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Abstract: We examine, in a quantum mechanical setting, the Hilbert space representation

of the BRST symmetry associated with Schwinger-Keldysh path integrals. This structure had

been postulated to encode important constraints on influence functionals in coarse-grained

systems with dissipation, or in open quantum systems. Operationally, this entails uplifting the

standard Schwinger-Keldysh two-copy formalism into superspace by appending BRST ghost

degrees of freedom. These statements were previously argued at the level of the correlation

functions. We provide herein a complementary perspective by working out the Hilbert space

structure explicitly. Our analysis clarifies two crucial issues not evident in earlier works:

firstly, certain background ghost insertions necessary to reproduce the correct Schwinger-

Keldysh correlators arise naturally. Secondly, the Schwinger-Keldysh difference operators are

systematically dressed by the ghost bilinears, which turn out to be necessary to give rise to

a consistent operator algebra. We also elaborate on the structure of the final state (which is

BRST closed) and the future boundary condition of the ghost fields.
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1 Introduction

The Schwinger-Keldysh formalism [1–3] allows one to compute real-time observables in either

closed or open quantum systems prepared initially in a (w.l.o.g) mixed state. The basic idea

behind the construction involves working with either a complex time contour that doubles

back onto the starting configuration, or equivalently working with a double copy of the original

system. The rationale for the doubling can be ascribed to the entanglement inherent in the

initial state as is clear from the explicit path integral arguments of [3]. The formalism is well

developed and has been applied to many interesting physical systems over the years; see e.g.,

[4] for a comprehensive review.

One central question that has remained unclear in the formalism is the nature of interac-

tions between the two copies of the doubled system. These contributions, which were called

influence functionals in [3], should obey some constraints reflecting the underlying quantum

evolution. For closed quantum systems the constraints would encode microscopic unitarity,

while for open quantum systems these would arise from evolution engendered by completely

positive trace preserving quantum operations. In particular, such constraints on influence
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functionals are imperative if we are interested in integrating out a subset of degrees of free-

dom in the Schwinger-Keldysh functional integral, as we would for instance in the context of

the renormalization group to extract the low energy effective dynamics.

Inspired by the structure of certain Ward identities that pertain for Schwinger-Keldysh

observables [4, 5], some of us argued in [6] that the Schwinger-Keldysh construction should be

interpreted not in terms of a two-copy system, but rather as a quadrupled system with a pair

of topological BRST/anti-BRST symmetries {Q
SK
,Q

SK
} acting naturally. The basic idea

was to append, to the doubled system, opposite Grassmann parity ghost systems. Should

the original quantum system consist of only bosonic degrees of freedom, one would add a

pair of Grassmann odd ghosts. Concurrently, [7] also argued for a BRST symmetry in the

Schwinger-Keldysh construction. In both cases the idea of introducing the BRST symme-

tries was to constrain the low-energy dynamics and obtain an effective action for non-linear

dissipative systems, specifically actions for relativistic hydrodynamics. Such actions were con-

structed independently in [7] and [8], which explicitly exploit this Schwinger-Keldysh BRST

(henceforth SK-BRST) symmetry (along with some additional structure arising from thermal

density matrices and the KMS condition).

The construction of [6] has been further elaborated upon in [9], where formal arguments

were given regarding the nature of the BRST symmetry and its action on the operator algebra

of the quantum system. It was argued there that the natural way to view the Schwinger-

Keldysh construction is in terms of a superspace with two Grassmann-odd directions (param-

eterized by say θ and θ̄). The BRST symmetries act as super-derivations on the extended

operator super-algebra, and it was also shown how to recover the Ward identities and fix the

correlators of ghost partners.

Likewise, [10] provide some additional discussion on the construction of [7] (they also

employ a superspace description similar to [9]). It is worth noting that while [6, 9] demand

a pair of BRST symmetries, the works of [7, 10] argue for a single BRST supercharge (at

least before introducing further constraints from thermality). We will here work with two

supercharges which are naturally CPT conjugates of each other and refer the reader to [11]

for comments on the relative similarities/differences of the two approaches.1 We also note

that the constraints on influence functionals obtained by explicit renormalization of an open

φ4 theory [13] are consistent with the Schwinger-Keldysh BRST charges posited in [6, 9].2

1 Much of the focus of [7, 10] lies only in the case of near-thermal density matrices, where one has to

additionally account for the KMS condition. Our present discussion is general and not restricted to thermal

states. For comments specific to thermal states please refer to [6, 9, 12] for additional embellishments on the

current discussion. It is also worth noting that the analysis of near-thermal systems in all these works requires

an embedding into a superspace with two-Grassmann odd directions, though the origins for this structure are

motivated very differently in [6] and [7].
2 To be clear, the discussion in [13] strictly speaking only requires that the renormalized open φ4 theory

admit an extension to include the aforementioned BRST structure. They show that the constraints they

derive from a standard Schwinger-Keldysh doubled formalism can be derived much more simply by positing

the action of BRST charges {Q
SK

,Q
SK

} that we espouse, together with a specific BRST allowed form of the

ghost action (and assuming further that the ghosts decouple in loops).
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The formal discussions of these earlier works leave several questions unanswered. To

enumerate a few salient ones:

• The SK-BRST symmetries {Q
SK
,Q

SK
} were posited to act canonically on the extended

operator super-algebra. In most quantum systems, we usually have a tendency to

differentiate between simple/fundamental fields, and composite operators built from

them, and it is unclear how the action of the SK-BRST charges on the former commutes

with the OPE structure. This observation is independent of the number of BRST

symmetries acting on the system and is equivalent to asking whether there is a Leibniz

rule for SK-BRST charges consistent with the OPE.

• In checking the Schwinger-Keldysh Ward identities, and constructing the partner ghost

correlators, [9] had to argue for a background ghost insertion to soak up putative zero

modes. Since the argument was at the operator level, a careful analysis of functional

integral for zero modes was not made, and whilst the story was shown to be consistent,

it was left unclear as to how these background ghosts arise.

• The analysis of [9] also presupposes the existence of a BRST closed final state; the

details of its exact structure and the future boundary condition on the ghost modes

were not fully explored.

The main aim of the current discussion is to try to clear up these loose ends and give a

clean description of the Schwinger-Keldysh formalism including these SK-BRST symmetries.

To illustrate various points without getting tangled up in details, we choose to work in the

context of single-particle quantum mechanics, and moreover use the harmonic oscillator as

our prime example to illustrate some important features of the construction. A clear advan-

tage is that the operator algebra is now spanned by finitely many generators, which are the

canonically conjugate variables of the system. Once we address the aforementioned questions

in this primitive setting, we should then be able to make a general argument which would

apply in other quantum systems (including QFTs).

We find that there is ample freedom in how one can embed the Schwinger-Keldysh doubled

formalism into an enlarged Hilbert space where our BRST symmetries act naturally. The

initial state of our quantum system as well as the future boundary condition of the Schwinger-

Keldysh construction are uplifted into this extended Hilbert space, albeit with some freedom.

Along with this uplift, we also demonstrate how to uplift the operator algebra in a fashion

consistent with the OPE structure. A novel feature of this discussion, which was not fully

appreciated in [9], is the fact that the difference operators of the Schwinger-Keldysh formalism

get dressed with BRST ghost bilinears to ensure that the OPE structure is sensible. We

furthermore find that the quantum mechanical problem singles out Weyl ordering of operators;

these are natural in the Schwinger-Keldysh construction owing to the fact that the temporal

ordering is reversed between the forward and backward legs of the timefold contour.

The outline of the paper is as follows: In §2 we give a quick synopsis of background

material relating to the Schwinger-Keldysh formalism and the BRST symmetries we need for
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the discussion. In §3 we then rephrase this discussion directly in terms of a Hilbert space

picture and outline the necessary conditions we must satisfy when we extend the structure to

include the BRST ghosts. In §4 we demonstrate how these constraints can be satisfied in the

simplest quantum mechanical setting: a quantum harmonic oscillator. Finally, we close in §5
with a discussion, indicating how the construction can be generalized to include interactions

and go beyond single-particle quantum mechanics, and lay out some other interesting open

questions.

2 BRST symmetry in Schwinger-Keldysh: A review

The Schwinger-Keldysh generating functional which computes real time correlation functions

in a specified (possibly mixed) initial state ρ̂initial, is

ZSK [JR,JL] = Tr
(
U [JR] ρ̂initial (U [JL])

†
)
. (2.1)

The basic idea behind this construction is that one wishes to be agnostic of the final state

system when acted upon with sources. To ensure that one can probe the system, correlation

functions are defined as matrix elements in the initial state, which requires that one evolves

the system, inserts various operators, and then evolves back to the initial state (the formalism

is hence sometimes referred to as the ‘in-in formalism’).

