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Schwinger-Keldysh theory for Bose-Einstein condensation of photons
in a dye-filled optical microcavity
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We consider Bose-Einstein condensation of photons in an optical cavity filled with dye molecules that are

excited by laser light. By using the Schwinger-Keldysh formalism we derive a Langevin field equation that

describes the dynamics of the photon gas and, in particular, its equilibrium properties and relaxation towards

equilibrium. Furthermore we show that the finite lifetime effects of the photons are captured in a single

dimensionless damping parameter that depends on the power of the external laser pumping the dye. Finally,

as applications of our theory we determine spectral functions and collective modes of the photon gas in both the

normal and the Bose-Einstein condensed phases.

DOI: 10.1103/PhysRevA.88.033829 PACS number(s): 42.50.Ct, 33.80.−b, 03.75.Hh

I. INTRODUCTION

After the theoretical prediction of Bose-Einstein conden-

sation (BEC) in 1925 [1,2], it took until 1995 for the first

direct experimental observation of this phenomenon in weakly

interacting atomic vapors [3–5]. In addition to these atomic

gases, BEC of bosonic quasiparticles such as magnons [6],

exciton-polaritons [7,8], and photons [9] is now also observed.

The Bose-Einstein condensates of these quasiparticles form a

different class of condensates as they are not in true thermal

equilibrium.

These nonequilibrium Bose-Einstein condensates are

driven by external pumping to compensate for the particle

losses and thereby to keep the average number of particles

in the system at a constant level. In these systems the steady

state of the Bose gas is therefore determined by interparticle

interactions that lead to quasiequilibration and by the balance

between pumping and particle losses. Furthermore, contrary

to dilute atomic gases, the temperature is typically constant

in these experiments. Instead, one varies the strength of the

external pumping power while keeping the system at a constant

temperature. Above some critical value of the pumping power,

the density of particles in the system is above the critical

density, and the system undergoes BEC.

Another special feature of these pumped systems is the

temperature at which BEC occurs. Since BEC happens when

the phase-space density is of the order of unity [10], the

temperature at which the magnons, exciton-polaritons, and

photons condense is inversely related to their mass to the

power 3/2. Although these particles do not even always have

a bare mass, they are all formally equivalent to bosons with an

effective mass that is several orders of magnitude smaller than

that of alkali atoms. Therefore these systems undergo BEC at

temperatures in the range of 10 to 300 K instead of in the nK

regime relevant for the atomic Bose-Einstein condensates.

In order to get a detailed understanding of these nonequi-

librium Bose-Einstein condensates, we from now onwards

focus on the photon experiment of Klaers et al. [9]. This

experiment is concerned with a photon gas in a dye-filled

*A.deLeeuw1@uu.nl

optical resonator. The distance between the cavity mirrors is

chosen such that the emission and absorption of photons with a

certain momentum in the longitudinal direction dominates over

that of other momenta. Thus this component of the momentum

of the photons is fixed, and the photon gas becomes equivalent

to a Bose gas with a small effective mass. Furthermore,

the gas becomes effectively two-dimensional. In general this

prohibits observing BEC at nonzero temperature since a

homogeneous two-dimensional Bose gas can only condense

at zero temperature [10]. However, due to the curvature of the

cavity mirrors there is a harmonic potential for the photons.

Therefore BEC of photons is observed above some critical

pumping power since a harmonically trapped two-dimensional

Bose gas can exhibit BEC at a nonzero temperature [11,12].

Theoretically, a lot of progress has been made for BEC

of magnons and exciton-polaritons [13–19]. Although the

observation of Bose-Einstein condensation of photons is

more recent, it has also motivated theoretical studies: Klaers

et al. predicted a regime of large fluctuations of the condensate

number [20]. Furthermore, the authors of Ref. [21] found

that the photons cannot reach thermal equilibrium for small

absorption and emission rates. The modification of the Stark

shift of an atom in a Bose-Einstein condensate of photons was

investigated in Ref. [22], and conditions for BEC of photons

that are in thermal equilibrium with atoms of dilute gases were

derived in Ref. [23].

In this article we develop a theory for the photon experiment

performed by Klaers et al. [9]. We describe this photon

system by using the Schwinger-Keldysh formalism, which is

commonly used in the quantum optics community (see, for

example, Ref. [24]). In Sec. II we derive an effective action

for the photons. In Sec. III we use this effective action to

derive a Langevin field equation for the photons including

Gaussian noise, which incorporates the effect of thermal and

quantum fluctuations. The main advantage of this approach is

that it simultaneously treats coherent and incoherent effects. In

particular, it enables us to describe the complete time evolution

of the photons, including the relaxation towards equilibrium;

thus equilibrium properties can also be obtained. Subsequently,

we show that the finite lifetime effects of the photons can be

captured in a single dimensionless parameter α that depends on

the power of the external laser pumping the dye. In Sec. IV we
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calculate equilibrium properties of the homogeneous photon

gas in the normal and Bose-Einstein condensed phase, such

as spectral functions, collective modes, and damping. We end

with conclusions and outlook in Sec. V.

