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A theoretical method for treating collisions in the presence of multiple potentials is developed by employing the

Schwinger variational principle. The current treatment agrees with the local (regularized) frame transformation

theory and extends its capabilities. Specifically, the Schwinger variational approach gives results without the

divergences that need to be regularized in other methods. Furthermore, it provides a framework to identify the

origin of these singularities and possibly improve the local frame transformation. We have used the method to

obtain the scattering parameters for different confining potentials symmetric in x,y. The method is also used to

treat photodetachment processes in the presence of various confining potentials, thereby highlighting effects of

the infinitely many closed channels. Two general features predicted are the vanishing of the total photoabsorption

probability at every channel threshold and the occurrence of resonances below the channel thresholds for negative

scattering lengths. In addition, the case of negative-ion photodetachment in the presence of uniform magnetic

fields is also considered where unique features emerge at large scattering lengths.
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I. INTRODUCTION

Frame transformation theory constitutes an important theo-

retical toolkit describing Hamiltonian systems with several

potential terms which are dominant in different regions.

A particular class of frame transformations, i.e., the local

frame transformation (LFT), can provide pivotal insights

for quantum mechanical systems which are approximately

separable, usually in different coordinates, at small or large

distances but are not separable over all space. In their seminal

papers, Fano [1] and Harmin [2–4] developed the principles of

the LFT theory permitting the theoretical treatment of highly

excited alkali-metal atoms in the presence of external electric

fields and interpreting on physical grounds the corresponding

photoabsorption spectra.

In addition, the unique properties and intuitive insights

make the LFT theory the key framework in the investigations

of atom-electron collisions under the action of uniform

magnetic [5] or electric fields [6–9]. The description of the

corresponding photoabsorption spectra in terms of the LFT

approach is accurate even though only a few channels were

involved in the actual calculations.

However, in 1966 it was shown that the inclusion of

all closed channels yields nontrivial effects when a charged

particle is scattered by a zero-range potential in the presence

of a magnetic field [10]. In particular, it was shown that there

always exists a bound state for negative scattering length that is

collectively supported by all the closed channels (Landau lev-

els) induced by the magnetic field. The properties of this bound

state were subsequently investigated in the context of negative-

ion photodetachment in weak magnetic fields [11]. However,

similar effects also appear in ultracold two-body collisions

in tight waveguide geometries yielding confinement-induced

resonances of the Fano-Feshbach type [12]. Such scenarios

have been studied in terms of LFT theory for either atom-atom
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scattering [13–16] or dipole-dipole collisions [17]. LFT theory

provided the most complete theoretical framework in order

to describe the relevant collisional physics encompassing the

concept of infinitely many closed channels. Interestingly, this

permitted the theory to go beyond previous studies where the

impact of the closed channels is included in an averaging

sense [18,19]. However, the integration of the concept of

infinitely many closed channels in the LFT approach yielded

divergences, which required regularization techniques to be

employed to remove the singular behavior [13,14,16,17].

Evidently, an approach that incorporates the concept of

infinitely many closed channels while avoiding the infinities

of the LFT treatment could be useful. Such a formalism

could provide quantitative insights into the origins of the LFT

singularities while preserving the physical intuition of LFT.

Also, it could allow the systematic study of nontrivial effects

arising from the full Hilbert space in collisional systems, e.g.,

the scattering of an electron in a Rydberg state from a neutral

perturber [20].

In this paper, a Schwinger variational K-matrix ap-

proach [21–23] is developed for treating Hamiltonians with

two potential terms which dominate at different length scales.

We restrict our treatment in this paper to the situation of

symmetric confining potentials in x,y and no force in z; the

more general case of asymmetric potentials and/or forces in z

will be treated elsewhere. Note that the Schwinger variational

principle has been successfully used for the quantitative study

of Rydberg molecules [24], Rydberg atoms [25], electron

scattering [26,27], and electron-molecule collisions [28–30].

However, in most of these studies, the trial function is

composed from a superposition of basis functions (often

Gaussian orbitals), which requires numerical evaluation of

complicated volume integrals. In our analysis, such compli-

cations are avoided due to the length-scale separation between

the two potential terms, permitting us to treat the scattering

information analytically.

This paper focuses on the case of a short-range spherically

symmetric interaction potential with a confining potential that

bounds all the degrees of freedom apart from one at large

distances. Note that these types of Hamiltonians refer to
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the physical systems of atom-atom collisions in tight waveg-

uides or negative-ion photodetachment processes in external

fields. Under these considerations, the calculations within

the Schwinger variational framework are compared to the

corresponding regularized LFT derivations for two different

confining potentials (a harmonic-oscillator and an infinite

square-well potential), yielding identical results. However,

in the current Schwinger variational K-matrix approach, the

infinitely many closed channels associated with the confining

potential produce finite results without regularization.

The spirit of the current approach shares a few similar-

ities with approaches such as multichannel quantum defect

theory [31], R matrix [31,32], two-potential formalism (e.g.,

see Ref. [33]), etc. Like the two-potential scattering for-

malism [33], the present method is derived from an exact

scattering relation and can incorporate the nonperturbative

interplay between different potentials and accurately describes

collision processes even when each of the two potentials yields

maximal scattering. In addition, the current framework can

treat a plethora of two potential Hamiltonians which possess

different symmetries in different regions of the configuration

space and can treat cases where one of the potentials diverges at

large distances. The ability to treat potentials having different

symmetries even makes it possible to describe resonant

phenomena associated with the strong admixture of infinitely

many closed channels. Although the formalism below can be

implemented fully numerically, we apply it to cases where the

corresponding Hamiltonian possesses length-scale separation

in order to obtain analytic expressions for the wave function

and scattering parameters. Comparisons between the analytical

and fully numerical results showed excellent agreement (e.g.,

see Fig. 8) even when the two potentials slightly overlapped,

justifying the validity of the approximations considered in the

present formalism.

