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ABSTRACT: We derive the static Schwarzschild-Tangherlini metric by extracting the classi-
cal contributions from the multi-loop vertex functions of a graviton emitted from a massive
scalar field. At each loop orders the classical contribution is proportional to a unique mas-
ter integral given by the massless sunset integral. By computing the scattering amplitudes
up to three-loop order in general dimension, we explicitly derive the expansion of the metric
up to the fourth post-Minkowskian order O(Gj‘v) in four, five and six dimensions. There
are ultraviolet divergences that are cancelled with the introduction of higher-derivative
non-minimal couplings. The standard Schwarzschild-Tangherlini is recovered by absorb-
ing their effects by an appropriate coordinate transformation induced from the de Donder
gauge condition.
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1 Introduction

General relativity is a theory for the action of gravity in space and time. The dynamics
of the gravitational field is constrained by the Einstein’s classical field equations. They
are tensorial non-linear equations, because of the self-interaction of the gravitational field,
notoriously difficult to solve. It is therefore important to develop efficient methods for
studying gravity in various regimes.

General relativity can be embedded in quantum theory where the gravitational force
results from the exchange of a quantized massless spin-2 graviton field [I-5]. One can
then consider the Einstein-Hilbert term as the first term of a low-energy effective action
containing an infinite number of higher derivative operators [6].

The classical limit 7~ — 0 has been studied by Duff in [7] where he showed how to
reproduce the classical Schwarzschild metric in four dimensions from quantum tree graphs
up to the second order O(G%) in Newton’s constant.

The relation between the quantum theory of gravity and the classical Einstein’s theory
of general relativity has received a new interpretation with the understanding [8—13] that
an appropriate (and subtle) & — 0 limit of quantum multi-loop scattering gravitational
amplitudes lead to higher Gy-order classical gravity contributions. Considering the im-
portance of such approach for the evaluation of the post-Minkowskian expansion for the
gravitational two-body scattering [14-20], we use the procedure given in [12] for extracting
the classical contributions from the multi-loop vertex function of a graviton emission from
a massive scalar field to recover the Schwarzschild-Tangherlini metric in various dimen-
sions. The scattering amplitude approach works in general dimensions [21-24] and gives
the opportunity to explore general relativity in higher-dimensions [25, 26]. At tree-level
and one-loop our results agree with the general dimension results in [21, 24]. We show how
to reconstruct the metric up to the fourth order O(G%,) in Newton’s constant by evaluating
the scattering amplitudes up to three-loop orders.

Using the procedure designed in [12] we argue, in section 2.1, that the classical contri-
bution at l-loop order is given by the two-point [-loop massless sunset graphs. We verify
this explicitly evaluating the classical limit of the quantum scattering amplitudes up to
three-loop order.

The scattering amplitudes develop ultraviolet divergences. In section 4, we show how
to recover the finite static Schwarzschild-Tangherlini metric by the addition of non-minimal
couplings given schematically by (see (4.2) for a precise expression)

5 St o (Gym) P2 / /=g VIR, 0H 60 6. (1.1)

In four dimensions the non-minimal couplings §(1) S have been introduced in [27] for the
analysis up to the third post-Minkowskian order in the context of the world-line formalism.
The relation between the world-line formalism and the amplitude approach is detailed
n [20]. Higher-derivative couplings with n > 2 would be needed in four dimensions from
the fifth post-Minkowskian order, but they appear at lowest order in higher dimensions.
Indeed, we show that in five dimensions one needs to consider higher dimensional of non-
minimal couplings (%) St at the third post-Minkowskian order and §(3) S at the fourth



post-Minkowskian. Interestingly, the metric components are finite in space-time dimensions
greater or equal to six, although the stress-tensor develops ultraviolet divergences from
one-loop order in odd dimensions and from two-loop order in even dimensions. These
divergences are cancelled by the non-minimal couplings §(n) get.. Actually, we expect that
an all order computation in perturbation will require an infinite set of such non-minimal
couplings.

We show that the effects of the non-minimal couplings can be reabsorbed by a co-
ordinate transformation, and they do not affect the Schwarzschild-Tangherlini space-time
geometry. Since we work in the fixed gauge de Donder gauge, we give the coordinate trans-
formation for extracting the classical space-time metric from the scattering amplitudes in
that gauge. Although general relativity is coordinate system invariant, our analysis shows
that there is a preferred coordinate system when extracting the classical geometry from
scattering amplitudes in the de Donder gauge. The lowest-order n = 1 non-minimal cou-
plings have been shown to arise from the gauge fixing in [20, 24, 28]. We will not address
the question of the gauge dependence, but we remark that the choice of coordinate system
(or gauge) can be critical for finding solution to Einstein’s equations [29].

Since “black hole formation is a robust prediction of the general theory of relativ-
ity” [30], it is satisfying to be able to embed such classical solutions in the new understand-
ing of the relation between general relativity and the quantum theory of gravity.

The paper is organised as follows. In section 2 we setup the connection between the
perturbation expansion vertex function for the emission a graviton from a massive scalar
field and the post-Minkowskian expansion of the static metric in d + 1 dimensions. In
section 2.1 we show that the classical contribution from the multi-loop amplitudes is given
by the massless sunset multi-loop integrals in d dimensions. In section 2.2 we evaluate the
master integrals. In section 3 we derive the metric component up to the order O(G%,) by
computing the relevant amplitudes up to three-loop order in d+ 1 dimensions. In section 4
we compute the non-minimal couplings required for cancelling the ultraviolet divergences in
the amplitude computation. In section 5 we solve the Einstein’s equations in four (d = 3),
five (d = 4) and six (d = 5) dimensions in the de Donder gauge, and we show in section 6
how these results match the results derived from the amplitude computations. In section 7
we give an interpretation of the results in this paper. The appendix A contains formulae
for the Fourier transforms used in the text, and appendix B the vertices for the scattering
amplitude computations.

2 The Schwarzschild-Tangherlini metric from scalar field amplitudes

The Schwarzschild metric is obtained by the gravitational scattering of a scalar field of
mass m

R
167Gy

S= / dd+1x\/—_g<

For further reference Newton’s constant has length dimensions [Gy] = (length)?~!, the
scalar field has dimension [¢] = (length)'~% and the mass [m] = (length)~'. We work with

+ %gﬂ“amam - %m2¢2> : (2.1)



the mostly negative signature (+,—, -, —) metric.

2

The graviton emission from a scalar particle of mass p? = p2 = m? is given by the

three-point vertex function

b2

Ms(p1,q) = . (2.2)

b1

At each loop order we extract the [-loop contribution to the transition density of the
l
stress-energy tensor <TW(q2)> = zle(T,SV)(qQ»

V327G Ny

. i v
iM (p1,q) = =250 (@) (2.3)

where €*” is the polarisation of the graviton with momentum ¢ = p; — ps is the momentum
transfer.

The scattering amplitude computation is not done in the harmonic gauge coordinates
g“"I‘z‘V(g) = 0 but in the de Donder gauge coordinate system [2, 19, 21, 24, 27]

dg 09py 09
HYTA — BV AP P pv L _
L (9) =g (axy + oo axp> 0, (2.4)

the metric perturbations g,, = M + > ,>1 hfﬁ,) satisfy'

9 _
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The de Donder gauge relation between the metric perturbation and the stress-energy tensor

reads
h(l+1)(f) _ —167TGN/ dd(j eiq“-fi <T(l)>class.(q2) - 1 n <T(l)>class.(q2) (2 6)
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In this relation enters the classical contribution at [ loop order (T;ﬁ,))dass'(qz) defined by the

classical limit of the quantum scattering amplitude [10, 12, 13]. From now, we are dropping

D)

the super-script class and just use the notation (Té,,)(qz) for the classical contribution.

2.1 The classical contribution of the amplitude

In this section we derive the generic form of the classical contribution of the gravity ampli-
tudes (2.2) in the static limit where ¢ = (0,§) and §® < m?. The classical limit is obtained
by taking A — 0 with the momentum transfer ¢/h held fixed [13].

!The harmonic gauge linearized at the first order in perturbation gives (2.5) with n = 1. The higher-order
expansions of the harmonic gauge differ from these conditions.



At the [-loop order we have to consider the graphs

MY (p1,q) = , (2.7)

The classical contribution emerges as a particular & — 0 limit of the amplitude in [8, 10—
13]. The classical limit results in cutting the massive lines, projecting on the contribution
from localised sources at different positions in space [12, 31, 32|, pictorially represented by
shaded blobs

; (2.8)

leading g2

In this process one keeps only the leading ¢? contribution from the multi-graviton tree-
level amplitudes. The quantum tree-level graphs that were considered in [7] arise from the
classical limit of the scattering amplitude up to two-loop order. In the rest of this section,
we derive the generic features of the classical limit to all orders in perturbation. We then

explicitly evaluate the classical limit up to three-loop order in perturbation.