One common way to interpret the Schwinger-Keldysh path integral is to view the inte-

gration contour as extending into complex time, where the forward and backward legs have

infinitesimal separation in the imaginary direction. The forward evolving segment possesses

background fields JR while the backward evolving segment contains fields JL, corresponding

to evolution according to U [JR] and U [JL]
†, respectively. Alternately, we can consider the

forward and backward legs of the contour as independent evolutions and work with two copies

of the original quantum system (indexed now by R and L) with matching boundary condi-

tions at the turning point. From a calculational viewpoint the latter interpretation is often

convenient and thus one naturally ends up working with two copies of the original system. In

what follows, we will work with conventions of [9], where elements of the operator algebra of

the quantum system of interest will be denoted with a hat Ô, while the Schwinger-Keldysh

double-copy operators will be unhatted but subscripted, viz., OR and OL, respectively.

Since in the Schwinger-Keldysh construction we can insert operators on either the L

or R contours via functional differentiation, ZSK [JR,JL] gives us access to a larger number

of correlation functions than the standard single copy partition function [4], which generates

time ordered expectation values.3 This implies that there should be various relations between

the Schwinger-Keldysh contour correlators. These are captured by simple rules (cf., [5]):

3 The number of contour n-point correlators is 2n, while there are only 2n−1 Schwinger-Keldysh ordered

correlators. The latter count follows from the number of time-orderings of n operators involving Heisenberg

evolution with exactly one forward and one backward contour, a.k.a. 1-timefold or 1-OTO. See [14] for further

details.
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• Any correlation function of an arbitrary number of difference operators, Odif ≡ OR−OL,

vanishes independent of the location of the insertions.

• Correlators with a difference operator as the futuremost insertion vanish, i.e., the largest

time equation holds,

〈
T
SK

Odif (t)
∏

i

Oi(ti)

〉
= 0 , (2.2)

if t > ti for all i.

The first rule is of course a special case of the second. These relations can be inferred directly

from (2.1) by noting that the Schwinger-Keldysh path integral involves the source deformed

action

SSK = S[ΦR]− S[ΦL] +

ˆ

ddx (JR OR − JL OL) . (2.3)

By a basis rotation Oav = 1
2
(OR +OL), the Lorentz signature source-operator coupling can be

put in light-cone form: Jdif Oav +Jav Odif . Since the average sources couple to the difference

operators, setting JL = JR in (2.1) suffices to generate difference operator insertions. At the

same time, by unitarity of the evolution operator, the generating functional (2.1) collapses

into the trace over the initial state

ZSK [J ,J ] = 1 . (2.4)

The vanishing of difference operator correlators, tantamount to a statement of unitarity,

should be encapsulated as a general principle of the Schwinger-Keldysh construction. It was

therefore posisted in [6] and elaborated upon further in [9] that a useful way of viewing

the Schwinger-Keldysh path integral is in terms of a quadrupled operator algebra with a

topological BRST symmetry. As mentioned in §1, related observations were also made in [7]

(see also [10]).

To wit, it was proposed that there are CPT-conjugate BRST charges Q
SK

and Q
SK

,

satisfying a superalgebra

{Q
SK
,Q

SK
} = {Q

SK
,Q

SK
} = {Q

SK
,Q

SK
} = 0, (2.5)

which are engineered such that the difference operators are BRST-descendants. That is,

∃ O
G
,O

G
: Odif = −

[
Q

SK
,O

G

]
±
=

[
Q

SK
,O

G

]
± . (2.6)

The nilpotency of Q
SK
,Q

SK
then implies that

[Q
SK
,Odif ]± =

[
Q

SK
,Odif

]
± = 0 . (2.7)
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The operators O
G
and O

G
carry opposite Grassmann statistics relative to the original operator

Ô and have equal and opposite (conserved) ghost number. The BRST structure can be

summarized by the (graded) commutation diagram

Oav

O
G

O
G

Odif

Q
SK Q

SK

Q
SK

−Q
SK

. (2.8)

In other words, the {Q
SK
,Q

SK
} action on the operator algebra is

[Q
SK
,Oav]± = O

G
, [Q

SK
,O

G
]± = 0,

[
Q

SK
,O

G

]
±
= −Odif , [Q

SK
,Odif ]± = 0 ,

[
Q

SK
,Oav

]
± = O

G
,

[
Q

SK
,O

G

]
±
= 0,

[
Q

SK
,O

G

]
± = Odif ,

[
Q

SK
,Odif

]
± = 0 .

(2.9)

These transformation rules can be efficiently summarized by introducing superspace, in

which operators are taken as functions of spacetime (just time in quantum mechanics) and

two Grassmann odd coordinates, θ and θ̄(= θ†), respectively. All operators in the theory get

uplifted to super-operators, and the multiplet (2.8) can be collected into a single superfield

O̊ = Oav + θ̄ O
G
+ θ O

G
+ θ̄θ Odif . (2.10)

In superspace, the Schwinger-Keldysh supercharges then act as super-derivations

Q
SK

∼ ∂θ̄ , Q
SK

∼ ∂θ , (2.11)

which satisfy the algebra (2.5). More generally, our notation follows conventions used in [9].

In particular, we use
∣∣ to denote the projection to the bottom component and abbreviate the

average and difference operators as O ≡ Oav, Õ ≡ Odif . That is,

O̊
∣∣ ≡ O̊

∣∣
θ=θ̄=0

, so that O̊
∣∣ = Oav = O , ∂θ∂θ̄O̊

∣∣ = Odif = Õ . (2.12)

3 Schwinger-Keldysh in Hilbert space

The preceding discussion introduced the Schwinger-Keldysh partition function in its familiar

setting of the functional integral, which is usually the most practical for computational pur-

poses. However, the entire construction reviewed in §2 can be formulated directly on Hilbert

space. We will be working in the canonical formulation since it makes operator ordering is-

sues more explicit and sheds light on the superspace structure. The remainder of the paper is

focused on developing this approach. At the end of the day we will end up with an extended

Hilbert space including ghosts, on which we have an explicit action of Q
SK

and Q
SK

as linear

operators.

We begin by rephrasing the two-copy interpretation of the Schwinger-Keldysh contour in

a Hilbert space picture in §3.1. We will then describe how to extend this to a supersymmetric

description in §3.2.
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3.1 States in the doubled Hilbert space

We begin with the Schwinger-Keldysh partition function, written explicitly as a trace over a

Hilbert space H with basis | i〉

ZSK [JR,JL] = Tr
(
U [JR] ρ̂initial U [JL]

†
)

=
∑

i,jk

ρjk〈i | UR |j〉 〈k | U †
L | i〉 , (3.1)

where we have abbreviated U [JR,L] ≡ UR,L.

The system has been prepared in a possibly mixed initial state

ρ̂initial =
∑

jk

ρjk |j〉〈k | , (3.2)

which is itself a state in the tensor product H⊗H∗. We will think of this as a pure state in

the doubled Hilbert space using the Choi isomorphism.4 Denote

| i〉〈j | 7−→ || ij〉〉 (3.3)

These states form a basis for H⊗H∗.5 The system thus begins in the state

ρ̂initial 7−→ ||ρ
SK

〉〉 =
∑

jk

ρjk ||j k〉〉. (3.4)

Similarly, the trace is represented by the (un-normalized) maximally entangled state inH⊗H∗

||f
SK

〉〉 =
∑

i

|| i i〉〉 . (3.5)

We can then re-write the Schwinger-Keldysh generating functional as a matrix element

∑

i,jk

ρjk 〈i | UR |j〉 〈k | U †
L | i〉 = 〈〈f

SK
|| U

SK
||ρ

SK
〉〉 , (3.6)

where we we have denoted the Schwinger-Keldysh propagator as

USK = U [JR]U [JL]
† = e−iHSK t, HSK ≡ HR −HL = Ĥ ⊗ 1 − 1 ⊗ Ĥ. (3.7)

4 The Choi isomorphism, or what sometimes is referred to as the channel-state duality, or the Jamiolkowski-

Choi isomorphism, is formally the statement that the any quantum channel can be equivalently represented

as a state in a bipartite Hilbert space. While the idea is usually applied to quantum gates implementing

operations, since the density matrix is also an operator acting on the Hilbert space we find it natural to extend

the terminology to apply to mixed states. We should also note that there are some operational distinctions,

involving conjugations, etc., in the way various of these maps are defined on quantum operations; see [15] for

an overview of the literature.
5 For the sake of clarity, it is helpful to indicate the Hilbert space index explicitly at the outset – i.e.,

| iR〉〈jL | and || iR jL〉〉, respectively. We refrain from using the labels in the text to avoid clutter; the HR states

precede those of HL states in both the bra and the ket of HR ⊗H∗
L.
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All told,

ZSK [JR,JL] =
∑

〈〈f
SK

|| U
SK

||ρ
SK

〉〉 . (3.8)

This is a trivial rewriting of (3.1). Conceptually, however, one imagines starting from the

initial state, ρ̂initial, evolving the kets forward, the bras backward, and subsequently evaluating

the overlap with the (unnormalized) maximally entangled state.

Operators inserted on the right and left contours of the Schwinger-Keldysh path integral

then enter the canonical formalism as acting on kets or bras respectively. Hence we denote

AR = Â ⊗ 1, AL = 1 ⊗ Â. (3.9)

Here Â is a given operator on H and AR, AL are operators on H⊗H∗. We will always denote

operators acting on H with a hat, and index operators with R, L subscripts to indicate

whether they act from the right or the left on the density matrix in (3.1).