II. MODEL

In this section we derive an effective action for the photons

by using the Schwinger-Keldysh formalism developed in

Ref. [25]. In particular, the photons are coupled to a reservoir

of dye molecules. The energy of the photons is given by

ǫγ (k) = h̄c

√

k2
x + k2

y + k2
γ , (1)

where h̄ is Planck’s constant, c is the speed of light in the

medium, and k is the transverse momentum of the photon. In

agreement with the experiment kz is ±kγ since the frequency

of the pump laser is such that in the longitudinal direction the

absorption of photons with mode number q = 7 dominates

over other absorption processes [9]. For the molecules we take

an ideal gas in a box with volume V . Since this gas is at equi-

librium and at room temperature, we describe the translational

motion of the molecules by a classical Maxwell-Boltzmann

distribution. Furthermore, we model these molecules as a

two-level system with energy difference � > 0 between the

excited and ground states. This is a simplification since these

molecules have a rovibrational structure. Therefore the dye

molecules have more than two levels as the rovibrational

structure divides the ground and excited levels into several

sublevels. However, in this section we will show that we can

model this multilevel system by introducing an effective mass

for the molecules in our two-level model.

At time t0 the photons are coupled to the molecules with

a momentum-independent coupling constant g. To study the

dynamics of the coupled system at times larger than t0 we

consider the action

S[ak,a
∗
k,bk,b

∗
k]

=
∑

k

∫

G∞
dt a∗

k(t)

{

ih̄
∂

∂t
− ǫγ (k) + μγ

}

ak(t)

+
∑

p,ρ

∫

G∞
dt b∗

p,ρ(t)

{

ih̄
∂

∂t
− ǫ(p) + μρ − Kρ

}

bp,ρ(t)

−
i

√
2V

∑

k,p

∫

G∞
dt gak(t)bp,↓(t)b∗

p+k+,↑(t) + H.c.

+
i

√
2V

∑

k,p

∫

G∞
dt gak(t)bp,↓(t)b∗

p+k−,↑(t) + H.c. (2)

Here time is integrated along the Schwinger-Keldysh contour

G∞, which is depicted in Fig. 1. The photons are described

by the fields ak(t) and a∗
k(t). Furthermore, ǫγ (k) is given by

t0t ∞

G∞

FIG. 1. The Schwinger-Keldysh contour G∞. The integration is

first from t0 to ∞ and then back from ∞ to t0.

Eq. (1), and μγ is the chemical potential of the photons. For

now we neglect the harmonic potential for the photons since

this term is not important for the coupling between molecules

and photons. The fields bp,ρ(t) and b∗
p,ρ(t) describe the dye

molecules, with ρ being equal to ↓ or ↑, corresponding

to the ground and excited states, respectively. Also, ǫ(p) =
h̄2p2/2md, with md being the mass of the rhodamine 6G

molecule. Moreover, Kρ accounts for the energy difference

between the molecular states, and we take K↓ = 0 and

K↑ = �. The last two terms describe the processes of the

absorption and emission of a photon, respectively. Here g is the

coupling strength between the photons and molecules, k+ =
(kx,ky,kγ ), and k− = (kx,ky, − kγ ). Note that the structure of

the interaction terms is a consequence of the expansion of

the photon field in terms of a standing wave, instead of a

plane wave, in the z direction. Furthermore, the summation

over k is two-dimensional, whereas the summations over

p are three-dimensional. The latter convention will be used

throughout the paper.

In this system one of the two molecular chemical potentials

determines the density of molecules. The experiment of Klaers

et al. used rhodamine 6G dye solved in methanol with

a concentration of 1.5 × 10−3 mol L−1. Therefore we use

a typical value of nm = 9 × 1023 m−3 for the density of

molecules. Furthermore the value of �μ = μ↑ − μ↓ deter-

mines the polarization of the molecules. This polarization is

defined as

P (�μ) :=
N↑ − N↓

N↑ + N↓
=

eβ(�μ−�) − 1

eβ(�μ−�) + 1
, (3)

where β is the inverse of the thermal energy kBT and N↑
and N↓ are, respectively, the total number of excited-state and

ground-state molecules. For small �μ all molecules are in the

ground state. By increasing the value of �μ, the number of

molecules in the excited state increases. Since the total number

of molecules is constant, the number of ground-state molecules

thereby decreases. Thus for increasing �μ the polarization

increases. Moreover, the polarization is exactly zero for �μ =
�. A plot of the polarization as a function of �μ is given in

Fig. 2. The parameter �μ is also important for making a

P

−1

0

1

75 80      85 90 95 100
βΔμ

FIG. 2. (Color online) Plot of the polarization of the molecules P

at room temperature T = 300 K as a function of β�μ for a density of

molecules nm = 9 × 1023 m−3, � = 3.63 × 10−19J. The polarization

is exactly zero if �μ is equal to the energy difference between the

excited and ground states of the molecules.
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connection with the experiment since the number of excited

molecules and thereby the polarization are determined by the

pumping power of the external laser.