Our analysis includes several applications of the current

formalism to collisions in the presence of either harmonic

or infinite square-well confining potentials where the corre-

sponding photoabsorption spectra for s-wave photoelectrons

possesses unique features. Namely, the total photoabsorption

probability vanishes at every channel threshold regardless

of the specific details of the confining geometries. This

threshold phenomenon illustrates the impact of the closed-

channel physics on the collisional complex. In addition to

the cases of harmonic and infinite square well confining

potentials, the current development is applied also to infinite

rectangular potentials and to off-centered scattering in an

infinite square well. These particular systems illustrate the

physics of infinitely many closed channels in the absence of

degeneracies in the spectra of the confining Hamiltonians.

As a final application, negative-ion photodetachment in the

presence of a uniform magnetic field is treated. Note that

this particular system has been thoroughly investigated both

experimentally [34,35] and theoretically [5,19,36]. However,

in most of the theoretical investigations only the open-channel

physics was considered and this permits us to explicitly show

the impact of the closed channels. More specifically, our

results are compared to the approximate LFT treatment in

Ref. [5], where only the open-channel physics was considered.

Qualitative changes occur only near thresholds for small

scattering lengths. However, these features are enhanced in

the cases where the scattering length is comparable to the

confinement length scale, which implies enormous scattering

lengths for laboratory-strength magnetic fields or ultrastrong

magnetic fields for the usual scattering lengths.

Section II introduces the basic concepts which are used in

the rest of this work. Section III focuses on the derivation

of the Schwinger variational K matrix for the confining

potentials of a harmonic or a square-well potential assuming

that the short-range spherically symmetric potential induces

partial waves with angular and azimuthal quantum numbers

(ℓm) = [(00),(10),(1 ± 1)]. In addition, connections between

the current formalism and the LFT theory are discussed.

Section IV is devoted to the discussion of several applica-

tions of the Schwinger variational K matrix, as well as its

comparison with numerical simulations. Several appendixes

give some of the details of the derivations. Finally, Sec. V

summarizes and concludes our analysis.

II. BASIC DEFINITIONS AND RELATIONS

This section contains the conventions used in this paper

for the different Hamiltonians with additive potentials, the

scattering wave functions, and the basic scattering parameters

(e.g., the K matrix). In addition, the definitions of the

corresponding Green’s functions are also included. Since

there are many possible conventions, this will allow for

unambiguous definitions of parameters.

A. Hamiltonians

The scope of this work is to treat the interaction of a particle

with different potentials that have qualitatively different char-

acter, with the focus on the case where the particle’s motion is

unbounded in one direction. The continuum solutions can be

obtained and used for the calculation of scattering parameters,

photoionization and/or photodetachment cross sections, etc.

The full scattering information is encapsulated in the full

Hamiltonian Ĥ , which reads

Ĥ |ψ〉 = (Ĥf + V̂ ) |ψ〉 = E |ψ〉 , (1)

where Ĥf = p2/2μ is the free-particle Hamiltonian and μ

indicates its mass. V̂ corresponds to the operator of the total

potential, |ψ〉 is the scattering wave function, and E is the total

energy.

In the following we assume that the operator V̂ in the

full Hamiltonian Ĥ is the sum of two potentials, V̂s and V̂c,

which possess simple functional forms in different coordinate

systems. The two potentials are such that the wave function

is easily calculated for each potential individually. More

specifically, the V̂c will be a smooth potential that extends

over large separation distances and affects the asymptotic

boundary conditions in |ψ〉. In this study, the V̂c is considered

to bound the motion of the particle in all the degrees of

freedom except one. For example, this potential could be a

harmonic one, Vc(r) = (μ/2)ω2
⊥(x2 + y2) with frequency ω⊥,

which separates in cylindrical coordinates, or an infinite square

well on the x-y plane which separates in Cartesian coordinates.

The Vs(r) is a potential that is nonzero in a small volume τ

and could be a spherically symmetric potential at the origin.
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One key observation concerns the length-scale separation

between the V̂s and V̂c potential terms. With this assumption

in mind, two new Hamiltonians are defined which use solely

one potential term each. The Ĥc is the Hamiltonian that only

contains V̂c and does not contain the Vs ,

Ĥc|ψc〉 = E|ψc〉, (2)

where |ψc〉 is the corresponding wave function and E is

the total energy. The solutions are analytic functions and

are used in the following to define the asymptotic form of

the scattering wave function. In addition, the corresponding

collisional information can be expressed in terms of these

states.

Consider now the Hamiltonian Ĥs which contains only the

V̂s potential. Then the corresponding Schrödinger equation

reads

Ĥs |ψs〉 = E |ψs〉 , (3)

where the eigenfunctions of this Hamiltonian have a simple

form because they do not include the complicated boundary

conditions that arise from the confining potential, V̂c. Intu-

itively, Eq. (3) describes the motion of the particle at small dis-

tances where it experiences solely the short-range potential V̂s .