While seemingly trivial, there are some subtle issues with regards to operator ordering

once we adopt this Choi map. Operators on the first and second Hilbert spaces in H ⊗ H∗

act as

ARBL | i〉〈j |= Â | i〉〈j | B̂ 7−→ AR BL || ij〉〉 = Â ⊗ B̂ || ij〉〉 . (3.10)

Since L operators act on bras on the right, after the Choi map, the algebra induced on

operators on H ⊗ H∗ is somewhat non-intuitive: products of operators on H∗ are reversed.

That is,

| i〉〈j | ÂB̂ 7−→ (1̂ ⊗ B̂)(1̂ ⊗ Â) || ij〉〉 = BL AL || ij〉〉. (3.11)

More succinctly,

BLAL = (AB)
L
. (3.12)

In general, given a string of R operators, the analogous string of L operators involves an order

reversal.

3.2 Superspace uplift and constraints

While this is the story for the standard Schwinger-Keldysh contour, we would like to ask

whether we can extend this construction to an enlarged Hilbert space that will allow us to

identify the ghost operators and topological symmetries. There are two independent sets of

requirements for such an embedding. One involves constructing suitable states to represent

the system in the extended Hilbert space. The other involves working out the correct multiplet

structure of the super-operators (particularly for composite operators). It was assumed in [9]

that both of these could be done. This turns out to be true, but there are some important

subtleties in the construction that become obvious in the Hilbert space picture and that we

will try to flesh out here. In this section we will discuss the embedding in the extended Hilbert

space. We turn to the more subtle issue of the supermultiplet structure in §4.2.
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States in the extended Hilbert space: In [9], the idea was to extend the operator

algebra to a superalgebra by introducing opposite Grassmann parity ghost operators into the

path integral. In the Hilbert space picture, this amounts to extending the Hilbert space

H⊗H∗ → H⊗H∗ ⊗Hghosts , Hghosts ≡ H
G
⊗H

Ḡ
. (3.13)

The initial and final states need to be specified in the enlarged Hilbert space. We denote

these as || f̊〉〉 and || ρ̊〉〉, which extend (3.4) and (3.5) into the quadrupled Hilbert space

|| ρ̊〉〉 = ρijαβ || i j α β〉〉,
|| f̊〉〉 = fijαβ || i j α β〉〉.

(3.14)

We demand that super-extension satisfies the following requirements:

1. || f̊〉〉 is annihilated by Q
SK

and Q
SK

.

2. || f̊〉〉 is a zero-energy eigenstate of the (extended) Hamiltonian H.

3. || ρ̊〉〉 and || f̊〉〉 are selected so that correlation functions without ghost insertions reduce

to those computed using the original generating functional (3.8). This translates to the

condition

〈〈f̊ || O ⊗ 1ghosts || ρ̊〉〉 = 〈〈fSK || O ||ρSK〉〉 (3.15)

for any operator O on the doubled Hilbert space H⊗H∗. For instance, 〈〈f̊ || ρ̊〉〉 = 1.

Note that it is by no means obvious that these conditions can be satisfied. Demonstrating

their consistency is the main goal of this paper.

Of the above, condition 3 is most intuitive, since in the absence of ghost insertions the

correlation functions should reduce to the ones computed in the doubled theory. Condition 1

is imposed so as to not break supersymmetry by our selection of the final state. In particular,

we would like the largest time equation to arise from the Q
SK

and Q
SK

exactness of difference

operators. Condition 2 constrains the final state so that the partition function on the now

extended Hilbert space localizes after the future-most operator insertion. It is equivalent to

requiring that 〈〈f̊ || U(t)(· · · ) || ρ̊〉〉 is bereft of any phase factors coming from unitary evolution.

The dynamics in the extended Hilbert space is dictated by the Hamiltonian

H = HSK ⊗ 1ghosts +Hghosts, U(t) = e−iH t, (3.16)

acting on the enlarged Hilbert space. Our aim is to keep this extension compatible with the

supersymmetry so that

[Q
SK
,H] = [Q

SK
,H] = 0 (3.17)

when the sources are aligned JR = JL (which we are always implicitly assuming). As we shall

see Hghosts only has nontrivial action on the ghost Hilbert space for free theories, but will

contain a nontrivial bosonic part in interacting theories.
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Should such a super-extension exist, one can directly calculate all correlation functions,

including those of the ghost partners O
G
and O

G
. In [9] it was argued that one needs to admit

a background ghost dressing into the correlation functions for these to be consistent. This

was necessary to ensure no violations of the largest time equation. Clearly, with an explicit

Hilbert space realization of the ghosts and supercharges at hand, we should be able to clarify

the origin of the background ghosts. In §4.4 we find that they are simply the images of the

initial state under Q
SK

and Q
SK

. That is, they are ghost partners of the density matrix itself

Q
SK

|| ρ̊〉〉, Q
SK

|| ρ̊〉〉. (3.18)

Finally, now that we have discussed how to incorporate ghosts in the canonical formu-

lation of quantum mechanics, let’s take a moment to pause and discuss our motivations.

One might ask why we are adding ghosts, since the original theory does not possess them.

In [9] it was argued that ghosts arise by gauge fixing a field reparameterization symmetry.

Here we remain agnostic on how ghosts arise in practice, but merely assume they arise in

some formulation, in the hope that this will make the symmetries of the Schwinger-Keldysh

partition function manifest. However this happens, the theory will then contain the original

physical degrees of freedom plus ghosts, and the reader may take that as our starting point.

For a system as simple as the quantum harmonic oscillator, we don’t anticipate that this will

teach us anything new about the system itself; our goal in this paper is rather to examine the

consequences of these ghosts in detail in a setting where the proposal can be made precise. It

should be clear from the standard mode decomposition of operators in quantum field theory

that a consistent formalism for the quantum harmonic oscillator goes a long way towards

applying the same techniques to interacting theories (see §5.1).

Super-operators and the OPE: Implicit in the above is the idea that we take every

element of the operator algebra and convert it into an element of the operator super-algebra.

While this appears to be reasonable, the operator algebra is required to be associative under

the OPE, and one should ask how the Q
SK

, Q
SK

action distributes across the OPE. This

becomes an issue, as we shall later see, in quantum systems where the algebra is built from

a fundamental set of operators (which could for example be simply the creation/annihilation

operators for a fundamental field), and for composite operators more generally.

Let us first give an abstract description of the task at hand. Given two operators in the

single-copy theory Â, B̂, we would construct composite operators : ÂB :k by using the OPE

to normal order terms. In the doubled Schwinger-Keldysh formalism, this picture continues

to hold in the L and R segments independently. As such, we would then naively want to

associate new super-partners to these composite operators by invoking the action of the SK-

BRST charges. To wit, if we assume the super-structure for A,B is given by the action in

(2.8), we hope that we can then compute the Q
SK
,Q

SK
action on composites. Naively we

would be tempted to write:

[Q
SK
, : AB :R]±

?
= [Q

SK
,AR]± BR + AR [Q

SK
,BR]±

: AB :
G

?
= : A

G
BR + ARB

G
:

(3.19)
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and equivalently for the L-operators. We have made implicit some difficulties in implementing

this in explicit examples with the question mark. This is the second issue we have to address

to give a prescription for the super-extension of the Schwinger-Keldysh formalism.

Without further ado, we now turn to tackle these questions in the setting of single-particle

quantum mechanics.

4 Quantum harmonic oscillator

We first explore the questions raised in §3.2 by considering a free quantum theory, and add

interactions. Since nothing comes simpler than a harmonic oscillator we begin our discussion

in this context. This already turns out to involve all the complications that need to be

overcome, so there is no reason to consider a more complicated theory at this point.

The standard harmonic oscillator action can be easily adapted to the Schwinger-Keldysh

functional integral, by considering the action (with sources switched off):

SSK =
1

2

ˆ

dt
(
mẋ2R −mω2x2R −mẋ2L +mω2x2L

)
. (4.1)

We work in units where m = ω = ~ = 1 for simplicity.

Since the theory is given in terms of a fundamental field x, it is easy to check that the

natural action of the SK-BRST charges takes the form

[Q
SK
, xR,L]± = ψ ,

[
Q

SK
, xR,L

]
± = ψ,

[
Q

SK
, ψ

]
± = xR − xL ,

[
Q

SK
, ψ

]
± = −(xR − xL) . (4.2)

Consequently, including the ghost sector, we have the explicit BRST invariant action

S =
1

2

ˆ

dt
(
ẋ2R − x2R − ẋ2L + x2L + 2 ψ̇ψ̇ − 2ψψ

)
. (4.3)

Passing to quantum mechanics, x 7→ X̂, ẋ 7→ P̂, ψ 7→ Ψ, ψ̇ 7→ P
Ψ
the Hamiltonian is

H =
1

2

(
P 2

R +X2
R − P 2

L −X2
L

)
+ PΨ PΨ

+ΨΨ, (4.4)

with canonical commutation relations

[XR, PR] = i , [XL, PL] = −i , {Ψ, PΨ} = i , {Ψ, P
Ψ
} = −i . (4.5)

Recall that XR = X̂ ⊗ 1, PR = P̂ ⊗ 1, and XL = 1 ⊗ X̂, PL = 1 ⊗ P̂. The above is then

consistent with [X̂, P̂] = i.