In our nonequilibrium theory the chemical potential of the

photons μγ becomes only well defined after the photon gas

equilibrates by coupling to the dye molecules. Since both the

sum of the number of ground-state molecules and excited-

state molecules and the sum of the number of excited-state

molecules and photons are constant, we have in equilibrium

�μ = μγ . (4)

To derive an effective action for the photons, we first integrate

out the molecules. Next, we use perturbation theory up to

second order in g to obtain

Seff[ak,a
∗
k]

=
∑

k

∫

G∞
dt ′

∫

G∞
dt a∗

k(t)

×
({

ih̄
∂

∂t
− ǫγ (k) + μγ

}

δ(t,t ′) − h̄
(k,t,t ′)

)

ak(t ′),

(5)

where the photon self-energy due to coupling with the dye is

given by


(k,t,t ′) =
−i|g|2

2h̄2V

∑

p

G↓(p,t ′,t)

×{G↑(k+ + p,t,t ′) + G↑(k− + p,t,t ′)}. (6)

It turns out that both terms on the right-hand side are equal,

and therefore we can write


(k,t,t ′) =
−i|g|2

h̄2V

∑

p

G↓(p,t ′,t)G↑(k+ + p,t,t ′). (7)

Here the Keldysh Green’s function for the dye molecules is

given by

Gρ(p,t,t ′) = ie−i[ǫ(p)−μρ+Kρ ](t−t ′)/h̄

×{�(t,t ′)[Nρ(p) − 1] + �(t ′,t)Nρ(p)}, (8)

where �(t,t ′) and �(t ′,t) are the corresponding Heaviside

functions on the Schwinger-Keldysh contour. Furthermore, the

occupation numbers for the dye molecules are

Nρ(p) = e−β[ǫ(p)−μρ+Kρ ], (9)

with ρ ∈ {↑,↓}. Since this action is defined on the Schwinger-

Keldysh contour, we can only use this action to calculate

quantities on the Schwinger-Keldysh contour. However, the

relevant physical quantities should be calculated on the real-

time axis. Therefore we need to transform this action into

an action that is defined on this real-time axis. As is shown

in Ref. [25], this boils down to determining the retarded,

advanced, and Keldysh self-energies. Roughly speaking, the

advanced and retarded self-energies determine the dynamics

of the single-particle wave function in the gas, i.e., the

coherent dynamics, and the Keldysh component accounts for

the dynamics of their occupation numbers, i.e., the incoherent

dynamics.

In the continuum limit the retarded self-energy becomes

h̄
(+)(k,t − t ′)

=
i

h̄
�(t − t ′)

∫

dp

(2π )3
|g|2

× ei[ǫ(k+,p)+�μ](t−t ′)/h̄{N↑(k+ + p) − N↓(p)}. (10)

Here we used Eqs. (6) and (8) and we defined ǫ(k+,p) =
ǫ(p) − ǫ(k+ + p) − �. In Fourier space this self-energy reads

h̄
(+)(k,ω) := S(k,ω) − iR(k,ω)

:=
∫

d(t − t ′) h̄
(+)(k,t − t ′)eiω(t−t ′). (11)

Since the molecules behave as a Maxwell-Boltzmann gas at

room temperature, we can find an analytical expression for

R(k,ω). We obtain

R(k,ω) = A(k,ω)
|g|2m2

d

2|k+|πβh̄4
sinh

{

βh̄ω

2

}

, (12)

with

A(k,ω) = exp {β(μ↓ + μ↑ − �)/2}

× exp

{

−
β

4

[

ǫ(k+) +
(� − �μ − h̄ω)2

ǫ(k+)

]}

.

(13)

Furthermore, in Fourier space the Keldysh self-energy is given

by

h̄
K (k,ω)

= i

∫

dp

(2π )2
δ[h̄ω + ǫ(k+,p) + �μ]

× |g|2{2N↓(p)N↑(k+ + p) − N↓(p) − N↑(k+ + p)}.
(14)

Since the dye is in quasiequilibrium, this Keldysh self-energy

can be related to the imaginary part of the retarded self-energy.

We find

h̄
K (k,ω) = −2i[1 + 2N (ω)]R(k,ω), (15)

where

N (ω) =
1

eβh̄ω − 1
. (16)

This result is known as the fluctuation-dissipation theorem.

As we show in the next section, this result guarantees that the

photon gas relaxes towards thermal equilibrium in the limit of

t → ∞.

To make further progress, we have to determine typical

numerical values for � and g appropriate for the experiment

of Klaers et al. These values can be obtained by looking at

the physical meaning of the self-energy. Consider a system of

molecules that can be in either a ground state or excited state.

If we apply a laser to this system, we can measure, for instance,

the total number of molecules in the excited state. This number

depends on the rate of photon absorption and emission and

therefore on the lifetime of the photons. Since the imaginary

part of the retarded self-energy is related to the lifetime of the

photon, we can determine the emission and absorption spectra

of the molecules with the help of our expression for R(k,ω).
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In order to obtain the absorption and emission spectrum

separately, we take a closer look at the retarded self-

energy given by Eq. (10). In this expression the factor

with the Maxwell-Boltzmann distribution can be rewritten as

N↓(p)[N↑(k+ + p) ± 1] − N↑(k+ + p)[N↓(p) ± 1]. The first

term can be understood as the absorption of a photon, since this

statistical factor accounts for the process where a ground-state

molecule scatters into an excited state. The factor N↓(p) simply

is the number of molecules that can undergo the collision, and

[N↑(k+ + p) ± 1] denotes the Bose enhancement factor or

Pauli blocking factor depending on the quantum statistics of

the dye molecules. By using a similar reasoning the second

term can be understood as the emission of a photon. Hence the

part of the self-energy proportional to N↓(p) is related to the

absorption spectrum, and the part proportional to N↑(k+ + p)

is related to the emission spectrum.