B. Scattering wave functions and K matrix

In this section the scattering wave functions of the Ĥs

and Ĥc Hamiltonians are defined. More specifically, for the

Hamiltonian Ĥs the corresponding potential term, namely V̂s ,

possesses spherical symmetry and is short ranged. Therefore,

the |ψs〉 wave functions in Eq. (3) are expressed in spherical

coordinates as radial functions times spherical harmonics.

At distances r > r0, the V̂s is negligible, namely Vs(r0) ≈ 0;

therefore, the K-matrix normalized radial functions are phase

shifted from the free-particle wave function according to the

relation

〈r|ψs〉 = ψs,ℓm(r)

=
√

2μk

π�2
[jℓ(kr) − tan δℓnℓ(kr)]Yℓm(�), (4)

where the parameter k is defined from E = �
2k2/(2μ) and the

functions Yℓm(�) represent the spherical harmonic functions

defined at angles �. The spherical Bessel [jℓ(kr)] and

Neumann [nℓ(kr)] functions correspond to the regular and

irregular solutions of the Hamiltonian Ĥs . The term δℓ denotes

the phase shift induced by the potential V̂s .

In the following, the energy-normalized regular and irreg-

ular solutions of the Hc Hamiltonian are defined together

with the corresponding scattering matrices. The symbol ψc

represents the regular functions at the origin and χc represents

the irregular functions. Since the Vc potential confines the

motion in the x and y directions, then the parity in the z

direction, namely 
z, is a good quantum number and hence the

asymptotic forms of the regular wave functions are expressed

as even and odd solutions,

ψ (e,o)
c,α (r) = �α(x,y)

√

μ

π�2kα

×
{

cos(kαz), for 
z = +1,

sin(kαz), for 
z = −1,
(5)

and the irregular wave functions are similarly expressed in

terms of even and odd solutions,

χ (e,o)
c,α (r) = �α(x,y)

√

μ

π�2kα

×
{

sin(kα|z|), for 
z = +1,

− z
|z| cos(kα|z|), for 
z = −1,

(6)

where the �α(x,y) are a complete basis of orthonormal

eigenfunctions of the transverse part of the Ĥc Hamiltonian

and their specific form is dictated by the particular type

of confining potential V̂c. The superscript notation (e,o)

in Eqs. (5) and (6) denotes the even (
z = +1) and odd

(
z = −1) solutions, respectively. The total energy is given

by the relation E = �
2k2

α/2μ + Eα where Eα is the energy

of the transverse function �α(x,y). These equations assume

E > Eα , assuring, therefore, that the solutions possess an

oscillatory behavior. If the E < Eα , then there are functions

that are real exponentials in z.

The scattering solutions of the full Hamiltonian Ĥ at energy

E can be expressed at small distances as linear combinations of

the eigenfunctions of the Ĥc Hamiltonian at this same energy

E. Moreover, if the scattering potential is an even function of

z, then the solutions separate into sums over the even functions

or sums over the odd functions. In this situation, the asymptotic

form of the exact wave function of the Hamiltonian Ĥ can be

written as

ψ (e,o)
α (r) = ψ (e,o)

c,α (r) −
∑

β

χ
(e,o)
c,β (r)K

(e,o)
βα , (7)

where the elements K
(e,o)
βα indicate the K-matrix elements of

even or odd states in the z direction. The α,β indexes label the

open channels (E > Eα,β), meaning that the corresponding

wave function possesses an oscillatory behavior as |z| → ∞.

On the other hand, asymptotically the closed channels (E <

Eα) are described via the functions

ϒ (e)
α (r) = �α(x,y)

√

μ

π�2κα

exp(−κα|z|), (8)

where the energy of the closed channels is given by the relation

E = −�
2κ2

α/2μ + Eα .

Having specified the scattering eigenfunction of the Ĥc

Hamiltonian, the corresponding K matrix fulfills the relation

Kαβ = −π 〈ψc,α|V̂s |ψβ〉 , (9)

where α,β label open channels. In addition, the |ψc〉 , |ψ〉 are

the exact solutions of Ĥc and Ĥ Hamiltonians, respectively.

Equation (9) can be expressed in a more general way by

substituting the exact relation V̂s |ψβ〉 = (E − Ĥc) |ψβ〉 and

integrating by parts twice. Using this, the volume integral in

Eq. (9) can be recast as a surface integral that is a simpler

expression for the corresponding K matrix,

K
(e)
αβ = −�

2π

μ

∫∫

Wz

[

ψ (e)∗
c,α (r),ψ

(e)
β (r)

]

dxdy, (10)

where the term Wz[·] indicates the Wronskian with respect

to the z direction and is evaluated at large-enough |z| that

the closed functions of Eq. (8) are effectively 0. The closed

channels are in the full wave function and could lead to
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resonances but do not contribute to the surface integrals at

large |z|.

C. Free particle and confining Green’s functions

The Hamiltonians introduced in Eqs. (2) and (3) permit

us to straightforwardly define the two corresponding Green’s

functions,

Ĝf ≡ 1

E − Ĥf

, Ĝc ≡ 1

E − Ĥc

, (11)

where Ĝc only includes the confining potential and Ĝf is

the free-particle Green’s function for the Hamiltonian with no

potential energy. The specific asymptotic boundary conditions

in Eq. (11) are determined by how the pole is handled.