The quantum amplitude in (2.7) is an [ + 2 gravitons amplitude with [ + 1 gravitons
attached to the massive scalar line

E,ullxl,...,,ququ(plap%él, A ?El-‘rl) = (29)

(—iv 87TGN)l+1Tu1V1 (p1,p1 — el)Tuzm (p1ly,p1 — b1 — L) - -+ TM-HVHI(pl —ly = —l1,p2)
Hi‘:1 <(P1 - Zé‘:l fj)Q —m2+ ie)

)

(2.10)



with the momentum conservation condition ¢1 + --- 4+ ;41 = ¢ = p1 — p2 and the vertex
for emitting a graviton from a scalar field”

1
577“” (p1 — p2)2 . (2.11)

This line is attached to an [ + 2 tree-level graviton amplitude

™ (p1,p2) = Pi'vs + PTPh +

M!LIVI,---7HZ+1VZ+1(€1, /I q) — . (2.12)

We have to sum over all the permutation of the graviton lines attached to the scalar lines.
Because the gravity amplitude is invariant under the action of the permutation of the

graviton lines we have

' I dd‘Hf
’LMé)(pl, ) m / H D Z ‘Cullfl,---7uz+11/z+1(plap%go(l)a cee aga(lJrl))

0€6; 41
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where &4 is the group of permutation of /41 elements. In the static limit the vertex (2.11)

becomes
Tuv (1,1 — ) ~ —2m°5))6,) (2.14)
therefore the scalar line approximates to
I+1 250 50
ivV32rGnym=6, o
; Wiy iV 32mONm 0,0 (2.15)
Hi:1 ((pl - Z;:l EJ)2 — m2 + ZE)

In the static limit (p; — L)2 — m2 +ie = L2 — 2py - L +ie ~ L2 — L? — 2mLg + ie. In the
limit where the mass m is large compared to the graviton loop momenta |L| < m we have

Lg—EQ—QmLO—Fie: <L0—m—\/i2+m2—ie> (Lo—m+\/i2+m2—ie>

2 L2
~|Ly—2m — — +1 L —— 9 ~ —2m (Lo —1€) . (2.1
0 m 2m+ze 0+2m 1€ m (Lo —ie) . (2.16)

E(p1,p2,f1, e ,fH_l) ~

Therefore we have

li[ —i2/2rGymdY, 8Y,
iy zj L 09 — e

2The vertices are given in appendix B. We have stripped of a factor iv/87Gx from their normalisation.

L(p1,p2, L1, ... Liy1) ~ iy/320Gym260 60

Hi4+1 " Vi41

(2.17)




Using momentum conservation ¢1+- - -+£;, 1 = p;—po and that in the static limit p{—p3 ~ 0

+1 . 0 <0

] —12\/27TGNTI”L5 5y,
ﬁ(p17p27£17---,€l+1)22m16| | . i
i=1 Z] 1 5] — i€

we have

(2.18)

Using the identity”

+1 +1 1
> I——=11- (2.21)
€6y i=1 Za 1%e(j) =17

In the limit ¢ — 0 the expression vanishes unless some of the E? vanish at the same time.
This means that one needs to pick the residues at 69 = je for j = 1,...,[ to have a non
vanishing answer. This implies that the amplitude (2.13) reduces to

+1
z'./\/(gl)(pl,q) ~ gt (2 QWGNm)

1 PpL0,pio;

dd€
/ H paley Hl+1 (52 )Mp101,...,pl+1ol+1 (fl, D) agl-l—la Q) Z?:O (222)

with ¢1 4+ --- + {11 = q. We recall that

n’
D-2"
The amplitude (2.22) corresponds to the graph where the scalar line has been collapsed to

PO = 5555 — (2.23)

a point

MP(py,q) ~1 (2.24)

In the static with ¢ = (0,¢), |q| < m, the [ + 2-tree level gravitons amplitude has the

leading behaviour

I+1

P l
TT P Mo prysonn (€, - lig1,0) & /Gy ¢, (2.25)
n=1

3This was proven in the appendix of [H] We give here an alternative proof using recursion. For [ = 1

we have 3(2) = Il(zl+z2) + 12(117%2) 775, Assuming that (2.21) is true at the order I, then at the order
| 4+ 1 we have
I+1 141
2.19
= > Il erd P H : (219)
0EG 41 i=1 j 1 f’(]) i=1 o€, i=1 j 1%e(5)
where o(n + 1) = i and the {&1,...,&} = {z1,...,z41}\{z:}. By recursion hypothesis we can use the

expression for X(1)

I+1

+

L1 1 g 1
Sl4)=—"——> [[r=——"7—""FT— —=11= 2.20
( ) 1+t T4 LT -’E1+~~~+xl+1; 1:[917 1T ( )
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and higher powers of ¢® contribute to higher powers of & and are sub-leading quantum
corrections (see section 3.1 for more about this).
Therefore, the classical contribution to the stress-tensor in (2.3) is given by*

l quqv
(T0) == Gm)m () DO + (@) (B —m) ) T (@), (2:26)

where cgl) (d) and cgl) (d) are rational functions of the dimension d and .J,,)(¢?) is the massless
n-loop sunset graph

S modd;
Jmy(@®) = 1 +‘ ’*H 1 = / = S
) T, 2 ( l1+ +ln+q')2iHl(27T)d

(2.27)

2.2 The master integrals for the classical limit

The master integrals (2.27) can be evaluated straightforwardly with the parametric repre-
sentation of the n-loop sunset in D dimensions (see [36])

(@
(

2
47?)%

(nrD)@2-d)

t -y R v i 2.28
<n+ 2>/xi20<$1+ +x + ) 1:[ d ( )

n

since the first Symanzik polynomial is U,y = <27‘+1 i) <H;‘+11x) and the second
Symanzik polynomial is Fj,41 = —q%x1 - ©+Tpg1l = G x1 - Tpy1. Changing variables to

y; = 1/x; we have

72) "2 nd (n+D@-d) v dy;
(4m) 2 2 ) Jyzo0 =1y, %
Using the expression for Euler’s beta-function
* dr s D=8 —a)T(B)
(6% — (6% 2
/0 (e +a) %5 =a o (2.30)

the master integral is readily evaluated to be

(2.31)

n _o\n+1

2
477)"7d T <(n+1)2(d—2)>
The master integrals develop ultraviolet poles at loop orders, inducing divergences in the

stress-energy tensor. We will show in section 4 how to renormalise these divergences with
the introduction of higher-derivative couplings.

4We have checked this explicitly to three-loop order using the LiteRed code [34, 35].



3 The metric perturbation from graviton emission

Using the relation (2.6) between the metric perturbation and using the expression (2.26)
for the stress-energy tensor in d-dimension in the static limit we have

qu4v
hED(@) = -8 <c§”(d)(25353 — ) + &(d) (22—2 +(d— 2)%))

G l+1J 9
y (m Nm)(j2 (z)(Q). (3.1)

The static space-time components are obtained by computing the Fourier transform in d
dimensions
(1+1) (D) ()10 d'q
h z) = e .
7% ( ) /Rd uv (q) (27T)d

Using the Fourier transformations given in appendix A, and setting r = |Z|, the Fourier

(3.2)

transform of the master integrals are given by

I+1
rRd G2 (2m)d Ars ri? '

which is finite to all loop orders. The ultraviolet divergences in the momentum space

representation in (2.31) has been cancelled by the Fourier transform.’
The tensorial Fourier transform

+1
-2 d ~ —2
a4 T (7) gz A°0 L% 1 1 e oy Tk
/Rd 2@ O ol \ gpf e 2—l(d—2)( G + (4D -D=H)

= q 4 "
(3.4)
diverges for [l = 1 and d = 4 and for [ = 2 and d = 3, and are otherwise finite.
By spherical symmetry we parameterise the metric in d + 1 dimensions
= T - di)?
ds® = ho(r, d)dt* — hy(r,d)dz? — ho(r, d)% : (3.5)
so that
hi(@) = b + 30 (@), (3.6)

>1

with hz(o) =1,1,0 for i =0, 1, 2, the post-Minkowskian expansion of the metric components

d—1 4

0= 2 (00 (i) ) (252

B (4, ) = 16(3 - ?()Cgl_+2§)cg)(d) <,0(7', d)>l+1 |

W, d) = — 20 (@ =2 (@) + (@) <M>l+l : (3.7)

4

SThis fact had been noticed by L. Planté in his PhD thesis [31].



We have introduced the radial parameter

p(?”, d) =

(3.8)

d—2 ,,,_d_Q ?

3
5

which is our post-Minkowskian expansion parameter. Recall that in d + 1 dimensions the
length dimension of [Gym] = (length)?=? and p(r,d) is dimensionless.

The metric component present poles in four dimensions (d = 3) from two-loop order
and in five dimensions (d = 4) from one-loop order. Such divergences will be removed by
the contribution from the non-minimal coupling contributions in section 4.

3.1 Tree-level amplitude

At tree-level, the only contributing diagram is

D2

MP(py,q) = : (3.9)
D1

is the emission of a graviton from the scattering of two massive scalars of momenta p; and
p2 and p? = p3 = m? with momentum transfert ¢ = p; — po. The scattering amplitude is
given by the 2-scalar-1-graviton vertex 7% (py,p2) in (B.2)

(0) V321G N _ V321G N 9
iM3” (p1,q) = RENzTov T = —fe“” (p1up2v + P2pp1y — N (p1 - p2 — M?)) .
(3.10)

Using that P = (p1 + p2)/2 and ¢ = p; — p2 we have that

V321G N o
2V/4E1 Ey

In the static limit ¢ = p; — p2 ~ (0,¢), E1 ~ Ey >~ m and |¢] < m we have

ZM( )(p1, ) = - (2P P, - 1(Qu¢]u UWQQ)) . (3'11)

qiq; 1
(T (q?)) ~ mdlsy + <2 jn,my + 277,w> 7. (3.12)

The ¢ term in this expression is the contact term which has a higher power of & and does
not contribute to the classical limit [12, 37]. The coefficients of the classical contribution
to the stress-tensor at tree-level are given by

”(d) =1,
(d)=0. (3.13)

From this we deduce the metric components in d + 1 dimensions using (3.7)

d—2
h (r,d) = —4o—p(r,d),

,10,



h;”(r, d) =0, (3.14)
where p(r,d) is defined in (3.8). This reproduces the expression given in [21, 24].