The absorption and emission spectra are usually obtained

in experiments where the number of photons is not conserved.

So in these systems the photons have no chemical potential.

To make a comparison, we therefore have to set μ↓ = μ↑.

Furthermore, contrary to the experiment of Klaers et al., there

is no restriction on the momentum of the photons. This implies

that the photon field should be expanded into plane waves

instead of standing waves. Therefore the fourth term on the

right-hand side of the action in Eq. (2) is absent, and the

prefactor of the third term is changed into 1/
√

V . However,

this modification leaves the expressions for the self-energies

unchanged.

In order to get more insight into the role of the parameters

of our model in the absorption and emission spectra, we first

consider the experiment of Klaers et al., and we keep k fixed.

Then, the spectra have a maximum at

h̄ω± = � ±
h̄2k2

+
2md

, (17)

where we used �μ = 0. Here the plus sign is the maximum

of the absorption spectrum, and the minus sign corresponds

to the position of the maximum of the emission spectrum. So

we obtain a difference in frequency between the maximum

of the absorption and emission spectra. This difference is also

obtained experimentally and is known as the Stokes shift. From

this expression we find that the value of md determines the

value of the Stokes shift. Furthermore we can see from Eq. (17)

that we can change the position of the peaks by varying �.

Now we turn to more conventional experiments, where

the absorption of laser light by the medium is measured as

a function of frequency. To obtain the absorption and emission

spectra only as a function of frequency, we have to consider

the self-energy on the shell and thus replace k+ with ω/c. For

the physical mass of the rhodamine 6G molecule, we obtain

peaks that are too narrow and a Stoke shift that is too small.

This is because we neglected the rovibrational structure of

the molecules. Due to this rovibrational structure there are

many possible transitions since the excited and ground levels

are split into several sublevels. Therefore there is a whole

range of photon energies which can be absorbed or emitted

by the molecule. This causes a considerable broadening of

the spectra. As mentioned before, we model this rovibrational

structure by choosing an effective mass for the molecules.

We can also see explicitly from Eqs. (12) and (13) that

decreasing the value of md will indeed broaden the peaks. For

� = 3.63 × 10−19 J and md = 9.3 × 10−35 kg we recover in

good approximation the normalized absorption and emission

spectra given in Ref. [9].

Up to now, we have considered the relative absorption

and emission spectra. To obtain the correct height of these

spectra, we have to find an appropriate value for g. By

using Ref. [26], we can actually compare our results to

the experimentally obtained absorption and emission spectra.

However, to calculate the emission spectrum for this particular

experiment within our formalism, we have to take into account

that the emission of a photon can be in an arbitrary direction.

Thus to obtain the emission spectrum we have to perform an

integral which averages over all possible emission directions.

However, the absorption spectrum can be obtained without

performing additional integrals, and therefore we focus on

this spectrum to obtain a numerical value for g. Then, as a

consequence of our formalism, for our purposes the correct

emission spectrum is also incorporated.

Before we can fit g, we have to relate our calculated decay

rates to the measured absorption cross sections. We have

dN

dx
= −n↓σabs(ω), (18)

where the left hand-side is the number of absorbed photons dN

at a distance dx along the path of a beam. Furthermore, n↓ is the

density of ground-state molecules, and σabs is the absorption

cross section. By using Fermi’s golden rule, we obtain that

dN/dt is equal to −2Rabs(ω)/h̄. Here Rabs(ω) denotes the

absorption term in the imaginary part of the self-energy. Hence

σabs(ω) =
2Rabs(ω)

ch̄n↓
. (19)

Since the molecules behave as a classical Maxwell-Boltzmann

gas,

n↓ =
(

md,real

2πh̄2β

)3/2

eβμ↓ . (20)

Note that contrary to the mass of the dye molecules used in the

self-energies, we here use the real mass of the dye molecules

to obtain the correct densities. Thus md is the effective

mass to model the rovibrational structure of the molecules,

and md,real ≃ 7.95 × 10−25 kg is the physical mass of a

rhodamine 6G molecule. By using our expression for R(k,ω)

we observe that the absorption cross section is independent

of μ↓. Therefore we do not need to specify the number of

molecules to obtain a numerical estimate for g. Furthermore

we can relate the absorption cross section given by Eq. (19)

to the molecular extinction coefficient obtained in Ref. [26].

According to Ref. [27],

σ = (3.82 × 10−21 cm3 mol L−1)ǫ, (21)

where ǫ = 1.16 × 105 L mol−1 cm−1 is the molar extinction

coefficient. This results in g ≃ 6.08 × 10−26 J m3/2. A plot

of the absorption and emission cross sections for the obtained

numerical values for �, md, and g is given in Fig. 3. The

shown emission cross section is obtained from Eq. (19) by

replacing Rabs(ω) with Remis(ω). As mentioned before, this is

033829-4
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ω 15Hz

σ
(1

0
−

1
6
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2
)

0
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2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2

1

2

3

5

(10 )

FIG. 3. (Color online) The absorption and emission cross sections

of the photons obtained from the imaginary part of the retarded

self-energy for md = 9.3 × 10−35 kg, � = 3.63 × 10−19 J, and g =
6.08 × 10−26 J m3/2. The red (left) curve corresponds to the emission,

and the blue (right) curve denotes the absorption of photons. The

absorption cross section is given by Eq. (19), and the plotted emission

cross section is obtained from the same equation by replacing Rabs(ω)

with Remis(ω).

not the physical emission cross section since that can only be

obtained by integrating over all directions of emission.