The outgoing and/or incoming free-particle Green’s func-

tion Ĝf in the position representation can be written as

〈r1|Ĝ±
f |r2〉 = G±

f (r1,r2) = − μ

2π�2

e±ikr12

r12

, (12)

where r12 = |r1 − r2| and the “+” (“−”) denotes the outgoing

(incoming) Green’s function. The standing wave Gf is derived

simply by taking the real part of either G±
f .

The outgoing and/or incoming Green’s function when only

the confining potential is present reads

〈r1|Ĝ±
c |r2〉 = G±

c (r1,r2)

=
α0

∑

α=1

∓iμ

�2kα

�∗
α(ρ1)�α(ρ2)e±ikα |z1−z2|

+
∞

∑

α=α0+1

μ

�2κα

�∗
α(ρ1)�α(ρ2)e−κα |z1−z2|, (13)

where ρ is a vector lying in x-y plane. The index α0 denotes

the last open channel for a given total energy E. As with the

Ĝ±
f , the standing wave Ĝc can be obtained from the real part

of Ĝ±
c . Note that this property does not hold in the case of

charged-particle motion in magnetic fields.

One important observation is that every Green’s function

diverges as r12 → 0 in the same way for any energy not at a

threshold of Hc,

Gany(r1,r2) = − μ

2π�2

1

r12

+ O
(

r0
12

)

, (14)

for small r12; this result also does not depend on whether the G

obeys standing-wave or incoming and/or outgoing boundary

conditions. This means the difference of any two Green’s

functions is finite everywhere except for energies exactly at

threshold. In the expressions below, we arrange to only have

integrals that involve the differences of Green’s functions times

functions that are finite and nonzero in a finite region. Thus,

our expressions will automatically be finite without the need

for regularization procedures.

In this work, the standing-wave solutions are employed;

therefore, the corresponding Green’s functions; i.e., Ĝf and

Ĝc denote the principal-value ones.

III. SCHWINGER VARIATIONAL PRINCIPLE

This section presents a derivation of the K matrix in terms

of the Schwinger variational principle. The main focus of this

derivation is the standing-wave solution and the corresponding

Green’s function. However, note that a similar derivation can

be carried out in cases of incoming and/or outgoing boundary

conditions.

Using the Lippmann-Schwinger equation, |ψα〉 = |ψc,α〉 +
ĜcV̂s |ψα〉, and its Hermitian conjugate in Eq. (9), an identity

for the K matrices is fulfilled,

Kαβ = −π 〈ψc,α|V̂s |ψβ〉 = −π 〈ψα|V̂s |ψc,β〉 , (15)

where the relation Ĝ
†
c = Ĝc is used. This expression is

equivalent to the two-potential formalism [33], Eq. (38.6),

but has a different form; the scattering from Vc is incorporated

into Eq. (15) through the Green’s function Ĝc, whereas the

two-potential approach only employs the free space Green’s

function.

A Schwinger-type variational expression for the K matrix

can be obtained with the help of Eq. (15) and the trial functions

|ψ (t)〉 = |ψ〉 + |δψ〉 of the full Hamiltonian H ,

Kvar
αβ ≡ −π

[〈

ψc,α

∣

∣V̂s

∣

∣ψ
(t)
β

〉

+
〈

ψ (t)
α

∣

∣V̂s

∣

∣ψc,β

〉

−
〈

ψ (t)
α

∣

∣V̂s

∣

∣ψ
(t)
β

〉

+
〈

ψ (t)
α

∣

∣V̂sĜcV̂s

∣

∣ψ
(t)
β

〉]

, (16)

where the variational expression for the K matrix, Kvar, equals

the exact K matrix, i.e., Eq. (9), plus terms of order δψ2:

Kvar
αβ = −π [〈ψc,α|V̂s |ψβ〉 − 〈δψα|V̂s − V̂sĜcV̂s |δψβ〉]

= Kαβ + O(δψ2). (17)

The trial functions |ψ (t)
β 〉 are often written as linear combina-

tions of a basis set of functions |yj 〉,
∣

∣ψ
(t)
β

〉

=
∑

j

|yj 〉 Cjβ . (18)

Substituting Eq. (18) in Eq. (16), the coefficients Cjα are

specified by requiring Eq. (16) to be variationally stable, i.e.,

∂Kvar
αβ /∂Cjβ = 0. This yields the basis expansion version of

the Schwinger variational expression, Kvar
αβ , which reads

Kvar
αβ = −π

∑

jj ′
〈ψc,α|V̂s |yj 〉 [M−1]jj ′ 〈yj ′ |V̂s |ψc,β〉 , (19)

where Mj ′j = 〈yj ′ |V̂s − V̂sĜcV̂s |yj 〉. In addition, the trial

functions |ψ (t)
α 〉 can be evaluated via the coefficients Cα,j which

fulfill the following relation:

Cjβ =
∑

j ′
[M−1]jj ′ 〈yj ′ |V̂s |ψc,β〉 . (20)

One of the main points of a variational principle is that an

exact K matrix is obtained if the |ψ (t)〉’s equal the exact |ψ〉’s.

For the Schwinger variational principle, all the corresponding

expressions for the K matrix involve terms of V̂s |ψ (t)〉. This

implies that the exact result for the K matrix is obtained for the

Schwinger variational principle even if the |ψ (t)〉 satisfies the

somewhat looser condition Vs(r)δψ(r) = 0, which is exploited

in the next section.
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In particular, this condition can be satisfied at large and

small distances r . At large distances, the potential V̂s vanishes,

implying that the δψ(r) parts of the trial functions |ψ (t)〉 which

are nonzero in this region do not contribute to the K-matrix

calculation. On the other hand, the trial functions at small

distances can be chosen such that they are exact solutions of

the full Hamiltonian Ĥ , yielding, therefore, δψ(r) = 0 at small

r . This imposes a constraint on the choice of the trial functions

or the basis expansions that is employed in the next section.