3.2 One-loop amplitude

At one-loop the only contributing diagram to the classical limit is

b2

q iv321G
iM (pr.q) = = —fNWT(” (g%, (3.15)

b1

from which we extract the one-loop contribution to the stress-energy tensor in d + 1 di-

mensions

i8TGN dd+1y TP(p1,l +P1)T(L§§(,p7,€5(l, q)7 (p2,1 + p1)
VAE{Ey J (2m)P (12 +ie)((L + q)% +ie)((I + p1)%2 — m? + i)’

(p1,p2) is the three graviton vertex and 7+ (py, p2) the vertex for the emis-

T(l) MV(qQ) _ (316)

where /57
(3) mp,or
sion of a graviton from two scalars with momenta p; and py. We refer to appendix B for
definitions and normalisation of our vertices.
In the static limit, ¢ < m?, the classical contribution coming from the two scalars to
one-graviton vertex is

m?80,63, (3.17)

Tap ~ 2
using that p? = p3 = m?2. This gives for the stress-energy tensor

dd+1z Tl300,00( @)

DB+ + ) + i)+ 1) —m? +ie)’

T 1 (4?) = i167Gym> / (3.18)
At this point, we want to focus on the computation of the classical contribution at the
static limit. Thus, we will employ a trick, which will prove useful for higher loops. We
symmetrize the diagram

dd+1l 3 00, oo(l Q)
T(l) uv / )
(¢%) = 8nGm’ D (12 +ie)((I1 + q)% + ie)

1 1
. (319
X{(l—|—p1)2—m2+ie+(l—p2)2—m2+ie] (3:.19)

—

In the approximation 12 < m? we have (I +p;)? —m? =12 +21-p; = 2+ 20F — -~
l% + 2mly and the amplitude reduces at leading order

— 11 —



derll 00 oo(l Q)
(%) = i8nGyvm’ D12+ ze)((l +q)? + ie)

1 1
— + -
l% + 2mly + i€ l% — 2mlg + 1€

]. (3.20)

It is obvious that at O(e”) order we get a zero contribution at leading order in 1/m, since
lp < m. Thus, we can compute the leading contribution of the integral over Iy via Cauchy’s
theorem, by taking the residue 2mly = ie and closing the contour of integration in the upper
half-plane®

: (3.21)

a7 pv
T (?) = 4G ym? / (d [ Towdd
lo=0

2m)% (12 —ie) (I + )% — ie)

with

v 1 1% v v 3 17
T(;’,)OQOQ(Z’Q) = d—1 <(d -2) (l'ul + U+l +q)" +d"¢" + 577# (jg)
inZ

—2(d—2) (I + (I + D) (Lot — "T) —2(d - 3)@2555(;) .
(3.22)

The component of the stress-tensor are proportional to the one-loop master integral Ji) ()
as expected from the general discussion of section 2.2

quqv
(T()) = G ym? <c§1>(d)5gag+c§”(d)< s —m)) Ty (), (3.23)
with the master integral
T (4=4\ 1 (4=2 2 d—2
Jy(d?) = ( 22) &) (@) ® , (3.24)
2421 (d — 2)
and the coefficients
(1), 2(4d*> —15d + 10)
¢’ (d) (d—1)2 ’
), _2(d —2)(3d —2)
¢y (d) = -1 . (3.25)

3.2.1 The one-loop contribution to the metric components

Using (3.7) we get for the metric components in d + 1 dimensions

) ~ 8(d—2)° 2
hO (T’, d) - (d 1)2 p(?”, d) )
4(2d% — 9d + 14)
W2 (r,d A d
1 (T’ ) (d 4)(d )2 p(?” )
50One could have taken the residue at 2mlo = —ie and closing the contour in the lower half-plane with

the same result.

- 12 —



WD (r,d) = (r,d)?, (3.26)

where p(r,d) is defined in (3.8).
This reproduces the expression given in [21] and the expression in [24, eq. (22)] for
a=0.

3.3 Two-loop amplitude

The diagrams contributing to the classical corrections at third post-Minkowskian order of
the metric at the two-loop graphs

iMP (p1,q) = —/32rGNT e, (3.27)

there are four contributions

@ _ @uv _ ‘\/\/\/\’\/\/W\,

T = %, T = W,
Qpv _ 2 _ mf\/\m

T(c) = %7 T(d) = W\/\/\/\'

3.3.1 The diagrams (a), (b), (¢)

The sum of the contributions from the diagrams (a), (b), (¢) after appropriate labelling of
the momenta, can be expressed as

c 3 d+-1

@  16G3m? / dti,

T = ——H ——5(li + 1l +1
z; 2 = }11(%)% (b + 1+ 15+ q)

7 (p1, 11+ 1) 7T (L + p1, —l2 + p1)T(la — po, _pQ)Té%(L@’UT(_lQa lh+q)- 7’:;5 : T(;é,gaﬁ’»\/g(ll +4,9)
121312(1; + q)?

X

1 1 1 1
X +
((11 +p1)? —=m? (Iy —p2)? —m? (I3 +p1)? —m? (I} — p2)? —m?

! ! ) (3.28)

_|_
(I3 +p1)? — m?2 (I3 — p2)? — m?

Using the approximate form of the two scalars one graviton vertex in (3.17) and (I; +p1)? —
m? =~ 2ml{ and taking the residue 2ml? = ie, since for the rest of the residues we get a
zero contribution at order O(e?), we get

19=19=0
(3.29)

ZC:T(Q)W_?,Q 262, a1, Tlas.00( + 0.0)  Pay T g0 00(~lr b1 +9)
(i) T 94T m’ H (2m)2d
) (1) () (1) (I + @)°
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with

w

Mool +@0) = (117 = L+ 9" (1 + )" = ¢"¢") = 50" (" = (d = 1)6 )
HY ~2 - 5—d ) -
# T (B G @) - (G G+ 07), (3:30)

and

l1

Ou0 () gn00(1 0 0) = ﬁ <(d—3)((l+Q)“(l+Q)”+q“qV)+(d—1)(lT i == (386,35 1))

nt 5M50

+ : (¢2(d —5) + (3d-7)(l§+@2)>, (3.31)

and

v 1 1% v v 3 4
Tiso000(l:0) = 7= ((d =2+ (1 + 9"+ Q)" + "+ 0" D)

.2 - HY r
—2(d = 2) (Il + (I1 + @)*) (6 o — "T) —2(d — 3)q25555>. (3.32)
Using the LiteRed code [34, 35] in d dimensions, we find that all the contributions are
proportional to the master integral as expected from the general discussion of section 2.2
)

ddl
‘D/H YR

z 1 z(l1+f2+(j)2

2
- _m — (=3 + g — log(4m) +log(¢®) @ + O(d - 3),  (3.33)

where vg = 0.57721 - - - is the Euler-Mascheroni constant [38].
We find for the 00-component

2) 00 _ 32m°Gy{m? 6d* — 45d° +134d — 160
T J 3.34
and for the trace part
) 32m2G3,m> 10d? — 63d% + 123d — 86
R o e CLEA

3.3.2 The diagrams (d)

The diagram (d) after symmetrisation over the massive scalar legs reads

p@uw __B2GRT? [ A, S+ b+ s+ q) 1 1
(d) 3m ookt (27)2d 3313 (I1 + p1)? = m? +ie (Ia — p2)? — m? + ie

1 1 1 1
+ - — + - -
(Is+p1)2—m?2+ie(lh —p2)2 —m2+ie (I3+p1)? —m2+ie(la —p2)?2 —m? + ze)
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x 77 (p1, 1y 4 p1) 777 (I + p1, —lo + p1)70 (12 — pa, —pz)T(ﬁsy(gm,Lg(q,lla la,13), (3.36)

and leads to the contribution

T(Q) o 647T2G2 m?3 / H dd+1l 7—4) 00,00 Oo(q,l1,l2, —l1—1la—q) (3.37)
(@ LB H+B+D o,
1 2
with the vertex
ny 1 @5 50 2 a277
(4)00 00.00(¢: 11,12, 13) = - 1)2< 5 (7d* — 45d + 70) — ¢*L—(d — 2)(6d — 23)
+(d—2) ((9 —2d)g"q” + (7 —2d) (11} + 1515 + l§l§)>
d—?2 e .
+—5— (l1 b+ )(6060(7d—23) —n"(2d—-9)) | . (3.38)

Evaluating these integral we find, for the 00-component

(2)00 32772G?Vm3 (4 — d)(6 — d) )

and for the trace part

9 v 647m2G2,m? 3d® — 20d? + 41d — 30
T((d))u Nuv = 3N (d _ 1)2 J(2) ((jg) : (340)

3.3.3 The two-loop contribution to the metric components

Summing up all the contributions the two-loop stress-tensor is given by

qudv
(1) = Ghom® (7 (@)00) + &7 (@) (23 — ) ) T (@) (3.41)

with the coefficients given by

) (q) = 52 4 7043 + 2034 — 254d + 104

¢ (d) 3(d—4)(d—1)3(9d 70d” + 203d” — 254d + 104)

@, 64(d—-2) 3 a2 B

ey’ (d) = D17 (2d° — 13d* 4 25d — 10) , (3.42)

and the expression for the master integral

T (@) = 2 () (3.43)

From which we extract the metric components using the relations (3.7) (using the definition
of p(r,d) in (3.8))
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8(7d* — 63d® + 214d? — 334d + 212)

Y (r,d) = 3(d—3)(d—4)(d—1)3 p(r,d)’,
b9 (r,d) = _ 8(d —2)*(2d® — 13d* + 25d — 10)p (r.d) (3.44)

(d—3)(d—4)(d—1)3
3.4 Three-loop amplitude

The diagrams contributing to the classical corrections at third post-Minkowskian order of
the metric at the two-loop graphs

M( )(pla ) 327TGNT(3) Mye;w, (345)

where the three-loop stress-tensor is given by five distinct diagrams

B _ \/\/\’\M’\'\/\/\/\. v _ ‘\/\/\,\,\/\’\/W\
T(a) = W7 T(b) = W\?