III. NONEQUILIBRIUM PHYSICS

We introduce a complex field φ(x,t) for the photons such

that

〈|φ(k,t)|2〉 = N (k,t) + 1
2
, (22)

where N (k,t) corresponds to the average occupation number

of the single-particle state with momentum k at time t . As is

shown in Ref. [25], φ(x,t) obeys a Langevin field equation

for describing the dynamics of the photon gas. This equation

ultimately reads

ih̄
∂

∂t
φ(x,t)

= [H (x) + T |φ(x,t)|2]φ(x,t)

+
∫

dx′dt ′h̄
(+)(x − x′,t − t ′)φ(x′,t ′) + η(x,t), (23)

where the Hamiltonian

H (x) = −
h̄2∇2

2mph

− μγ + h̄ckγ +
1

2
mph�

2|x|2. (24)

Here x = (x,y) and the field φ∗(x,t) satisfies the complex

conjugate equation. Furthermore, to obtain this equation, we

expanded Eq. (1) for small transverse momenta, using that

kγ (x) is position dependent due to the curvature of the cavity

mirrors. In this equation mph ≃ 6.7 × 10−36 kg is the effective

mass of the photons, and � ≃ 2.6 × 1011 Hz is the trapping

frequency of the harmonic potential. We also introduced a

self-interaction term with strength T ≃ 1.2 × 10−36 J m2.

According to Ref. [9], this self-interaction of the photons

arises from Kerr nonlinearity or thermal lensing in the dye.

This self-interaction is an effective interaction and therefore

also incorporates renormalization from interactions at high

momenta and energies. Finally, the Gaussian noise η(x,t)

satisfies

〈η(x,t)η∗(x′,t ′)〉 =
ih̄

2
h̄
K (x − x′,t − t ′). (25)

Here, the brackets denote averaging over different realizations

of the noise. In general it is difficult to determine correlation

functions from these equations, especially because of the

nonlocality of the retarded self-energy. However, since we are

interested in Bose-Einstein condensation of photons we focus

on the low-energy behavior of this self-energy. In the low-

energy regime we are interested in kξ of the order of unity and

ω around ωB(k), where

h̄ωB(k) =

√

(

h̄2k2

2mph

)2

+ 2n0T

(

h̄2k2

2mph

)

, (26)

is the Bogoliubov dispersion and

ξ =
h̄

2
√

mphn0T
(27)

is the coherence length, with n0 being the density of condensed

photons. Note that k is the norm of the two-dimensional

momentum vector k = (kx,ky). Since for the experiment of

Ref. [9] the critical number of photons Nc ≃ 77 000 and the

diameter of the condensate is measured as a function of the

condensate fraction, we can make an estimate of n0. We obtain

condensate densities in the range of at least 1012–1013 m−2.

We make a low-energy approximation to the imaginary

part of the retarded self-energy. As we see in Fig. 4, this is a

good approximation in the low-energy regime. Furthermore,

the real part of the retarded self-energy is small, and as a

zeroth-order approximation we neglect this contribution. Thus

we approximate

h̄
(+)(k,ω) = −iαh̄ω, (28)

and we can write for the Langevin field equation that

ih̄(1 + iα)
∂

∂t
φ(x,t) = [H (x) + T |φ(x,t)|2]φ(x,t) + η(x,t).

(29)

k

ω
/ω

 B
(

)

0

20

40

0.5 1.0 1.5 2.0 2.5 3.0

k

ξ

FIG. 4. (Color online) Plot of the validity of the linear approx-

imation of the retarded self-energy for n0 = 1012 m−2 and certain

values of ω and k. The blue (middle), red (top), and green (bottom)

curves are for, respectively, �μ equal to 3.4 × 10−19, 3.7 × 10−19,

and 4.0 × 10−19 J. Below the curves is the region where the linear

approximation is within 1% of the actual value of the self-energy.
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This is the equation which determines the complete dynamics

of the photon gas. The finite lifetime effects are captured by

the single dimensionless parameter α, which depends on the

difference between the chemical potentials of the excited-state

and ground-state molecules. Furthermore the noise η(x,t) is

related to the Keldysh self-energy via Eq. (25), and in this

approximation

h̄
K (x′ − x,t ′ − t) = −iδ(x − x′)

× 2αh̄

∫

dω

2π
[1 + 2N (ω)]ωe−iω(t ′−t).

