

Fig. 10 Transmission coefficients for the first three modes (l = 0,

l = 1 and l = 2), for different choices of the deformation parameter

(ε = −2, −1, 0, 1 and 2). The transmission coefficients for l = 0

are the same for any value of the deformation parameter, while for

non-vanishing angular momentum they are different, and the difference

increases for higher values of l

Fig. 11 Partial absorption cross sections for different choices of the

deformation parameter ε

Applying this numerical method we can obtain the trans-

mission coefficients for different values of the deformation

parameter, which we plot in Fig. 10. We calculate the partial

absorption cross sections for different values of ε, by plug-

ging the numerical transmission coefficients into Eq. (20),

and plot them in Fig. 11. In Figs. 12 and 13 we exhibit the

total absorption cross sections, obtained by summing over

the l modes [cf. Eq. (19)], and compare them with the well-

known Schwarzschild case (ε = 0). We see that as the defor-

mation parameter increases, the total absorption diminishes.

We also notice, both in Fig. 12 and in Fig. 13 that, for dif-

ferent values of ε, the first peak remains almost unaltered,

while the other peaks change significantly.

As it can be seen in Fig. 14, our numerical results agree

very well with the sinc approximation in the high-frequency

regime.

For the Schwarzschild case, as pointed out by Unruh in

Ref. [26], the zero-frequency limit is given by the contribu-
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Fig. 12 Total absorption cross section of Schwarzschild-like objects

for different values of ε. The horizontal dashed lines represent the geo-

metrical absorption cross sections in each case

Fig. 13 Total absorption cross section of JPBHs for some non-positive

values of ε. Although the first peak (l = 0) does not change much,

the second peak (l = 1) increases significantly as we decrease the

deformation parameter ε

Fig. 14 Comparison of the sinc approximation with the numerical

solution for four values of the deformation parameter (ε = −7, ε = −2,

ε = 0, and ε = 2)

tion of the lowest mode l = 0, being equal to the area of the

event horizon. We notice that the same happens to the JPBH,

independently of the non-vanishing deformation parameter.

This can also be understood from the behavior of the trans-

mission coefficients of the JPBH (cf. Fig. 10), by noticing

that, in the low-frequency regime, the transmission coeffi-

cient for l = 0 is dominant. Due the dependence of the effec-

tive potential (14) on the deformation parameter, the radial

solution for the lowest mode l = 0 is the same, independently

of the value of ε. Hence, the transmission coefficient for l = 0

is the same for any JPBH. Therefore, in the low-frequency

regime the total absorption cross section goes to the area of

the JPBH, what is consistent with the general result for the

scalar absorption of static BHs [46].

6 Final remarks

Over the years, several propositions to include new parame-

ters on BH solutions, violating the no-hair theorems, have

been presented. In 2011, Johannsen and Psaltis, without

requiring the Einstein’s equations to be satisfied, proposed

a Schwarzschild-like spacetime, regular on and outside the

event horizon. The JPBH has an additional parameter, so that

two JPBHs with the same mass can deform the spacetime dif-

ferently.

We have investigated the scalar absorption by JPBHs. We

have derived the orbit equation for light rays around JPBHs

and solved it to obtain the critical impact parameter and

the geometrical absorption cross section, as functions of the

deformation parameter. We have shown that if the value of

the deformation parameter is increased, both critical impact

parameter and geometrical absorption cross section dimin-

ishes.

We have used numerical techniques to compute the partial

and total absorption cross sections. We obtained that, as the

deformation parameter is increased, the absorption of the

scalar field by the JPBH decreases. We also obtained that in

the high-frequency regime the total absorption cross section

oscillates around the geometrical absorption cross section. In

the low-frequency regime, the absorption cross section goes

to the area of the black hole, which is independent of the

deformation parameter value.

As a consistency check of our numerical results, we used

the sinc approximation to compute the total absorption cross

section in the high-frequency regime, obtaining excellent

concordance.
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