B _ % By _ M

As before, we permute the internal momenta such that by taking the residue at 2ml? =
i€ from the massive propagators, we extract the non-analytic terms which contribute to the
classical metric in the static limit. After taking the residues and including the symmetry
factors

T _ 64303 m4/ﬁ A, T(aympor (0 + 12 TR (=l b 4+ )7 (<13, I3 + 1a)
“ LT @ R GG @+ B (G + L)’ oo
TEW _ 95623G3m /H o001 + @G OTE (<l I3 + 1) 7500 (<2, 11 + q)
(b) - 2,7 N2 /7 2,7 )
() ()" (13)* (1a)* (11 + @) (I3 + 1)
T(3) wo_ 5127‘(‘3G3 m /H ddl 3)045 OO(ll +q, ) (02500700700@1 +q, l2,l3,l4)
“ G (&) () () (h + @)
(=ls, 13+ l4) (4)75 00 OQ(Qa l1, 12,13 +14)
() (12)* (13)* (1a)* (I3 + 1a)”

T(3) 2567T3G3 m? / H 5)00 00,00,00 ((L ly,12,13, l4)
“ (0)* ()’ (B)° (1a)°

(=
N

)

19=19=19=0

)

19=19=19=0

)

19=19=19=0

di’
Gy _ 3 dl
Ty " = —256m°GEm /H

)
19=19=19=0

(3.46)
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with the five-graviton vertex contribution

v ~ v « § e K
7.(;%) oo,oo,oo,oo(kl’ ko, k3, ka, ks) := T(lg) aﬁ,'\/é,en,li)\(kh k2, k3, ka, /<:5)7300ﬁ73070 7Dogpoo)‘
5
1
=——— 4699 4(2d® — 184> d—61)k? + (d — 2)(8d* — 47d § k2
4(d—1)3< Hl,(( 8d” 4 57 61)ki + ( )(8 7+79)i:2 Z

5
—(d—2)nw <(29d2 —191d + 362)k7 + (7d” — 61d + 142) ) _ kf)
=2

+2(d - 2) ((11d2 — 73d + 150) k1, k1, + (7d® — 53d + 102) (kapkay + Esuksy + kapka + /gg,ukg,y))) .
(3.47)

where the vertex T(’gl)/ 0By 5,6%%)\(1{1, ko, k3, k4, ks) has been derived using the results of [39].

The integral reduction is done using the LiteRed code [34, 35] in d dimensions. In
agreement with the general analysis of section 2.2, we find that the classical contribution

is proportional to the single master integral

p d4lyd4lnddly 72
J(3>(q2)=/ NI (3.48)

34 2250 5 = = .
(27) Ll ls (i +1la+ 13+ §)?

3.4.1 The p=v =0 component

7300 _  32mGRm® 3d° — 169d" + 1378d* — 4592d° + 7256d — 4752

(@ 3 (d—4)2(d—1)3 J(3) ((IQ),
7300 _ 12873G%,m* 68d5 — 1003d° + 6211d* — 20820d> + 40020d> — 41584d + 17824
(®) 3 (d—4)(d —3)(3d — 4)(d — 1) (7)),
7300 _ 647m3G3m* 37d° — 502d* + 2731d% — 7486d? + 10164d — 5256 Jo(
© 3 (d—3)(3d —)(d— 1 3(7);
7300 _ 32m3G3m* 53d* — 615d° + 2690d% — 5572d + 4840 T
@ 3 (d—4)(d —1)3 (@),
TE" = 64rGRm?* 6-d) ((52_1)7? +19) T3 (@). (3.49)

3.4.2 Contraction with 7,

T 32m3GYm* 85d° — 1126d° + 6307d" — 19114d° + 32944d> — 30472d + 11952 T

(a) Ny = 3 (d — 4)2(d — 1)3 (3)(q ),
@, 12873G3m? 168d5 — 2231d° + 12319d* — 35796d> + 57396d> — 48304d + 16736 Tl

@ T = 3 (d—4)(3d — 4)(d — 1)3 (3)((1 )s
@ mw _ 64mG3m® 147d° — 1801d° + 8727d" — 21555d° + 28942d* — 20148d + 5688 Tl

(c) N = 3 (3d — 4)(d — 1)4 (3) (q )7
@ mw 32m8GRym* 179d° — 2146d* 4 10305d° — 24614d” 4- 28972d — 13704 Tl

(d) N = 3 (d—4)(d—1)3 (3)(q )7
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T 6473 G3m* 29d* — 274d3 + 973d? — 1484d + 852

)
(e) Nuv = 3 (d — 1)3 J(3)(q )
(3.50)
3.4.3 The classical three-loop contribution to the stress-tensor
Summing up all the contributions we get for the three-loop stress-tensor
3 3 4udv
(1) = 7 Glom (7 (@)05) + 7 (@) (V3" — ) ) oo (@) (3.51)
with the master integral
T (8=3d\ T (d=2 4 -
s = “ZIT) goaa) (3:52)
8Ir 2 T'(2(d — 2))
and the three-loop coefficients are given by
(3) d) = — 64 d7 _ d6 d5
& (d) 3(d_3)(d_4)2(d_1)4x<56 880d° + 5868
— 20907d* + 43434d> — 52498d% + 33888d — 8760),
O (d) = — o1 (454" — 670° + 4167°
& ) = =3y +
— 14016d* + 27430d° — 30916d> + 18104d — 3952). (3.53)

Using the relations (3.7) we obtained the three-loop contribution to the metric from the
classical stress-tensor in (4.40) (using the notation for p in (3.8))

16(d — 2)3(14d> — 85d* + 165d — 106)

Y (r, d) = d)*
@) 8(39d” — 691d5 + 5155d° — 21077d* 4 51216d> — 74346d° + 60168d — 21208)
hi’(r,d) = — p(r,d)*
LAw 3(d — 3)(d — 4)2(d — 1)4(3d — 8) Y
B (. d) = 16(d — 2)%(45d5 — 580d° + 3007d* — 8002d> + 11426d? — 8064d + 1976)/) (r.d)"
2\ 3(d — 3)(d — 4)2(d — 1)4(3d — 8) ’
(3.54)

4 Non-minimal couplings and renormalised metric

The stress-tensor and the metric components have ultraviolet divergences. These diver-
gences can be removed by the addition of the non-minimal couplings made from the powers
of the covariant derivative V, acting on a single power of the Riemann tensor and its con-
tractions. The Bianchi identity on the Riemann tensor V, R, o0+ Vi Rpuor+V o Rvex = 0,
implies that

1
vuR“paA = vaRp)\ - v)\RpO'7 VMR“V = §VVR . (41)

The counter-terms are powers of covariant derivative acting on a single power of the Ricci
tensor and Ricci scalar. Therefore the counter-terms are given by the following non-minimal
couplings
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SISt — (Gm) i / a4/ (o) (d) (V)" RO, 006

+ (B @V, TR+ B ()T R ) 060%6). (4.2)

where o™ (d), (()n) (d) and 5§n)(d) are dimensionless coefficients depending on the space-
time dimension. The power of Gym is determined by dimensional analysis, and give the
correct order of G in all dimensions. The first non-minimal coupling with n = 1 is given

by
sV S = (Gym)7z / d+e /=g (a(l)(d)RBMqﬁ@“(ﬁ—i— ﬁ(l)(d)R‘“’aM(bayqﬁ) . (43)

This non-minimal coupling has been introduced in [27] in four dimensions and [24] in
five dimensions. We will see that up to three-loop order the renormalisation of the static
metric component only require the counter-term a(!) (d)R0O,,p0* ¢, whereas both couplings
are needed for the cancellation of the stress-tensor divergences. This coupling is induced
by harmonic gauge condition [20, 24] and the value of its coefficient depends on the choice
of gauge. In our gauge, the de Donder gauge, this corresponds to a = 0 in the work of [24]
and £ = % in the work of [20]. Since we are working in fixed gauge we will not discuss
further the gauge dependence of the higher-order non-minimal coupling coefficients, but we
expect that the gauge dependence of these coefficients will be an extension of the discussion
in [24, app. B].

The power of the Newton constant in (4.3) is an integer only in four dimensions with
d = 3 and five dimensions d = 4. Therefore this counter-term will not appear in dimensions
D >6.

In four dimensions, from five-loop order, or the sixth post-Minkowskian order O(G?V),
one expects that higher derivative non-minimal couplings will be needed to get finite stress-
tensor components. In dimensions five and six, the higher-derivative non-minimal couplings
arise at lower loop order.

In five dimensions one needs to consider higher-derivative non-minimal couplings () S<t-
with n > 2 for removing the divergences in the stress-tensor. The non-minimal coupling
at this order is then given by

5@ 5t — (Gym)T2 / dd“x\/—_g(a(z)(d)DR@ﬂ(ba“(b
+ (BP @V R+ 87 (A)OR,, ) 960°0) . (4.4)
We will need the non-minimal coupling
53 = (Gym)T2 / dd“x\/—_g(oc(?’)(d)(V2)2R8M¢B“¢
+ (80 @V, Vo V2R + B (@)(V2) R ) 960°6) , (4.5)

for removing the two-loop divergence in the stress-tensor in six (d = 5) dimensions and the
three-loop divergence in five (d = 4) dimensions. In five dimensions (d = 4) the metric,
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up to Gjl\,, is renormalised using only the n = 1 and the metric is finite to all order in six
dimensions (d = 5).