(30)

The explicit dependence of α on �μ is given by

α = αmaxnm

e−C(�μ−�)2

cosh
{

1
2
β(�μ − �)

} , (31)

where nm is the density of dye molecules,

C =
βmd

2h̄2|kγ |2
, (32)

and

αmax =
√

πmd,real

8βh̄2k2
γ

(

β|g|md

md,real

)2

e−βh̄2k2
γ /8md . (33)

The damping parameter α is inversely proportional to the

photon lifetime and accounts for the decay of photons due

to the interaction with the dye molecules. The emission and

absorption of photons are equally important for the photon

equilibration. Therefore α has a maximum when there is an

equal amount of excited-state and ground-state molecules, i.e.,

for �μ = � where P = 0. This also explains the symmetric

form of α around �μ = �. Namely, α should be symmetric

while changing the sign of the polarization as this only

switches the excited-state and ground-state molecule densities.

A plot of α as a function of �μ is shown in Fig. 5.

The Langevin field equation given by Eq. (29) incorporates

the complete dynamics of the photons. However, we still need

to check that for large times the photon distribution function

relaxes to the correct equilibrium. For this it suffices to consider

the homogeneous case and to neglect the self-interaction of

0

1

2

3

75 80 85 90 95 100
βΔμ

1
0−

2
α

FIG. 5. (Color online) Plot of the dimensionless damping param-

eter α as a function of β�μ. For this plot we used nm = 9 × 1023 m−3.

The parameter α has a maximum value of about 2.65 × 10−2 at �μ

equal to �.

the photons. For purposes of generality, we do not make a

low-energy approximation to the self-energy, and we Fourier

transform the Langevin field equation into

ih̄
∂

∂t
φ(k,t) = (ǫγ (k) − μγ )φ(k,t) + η(k,t)

+
∫ ∞

t0

dt ′ h̄
(+)(k,t − t ′)φ(k,t ′). (34)

As mentioned in the previous section, the fluctuation-

dissipation theorem given by Eq. (15) should ensure that the

gas relaxes towards thermal equilibrium. To check that this

formalism contains this correct equilibrium, we assume that

〈φ(k,t)φ∗(k,t ′)〉 only depends on the difference t − t ′ and

write

〈φ(k,t)φ∗(k,t ′)〉 =
∫

dω

2π
G(k,ω)e−iω(t−t ′). (35)

Then

ih̄
d

d(t + t ′)
〈φ(k,t)φ∗(k,t ′)〉 = 0, (36)

and for t ′ = t we obtain the equilibrium value for

〈φ(k,t)φ∗(k,t)〉. Since we are interested in the equilibrium, we

consider times much larger than t0. Therefore we are allowed

to take the limit of t0 → −∞. Now Eq. (36) can be rewritten

as

〈η(k,t)φ∗(k,t ′)〉 − 〈φ(k,t)η∗(k,t ′)〉

=
∫ ∞

−∞
dt ′′ 〈φ(k,t)φ∗(k,t ′′)〉h̄
(−)(k,t ′′ − t ′)

−
∫ ∞

−∞
dt ′′ h̄
(+)(k,t − t ′′)〈φ(k,t ′′)φ∗(k,t ′)〉. (37)

Here we used h̄
(−)(k,t ′ − t) = [h̄
(+)(k,t ′ − t)]∗. Further-

more, since the field φ(k,t) and its complex conjugate depend

on the noise, we have a nonzero value for 〈η(k,t)φ∗(k,t ′)〉,
which can be determined by formally integrating Eq. (34) and

using Eq. (25).

In Fourier space Eq. (37) is given by

−
1

2i

K (k,ω)G(+)(k,ω)G(−)(k,ω) = G(k,ω), (38)

where the retarded (+) and advanced (−) photon Green’s

functions are determined by

h̄G(±),−1(k,ω) = h̄ω± − ǫγ (k) + μγ − h̄
(±)(k,ω). (39)

To make further progress, we introduce the spectral function

ρ(k,ω) = −
1

πh̄
Im[G(+)(k,ω)]

=
1

π

R(k,ω)

[h̄ω − ǫγ (k) + μγ − S(k,ω)]2 + [R(k,ω)]2

=
1

πh̄2
R(k,ω)G(+)(k,ω)G(−)(k,ω). (40)

This spectral function ρ(k,ω) can be interpreted as a single-

particle density of states. Therefore we can calculate densities

in equilibrium by multiplying this spectral function with the

Bose-distribution function N (ω) and then integrating over h̄ω.
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FIG. 6. (Color online) The spectral function as a function of the frequency ω for ky = kx = 0 for nm = 9 × 1023 m−3 and μγ = 3.5 × 10−19J.

The negative (positive) contribution for negative (positive) frequencies is shown on the left (right) side.

Hence

N (k) =
∫

d(h̄ω) N (ω)ρ(k,ω), (41)

where N (k) is the number of photons in a state with momentum

k. Thus in equilibrium

G(k,ω) = 2πh̄
(

1
2

+ N (ω)
)

ρ(k,ω), (42)

where we used the fluctuation-dissipation theorem in Eq. (15).

Hence

〈φ(k,t)φ∗(k,t)〉 = N (k) + 1
2
. (43)

By comparing this result to Eq. (22), we find that the

average occupation numbers N (k,t) relax to N (k). During this

calculation we did not use an approximation for the imaginary

part of the retarded self-energy. However, we can do the same

calculation for R(k,ω) given by αh̄ω. This approximation will

directly manifest itself in the fluctuation-dissipation theorem

and ultimately in the spectral function. Therefore in this

approximation the equilibrium occupation numbers are also

given by Bose-Einstein distribution functions.