The action of the supercharges {Q
SK
,Q

SK
} given in (4.2), suitably uplifted to the oper-

ator algebra, can then be implemented as follows
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XR,L

Ψ Ψ

XR −XL

Q
SK Q

SK

Q
SK

−Q
SK

PR,L

P
Ψ

PΨ

PR − PL

Q
SK Q

SK

Q
SK

−Q
SK

. (4.6)

This can be achieved by writing down an explicit operator representation for the super-

charges

Q
SK

= i (PR − PL)Ψ− i (XR −XL)PΨ
,

Q
SK

= i (PR − PL)Ψ− i (XR −XL)PΨ ,
(4.7)

which act on the operator algebra by graded commutators. These charges satisfy a Hermiticity

condition: Q†
SK

= Q
SK

, where we also take Ψ = −Ψ†.

It is helpful at this stage to introduce superspace, in which the supercharges {Q
SK
,Q

SK
}

act as super-derivations {Q
SK

∼ ∂θ̄, Q
SK

∼ ∂θ}. Following [9] we pick Grassmann odd

coordinates θ and θ̄ with non-zero ghost number (normalized such that gh(θ) = +1 and

gh(θ̄) = −1). The charge assignment is consistent with the Hermiticity condition: θ† = θ̄.

One can then upgrade the operators to super-operators O 7→ O̊, e.g.,

X̊ =
1

2
(XR +XL) + θΨ+ θ̄Ψ+ θ̄θ (XR −XL) ,

P̊ =
1

2
(PR + PL) + θ PΨ + θ̄ P

Ψ
+ θ̄θ (PR − PL) .

(4.8)

We will often find it convenient to abbreviate the average and difference operators above as

X ≡ Xav =
1

2
(XR +XL) , X̃ ≡ Xdif = XR −XL . (4.9)

In particular, note that the X without a hat refers to the average Schwinger-Keldysh operator

in the doubled theory.

4.1 Ladder super-operators and Hilbert space

The Hilbert space is constructed from the application of creation/annihilation operators.

These naturally reside in super-operators

å = a+ θ̄ c+ θ b+ θ̄θ d ,

å† = a† − θ̄ b† − θ c† + θ̄θ d† ,
(4.10)

where a, d are complex Grassmann-even fields and b, c are Grassmann-odd fields with ghost

charge gh(b) = −1 and gh(c) = 1, respectively.6 Here we have passed to the average/difference

6 Note that the Grassmann statistics and Hermiticity conditions imply signs under conjugation, viz., (θ b)† =

b† θ† = b† θ̄ = −θ̄ b†. This is responsible for our anti-Hermiticity condition Ψ = −Ψ†
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basis, and the relation with the R/L operators is

a ≡ 1

2
(aR + aL) , d ≡ aR − aL . (4.11)

The position and momentum super-operators are related to these as usual

X̊ =
1√
2

(
å+ å†

)
, P̊ =

i√
2

(
å† − å

)
. (4.12)

For reference, this is equivalent to

XR =
1√
2

(
a
†
R + aR

)
, PR =

i√
2

(
a
†
R − aR

)
,

XR =
1√
2

(
a
†
L + aL

)
, PR =

i√
2

(
a
†
L − aL

)
,

Ψ =
1√
2

(
c− b†

)
, PΨ = − i√

2

(
c† + b

)
,

Ψ̄ = − 1√
2

(
c† − b

)
, PΨ̄ = − i√

2

(
c+ b†

)
. (4.13)

The commutation relations follow from (4.5):

[aR, a
†
R] = 1 , [aL, a

†
L] = −1 , {b, b†} = 1 , {c, c†} = −1 (4.14)

As indicated earlier, the supercharges act as derivations, leading to the following action

on the creation/annihilation operators:

[Q
SK
, a] = c , {Q

SK
, b} = −d , [Q

SK
, a†] = −b† , {Q

SK
, c†} = d† ,

[Q
SK
, a] = b {Q

SK
, c} = d , [Q

SK
, a†] = −c† , {Q

SK
, b†} = −d† . (4.15)

One can also check that the Hamiltonian for the system (after applying the Choi map) is

given in terms of these creation/annihilation operators as

H = a
†
R aR − a

†
L aL + b† b+ c c† , (4.16)

while the supercharges themselves can be expressed as

Q
SK

= − (aR − aL) b
† −

(
a
†
R − a

†
L

)
c ,

Q
SK

= − (aR − aL) c
† −

(
a
†
R − a

†
L

)
b .

(4.17)

The system has two U(1) charges. Firstly there is a global symmetry under which

aR, aL, b, c are charge +1, while their conjugates a†R, a
†
L, b

†, c† carry charge −1. There is also

an U(1)R symmetry under which aR, aL and their conjugates are neutral while gh(c, b†) =

1, gh(b, c†) = −1.
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The total Hilbert space of the system is the tensor product of the two oscillators (R and

L) and a two-state system for the SK-BRST ghosts. Note that the L oscillators are inverted,

so aL should be treated as a creation operator, while a†L is the annihilation operator, which

is clear from (4.14). We find it convenient to pick the following basis: for HR,HL choose the

usual number operator basis

aR |mR〉 =
√
mR |mR − 1〉 , a

†
R |mR〉 =

√
mR + 1 |mR + 1〉 ,

a
†
L |nL〉 =

√
nL |nL − 1〉 , aL |nL〉 =

√
nL + 1 |nL + 1〉 .

(4.18)

This can also be derived from aR = a ⊗ 1, aL = 1 ⊗ a and the reversal of operator orderings

that occurs in the second factor of the tensor product. For the b and c oscillators, select a

ground state |00〉 annihilated by both, b |00〉 = c |00〉 = 0. The ghost Hilbert space is then

spanned by |00〉 and

|10〉 ≡ b† |00〉 ,
|01〉 ≡ c† |00〉 ,
|11〉 ≡ b†c† |00〉 .

(4.19)

One can furthermore check that for α = 0, 1

b |0α〉 = b† |1α〉 = 0 , c |α0〉 = c† |α1〉 = 0 , (4.20)

b† |0α〉 = |1α〉 , b |1α〉 = |0α〉 , (4.21)

c† |α0〉 = (−1)α |α1〉 , c |α1〉 = (−1)α+1 |α0〉 . (4.22)

The inner product on the ghost Hilbert space may be found in Appendix A. Therefore the

total Hilbert space after applying the Choi map can be decomposed as

H = HR ⊗H∗
L ⊗Hb ⊗Hc

= span

{
|| ijαβ〉〉 ≡ |i〉R ⊗ |j〉L ⊗ |α〉b ⊗ |β〉c

∣∣∣∣ i, j ∈ Z+ , α, β ∈ {0, 1}
}
.

(4.23)

Dynamics on this Hilbert space is dictated by the Hamiltonian (4.16) which acts as

H || ijαβ〉〉 = (i− j + α+ β − 1) || ijαβ〉〉 . (4.24)

4.2 Composite operators

Now that we have explicit expressions for the supercharges, we can ascertain how they act

on composite operators. One might a-priori be tempted to posit that an operator of the form

Xn
R −Xn

L should be the top component of a superfield since it is a difference operator. It is

however easy to check that these are not Q
SK
,Q

SK
closed:

[Q
SK
, Xn

R −Xn
L ] = n

(
Xn−1

R −Xn−1
L

)
Ψ ,

[Q
SK
, Xn

R −Xn
L ] = n

(
Xn−1

R −Xn−1
L

)
Ψ .

(4.25)
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Our plan is to remedy this by adding a suitable ghost-dressing, that is, we need keep track

of ghost contributions to difference operators not considered in [9]. However, this dressing

should be incorporated without affecting physical correlators.

The simplest way to proceed is to pass to superspace and construct super-operators

satisfying certain requirements. It will be useful to introduce for any super-operator O̊ a

deformation parameterized by a number ζ ∈ [−1, 1], which shifts the bottom component by

an amount proportional to the top component. Let

O̊ζ = O̊ +
ζ

2
∂θ∂θ̄O̊ = O̊ +

ζ

2
Õ (4.26)

so that O̊ζ=1

∣∣ = OR and O̊ζ=−1

∣∣ = OL.

Given the many composite operators in the theory, one can in principle construct many

different super-multiplets. Let us enumerate a few salient multiplets in the extended operator

super-algebra that will turn out to be sufficient for a comprehensive understanding of the

structures of correlators.