The higher-order non-minimal couplings 6™ S with n > 2 will not contribute to
the classical limit when inserted into graphs with loops, because they contribute to higher
powers in the momentum transfer ¢, and are sub-leading with respect to the classical
contributions. Their tree-level insertions will contribute to the renormalisation of the
stress-tensor but thanks to the properties of the Fourier transform they will not contribute
to the metric components.

4.1 Tree-level insertions

We give the contribution of the insertions of the non-minimal counter-terms with n = 1
in (4.3), with n =2 in (4.4) and with n = 3 in (4.5) in the tree-level graph.

4.1.1 Insertion of §(1)Sct:

The insertion of the non-minimal couplings §(Y.S in (4.3) into the tree-level diagram

b2

SOMO (py,q) = : (4.6)

b1

leads to the stress-tensor contribution in d + 1 dimensions

2

SOTO) = @ (Gym)Tm (—ﬁ(”(d)5253 + 2a0(d) (% - n)) L@

and using (2.6) this contributes to the metric components

SR (r,d) = 0, (4.8)
n d #3\°
SN ) = 22D ) ((Gym) ) :
T2 r
d
320 ()T (&£2 -
5(1)h§1) (’I“, d) — _ o - ( 2 ) (GNm)d 2 ) (49)
T2 r

Thanks to the properties of the Fourier transformation (see appendix A) only the coefficient
a(d) contributes to static metric perturbation.
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4.1.2 Insertion of §(2) gt

The insertion of the non-minimal couplings §(2 St in (4.4) into the tree-level diagram

D2

s MO (p1,q) = ,

b1

leads to the stress-tensor condition in d + 1 dimensions

SN = a4 (Gm)s s (-5 @30+ 2 (@) + 370)) (L -

Because of the vanishing of the Fourier transforms

¢ A7 Gdj | 42 ige 4T
[Japerr i t—o, [ Wgpers L o,
G 2T

(4.10)

this extra contribution to the stress-tensor does not affect the metric components

4.1.3 Insertion of 63 gt

(4.13)

(4.14)

The insertion of the non-minimal couplings §(3) S in (4.5) into the tree-level diagram

D2

SOMO (py,q) = ,

b1

leads to the stress-tensor condition in six dimensions (d = 5)

6 3 1.3 qulv
ST = I G (-5 @)0288 +2 (a) + 167 ) (24
Because of the vanishing of the Fourier transforms

ddq :07 / qlqj‘a|4 qu J :0’
(2m)¢ re |q1 (2m)¢

4 iq-@
latte

— 21 —

(4.15)

77;w>

4.16)

—

(4.17)



this extra contribution to the stress-tensor does not affect the metric components

5@ n{D (r,d) = 0, (4.18)
s@nP (r,d) =0,
s@nM(rd)y =0. (4.19)

4.2 One-loop insertions

We give the contribution of the insertions of the counter-terms (4.2) with n = 1 in (4.3) in
the one-loop graph.

4.2.1 Insertion of 6 gt

The insertion of the non-minimal coupling in (4.3) in the one-loop graph

P2 p2

SOMD (py,q) = + a (4.20)

P1 p1

leads to the stress-tensor contribution

STV = 32ia ™ (d)r (Gym) a2 m?

/ AUl Tig ap sl a)Pg 11° [ 1 n 1 ]

(27)d 12(1+ q)? (l+p1)2—m2+ic  (I—p2)?2—m?+ie
a5, d—2 v 5

= 8ra (d)(Gym) T2mg® R (d5253 + ng - W) Ty (@) - (4.21)

where we used that

—2
v l — -2
77#1/7—1% oo,wg(l,Q)l’ylé = 17 <Q7Q + (ll + @2 — ll ), (4.22)

and

v 1 - - g —4
S0 00,51 )1 = -1 ((d -2+ (d=2)(L + > (L +@* —2¢°) — I

L2, o
—d=3)1 (L +d*+ q*2)> . (4.23)
Using the Fourier transforms

- déa T d\?
/ Ty (@*)e'™” qd - d(22¢)1—1 ’
Rd (2m) 2dy2(d—1)
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d d—2\ 1 (d
G5, ooy age ' T(F)T(G) (o Lo L &t
/Rd 7 T (@)e (2m)d — Amdp2(d-1) (521 2(d—1) . ) . (4.24)

and the relation between the stress-tensor and the metric components in (2.6) we obtain
the following contribution to the metric components

(d_Q)F 4)2 (G m)d_iQ 2(d—1)
sORP (r, d) = 6401 (d) 2 ( l ) ,

(d—1)md-2 r
1 2(d-1)
F(Ql)2 Gym a2
5(1)h§2) (r,d) = —64a(1)(d) = 12)7Td_2 (Gn - ) 7
1 2(d-1)
I’(d)2 Gynm i
SORD (r,d) = 12801 (d) - 12‘)7Td_2 Gy T) . (4.25)

4.2.2 Two insertions of §(1)§ct-

Two insertions of the non-minimal coupling (1) S in (4.3) in the one-loop graph

b2
1N\2 3 4(1 !
(62 MW (py, q) = , (4.26)
b1
leads to the stress-tensor contribution
2(aM(d))2(G m%ﬁm_4 v P
(o) = 2D (050 — (a— ) (22 — ) ) Sy (@), (020
and the metric contributions
()2 (r,d) = 0,
9 1\ 2d
2@ () gy = 84@V(d)? L (AN ((Gym)T2
622 d) = P (8 i ,
L@ 64d(d =2V (@)? () [ (Gym)T2 )"

4.3 Two-loop insertions

For the insertion of the non-minimal coupling §() S in (4.3) in the two-loop graph one
needs to sum over all the contributions in table 1. The classical limit of the sum of all
these graphs lead to the following contribution to the stress-tensor
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Table 1. Insertion of the non-minimal coupling in the two-loop graph

12872 (d — 2)aM) (d) 2(d-1)
@y _ _ .
O T =~y ad = @ = Dz N T ma

((3d3 — 19d* 4 28d — 10)6,6,)

+ (33 — 15d* + 18d — 4)(‘1;3” - mw)> T (@), (4.29)

which leads to the following contributions to the metric components

_512000(d) T(5)° <(GNm)dl2>3d_4

3
0ngY (r.d) =~ 3@ r

(4.30)

3d—4
25601 (d) (3d® — 23d* + 46d — 28) T'(4)? ((GNm)ﬁ>

(1)1,3) _
O (rd) (d—4)(d—2)(d—1)2(3d —4) ,3(d-2) r

60nsY (r.d) =

3d—4
2560 (d) (3d3 — 15d% +18d — 4) T(4)3 [ (Gym)7>
(d—4)(d—2)(d—1)? 73(d=2) r '
4.4 The renormalised metric in four dimensions

The metric components have ultraviolet poles in four dimensions from two-loop order. We
show how the addition of the non-minimal couplings leads to finite renormalised metric
components.

4.4.1 The two-loop renormalisation

The two-loop metric components in (3.44) have a divergence in four dimensions (d = 3)

hgg)(r, d) _ 2 (GNm

3
" 3(d-3) \ r ) +0(),



WO d) = -2 (Gam ’ +0(1) (4.31)
2T ad-3 r ’ :
This divergence is cancelled by adding the metric contribution from the non-minimal cou-
pling in (4.8)

neet O dy .= b3 (r d) + 6O (r,d),  i=0,1,2 (4.32)

and setting the a()(d) coefficient to be

1

oM(d) = 23

+aV(3) - =2 +0(d-3). (4.33)

The resulting renormalised two-loop metric reads
renor. (3) Gnm ’
hO (7", d) =2 —— + O(d - 3)7
r

renor 4 1 3
we D d) = 2 <—§ +6aM(3) + log < rCr >> <Gfm> +0(d - 3),

GNm
3
renor. (3) _ l (D) _ rCr Gnm —
B (r,d) 4(3 6a)(3) — log ( e ) ro@-3).  (431)

where we have introduced the following combination of the Euler-Mascheroni constant [38]
and 7

Cp = /me s . (4.35)

The divergence in the two-loop stress-tensor in (3.41)

GR*m® Gy
(1)) = h 20,15, + ( ;2 - 77,ul/> +0(1), (4.36)

is cancelled by adding the contribution in (4.7) from the non-minimal coupling with the
following choice of (V) (d) coefficient

B (d) = -

+0(1). (4.37)

Notice that this computation does not determine the finite part of the a(!)(d) and gV (d).
They are free scales in the logarithms. We will show in section 6 that this freedom is totally
reabsorbed in the change of coordinate and the Schwarzschild-Tangherlini metric does not
have any ambiguity.

4.4.2 The three-loop renormalisation

The three-loop metric components in (3.54) have a divergence in four dimensions (d = 3)
given by

4
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2
h§4)(r, d) = . (GNm

4
— ) 1 o),

4
Y (r,d) = —3(d4_ 3 (Gﬁm> +0(1), . (4.38)

Adding to this contribution the (4.25) from the insertion of the non-minimal couplings at
one-loop, and using the value of a")(d) determined in (4.33), we obtain the renormalised
three-loop metric

renorm 2 4 !
heemerm-() gy = <—% +8a(3) + 3 log ( rCr >) <GNTm> +0(d - 3),

Gnym
4
renorm.(4) _ o (1) _ é rCe Gnm —
hy (r) <10 8a'(3) 3 log (GNm>> ( . + O(d - 3),
4
renorm.(4) . _@ (1) § rCg Gym —
hy (r) = < 3 + 16a'7(3) + 3 log G . +0(d—3). (4.39)

The classical three-loop contribution to the stress-tensor has an ultraviolet divergence

7G3,m* % v
(Tﬁ) (@) = _ZJ(VT_'?) (35252 + <qu - 77;w> ) +0(1), (4.40)

this divergence is cancelled by the addition of the contribution in (4.21) from the non-
minimal coupling and the choice of oV (d) in (4.33).
4.5 The renormalised metric in five dimensions

The metric components have ultraviolet divergences in five dimensions from one-loop order.
We show how the addition of the non-minimal couplings leads to finite renormalised metric
components.