IV. EQUILIBRIUM

In the previous section we have shown that the complete

dynamics of the photon gas can be obtained from a Langevin

field equation for a complex field φ(x,t). On top of this

nonequilibrium physics, we have demonstrated the relaxation

of the photons towards the correct equilibrium. In this

section we discuss equilibrium properties of the photon gas,

and we therefore set �μ = μγ according to Eq. (4). We

perform calculations in both the normal and the Bose-Einstein

condensed states.

A. Normal state

We first consider the spectral function of the photons

defined in Eq. (40). The spectral function should satisfy two

conditions. First of all, because we are dealing with bosons,

the spectral function should be positive (negative) for positive

(negative) frequencies. From Eq. (12) it is clear that R(k,ω) has

this property, and therefore this condition is indeed satisfied

by the spectral function. Second, the spectral function should

satisfy the zeroth-frequency sum rule
∫

d(h̄ω)ρ(k,ω) = 1. (44)

By numerically integrating this spectral function, we check

that we satisfy the sum rule for all chemical potentials smaller

than the lowest energy of the photons.

As we can see from Fig. 6, the spectral function consists of a

Lorentzian-like peak for positive frequencies and a continuum

for negative frequencies. The latter is roughly five orders of

magnitude smaller than the positive contribution. Since the

positive contribution is approximately a Lorentzian, we can

determine the lifetime of the photons by looking at the width of

these peaks [28]. This lifetime is defined as the time for which

a photon in a certain momentum state k goes into another state

with momentum k′ due to absorption and reemission by the

molecules.

Numerically, we obtained for small momenta and βμγ up

to roughly 87 a lifetime on the order of 10−13 s. If we increase

μγ even further, the lifetime of the photons increases rapidly.

Because for larger values of μγ the peaks of the spectral

function are at smaller frequencies, we can also show this fact

analytically. Since we know that the lifetime of the photon is

related to the imaginary part of this pole, we need to determine

the poles of Eq. (39).

In the previous section we found that for small frequencies

we can use an approximation for the imaginary part of the

self-energy in which it is linear in frequency. Within this

approximation, the Green’s function given by Eq. (39) has

a pole at

h̄ωpole(k) =
1 − iα

1 + α2
[ǫγ (k) − μγ ]. (45)

Since α2 ≪ 1, a typical lifetime of the photons in the normal

state is given by

τ (k) =
h̄

2α(ǫγ (k) − μγ )
∼

1

α�
, (46)

where α is given by Eq. (31), �μ is sufficiently large, and �

is the trap frequency of the photons. In the last step we used

the fact that the photons are trapped in a harmonic potential,

and therefore the typical energy of the photons is proportional

to h̄�. From Fig. 5 we know that for the relevant values of
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μγ , α is in the range of 10−3–10−2. Therefore the lifetime of

the photons is in the nanosecond regime, which agrees with

Ref. [9]. We also note that the smallness of α implies that

the collective-mode dynamics of the gas is underdamped as

the ratio between the damping and frequency of the collective

modes is precisely α.

B. Condensed state

In this section we consider the homogeneous two-

dimensional photon gas below the critical temperature for

Bose-Einstein condensation. To describe the condensate of

photons we start from the following two-dimensional action:

Seff[a∗,a] =
∑

k,n

h̄G−1(k,iωn)a∗
k,nak,n

+
T

2

∑

K,k,q,n,m,l

a∗
K−k,n−ma∗

k,maK−q,n−laq,l . (47)

Here

h̄G−1(k,iωn) = ih̄ωn − ǫγ (k) + μγ − h̄
(k,iωn), (48)

and h̄
(k,iωn) follows from the retarded self-energy by Wick

rotation of the real frequency to Matsubara frequencies iωn.

This action describes the same equilibrium physics as coming

from the Langevin field equation in Eq. (34) since after

a Wick rotation the equations of motion for the field ak,n

are determined by the average of the Langevin equations.

Substituting a0,0 → a0,0 + φ and requiring that the terms

linear in the fluctuations vanish leads to the equation

μγ = h̄ckγ + S(0,0) + T n0, (49)

where n0 is the density of condensed photons. This equation

determines the chemical potential of the Bose-Einstein con-

densate of photons. We obtain βμγ ≃ 90.9, and according to

Eq. (3), we have a corresponding polarization of roughly 0.93.

Therefore almost all molecules are in the excited state.

To determine the collective excitations of the condensate

over the ground state we consider the action up to second

order in the fluctuations. This is the so-called Bogoliubov

approximation. So

SBog[a∗,a] = −
1

2

∑

k,n

u
†
k,nh̄G−1

B (k,iωn)uk,n, (50)

where

uk,n :=
[

ak,n

a∗
−k,−n

]

(51)

and

−h̄G−1
B (k,iωn) =

[

2T n0 T n0

T n0 2T n0

]

−
[

h̄G−1(k,iωn) 0

0 h̄G−1(k, − iωn)

]

.