With these choices, the exact K matrix is obtained even if the

|ψ (t)〉 is not an eigenfunction of the full Hamiltonian Ĥ over

all space.

An additional feature is that if Vs(r) �= 0 in a small region

of space (and for a limited range of low energies), only the

low-ℓ angular momentum partial waves of |ψ (t)〉 are needed

to calculate the K matrix. This holds only away from high-ℓ

resonances due to the fact that as the angular momentum ℓ

increases the amplitude of the corresponding wave functions

in the region of Vs(r) �= 0 vanishes. Therefore, these high-ℓ

states will not contribute to the scattering information.

IV. K MATRIX FOR TWO POTENTIALS: APPLICATION

OF THE SCHWINGER VARIATIONAL PRINCIPLE

An important special case is when the potential V̂s = Ĥ −
Ĥc is nonzero over a range small enough that the potentials in

Ĥc Hamiltonian are considered effectively zero (or constant)

over the range of V̂s . This will allow us to simplify all of

the integrals in Eqs. (19) and (20), and in some cases the

corresponding results are simple analytic functions. To reduce

the amount of new material, we have restricted the scattering

systems to have no z dependence to the potential and for

the confining potential to have symmetry in x,y. Finally, an

important consideration for this section is to obtain expressions

for the M-matrix elements, Eq. (19), as a simple analytic term

and a term involving an integral over finite functions.

A. General expression of the K matrix for short-ranged

spherical symmetric potential V̂s

As discussed at the end of Sec. III, only low-ℓ angular

momentum partial waves contribute to the calculation of the

K matrix when V̂s is assumed to be short ranged. Therefore,

for such a short-range potential only the first two angular

momentum states will be considered, i.e., ℓ = 0 and 1. This

approximation will allow us to obtain closed form expressions

of all the K-matrix elements in terms of the ℓ = 0 and 1 phase

shifts.

Since the full potential V̂ is symmetric in z, the K matrix

separates into even- and odd-channel blocks. For each parity

state of the Ĥc Hamiltonian, only one basis function is used

in Eq. (19), which is the solution of Ĥ Hamiltonian. This will

provide the exact scattering information given that the length

scale of the potential terms V̂s and V̂c in the full Hamiltonian Ĥ

are well separated. In other words, the length-scale separation

implies that in the region of V̂s �= 0 the states |ψs〉 [see Eq. (3)]

will not be modified by the confining potential V̂c.

To be precise, if there is a potential that only scatters s

and p waves at some specified (low) energy, then the potential

only extends over a very short range. The wave function in

the region near the scatterer, at position rs , is most easily

represented in spherical coordinates. The difficulty will be to

evaluate the integrals involving the |ψc〉 and the corresponding

Ĝc, which will often be most easily represented in a different

coordinate system. The reason that the exact scattering infor-

mation is obtained from the Schwinger variational principle is

that the exact wave function of the full Hamiltonian (including

large r boundary conditions) must have the form ψ(r) =
Cψs(r) + ξ (r). Note that ψs is the spherical wave centered

at rs that does not obey the large-r boundary conditions of the

full Hamiltonian. The function ξ = ψ − Cψs only has ℓ � 2

partial waves at rs , which implies Vs(r)ξ (r) = 0 everywhere.

This means the exact K matrix can be written as

Kαβ = −π
〈ψc,α|V̂s |ψs〉 〈ψs |V̂s |ψc,β〉

〈ψs |V̂s − V̂sĜcV̂s |ψs〉
, (21)

where each term is now a single matrix element. The terms in

the numerator give a finite result because the V̂s |ψs〉 is nonzero

only over a finite region. Although the term in the denominator

is not obviously finite because the Ĝc diverges in proportion

to 1/|r1 − r2|, the derivation below shows that this term can

be written as convergent sums.

The evaluation of the term in the denominator of Eq. (21)

is complicated by the fact that the Ĝc is simple in a different

coordinate system from that of |ψs〉 and V̂s [24,26,28–30].

However, these complications can be avoided by adding and

subtracting the Green’s function for a free particle, Ĝf ,

〈ψs |V̂s − V̂sĜcV̂s |ψs〉 = Is + Ds, (22)

with the new parameters Is and Ds defined as

Is = 〈ψs |V̂s − V̂sĜf V̂s |ψs〉 = − 1

π
tan δℓ, (23)

where the |ψs〉 indicates a state of a particular angular

momentum ℓ possessing the form of Eq. (4) and

Ds = 〈ψs |V̂s�ĜV̂s |ψs〉 = 〈ψs |V̂s(Ĝf − Ĝc)V̂s |ψs〉 . (24)

These manipulations have the advantage that the Is is simply

related to the no-confinement phase shift and the Gf (r1,r2) −
Gc(r1,r2) function is finite for all values of r1 and r2. Thus, the

expression in Eq. (24) is finite because the V̂s |ψs〉 is finite with

a finite range and its square is multiplying a finite function.

Note that a similar difference of Green’s functions appears also

in the methods presented in Refs. [9,37], yielding thus finite

results.