4.5.1 The one-loop renormalisation

The metric components in (3.26) have a divergence in five dimension (d = 4) given by

P (r,d) = O(1),

2
W) = 5 (25) +oq
2
W (r,d) = 9(;6_0 5 <iﬁ;”> +0(1). (4.41)

The divergences in the metric components (4.41) are cancelled for the choice

5

) = =)

+aM(5) +0(d —4), (4.42)
so that the renormalised metric components

nrere O d) o= BB d) + 6OV (@), i=0,1,2, (4.43)

)
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have a finite expansion near d = 4

renor 32 (G 2

e e ) = 22 ( ijﬂ;”) O 1), o
2

renor. (2, v 20 (14 36aD(5)m r2CL Y (Gwm _

hy (r,d) = 9 (15 + 5 + log G 3 +0(d—4),
80 7 3661(1)(5)7(- r202 Gnm 2
hrenor(2) d=——1 — R S 1 E P
2 (r,d) 9 <30 + 5 + log <GNm> ( o > + O( )

where CF is defined in (4.35).

Thanks to the properties of the Fourier transform, only the coefficient o(!) (d) enters the
counter-term contribution to the metric component. To determine as well the coefficient
BM(d) in (4.3) one needs to look at the divergences of the stress-tensor

G Nm2(j2

qudv
To) = =1 (75353 +10 < i mw>> +0(1) (4.45)

The cancellation of the pole fixes the pole part of 5(1)(d) near five dimensions

7

B (d) = RETEp Y +0(1). (4.46)

4.5.2 The two-loop renormalisation

The two-loop metric components in (3.44) have a divergence in five dimensions (d = 4)

3
(3) _ 320 GNm
ho (1 d) = — 52— 1y ( mz ) T,

3

(3) N 160 GNm
P (r,d) = 27(d — 4) ( oz ) 7O

3
(3) _ 320 GNm
hs (r,d) = 7= < —5 ) +0(). (4.47)

The divergences in the metric components (3.44) are cancelled for the choice made at
one-loop in (4.42), so that the renormalised metric components

jyrenor. (3) (7“, d) — h£3) (7“, d) + 5(1)h§2) (747 d)7 1=20,1,2, (448)

)

have a finite expansion near d = 4

160 (2 @ °Ct ’
oo ), gy _ 100 ( AL (r CE>> <Gign> rO[d—1)
s

27 \ 15 5 G
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e g gy S0 (1 30 RGN (G
hy (r,d) = o7 <15+ 5 + log G 3 +0(d—4),
3
gy 100 (1 300G PCEY) (GamY o
hy (r,d) = o7 ( 15—1— 5 + log Gam o + O(d — 4) .(4.49)
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The two-loop stress-tensor in (3.41) is not finite in d = 4 as it diverges like

5Gym®|q* quq
D _ N 050 , ulv
<T;Su)> ~ 16272(d — 4)2 <45M5V + e 77W>

5G2m3|q* 7 183
2o ((4 dyp — —2) 060
+1627r2(d—4)(< °g<4 >+ B 20> uv

<log <f) + 95 — %) <q“q” - 77;w> ) +0(1). (4.50)

The addition of the counter-term in (4.21) from the non-minimal couplings in (4.3) is not

enough for making the stress-tensor finite in d = 4

5G2 m?’|(j]4 quq
7(2) W)y — 9N E 050  dulv
(Ta') + 0 T) = 16272 (d — 4)? (45“6” + q? mW)

2m3| g1t 1447aM (5) 109\ 44
i 3 41 0 )
16272(d — 4) og (Gnm) 5 B0 | Ondv

+ (o8 (Gm + 31— Lrae)) (22 ,)) ) +O(). (45)

We need to consider the addition of the counter-term from the insertion of §(2) St evaluated

in section 4.1.2 with the values of the coefficient near d = 4

@, 1 10 109 +17287a(5) | (o B
f(d) = 72 <8l(d — 4)2 + 1944(d — 4) +a(6)+0(d-4) ],
1 1 5 432raM (5) — 17
2) 28Dy = - 2) _
o)+ 557 = —55 (162(d iR Ty L Gl I
(4.52)

plugged in (4.11) cancel the divergences in (4.51)
() + 6Ty + sETW) = 0(1). (4.53)
4.5.3 The three-loop renormalisation

The three-loop metric components in (3.54) have a divergence in five dimensions (d = 4)

4
(4) _ 1280 Gnym
4

(4) _ 400 20 (101 +120log (r*CR)) | (Gam

M d) = <81(d —4)? 243(d — 4) 2 ) TOW:
4

@) _ 3200 160 (187 — 1201og (r?C%)) \ [ Gnm

hy (r,d) = <81(d—4)2 + o3 —5 ) +0(1). (454)

The divergences in the metric components (3.54) are cancelled for the choice made at
one-loop in (4.42), so that the renormalised metric components

nree W d) o= B d) + 6ORD (r ) + V2P (r,d),  i=0,1,2,  (4.55)

)
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have a finite expansion near d = 4
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(4.56)

The three-loop stress-tensor in (3.51) is not finite in d = 4 as it diverges like

25Gm*|q]° uq
T(3) _ _SOINTEEL __5050 [ LA 5
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The addition of the counter-terms in (61)2<T£i)> in (4.27), and 5(1)(T;£,2,)> in (4.29) from the
non-minimal couplings in (4.3) is not enough for making the stress-tensor finite in d = 4
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+0(1). (4.58)

We need to consider the addition of the counter-term from the insertion of 6 S evaluated
in section 4.1.3 with the values of the coefficient near d = 4
() () = 25 5(432ma™M (5) + 125)
1166473(d — 4)3 9331273 (d — 4)2
N 559872(mwaM) (5))2 + 4860007mal) (5) + 27487
671846473 (d — 4)
25 2160ma™) (5) 4 5
= 1166473 (d —4)° | 9331273 (d — 4)2
N 559872(ma(V (5))? + 3888maV) (5) — 6749

+ O(1),

a®)(d) + 167 (d)

1 4.
671846473 (d — 4) +0(), (4:59)
plugged in (4.11) cancel the divergences in (4.51)
(T32)) + 6T + (TR + 6T = 0(1). (4.60)

4.6 The renormalised stress-tensor in six dimensions

In six dimensions, the metric component are finite to all order in perturbation but the
two-loop stress-tensor in (3.41) presents an ultraviolet divergence in six dimensions (d = 5)

Gim?|q° qud
2)\ _ N 0 <0 v

which is cancelled by the addition of the insertion of the non-minimal coupling §(3) S at
tree-level in (4.16) with the choice of the coefficients
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——__— __io1
8064072(d —5) © o),
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(3) 49
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5 The Schwarzschild-Tangherlini metric in de Donder gauge in four, five
and six dimensions

The Schwarzschild-Tangherlini [40] space-time metric in d 4+ 1 dimensions is given by the
Tangherlini solution, using p(r,d) defined in (3.8),”

d—2 o g
d—2 S Arip(r,d) (% di)?
ds%chw = <1 —4 p(r, d)> dt? — d7? — d ;72 ’ ( 5 ) (5.2)
d—l 1—4mp(7’,d> T
"In spherical coordinate the metric reads
2 M 2 dr® 2
ds® = (1 - TH) at* — = - A1 (5.1)
d
with u = (;6_7;%\;'”1 and Qq_1 = % is the area of the unit (d — 1)-sphere.
- 3
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As explained in section 2 the amplitude computation selects the de Donder gauge
in (2.4). We make the coordinate transformation (¢, Z) — (¢, f(r)Z) so that the Schwarzschild
metric reads

ds® = ho(r)dt? — hy(r)dz? — hQ(T)(f'Tﬁ, (5.3)
with r = |Z| and
ho(r) = 1-45=2 Jf’((:)’f)z, (5.4)
hi(r) == f(r)?,
_ as (0) +r Ry
ha(r) := —f(r)* = f(r) Qf(r)d—2—4j;_dfp(r,d)
The de Donder gauge condition (2.4) then reads
2(d — Dha(r) = 1= (ho(r) + (d — 2ha (r) — ha(r)) - (5.5)

dr

We will be solving the de Donder gauge condition (2.4) in four dimensions (d = 3), five
dimensions (d = 4) and six dimensions (d = 5), using the post-Minkowskian expansion

f(?“) =1+ Z fn(r)p(n d)n (5'6)

n>1

with the condition at each order that

lim f,(r)/r" =0. (5.7)

r—+00
5.1 The metric in the de Donder gauge in four dimensions
The de Donder gauge condition (2.4) in d = 3 reads
d
4hao(r) = T (ho(r) 4+ h1(r) — ha(r)) , (5.8)
supplemented with the asymptotic boundary condition
Tlgrgo f(r)y=1. (5.9)

This differential equation implies either that f(r) = C/r, which does not satisfy the
boundary condition (5.9), or f(r) satisfies the differential equation, with z = Gym/r

of @) 2o - @) g + of ) (L)

dx? dx

df ()

=3 (F @) 8 (@) e+ (f @) — 4 f @)z +4a? =0,

(5.10)

+2f () (f(z) — 32)

We solve the equation (5.10) using a series expansion in G ym using (5.6) and the boundary
condition (5.7). The result to the order (Gym)7 is given by
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2 3
Fr) = 1+—GJ:m 12 (—G]Zm> —|—glog< rCs > (GNm>

3 Gnym r
2 4 rCs Gym\* 21 32 rCs Gym\°
Z_ 2 —— 4+ —1
+<3 3Og<GNm>>< r >+< 25+150g<GNm r
4 £—§1 7“03 GNm 6
75 15 S\ Gym r
50023 1139 rC3 2 rC3 \?\ [Gym\’ 5
1 = 0(G%). (5.11
+<34300+2205 Og(GNm>+7Og<GNm>>< r ) +O(Gy). (5:11)

This solution is finite and has log(r) terms from the order G%;. The solution has a single
constant of integration C3 associated with the scale of the logarithm.