1. The product multiplet: This multiplet is simplest to construct. Simply take suit-

able products of fundamental superfields. Starting with the position and momentum super-

operators we could for example write:

Π̊m,n ≡ X̊mP̊n ≡
(
X + θΨ+ θ̄Ψ+ θ̄θ X̃

)m (
P + θ PΨ + θ̄ P

Ψ
+ θ̄θ P̃

)n

. (4.27)

While simple, product multiplets will not play much of a role in our discussion.

2. The difference multiplet: This is the multiplet we seek. Our plan is to engineer the

top component to be a difference operator modulo additional ghost terms. Before doing so,

we have to face up to the operator ordering issue seriously, since the sequence of operators

on the left have to be reversed.

Given a composite operator X̂mP̂n in the single-copy description, the corresponding dif-

ference operator is actually Xm
R Pn

R −Pn
L X

m
L . We can choose to normal order any (post-Choi)

operator as Xp
R P

q
R P

r
L X

s
L thus keeping track of the reversal explicitly. In principle, there is

a straightforward algorithmic way of constructing the requisite ghost corrections to these

difference operators; however, we found it cumbersome to implement generally.7

7 For instance, to construct the difference operator with Grassmann even part being Xm
R Pn

R − Pn
L Xm

L ,

we write down operators Sm,n =
∑

p,q,r,s
cm,n
pqrs X

p
R P

q
R P r

L Xs
L and determine the coefficients cm,n

pqrs such that

{Q
SK

, [Q
SK

, Sm,n]} = Xm
R Pn

R −Pn
L Xm

R +ghosts. While we were able is write recursion relations that generate

the required solution, the general structure was not immediately transparent. We therefore focus primarily on

Weyl ordered operators which we think are more natural both from the perspective of the Choi isomorphism

and the Schwinger-Keldysh operator algebra. If desired, once the Weyl ordered composite operators are

determined, the canonical commutation relations may be employed to infer the super-operator structure for

the normal ordered ones. We have checked that this agrees with the aforementioned analysis for small values

of m,n.
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One way to circumvent the issue is by switching to a Weyl ordered basis. We will denote

the Weyl ordering of an operator Â built from X̂’s and P̂’s as : Â :
W
. For instance,

: X̂ P̂
2 :

W
=

1

3

(
X̂ P̂

2 + P̂ X̂ P̂ + P̂
2
X̂

)
. (4.28)

Similar statements hold for the double copy operators. Since Weyl ordered operators are

palindromic in the basic operator alphabet (e.g., X̂ and P̂ for the harmonic oscillator), we

have complete symmetry between the L and R. This choice then renders operator ordering

concerns moot. Given its simplicity we adapt it in what follows. Note that in the functional

integral the Weyl ordering of operators is achieved by evaluating position dependent terms

at the mid-point in the usual discretization procedure (see eg., the discussion in [16]).

We construct the general Weyl ordered difference operator as the top component of the

super-operator built from an integral of powers of X̊ζ + α P̊ζ . The parameter α is a book-

keeping device used to pick out terms with a fixed number of momentum operators (i.e., it

allows us to discuss a one-parameter family of multiplets simultaneously). The expression

(X̊ζ + α P̊ζ)
k is a sum of Weyl ordered products : X̊k

ζ P̊
k−i
ζ :

W
with coefficient αi. Define the

difference multiplets as

D̊k =

ˆ 1

−1

dζ

2

(
X̊ζ + α P̊ζ

)k

= Dk + θ̄ kDk−1

(
Ψ+ αP

Ψ

)
+ θ kDk−1

(
Ψ+ αPΨ

)
+ θ̄θ D̃k

Dk ≡
ˆ 1

−1

dζ

2

(
X + αP +

ζ

2

(
X̃ + α P̃

))k

(4.29)

It is easy to see that the top component of this multiplet contains the difference operator we

seek

D̃k =

ˆ

dθ dθ̄ D̊k

=

ˆ 1

−1

dζ

2

k−1∑

m=0

(Xζ + αPζ)
m (X̃ + αP̃ ) (Xζ + αPζ)

k−1−m

+ k(k − 1)Dk−2

(
ΨΨ+ α

(
PΨΨ+ΨP

Ψ

)
+ α2 PΨ PΨ

)

= (XR + αPR)
k − (XL + αPL)

k

+ k(k − 1)Dk−2

(
ΨΨ+ α

(
PΨΨ+ΨP

Ψ

)
+ α2 PΨ PΨ

)
.

We have used the canonical commutation relations to bring the ghost contributions to a

canonical form although we could have left them in Weyl ordered form too (this is more

convenient for later computations).

The above formulas are convenient since they efficiently collect the components of a dif-

ference multiplet into a single superfield. However, they can be rather opaque. Equivalently,

one can show that the bottom component of the difference multiplet with m factors of X and
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n factors of P is (the binomial coefficient
(
m
n

)
picks a convenient normalization)

Dm,n =

(
m+ n

m

)
ˆ 1

−1

dζ

2
: Xm

ζ P
n
ζ :

W
. (4.30)

This can be lifted to a superfield D̊m,n. The ghost partners are then

[Q
SK
, Dm,n] = mDm−1,nΨ+ nDm,n−1 PΨ

,

[Q
SK
, Dm,n] = mDm−1,nΨ+ nDm,n−1 PΨ, (4.31)

while the top component is

{Q
SK
,[Q

SK
, Dm,n]} =

(
m+ n

m

)
(: Xm

R P
n
R :

W
− : Xm

L P
n
L :

W
)

+m (m− 1)Dm−2,nΨΨ+mnDm−1,n−1 (PΨΨ+ΨP
Ψ
+ n (n− 1)Dm,n−2 PΨPΨ

).

(4.32)

3. The average multiplet: This is the multiplet generated by the action of Q
SK
,Q

SK
on

average operators. Continuing to focus on Weyl ordered operators, we construct the average

super-operator8

Åk =
1

2

(
X̊ζ + α P̊ζ

)k
∣∣∣∣
ζ=1

+
1

2

(
X̊ζ + α P̊ζ

)k
∣∣∣∣
ζ=−1

= Ak + θ̄ kAk−1

(
Ψ+ αP

Ψ

)
+ θ kAk−1

(
Ψ+ αPΨ

)
+ θ̄ θ Ãk

Ak =
1

2

[
(XR + αPR)

k + (XL + αPL)
k
]

Ãk = kAk−1(X̃ + αP̃ ) + k(k − 1)Ak−2

(
ΨΨ+ α

(
PΨΨ+ΨP

Ψ

)
+ α2 PΨ PΨ

)
.

(4.33)

In components, the bottom component of an average multiplet with m factors of X and

n factors of P is

Am,n =
1

2

(
m+ n

m

)
(: Xm

R P
n
R :

W
+ : Xm

L P
n
L :

W
) . (4.34)

The ghost partners are

[Q
SK
, Am,n] = mAm−1,nΨ+ nAm,n−1 PΨ

,

[Q
SK
, Am,n] = mAm−1,nΨ+ nAm,n−1 PΨ, (4.35)

while the top component is

{Q
SK
,[Q

SK
, Am,n]} = mAm−1,n X̃ + nAm,n−1 P̃

+m(m− 1)Am−2,nΨΨ+mnAm−1,n−1 (PΨΨ+ΨP
Ψ
+ n(n− 1)Am,n−2PΨPΨ

).

(4.36)

8 For average operators it is easy enough to pass to the usual normal ordered basis, since the super-operator
1
2

(

X̊m
ζ=1 P̊

m
ζ=1 + P̊n

ζ=−1 X̊
m
ζ=−1

)

gives the correct Schwinger-Keldysh average for the composite operator X̂mP̂n

in the single-copy theory, i.e., the symmetrization and order reversal can be carried out explicitly by hand.
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There are various other multiplets we could construct, but the last two will play a starring

role in our discussion. It is instructive to note that not only are composite difference operators

dressed with the ghost-bilinears as in (4.30), but also that the average composite operator

and the difference composite operator belong to different multiplets. So when we compute

Schwinger-Keldysh Av-Dif correlators we should choose our super-operators accordingly.9

The ghost dressing comprises of three distinct combinations of bilinears

ΨΨ , PΨ PΨ
, PΨΨ+ΨP

Ψ
. (4.37)

The fourth ghost number zero combination PΨΨ−ΨP
Ψ
does not enter into any ghost dressing.

In itself this is an interesting statement, since a-priori it is not clear that the ghost dressings

do not mess up the argument about difference operator correlators vanishing. The fact the one

linear combination is unconstrained allows sufficient freedom to argue that the super-algebra

structure described in §2 works as advertised.

4.3 The super-embedding of states

We have now assembled the machinery to implement the discussion of §3.2. We would like to

construct a super-embedding of an arbitrary initial state ρ̂initial and find a final state satisfying

the Conditions 1-3 outlined therein. We cannot get by with any super-embedding because

as we have seen the operators (especially the difference operators) get dressed with ghost

corrections. We have to ensure that these dressings do not spoil the physical requirement that

we reproduce the Schwinger-Keldysh correlators, and work such that the ghosts decouple in

the appropriate observables (3.15).