One important observation is that the K matrix in Eq. (21)

is essentially separated in factors of matrix elements. This is

crucial since it allows us to treat each factor separately in a

pedagogical manner. The following sections are devoted to

providing their explicit analytical expressions.

B. Matrix elements with V̂s |ψs〉

It is evident from Eq. (21) that most of the integrals involve

terms of V̂s |ψs〉; thus, this section mainly focuses on the

integrals of the form

〈ψc|V̂s |ψs〉 =
∫

τ

ψ∗
c (r)Vs(r)ψs(r)d3r, (25)
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where τ is the smallest volume that contains the region where

Vs(r) �= 0. Recall that the function ψc(r) is an eigensolution

of the Ĥc Hamiltonian. Since the Vs(r) is nonzero only over

a small region, the integral should only be performed over a

volume τ that contains this region.

Appendix A gives the prescription for evaluating these

matrix elements for ℓ � 1. The basic idea is to convert the

volume integral into a surface integral, which is possible due

to the length-scale separation between the range of V̂s and

where the V̂c becomes non-negligible. The main results are

〈

ψ (e)
c,α

∣

∣V̂s |ψs,00〉 = �∗
α(0,0)

√

2π

kkα

(

− 1

π
tan δ0

)

, (26)

〈

ψ (o)
c,α

∣

∣V̂s |ψs,10〉 = �∗
α(0,0)

√

6πkα

k3

(

− 1

π
tan δ1

)

, (27)

〈

ψ (e)
c,α

∣

∣V̂s |ψs,1±1〉 = ∓(∂±�α)∗
∣

∣

∣

∣

0

√

12π

kαk3

(

− 1

π
tan δ1

)

, (28)

where (∂±�α) ≡ [∂�α(r)/∂x ∓ i∂�α(r)/∂y]/2.

C. Analytic expressions for the Ds matrix elements

This section focuses on the Ds matrix elements. One

of the main assumptions here is that the V̂s potential is

centered symmetrically with respect to the confining potential;

for example, V̂s is at the origin and Vc(x,y) = Vc(y,x) and

Vc(x,y) = Vc(−x,y), etc. This allows us to resolve possible

challenges with respect to the scattering of ℓ = 1,|m| = 1.

The Ds matrix elements for ℓ = 0,m = 0 and for ℓ = 1,m

can be written in the compact form,

Ds,ℓm =
(

1

π
tan δℓ

)

tan δℓ

[a⊥k]2ℓ+1
ηℓm(E), (29)

where the a⊥ is a relevant length scale for the confinement

potential V̂c and the ηℓm(E) function is defined in terms of the

�G defined in Appendix B. For ℓ = 0,m = 0 and ℓ = 1,m,

they are defined as

η00(E) = 2π�
2

μ
a⊥�G(0),

η10(E) = −6π�
2

μ
a3

⊥�Gzz(0), (30)

η1±1(E) = −6π�
2

μ
a3

⊥�Gρρ(0).

It is important to note that the expression for �G converges

for nonzero �z without the need for regularization. In order

to investigate in detail the �z dependence at �ρ̃ = �ρ

a⊥
≪ 1,

the function Ŵ(r1,r2,E) ≡ 2π�
2a⊥�G(r1,r2)/μ is defined,

which reads

Ŵ(r1,r2,E) = − 2π

αo
∑

α=1

a2
⊥�∗

α(ρ1)�α(ρ2)
sin(k̃α|�z̃|)

k̃α

+ 2π

∞
∑

α=αo+1

a2
⊥�∗

α(ρ1)�α(ρ2)
e−κ̃α |�z̃|

κ̃α

− cos(k̃r̃12)

r̃12

, (31)

where the Eαo
< E < Eαo+1 defines the open and closed

channels. Parameters with a tilde have been scaled by the

length scale a⊥ to become dimensionless: �z̃ = �z/a⊥,

k̃ = ka⊥, k̃α = kαa⊥, and κ̃α = καa⊥. In the expression for

Ŵ, the first term is the contribution from the open channels

to Ĝc, the second term is the contribution from the closed

channels to Ĝc, and the last term is the contribution from Ĝf .

The three ηℓm(E) [see Eq. (30)] functions are derived from

the Ŵ(r1,r2,E) in the limit �z̃ → 0+ and �ρ̃ ≪ �z̃. Physical

considerations from Eq. (B1) means the expansion of the

Ŵ(r̃1,r̃2,E) will have the form

Ŵ(r1,r2,E) ≃ η00(E) + η10(E)

3
z̃1z̃2

+ η11(E) + η1−1(E)

6
ρ̃1 · ρ̃2. (32)

The physical meaning of the ηℓm(E) terms is that they

encapsulate the impact of the confining geometry, i.e., V̂c, on

the short-range spherical symmetric potential V̂s . Indeed, ηℓm

conveys the information of each spherical wave of ℓm character

induced by the V̂s at short distances, which is distributed over

the asymptotic α channels imposed by V̂c at long distances.

Evidently, the explicit form of the ηℓm terms depends on

the specific type of the confining geometry. Therefore, in

Appendix C, the ηℓm(E) terms are evaluated in detail for

two types of confining potentials, e.g., the harmonic and the

square-well potential.