5.1.1 The metric perturbation

In d = 3 we derive components of the metric in perturbation by plugging the expression
for f(r)in (5.11) in (5.4).
We obtain for the time component

2 3 4
hSD(r):l—QGNm—i-Q(GNm) +2<GNm> + (élog< rCs ) —6> <GNm>
r r r 3 Gym r
16 rCsy 10\ /Gym\® [124 rCsy 424\ (Gym\°
il | - 1 3 il
+< 30g<GNm>+3>< r >+<15 Og<GNm LT r
8 rCs \? 16 rCy 674\ (Gym\' <
— =1 —1 - — 12
+< 9 8 <GNm> TR <GNm> 75) < . ) OGN, (512
and for the spatial components

2 3
AP(r) =1 +2GNm +5 (GNm> + (é log( rCs ) +4> <GNm>

T T 3 Gnym T
4 rCsy 16\ /Gym\* /64 rCs 26\ /Gym\°
— 21 = =1 =
+<3Og<GNm>+3>< r >+<150g<GNm 75 r

4 rCs \? 24 rCs 298\ [/ Gnm\° ;
Z1 - = 1
* (9 8 <GNm> 5 08 <GNm> * 75) < ) OGN, (513)
and

Gym)\ 2 rC 38 Gym\® 8 rC 58 Gym\?
dD N 3 N 3 N
P == () (e (0) < ) (57) + (e () - 5) (557)
16 rCs 32\ /Gym\°®
3 Gnym 3 T
4 rCs \? 508 rCs 7378\ [ Gam\° .

Notice the appearance of the log(r)? at the sixth post-Minkowskian order, G?V, in the
spatial components of the metric. This is one order less than the appearance in the time
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component. The same phenomenon happens for the log(r) contribution which appears one
order earlier in the spatial component than in the time component.
5.2 The metric in the de Donder gauge in five dimensions

The de Donder gauge condition (2.4) in d = 4 reads
d
6ha(r) = T (ho(r) + 2h1(r) — ha(r)) , (5.15)

supplemented with the asymptotic boundary condition

lim f(r)=1. (5.16)

r—00

This differential equation implies either that f(r) = C/r, which does not satisfy
the boundary condition (5.16), or f(r) satisfies the differential equation, setting z =
Gym/(nr?)

2 x 2 x
ofe) (8- 317) L5 +sr)te? (U)o @) (r(e)? - 160) T

_4f (@) + (162 +2) f(2)* — %cf(x)? + 122””2 ~0. (5.17)

We solve the equation (5.17) using a series expansion in G ym using (5.6) and the boundary
condition (5.7). The result to the order (Gym)7 is given by

2Gym 10 r2Cy Gym 2y r2Cy Gym 3

)= 1+§ mr? —|—§10g <GNm> < mr? > 81 < 8 +45log (GNm>> ( mr? >
r2C 2

2) /Gum\* 32963 +15642010g (7 2) — 43200108 (52) /Gm®

( 2 > 21870 ( 7r? )

67+3m0bg(
972

+
r

_|_

409303 + 1620270 log (’“Cb )4_ 1087200 log <r cg Y
131220 2
2

11148022313 + 37508666370 log (T Cb) ——6436730160010g
2362944150

4939200000 r2CYy Gnm
— (0]
2362944150\ Gym

)
) AL (o)

2

> +O(GYy). (5.18)

72
Again there is a single constant of integration Cj arising as the scale of the log(r) arising

from the G%\, order.

5.2.1 The metric perturbation

In d = 4 we derive components of the metric in perturbation by plugging the expression
for f(r)in (5.18) in (5.4).
We obtain for the time component
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r2C
piP () = 1 SCGNm 32 (Gym 2+32<‘3+51°g<GN%)) Gym\®
0 N 3 7r2 9 2 27 mr2
640 (—2+910g (52)) /Gym\*
513 ( = > +O(GY), (5.19)

and for the spatial components

D) 1y LG <1+5log<’”02)> <GNm>2+<64—2401og<’“02)) <GNm>3

3 mr? + 9 w2 81 w2
* <323+234010g ( 22825+60010g ( Cﬁl)) (erquogn>4+0(0?v)7 (5.20)
and
D (1) — 40 <1 — QIC;g (5107721)) (iﬁ?)Q . 32 (—4—|— 521;)g (52]\?;721)) (C;*T];gn>3
8< 31 —12601og ( £52 ) + 3001 205 2>
+ 0g< 243> . Og( ) (ngﬂ;n>4+0(a?v). (5.21)

5.3 The metric in the de Donder gauge in six dimensions
The de Donder gauge condition (2.4) in d = 5 reads
d
8ha(r) = = (ho(r) 4+ 3hy(r) — ho(r)) , (5.22)
supplemented with the asymptotic boundary condition
Thl& f(ry=1. (5.23)

This differential equation implies either that f(r) = C/r, which does not satisfy the
boundary condition (5.23), or f(r) satisfies the differential equation with z = Gxm/(7r?)

2 T 2 "
of@) (60 - 47@P) L5 +osra? (G 4 g (G - 100) L

3
5 8 6 5 5, 92°
- gf(:v) + f(z)® + 4z f(x)’ — 3z f(x)” + o = 0. (5.24)
We solve the equation (5.24) using a series expansion in Gy using (5.6) and the boundary
condition (5.7). Asking for an expression with only integer powers of Gy, the result to the
order GJ7V is given by

fr) =14 Gy 5 (G P2 (Cym\® 705 (Gym\' | 545077 (Gym))’
- drr3 8\ 7rd 3\ 7rs 1344 \ 73 537600 \ 73

15194099 /Gym\°® 4421000509 /Gym
10483200 1878589440

>7 +0(G%). (5.25)

w3 w3

The expression is uniquely determined and finite.
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5.3.1 The metric perturbation

In d = 5 we derive components of the metric in perturbation by plugging the expression
for f(r)in (5.25) in (5.4).

We obtain for the metric components

3Gym 9 (Gym\? 27 /Gym\> 387 /Gym\*
dD N N N N 5
:1—7 — - e - aq
haP (1) 53 +8<777°3> 3 <W3> + 2 <W3> + O(Gy),

Gym 19 /Gym\2 49 [Gym\® 577 (Gym\*
dD . Nmo N it N . N 5
hS (r)_lurzw3 —16<W3> +48<W3> 1344<W3> +0(G%),

117 (Gym\?% 45 (Gym\® 1599 /Gym\*

dD N N N 5
ha (1) = 16 (W) _1_6< 3 ) ST <m~3 ) +O(GN). (5.26)

6 Recovering the Schwarzschild-Tangherlini metric from the amplitude
computations

In this section we show how the amplitude computations match the Schwarzschild-Tangherlini
metric in four, five and six dimensions in the de Donder gauge of the previous section.

6.1 The Schwarzschild metric in four dimensions
6.1.1 The first post-Minkowskian contribution O(Gy)

Setting d = 3 in the expressions for the metric perturbation from the tree-level amplitude
in (3.14) matches the de Donder gauge first post-Minkowskian order in four dimension

(d=3) in (5.12)-(5.14).

6.1.2 The second post-Minkowskian contribution O(G%)

At the order G?V, setting d = 3 in the metric perturbation from the one-loop amplitude
in (3.26) matches the metric in the de Donder gauge in four dimensions (d = 3) in (5.12)—
(5.14).

6.1.3 The third post-Minkowskian contributions O(G%,)

At this order the components of the metric in the de Donder gauge in four dimensions
(d = 3) from (5.12)—(5.14) match the metric components from the renormalised two-loop
amplitude computation in (4.34) for the value of the constant of integration

log C3 =log Cp — ; +6a)(3), (6.1)

where CF is given in (4.35).

With this identification we recover the results of [27] for the renormalisation of the
metric divergences and the coordinate change from the de Donder gauge to the harmonic
gauge from the world-line approach.

Substituting this value of C3 in the solution (5.11) completely determines the solution
to the de Donder gauge in four dimensions and the coordinate change in (5.11) to the
Schwarzschild metric in (5.3) in four dimensions. The parameter (! (3) is a free parameter,
which corresponds to the running coupling in [27].
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6.1.4 The fourth post-Minkowskian contribution O(G%)

At the fourth post-Minkowskian order, we get again a diverging metric from the amplitude
computation. This finite component metric in the de Donder gauge in four dimensions
(d = 3) in (5.12)—(5.14) using the value of the constant of integration C3 determined

4 rC Gym\*
_2“ (1) = E N
< 3 +8a'(3) + 3log <GNm>> ( . ) , (6.2)
4
dD(4) _ (W 4 rCg Gym
hy <1O 8a'"(3) 3 log <GNm . ,

86 8 rC Gym\*
_ob (1) s E N
a0+ o (22 )) (S’

This matches exactly the renormalised metric components from the three-loop amplitude
computation obtained in (4.39) with d = 3.

in (6.1) give

6.2 The Schwarzschild-Tangherlini metric in five dimensions
6.2.1 The first post-Minkowskian contribution O(Gy)

Setting d = 4 in the expressions for the metric perturbation from the tree-level amplitude
in (3.14) matches the de Donder gauge first post-Minkowskian order in five dimensions

(d = 4) in (5.19)-(5.21).