To achieve this we would like to set correlation functions involving ghost corrections to

zero by suitably extending ||fSK〉〉 and ||ρSK〉〉 to states in the quadrupled Hilbert space || f̊〉〉
and || ρ̊SK〉〉. Passing into the creation/annihilation basis, the ghost corrections are

2ΨΨ(t) = −bb† + bc e2it + c†b† e−2it − c†c,

2PΨPΨ
(t) = −bb† − bc e2it − c†b† e−2it − c†c,

−i(PΨΨ+ΨP
Ψ
)(t) = c†b†e2it − bc e−2it,

(4.38)

where we are considering the Heisenberg operators in the extended Hilbert space O(t) =

U
†(t)OU(t).

Firstly, the general implementation of (3.14) in the present context is given by (with a

suitable normalization for the initial state)

|| f̊〉〉 =
∑

i,j,α,β

fijαβ || ijαβ〉〉, || ρ̊〉〉 =
∑

i,j,α,β

ρijαβ || ijαβ〉〉. (4.39)

9 The discussion in Section 9 of [9] ignores both these distinctions when deriving various constraints on

super-operator correlators. In our analysis below we will clarify some of the statements described therein.

Structurally nothing really changes, but one has to account carefully for the above mentioned differences.
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We need to choose the coefficients fmnij and ρmnij appropriately to ensure that we satisfy
Conditions 1-3 and in the process ensure that (4.38) are innocuous. The general solution to
our requirements is10

|| f̊〉〉 =
∑

i

(
f1,0 || ii10〉〉+ f0,1 || ii01〉〉+

(
fi,0,0 +

1√
i+ 1

)
|| i (i+ 1) 11〉〉+ fi,0,0 ||(i+ 1) i00〉〉

)
.

(4.40)

We however can get by without using all the freedom in the above solution. It suffices

to simply pick a state that is the ground state in the ghost Hilbert space. The basic solution

we will work with is simply

|| f̊〉〉 =
∑

i

|| ii10〉〉 , || ρ̊〉〉 =
∑

i,j

ρij || ij10〉〉 . (4.41)

This extension has the following properties:

• The ghost corrections (4.38) for one point functions vanish for all time:

〈ΨΨ(t)〉 = 〈PΨPΨ
(t)〉 = 〈(PΨΨ+ΨP

Ψ
)(t)〉 = 0 . (4.42)

The correlation functions above are the Schwinger-Keldysh observables, viz., 〈O1 · · · On〉 =
〈〈f̊ || O1 · · · On || ρ̊〉〉 = 〈〈f

SK
|| O1 · · · On ||ρ

SK
〉〉 for purely bosonic operators. Eq. (4.42)

ensures sure that 1-point functions of composite difference operators vanish, consistent

with the Schwinger-Keldysh theory.

• However, we can in fact make a much more powerful statement: The ghost corrections

annihilate the initial and final states!

〈〈f̊ || ΨΨ = 0 , ΨΨ || ρ̊〉〉 = 0 ,

〈〈f̊ || PΨPΨ
= 0 , PΨPΨ

|| ρ̊〉〉 = 0 ,

〈〈f̊ || (PΨΨ+ΨP
Ψ
) = 0 , (PΨΨ+ΨP

Ψ
) || ρ̊〉〉 = 0 . (4.43)

As a result we can always insert a ghost correction, making the difference operators

constructed in (4.29) Q
SK

and Q
SK

exact, without altering correlators computed from

the standard Schwinger-Keldysh construction. The only place where we have new be-

haviour is when we consider additional ghost operator insertions between the difference

operator and both the initial and final states.

10 One can check that the Conditions 2 for a final state || f̊〉〉 of the form given in Eq. (4.39) gives

fi,j,1,0 = δi,jfi,1,0 fi,j,0,1 = δi,jfi,0,1

fi,j,1,1 = δi+1,jfi,1,1 fi,j,0,0 = δi,j+1fj,0,0

and the Condition 3 gives

fi,0,1 = fi+1,0,1

√
i+ 1(fi,1,1 − fi,0,0) =

√
i(fi−1,1,1 − fi−1,0,0)

fi,1,0 = fi+1,1,0

√
i+ 1(fi,1,1 − fi,0,0) =

√
i(fi−1,1,1 − fi−1,0,0)

This is solved by fi,0,1 = f0,1, fi,0,1 = f1,0 and fi,1,1 = fi,0,0 +
1√
i+1

.
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• Importantly, correlation functions on the extended Hilbert space match those in the

physical theory. For any string of operators picked from {OR ,OL} we have

〈{OR,OL}〉 = 〈〈fSK || USK(T ) {OR,OL}USK(t) ||ρSK〉〉
= 〈〈f̊ || U(T ) ({OR,OL} ⊗ 1ghosts)U(t) || ρ̊〉〉 .

(4.44)

• While we have by construction ensured that the final state || f̊〉〉 is Q
SK

and Q
SK

closed,

the same is not true about the initial state || ρ̊〉〉. The background ghosts introduced

in [9] can be understood as the contributions obtained from Q
SK

|| ρ̊〉〉 and Q
SK

|| ρ̊〉〉,
respectively.

4.4 Superspace correlators

We are now in a position to revisit the superspace constraints on correlation functions de-

scribed in section 9 of [9]. We remind the reader that their discussion assumed the existence

of a suitable multiplet with bottom component being average and top component being a

difference operator, which is only true at the level of fundamental operators. Furthermore,

the underlying BRST supersymmetry relates correlators of objects within a single supermul-

tiplet. These BRST Ward identities were easiest to derive in superspace, since there they

follow from super-translation invariance.

The super-correlators of interest are generic n-point functions of super-operators with

suitable Schwinger-Keldysh ordering:

〈T̊SK O̊1 O̊2 · · · O̊n〉 ≡ 〈T̊SK
n∏

k=1

(
Ok + θk OḠ,k + θ̄k OG,k + θ̄k θk Õk

)
〉 . (4.45)

We have schematically indicated the structure of the super-operators in the definition above

(more on this below). Expanding the correlator in superspace will lead to various terms

involving the Grassmann coordinates θ̄i and θj . Imposing super-translation invariance in

these coordinates implies relations between these components of the correlator. A consistent

set of solutions to such relations was found in [9], only upon inserting into the correlation

function a background ghost operator,

O̊0 = 1 + θ0 ḡ0 + θ̄0 g0 + θ̄0θ0 d0 , (4.46)

whose elements were interpreted as zero modes. As presaged in §4.3 this background ghost

can be understood as arising from the super-embedding of the initial density matrix.

Non-vanishing correlators are those with vanishing ghost number, which provides a su-

perselection rule. Furthermore, since the relations alluded to above relate terms with equal

number of θ̄iθj pairs, we break up the super-correlation function into levels based on the num-

ber of these pairs. Following [9], the set of n-point correlation functions having nd pairs of

θ̄iθj , is said to be at level nd, and these are denoted as nLnd
. It was assumed that a correlator

of type nLnd
contains at most nd difference fields. In the present context, the more precise
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statement is that it nLnd
contains correlators with at most nd top component fields (which

need not be difference fields, depending on the supermultiplet used). We will continue to use

this nomenclature to refer to correlation functions with at most nd difference operators (and

any other operator as long as it is not Q
SK

and Q
SK

exact).

In [9] it was assumed that each super-operator has an average operator for the bottom

component and the difference operator for its top component. We have seen that this is true

only for the fundamental operators X̊ and P̊ , but not for composite operators built out of

these. In particular, we have to contend with two distinct multiplets D̊k and Åk introduced

in (4.29) and (4.33), respectively, if we wish to talk about Schwinger-Keldysh average and

difference operators. In addition, the top component of D̊k involves not just the difference

operator of interest, but also its ghost dressing.

To proceed let us record the schematic structure of our generic average and difference

multiplets visually. We have two different multiplets, and they are both involved when we de-

rive the selection rules arising from super-translational invariance. To facilitate the discussion

let us abstract the operators of interest as follows:

a

ga ḡa

ã+ agḡ

Q
SK Q

SK

Q
SK

−Q
SK

fd

gd ḡd

d+ dgḡ

Q
SK Q

SK

Q
SK

−Q
SK

. (4.47)

Each operator in these diagrams schematically stands for an infinite number of composite

operators that may occur in the average and difference multiplets. To be explicit, we can

take

a ∈ {Am,n} , fd ∈ {Dm,n} (4.48)

as defined in (4.34) and (4.30), respectively. The remaining fields in these diagrams are then

as in §4.2.
We would like to show the following: All correlation functions involving ghosts are de-

termined in terms of standard Schwinger-Keldysh correlators of a and d. Furthermore, these

are consistent with the largest time equation, which says that difference operators cannot be

future-most.

Demonstrating this in full generality would require us to consider all possible multiplets

(which may not be exhausted by the average and difference multiplets). We refrain from

this task, and simply give an abstract argument that it holds true: we have in previous

sections presented an explicit Hilbert space embedding. Any arbitrary correlation function

can be computed using the rules of the previous sections, which manifestly implement the

SK-BRST symmetries. Since super-translational invariance of super-correlators is equivalent

to the action of the SK-BRST charges, the statement above must hold.