D. Test of Taylor series expansion of �G

Figure 1 explores the various approximations on the

quantity Ŵ which were discussed in Eqs. (31) and (C3)

considering that the confining potential is a harmonic one. The

solid line in Fig. 1 depicts Ŵ − quantity from Eq. (31) at energy

infinitesimally above the threshold E = �ω⊥ as a function of

�z̃ for ρ1 = ρ2 = 0. The latter means that the azimuthal quan-

tum number m is set equal to zero. The red dashed line in Fig. 1

corresponds to Eq. (C3), which is obtained by calculating the

FIG. 1. (Color online) The quantity Ŵ of Eq. (32) as a function

of �z/a⊥for the confining potential of the harmonic oscillator

infinitesimally above the threshold energy E = �ω⊥, where ρ1 =
ρ2 = 0. The black solid line denotes the sum in Eq. (C3). The red

dashed line depicts the approximation Eq. (32) using Eq. (44). The

blue dotted line indicates a numerical extrapolation of Ŵ(r1,r2,E) ≡
Ŵ(�z̃ → 0+,�ρ̃ → 0,E) ≃ [4Ŵ(�z̃,0,E) − Ŵ(2�z̃,0,E)]/3.
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FIG. 2. (Color online) The quantity Ŵ of Eq. (32) for the square

well infinitesimally above the threshold energy E = �
2π 2/[μa2

⊥] as

a function of �z̃ for ρ1 = ρ2 = 0. The black solid line denotes the

sum in Eq. (C7). The red dashed line indicates the approximation

Eq. (32) using Eq. (45). The blue dotted line is a numerical extrapola-

tion of Ŵ(r1,r2,E) ≡ Ŵ(�z̃ → 0+,�ρ̃ → 0,E) ≃ [4Ŵ(�z̃,0,E) −
Ŵ(2�z̃,0,E)]/3.

η00(E) and η10(E) using the method described in Appendix C.

The red dashed and the black solid lines are in excellent

agreement, especially for small �z̃. This highlights the validity

of the approximations that were considered in Eq. (C3). In

addition, the blue dotted line refers to ηℓ=0,m=0(E) parameter,

which is defined as a linear combination of the Ŵ(r1,r2,E)

functions, canceling in this manner terms of the order |�z̃|2
according to the relation Ŵ(r1,r2,E) ≡ Ŵ(�z̃ → 0+,�ρ̃ →
0,E) ≃ [4Ŵ(�z̃,0,E) − Ŵ(2�z̃,0,E)]/3. Therefore, in Fig. 1

the dotted, solid and dashed lines converge to the same

finite value of ηℓ=0,m=0 without exhibiting any divergences.

A similar analysis can be carried out for the ηℓ=1,m=0(E) and

ηℓ=1,m=±1(E), and it shows excellent convergence between

Eqs. (31) and (C3).

Similar to Fig. 1, Fig. 2 investigates the validity of

Eqs. (31) and (C7) for the case of a square-well confining

potential. Figure 2 mainly depicts the quantity Ŵ as function

of |�z̃| for ρ1 = ρ2 = 0 infinitesimally above the threshold

energy E = �
2π2/[μa2

⊥]. The black solid line indicates

Eq. (31) and the dashed line corresponds to Eq. (C7). It

is apparent that both relations are in excellent agreement,

in particular, for �z̃ → 0, suggesting in this manner the

regime of validity of the Eq. (C7). In addition, note that

the black solid and the red dashed lines converge to the

same value as �z̃ → 0, i.e., η00(E). Furthermore, the blue

dotted line in Fig. 2 consists of a linear combination of the

Ŵ(r1,r2,E) quantity such that terms of order |�z̃|2 are defined

by the relation Ŵ(r1,r2,E) ≡ Ŵ(�z̃ → 0+,�ρ̃ → 0,E) ≃
[4Ŵ(�z̃,0,E) − Ŵ(2�z̃,0,E)]/3. Evidently, in Fig. 2 this

linear combination (blue dotted line) is constant in the interval

of small �z̃ and corresponds in essence to the value of η00(E).

V. SCATTERING OBSERVABLES IN TERMS OF

THE SCHWINGER VARIATIONAL K MATRIX

This section utilizes key formulas developed in Sec. IV

in order to explicitly connect the Schwinger variational K

matrix of a two-potential Hamiltonian with all the relevant

scattering observables such as the photoabsorption cross

section. In addition, the transmission and reflection coefficients

for quasi-one-dimensional Hamiltonians are derived in terms

of the Schwinger variational K matrix. This derivation

permits us also to discuss the connection of the present

study with the theoretical framework of the LFT theory. We

reiterate that the derivation is for the case of the confining

potential being independent of z and symmetric in xy;

examples that do not follow these restrictions will be presented

elsewhere.

A. The explicit analytical expressions of the K matrix

and its connection with the LFT theory

In this section the formulas derived in the Secs. IV B

and IV C are the main constituents of the Schwinger variational

K matrix in Eq. (21). Recall that the short-range scatterer is

assumed to be placed at a symmetry point of the confining

potential. This implies that the K matrix will be nonzero in

blocks depending on whether the asymptotic channel α couples

to ℓm states. Note that each α channel is described by either

an even or odd function in the z direction; thus, these states

couple to ℓm spherically symmetric states if ℓ + m is either

even or odd, respectively.