6.2.2 The second post-Minkowskian contribution O(G%)

The renormalised one-loop computation in (4.44) matches the expression at order O(G%)
from the de Donder gauge in (5.19)—(5.21) for the choice of the constant of integration

11 36
log Cy = 7= + 2log Cp + 7”&”(5) . (6.3)
Again there is a free parameter a(!)(5) which can be associated with a running coupling

constant.

6.2.3 The third post-Minkowskian contributions O(G%,)

At this order in perturbation, the two-loop amplitude computation had divergences that
had to be renormalized to give (4.49). This matches exactly the finite component metric
in the de Donder gauge in five dimensions (d = 4) in (5.19)—(5.21), using the value of the
constant of integration C determined in (6.3), given by

1 9 (1) 2,12 3
pIPG) _ 60( 4 30a (5)7T+10g <;CE>> <GNm> +0(d - 4), (6.4)

27 \ 15 5 Nm mr2
3
an) _ 80 (7 36a(5)r 2CEY (Gam B
T <15+ 5 e\ Gom a2 ) told-4),
3
an@) _ 160 (1 36a(5)w r’C% Gym B
hy ™ = 27( 55 tlelagm w2 ) Told-4).
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6.2.4 The fourth post-Minkowskian contribution O(G%)

The three-loop amplitude computation diverges and the finite metric component at the
fourth post-Minkowskian order was obtained after normalisation in (4.56). This matches
exactly, the finite component metric in the de Donder gauge in five dimensions (d = 4)
in (5.19)—(5.21), using the value of the constant of integration Cy determined in (6.3),
given by

2,12 4
P — 128 <23+324a(1)(5)77+45log (r CE>> (GNm> +0(d —4),

- 243 Gym w2
pAD@) _ <7085 + 69552maM (5) 4+ 93312(raM (5))2 10
4D —

) rC
1458 + %(161 + 4327a'V (5)) log <GNm>

100 r2C2\?\ [ Gym\*
+§log <GNm> < p— > +0(d—4),

ap() _ [ —19048 — 141696maV) (5)373248(wa V) (5))* 160 ) r2C%
hs, = < 59 + —243( 41 4 216mwa'™ (5)) log G
800 r2C2\?\ [ Gym\*

6.3 The Schwarzschild-Tangherlini metric in six dimensions

The metric components in six dimensions (d = 5) are finite. They are given up to the
order O(G%) in (5.26) and are reproduced by the sum of the contributions of the tree-
level amplitude in (3.14), one-loop amplitude in (3.26), two-loop amplitude in (3.44) and
three-loop amplitude in (3.54) and setting d = 5 in these expressions.

7 Discussion

General relativity can be considered in space-times of various dimensions. It is there-
fore important to validate our current understanding of the connection between scattering
amplitudes and classical general relativity in general dimensions [22, 23]

We have shown how to reconstruct the classical Schwarzschild-Tangherlini metric from
scattering amplitudes in four, five and six dimensions. We have extracted the classical
contribution as defined in [12] from the vertex function for the emission of a graviton from
a massive scalar field. For such a static metric, the classical contribution is obtained by
taking appropriate residues on the time components of the loop momenta. These residues
project the quantum scattering amplitude on contribution similar to the quantum tree
graphs considered in [7], by cutting the massive propagators.

The amplitudes develop ultraviolet divergences which are renormalised by introducing
higher-derivative non-minimal couplings in (4.2). The non-minimal coupling removes the
ultraviolet divergences in the stress-tensor and the metric components. For the static
solution the higher n > 2 non-minimal coupling only contribute from insertions in tree-level
graphs. Interestingly, in six dimensions the metric components are finite but the stress-
tensor has ultraviolet divergences. These divergences are removed by adding counter-terms
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from non-minimal couplings. These counter-terms do not induce any contribution to the
metric components. From the presence of ultraviolet poles in the master integrals J (7®)
in (2.31), we conclude that in all dimensions one needs to introduce an infinite set of
higher-derivative non-minimal operators for removing the ultraviolet divergences from the
scattering amplitude. These counter-terms do not affect the space-time geometry because
their effect is reabsorbed by the change of coordinate from the de Donder coordinate system
to the Schwarzschild-Tangherlini coordinate system.

The scattering amplitude approach presented in this work can be applied to any effec-
tive field theory of gravity coupled to matter fields. The amplitudes computations, being
performed in general dimensions, lead to results that have an analytic dependence on the
space-time dimensions. As black-hole solutions develop non trivial properties in general
dimensions [25, 26], it is interesting to apply the method of this paper to other black-hole
metrics. The Kerr-Newman and Reissner-Nordstrom metric in four dimensions have been
obtained in [9, 41-47] by considering tree-level and one-loop vertex function of the emis-
sion of the graviton from a massive particle of spin s. The higher order post-Minkowskian
contributions should be obtained from higher-loop amplitudes in a direct application of the
methods used in this work.
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A Fourier transforms

Here we collect the Fourier integrals used to calculate the long range corrections to the
energy momentum tensor and the metric.
The Fourier transform form momentum space to direct space

ad = [ Logaw g 1 T(%2) 2 e
Fod)= [ i Cr ~ (amd T(5) () (A1

Using that

8,:0

() = 2a(F2)* (5ij 42— 1)””%“’5]’ ) , (A.2)

we have that

4497 oz diq 1 a—dxx;
Fo(and) = _ Flad) [ s, + 22 ¢ . A.

We have in particular that

d -
F(0,d) =0,  Fy(0,d) = LQ)H <5ij —d J) . (A.4)
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B Vertices and Propagators

We will here list the Feynman rules which are employed in our calculation. For the deriva-
tion of these forms, see [3-5, 9, 48-50]. Our convention differs from these work by having
all incoming momenta. We have stripped off factors of iv/8mGpn from the vertices and
made them explicit in the amplitudes.
i
e The massive scalar propagator is

g? —m? +ie’

B
e The graviton propagator in de Donder gauge can be written in the form ! T
q° +ic
where P*#79 is defined by
1
pvpo _ Z | e vo o vp [V PO B.1
P 2<?777+77?7 D_27777> (B.1)
e The 2-scalar-1-graviton vertex 71" (p1,p2) is
1
T (p1,p2) = PiPs + PPy + 50“” (p1—p2)*. (B.2)

e The three-graviton vertex has been derived in [49], where k + ¢+ 7 = 0,

4 14 14 4 3 4
T8 mgs Ko d) = _<Paﬁ'y§ [k‘“k‘ +atnt +gtq” = o QQ}

+ 29)q0 [Iaﬁ”% Mop L MM = 1 L = L “"Iaﬁ”’\}

v v v A A
+ [qxq“ <77a61»y5 M0l A) +axg <77a617($“ + 16 ls" )
- ¢ (naﬁl,yg Wy w@;;“”) — 1" goqn <na51y5 A4 wIa[g“> ]
2 I )\UI v,__ I )\UI M,V I )\O'I l/k:ﬂ I )\UI Mkl/
+ (D\( af v T + af voo T + ¥0 afo + Yo afo )
v v v A A
+q (Iaﬁo”w 7+ Iys 01»@“) + 1" 4o g <Ia6 L5y + L pIaﬁpU> ]
o v g v 1 174
+ {(kﬁQ + 7T2) [’Paﬁ'u Pﬂ/é,a + Pﬁﬂg a ,Paﬁ,o' - 5"7“ (Paﬁ,yé - naﬁnﬂ/é)]

+ <Pv<5 Mg + Pog WWkQ) }> ’

(B.3)
where 1,565 := Pags+ % NapgTys- These vertices are equivalent to the ones computed
with the vertices given by De Witt [3-5] and Sannan [50]. We remark that the
expression for 73 is simpler than the three-graviton vertex in these references.

We notice that the three-graviton vertex satisfies the identity

Tl wporr L DPaGPTE = Tl 0l 0) (B.4)

that will be used to simplify the expression of the amplitude.

,39,



e The four-graviton vertex with ki + ko + k3 + k4 = 0 is given in [31, 50]

~pA 1 oT 1 o1.T
T&JMMOT¢H(k17k27k3ak4)::“gi(kl'kQUHVn 0P M) —-Ié(kl T 0" )

1 g T 1 ag T 1 T
- E(kl kgny npAnm) + ﬁ(kl : k277ﬂ 771/ 77p)\77m) + 1_6(k1 : an,uun 77{)77/)5)

g (RTRT ) + 2 (KT RSN ) — o (ko - ka7 Tnfny)
1 1
(ky « ko™ 07 M) + 7 (KT KT 0" ) + i k0" )

+

NN NN IS I NO ) NN I NOJ I I

1
5 TR0 ) — 5 (R a0 ) + 5 (KT RS0 ™00 )

1
1
+ S BT R™ 0" ) — 5 (k- b 0™ 7) — < (KT K0P nfe)

ag_ T (o T 1 g, T

— (K kan!ngn™) — (kS K] ntin™>) — 5(/<rflfzw7A nnY)

(ky ~ ko nlnft) — o (KTR{ ) — < (k- k™ n7)
1% 1 1% 1%

(kTR f) — 3 (R ke e ") — (KTRS ™0}/ y)

1
(kS k™ nnk) + 5("51 ko T PnMlt) + Symi(ka, ko, ks, ka)
(B.5)

_l’_

we introduce the short hand notation

e (k1, ko, ks, ky) == 71y,

af3 5 ~E
7(4) v8,07,10 (4) aﬁ,'y(s,en(kl’ k2’ k?” k4)73'y5 ,P;TPLGn : (BG)
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