While this abstract argument is sufficient, it is more instructive to give some examples.

To this end, we turn again to average and difference multiplets. Consider the super-correlation
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function

〈T̊SK O̊1 O̊2 · · · O̊n O̊0〉 ≡ 〈〈f̊ || O̊1 O̊2 · · · O̊n || ρ̊〉〉 . (4.49)

The argument is structurally the same as the one given in [9] with two main new ingredi-

ents: (i) the background ghost operator O̊0 is equivalent to a consistent superspace uplift of

ρ̂initial, and (ii) we will account for the structure of the average/difference composite operator

multiplets in (4.47).

One-point functions: The simplest analysis is for one-point functions (these were not

considered in [9]). One can either have an average or a difference multiplet and in either case

the bottom component can have a non-vanishing expectation value depending on the initial

state. The top components however would have to have vanishing expectation value; for the

difference supermultiplet this embodies the largest time equation. Let us see how this works

in turn, organizing the discussion by levels as described above.

1L0: The only correlators here are 〈a〉 or 〈fd〉 which are unconstrained since they do not

contain any ghosts.

1L1: These are correlators containing one difference operator. The largest time equation
demands that 〈d〉 = 0. However, we find that the top-component of the difference multiplet
for composite operators is not simply d but rather it gets dressed with ghost bilinears. Su-
perspace Ward identities only can demand that Q

SK
and Q

SK
exact operators have vanishing

correlators, so we are only free to conclude that 〈d+ dgḡ〉 = 0. We can draw two conclusions
from this. First, using the boundary conditions (4.43), we infer the largest time equation:

0 = 〈d+ dgḡ〉
= 〈d〉+ 〈〈f̊ || m (m− 1)Dm−2,n ΨΨ+mnDm−1,n−1 (PΨΨ+ΨP

Ψ
+ n (n− 1)Dm,n−2 PΨPΨ

) || ρ̊〉〉
(4.43)
= 〈d〉 .

(4.50)

for any value of k.

Second, we can extract the complete set of constraints on the ghost correlators at this

level. To this end, we start with

0 = 〈d+ dgḡ〉 = 〈〈f̊ || {Q
SK
, gd} || ρ̊〉〉 = −〈〈f̊ || {Q

SK
, ḡd} || ρ̊〉〉 . (4.51)

We can then use fact that the final state is annihilated by Q
SK

and Q
SK

to infer that

0 = 〈〈f̊ || gdQSK
|| ρ̊〉〉 = 〈〈f̊ || ḡdQSK

|| ρ̊〉〉
=⇒ 0 = 〈gd ḡ0〉 = 〈ḡd g0〉

(4.52)

where in the last step we identify

Q
SK

|| ρ̊〉〉 = ḡ0 || ρ̊〉〉 , Q
SK

|| ρ̊〉〉 = g0 || ρ̊〉〉 . (4.53)
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We now see explicitly that the ghost zero modes of [9] are simply insertions of the Schwinger-

Keldysh supercharges themselves.11

Two-point functions: Let us look at two point functions where the operators are inserted

at times t and t′ respectively, and we suppose for definiteness that t′ > t.

2L0: This set contains correlators of the form 〈a(t′) a(t)〉 or other bottom components. These

correlation functions do neither involve any difference operators nor ghosts and consequently

there is nothing to be constrained.

2L1: At level one we have the insertion of a single difference operator. This can either be

at t′ or at t, and we treat these in turn (thus being explicit about the Schwinger-Keldysh

time-ordering).

Let us first examine correlators with the difference operator at the largest time t′. By

commuting the supercharges across the operator insertions (which is equivalent to imposing

super-translational invariance) we find:

〈(d′ + d′gḡ) a〉 = 〈{Q
SK
, g′d}a〉 = 〈g′dQSK

a〉 = 〈g′d
(
[Q

SK
, a] + aQ

SK

)
〉

= 〈g′dḡa〉+ 〈g′d a ḡ0〉 = 〈〈f̊ || g′d ḡa + g′d aQSK
|| ρ̊〉〉 .

(4.54)

Similarly, we derive a second identity using the fact that the top component of the difference

multiplet is Q
SK

-exact, viz.,

〈ḡ′dga〉+ 〈ḡ′d a g0〉 = 〈〈f̊ || ḡ′d ga + ḡ′d aQSK
|| ρ̊〉〉 . (4.55)

If we consider the average operator to be at the largest time, we derive instead:

〈a′ d〉+ 〈ḡ′a gd〉 = 〈〈f̊ || a′ gdQSK
|| ρ̊〉〉

〈a′ d〉+ 〈g′a ḡd〉 = +〈〈f̊ || a′ ḡdQSK
|| ρ̊〉〉

(4.56)

These are the equations obtained from super-translational invariance in [9], cf., the first two

equations of Eq. (9.8)
[9]
. The other two equations can be similarly derived and one finds

similar expressions with d0 || ρ̊〉〉 ≡ Q
SK

Q
SK

|| ρ̊〉〉:

〈a′ ad0〉 = −〈a′ ḡag0〉 − 〈ḡ′a a g0〉
〈a′ ad0〉 = −〈a′ ga ḡ0〉 − 〈g′a a ḡ0〉.

(4.57)

This determines all average-difference-ghost correlators at this level in terms of standard

Schwinger-Keldysh correlators.

One can go further by using the boundary conditions (4.43). For instance, these imply

that 〈(d′ + d′gḡ) a〉 = 〈d′ a〉, which vanishes if t′ > t due to the largest time equation.

11 In (4.53) the ghost zero modes are indicated as operators that act on the extended Hilbert space. Equiv-

alently, one can view them as the Grassmann-odd ghost partners of the density matrix as can be seen from

the first line of (4.52).
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2L2: Finally, consider two-point functions with two difference operators and suitable ghost

dressing. We now have to modify the statements in [9]. For instance, Eq. (9.10)
[9]

of that

paper is modified by ghost corrections dgḡ. This happens because the ghost corrections appear

sandwiched in between two ghost operators and so cannot annihilate the initial or final state.

To be self-contained, let us start with 〈d′d〉 = 0 and using the superalgebra one further-

more finds

0 = 〈g′d (d+ dgḡ) ḡ0〉 ,
0 = 〈ḡd (d+ dgḡ) g0〉 .

(4.58)

It is easy to continue with this analysis for higher-point functions. The ingredients are

always: largest-time equation, boundary conditions, and super-translational invariance. Up

to some small adjustments to take care of the ghost dressing the basic story outlined in [9]

carries through. One finds precisely the same constraints as in [9], the only modification

being that average, difference and ghost operators get replaced by the respective components

of either average or difference multiplets. In fact, one obtains two sets of relations, each

isomorphic to those in [9]: those for the average, and those for the difference multiplet.

It is instructive that we have now given a physical picture for the background ghost

insertion in the correlation function (4.43). The reader can convince themselves that the

total number of relations obtained from super-translational invariance is identical to that

described in [9], though now the relation does not quite set certain correlators to zero, but

rather fixes them in terms of some other correlation function. Furthermore, the ghost bilinear

PΨΨ − ΨP
Ψ

which did not appear in any of the dressings discussed here, but it has its

correlators determined by the explicit super-embedding.

Example: For illustration, let us check (4.54) in a particular case. When the difference

operator is XR − XL and the average operator is 1
2
(PR + PL), we have g′d = Ψ, ḡa = PΨ.

Equation (4.54) then reads

0 = 〈〈f̊ || ΨPΨ +
1

2
(PR + PL)ΨQ

SK
|| ρ̊〉〉 . (4.59)

For simplicity we have taken both operator insertions to be at t = 0 but with the difference

operator placed to the left of the average operator.

If the system is in the ground state |0〉 of the quantum harmonic oscillator, the extension

(4.41) gives

|| ρ̊〉〉 =||0010〉〉, || f̊〉〉 =
∑

i

|| ii10〉〉. (4.60)

It’s then a simple matter to explicitly compute the expectation values using (4.13) and (4.17)

〈〈f̊ || ΨPΨ || ρ̊〉〉 = i,
1

2
〈〈f̊ || (PR + PL)ΨQ

SK
|| ρ̊〉〉 = −i. (4.61)

We see that the relation (4.59) is satisfied.
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5 Generalizations & open questions

In this work, we have addressed certain subtleties in the doubling of Hilbert space and the

operator structure of ghosts associated with the Schwinger-Keldysh construction, which were

not evident in the abstract analysis of [9]. Our discussion was facilitated by moving from

a general path integral description to a Hilbert space based construction in the simplest of

quantum models: the quantum harmonic oscillator. This also allowed us to demonstrate in

this elementary setup various general claims relating to the structure of Schwinger-Keldysh

theories.

The main features missing from the earlier discussions are as follows:

1. Ghost dressing of composite difference operators by ghost bilinears. Here, using an

explicit construction, we are able to describe how this dressing works for an arbitrary

composite operator in the quantum oscillator.

2. Ghost partners of the density matrix (also referred to as ghost zero modes) playing a

crucial role. This was assumed without derivation in the aforementioned previous work.