(52)

Since μγ is given by Eq. (49), we obtain that Det[G−1
B (0,0)] =

0. Therefore we have a gapless excitation, which agrees with

Goldstone’s theorem. By Wick rotating and solving for which

ω the determinant of this matrix vanishes, we can determine

the dispersions. Since we are interested in the low-energy

behavior, we can use Eq. (28) for the self-energy. In this

approximation the dispersions are given by

(1 + α2)h̄ω(k) = −iα(ǫ̃γ (k) + T n0)

±
√

−(αT n0)2 + ǫ̃γ (k)(ǫ̃γ (k) + 2T n0),

(53)

with ǫ̃γ (k) = ǫγ (k) − h̄ckγ . The imaginary part of the disper-

sion relations is always negative, and we find a lifetime in

the nanosecond regime for n0 in the range of 1012–1013 m2

and excitations for which kξ < 0.2, with k = |(kx,ky)|. For

excitations with larger momentum the lifetime decreases until

it approaches zero in the limit of k → ∞.

Furthermore, we have the same behavior as was first shown

in Ref. [29] for a nonequilibrium Bose-Einstein condensate of

exciton-polaritons. Also in this case the dispersions become

purely imaginary for small momenta. For the numerical values

of the experiment and n0 = 1012 m2, we have purely imaginary

dispersions for kξ < 2.2 × 10−3. However, this does not imply

that for small momenta there are only decaying quasiparticles

at zero energy. This can be seen in the spectral function, which

in this case corresponds to the imaginary part of GB;11(k,ω+).

In Figs. 7 and 8 we can see the two qualitatively different forms

of the spectral function. For relatively large momenta, we have

two peaks at the real part of the dispersions, and the width of the

peaks is determined by the imaginary part of the dispersions. In

the small-momenta region where both dispersions are purely

imaginary, we have a continuum for both negative and positive

frequencies. Still, the spectral function has a maximum and a

minimum. Therefore in agreement with the large-momentum

case we can also define the position of these extrema as the

dispersion. So, contrary to what the analytical dispersion given

by Eq. (53) suggests, for small momenta the spectral function

also has a maximum and minimum at nonzero energy.

Finally, we check if the spectral function satisfies the sum

rule given by Eq. (44). In the low-frequency approximation for

the retarded self-energy we can integrate the spectral function

1
0−

6
ρ
(k

,ω
)/

β

ω 109 Hz
-2 -1 0 1 2

-2

-1

0

1

2

( )

FIG. 7. (Color online) A plot of the spectral function as a function

of ω for nm = 9 × 1023 m−3 and n0 = 1012 m−2. In this plot kξ ≃
3.8 × 10−2.
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FIG. 8. (Color online) Plot of the spectral function as a function

of ω for nm = 9 × 1023 m−3 and n0 = 1012 m−2. In this plot kξ ≃
1.9 × 10−5.

analytically, and we obtain
∫

d(h̄ω) ρ(k,ω) =
1

1 + α2
. (54)

Since we are in the Bose-Einstein condensed phase α ≃ 4.5 ×
10−3, and we satisfy in very good approximation the sum

rule. Note that this small deviation from the sum rule is a

consequence of making the low-energy approximation to the

self-energy. Namely, this approximation for the self-energy is

only valid for small energies, and therefore the high-frequency

behavior is not incorporated correctly. However, without this

low-energy approximation the self-energy has the correct low-

energy and high-energy limits, and we indeed find that the

spectral function with the full self-energy satisfies the sum

rule.

V. CONCLUSION AND OUTLOOK

In this work we constructed a theory for Bose-Einstein

condensation of photons in a dye-filled cavity. By using the

Schwinger-Keldysh formalism, we obtained a Langevin field

equation that describes the complete dynamics of the photons.

In particular, it incorporates both the coherent and incoherent

dynamics of the gas. Furthermore we found that the finite

lifetime of the photons can be captured in a single parameter

α, which depends on the external laser pumping the dye.

In addition, we also found an analytic expression for this

parameter. In the homogeneous case we have shown that our

theory incorporates the correct equilibrium properties of the

gas.

Subsequently, we calculated the collective modes and

spectral functions of the homogeneous photon gas in the

normal and Bose-Einstein condensed state. In both phases

we found that the lifetime of the photons in the cavity is

in the nanosecond regime, which is the same regime as

found experimentally in Ref. [9]. Moreover, we obtained

that the dynamics of the collective modes is underdamped.

Furthermore, in agreement with the results of Ref. [29] for

exciton-polaritons, we found in the Bose-Einstein condensed

phase that dispersions become formally purely imaginary

for small momentum. Nevertheless, for small momentum

the spectral function also has qualitatively a maximum and

minimum at nonzero energy. Finally, in both phases the

spectral function is well behaved and satisfies the sum rule.

In future research we will consider in detail the fluctu-

ations, in particular the phase fluctuations, of the photon

Bose-Einstein condensate. For a condensate density of n0 ≃
1012 m−2, the trap length l =

√

h̄/mph� ≃ 7.8 × 10−6 m is

about 2 times smaller than the coherence length ξ . However, a

condensate density of n0 ≃ 1013 m−2 results in a trap length l

that is about 2 times larger than the coherence length ξ . Both

condensate densities are accessible experimentally [9], and

therefore we intend to explore both the regime of Bose-Einstein

condensation and the quasicondensate regime.
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