Here, we can explicitly construct and confirm the picture posited before.

3. Final state boundary condition. We have shown that there exists a final state which

is annihilated by the BRST charges which provides an appropriate future boundary

condition for the ghost fields.

With these two ideas taken into account, we have demonstrated that the full operator struc-

ture of the quantum oscillator can be embedded within the superspace formalism. Given that

perturbative QFTs can be recast into deformations of a theory of infinitely many quantum

oscillators, we expect our discussion to carry through to them in a straightforward way, as

we now argue, before turning to some general lessons.

5.1 Interacting theories

Let us first see that we can straightforwardly add interactions to our quantum mechanics

model. For concreteness, we can add a quartic interaction Hint = λ
4!

X̂4, though all of the

discussion applies equally well to any more general interaction.

Fortunately, the formalism developed above is readily adapted. The uplift to the quadru-

pled Hilbert space works in exactly the same way, with the same supercharges given in (4.7)

and the same || f̊〉〉. As before, we demand that the super-extension satisfies three require-

ments. Since we have not modified the supercharges, || f̊〉〉 remains in the kernel of the Q
SK

and Q
SK

. We also require that || f̊〉〉 is a zero energy eigenstate of the extended Hamiltonian

H, but to do so we must first determineH for the interacting system. As discussed extensively

above, the naive difference operators for composite operators, such as our interaction term

X̂4, must be dressed with ghost corrections in order to be Q
SK

and Q
SK

exact. Therefore, if

the (extended) Hamiltonian is to be Q
SK

and Q
SK

exact, then we must include these ghost
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corrections in H:

H = H0 +
λ

4!
(X4

R −X4
L) +

λ

2
D2,0ΨΨ = H0 +

λ

4!
(X4

R −X4
L) +

λ

2

(
X2 +

1

12
X̃2

)
ΨΨ , (5.1)

using the notation of (4.30). With this extended Hamiltonian and our choice of || f̊〉〉 in (4.41),

it is straightforward to check that H || f̊〉〉 = 0. Note that superspace is designed to compactify

notation: in the above example, we can simply write H = H0 +
´

dθdθ̄ λ
4!
D̊4,0.

The argument readily extends to general interactions; we just note that with our choice

of final state (4.41), Ψ || f̊〉〉 = P
Ψ
|| f̊〉〉 = 0. Therefore taking Hint = {Q

SK
, [Q

SK
, Dm,n]}, we

have

Hint || f̊〉〉 = Q
SK

[Q
SK
, Dm,n] || f̊〉〉 = Q

SK

(
mDm−1,nΨ+ nDm,n−1PΨ

)
|| f̊〉〉 = 0 .

Superspace again allows for compact notation: Hint =
´

dθdθ̄ D̊m,n.

Finally, we need to check that the extension doesn’t modify any of the purely bosonic

correlators. The only place the interactions could modify this condition is via the ghost terms

in the Hamiltonian that will arise from unitaries implementing time evolution. However, since

these ghost corrections annihilate our final state, cf., Eq. (4.43), the same argument as in the

non-interacting case applies. Thus, the addition of interactions doesn’t pose any obstacles

to lifting the theory to the extended Hilbert space and the formalism applies for generic

Hamiltonians.

5.2 Lessons for QFTs

The main rationale behind undertaking the exercise of analyzing the Hilbert space picture

of Schwinger-Keldysh formalism and the postulated BRST symmetries inherent therein is to

get a clearer picture in favour of the abstract arguments described in [9]. We now turn to

ask: how far can we take the lessons from the quantum mechanics picture?

We will now attempt an argument directly at the level of the operator algebra, notwith-

standing the fact that beyond quantum mechanics we have to confront an abstract structure

which may not necessarily be generated in terms of simple fundamental building blocks (per-

turbative field theories can be dealt with as in §4 and §5.1). The basic hypotheses underlying
our construction are: (a) the existence of a pair of BRST symmetries {Q

SK
,Q

SK
} whose

action on the doubled Schwinger-Keldysh operator algebra is well defined, and (b) this action

can be uplifted into a graded Hilbert space with suitable ghosts appended.

With these assumptions, we are left with testing the Ward identities arising from the

BRST symmetries. For one, we want to ensure that the Schwinger-Keldysh difference op-

erators can be suitably dressed with ghost bilinears to lie in the BRST cohomology. It is

clear however that the BRST cohomology will contain other elements as well; for instance

the average super-multiplet’s top component has a bosonic part which is not necessarily a

Schwinger-Keldysh difference operator. Determining the full set of such operators amounts

to solving for the BRST cohomology, a well defined problem, given the operator algebra and

the action of {Q
SK
,Q

SK
}.
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There are two issues about this structure that are worth elaborating upon:

1. The BRST Ward identities arising from correlation functions involving top components

of super-multiplets must be self-consistent. They should not constrain the structure of

the Schwinger-Keldysh theory beyond correlators involving ghosts. This can of course

be checked to hold given an explicit construction (as carried about above), but it seems

implausible that it can fail once it is shown that the BRST cohomology is well-defined.

2. Additionally, we can ask if all the correlation functions of the extended theory are

determined in terms of standard Schwinger-Keldysh correlators. We may not expect

this to be unambiguous, since there is some freedom in the choice of the embedding

of the initial state (and the final state, though that we expect leads to no additional

freedom in observables). We believe it should be possible to fix all the correlation

functions for the ghost sector in terms of usual Schwinger-Keldysh correlators, i.e., we

anticipate that the discussion of [9] will carry through with the new elements of ghost

dressing discussed in §4.4. The only part for which we have not yet given a clean

argument are the ghost bilinears that do not appear as the dressing of any double copy

operator. For example, in the harmonic oscillator we did not encounter PΨΨ−ΨP
Ψ
as

the ghost dressing for any operator. In this case we can however appeal to our explicit

Hilbert space embedding to determine its correlations. How this structure extends more

generally is a question that is worth investigating further.

As mentioned earlier, the aforementioned issues should not be a problem for perturbative

QFTs. Here we may readily employ the same strategy as in our quantum mechanics example.

Moreover, discussions of operator ordering etc., will be moot if we only consider, as is often the

case, interaction terms which are built out of fields alone (and not their conjugate momenta).

An interesting example for future analysis would be to understand non-perturbative in-

teracting theories (say 2d minimal model CFTs) in this framework. The challenge here is to

embed the standard OPE structure by adding ghost operators, ghost bilinear operators, and

appropriate difference operator dressing by ghost bilinears. One would like to check whether

ghost bilinear sectors and dressing can be made consistent with the closure of OPE. This

appears to be a concrete setting where we can hope to get a handle on the questions raised

above.

Additional motivation for such an analysis comes from the idea of seeing whether the

Schwinger-Keldysh superspace is a useful way of thinking about unitarity in these theories.

Progress in this direction could potentially also prove useful in giving a simple proof of the

unitarity in superstring field theory, cf., [17] for the existing proof. Another direction which

goes to the heart of the reason for the introduction of these BRST symmetries and ghosts is

in applications to open quantum systems and effective non-unitary field theories arising out of

coarse-graining. It would especially be interesting to address the implications of our analysis

for open φ4 theory (see the discussion in [13]) and how in general open quantum systems are

to be embedded within superspace.
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A The ghost Hilbert space

In this appendix, we construct the inner product on the ghost Hilbert space. In the main

text, we demand the Hermiticity condition

Ψ† = −Ψ̄. (A.1)

While other choices are possible, this is convenient as it is equivalent to

Q† = Q̄. (A.2)

Consistency with the Schrodinger equation for the Heisenberg picture ghost momenta

PΨ = ∂tΨ̄ = −i[H, Ψ̄], PΨ̄ = ∂tΨ = −i[H,Ψ] (A.3)

then implies that

P
†
Ψ
= i[H,Ψ] = −PΨ̄ (A.4)

as well. With this choice, and using the definitions of the b, c ghosts in (4.13) we then

find that b† and c† truly are the hermitian conjugates of b and c respectively, so there is no

inconsistency of notation.

We can now construct the inner product that respects these Hermiticity conditions. In

the b sector

〈1|1〉 = 〈0|bb†|0〉 = 〈0|{b, b†}|0〉 = 〈0|0〉,
〈1|0〉 = 〈0|b|0〉 = 0,

〈0|1〉 = 〈0|b†|0〉 = 0, (A.5)
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fixing the inner product up to a constant. We choose 〈α|β〉 = δij . In the c sector the same

manipulations give

〈1|1〉 = 〈0|cc†|0〉 = 〈0|{c, c†}|0〉 = −〈0|0〉,
〈1|0〉 = 〈0|c|0〉 = 0,

〈0|1〉 = 〈0|c†|0〉 = 0, (A.6)

determining (up to a constant), that 〈α|β〉 = ηαβ = diag(1,−1).

For the states |αβ〉, we have

〈αβ|γδ〉 = δαγηβδ =




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


 , (A.7)

states being presented in the matrix from left to right and top to bottom as |00〉, |01〉, |10〉, |11〉.
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