In this manner, substituting Eqs. (23), (26), and (29) in

Eq. (21) the K matrix is provided for a given ℓm pair of

quantum numbers, where the type of confining geometry is

not specified. The latter permits us to provide a generic form

of scattering matrix elements which read

K
(e,o)
αβ = −Uα,ℓm

ã2ℓ+1
ℓ (E)

1 + ã2ℓ+1
ℓ (E)ηℓm(E)

[U †]ℓm,β, (33)

where the superscripts (e,o) refer to even or odd states in

the z direction, respectively. Note that the terms ã2ℓ+1
ℓ (E) =

a2ℓ+1(E)/a2ℓ+1
⊥ , where a2ℓ+1

ℓ (E) = − tan δℓ(E)/k2ℓ+1, corre-

spond to ℓ-wave energy-dependent scattering length (ℓ = 0)

or volume (ℓ = 1). It is important to note that for some

long-range fields, i.e., the polarization potential, the scattering

volume diverges in the limit of zero total energy. On the other

hand, in the problems of the present study the additional

confining potential sets a lower limit in the total energy

other than zero, avoiding in this manner the divergence of

the scattering volume. However, in the regime of extremely

weak confinement the lower bound in the total energy tends

to zero, yielding eventually a divergent scattering volume

which must be analyzed more carefully. ηℓm(E) is the next

energy-dependent parameter. For a specific ℓm state the ηℓm(E)

parameter intrinsically possesses threshold singularities which

occur below (α)-channel thresholds (see Figs. 3 and 4). The

matrix elements Uα,ℓm or its conjugate transpose [U †]ℓm,α

capture the coupling of the short- and long-range physics.

In other words, the matrix U contains the information that

relates the short-range quantum numbers ℓ and m with the α

ones which are fully dictated from the confining potential, i.e.,
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FIG. 3. (Color online) The η00 (black solid line), η10 (blue dotted

line), and η11/20 (red dashed line) for harmonic-oscillator confine-

ment as a function of the scaled energy ǫ = E/(�ω⊥).

long-range physics,

Uα,ℓm =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√

2πa⊥
kα

�α(0,0), ℓ = m = 0,
√

6πa3
⊥kα�α(0,0), ℓ = 1,m = 0,

∓
√

12πa3
⊥

kα
(∂±�α)

∣

∣

0
, ℓ = 1,m = ±1,

(34)

where the operators are defined below Eq. (28).

At this point it becomes evident that Eq. (34) is, in

essence, the LFT, which permits the projection of the α states

on the ℓ,m spherically symmetric states. Note that U in

Eq. (34) and the LFT transformation U in Refs. [5,16] are

connected according to the relation Uα,ℓm = Uα,ℓm(ka⊥)ℓ+1/2.

Therefore, specifying the type of the confining potential,

i.e., harmonic oscillator or square well, one obtains the

LFT either from cylindrical to spherical coordinates [5] or

from Cartesian to spherical coordinates [16]. In particular, in

Ref. [16], the ℓ = m = 0 derived LFT is identical to Eq. (34).

Similarly, the LFT of Ref. [5] provides the same results

FIG. 4. (Color online) The η00 (black solid line), η10/50

(blue dotted line), and η11/300 (red dashed line) for infinite

square-well confinement as a function of the scaled energy

ǫ = E/(4�
2π 2/[2μa2

⊥]).

as Eq. (34). However, for completeness reasons it should

be noted that there is a mistake in Eq. (27) of Ref. [5],

because strictly following the notation of Ref. [5] would yield

the new formula, namely Unl(m) = UB=0
qnl

(m)(2a)1/2[n!/(n +
|m|)!]−1/2[ 1

2
(2n + m + |m| + 1)]−|m|/2.

In addition, the K-matrix equation, namely Eq. (33), is

exactly the same as the corresponding physicalK matrices of

Refs. [13,14,16]. However, there is a conceptual difference

between the framework presented here and the framework

in Refs. [13,14,16]. This difference arises from the fact that

the K matrices in Refs. [13,14,16] did not obey the physical

boundary conditions for the closed channels; therefore, a

closed-channel elimination was employed in order to obtain

the physical K matrix, which obeys the proper boundary

conditions. This procedure yields ηℓm(E) functions which

involve only the sum parts of Eqs. (C3) and (C7). Thus, the

LFT leads to divergences. This singular behavior was removed

in a secondary step that required thoughtful implementation

of auxiliary techniques of regularization, such as Riemann ζ

function regularization [13,14] or residue regularization [16].

On the other hand, in the present theoretical framework no

such techniques need to be employed since, by definition,

ηℓm(E) functions are finite. However, note that ηℓm(E) possess

intrinsic threshold singularities at energies infinitesimally

below the channel thresholds of the confining potential.

Furthermore, the Schwinger variational formalism provides

an intuitive understanding of the regularization techniques. As

is shown in Appendix C, the ηℓm(E) functions consist of a

difference of a sum and its integral representation, whereas

the latter originates from the free-space Green’s function.

This piece of information is absent from the physical K

matrix in the LFT theory and it is incorporated by various

regularization schemes. Perhaps a comparison between the

derivation of the LFT and the present results could lead to a

deeper understanding of the source of the divergences in the

LFT and deserves to be studied in the future.

B. Photoabsorption cross section

Since the Schwinger variational K matrix is defined,

one can also define the electric dipole matrix elements and

consequently the photoabsorption cross section. For example,

these relations are needed for the treatment of negative-ion

photodetachment in the present of external fields. Initially, the

expression for the trial function coefficients on the basis of the

|ψs〉, i.e., Eq. (20) are defined as

Cℓm,α =
U

†
ℓm,α/[ka⊥]ℓ+1/2

1 + ã2ℓ+1
ℓ (E)ηℓm(E)

. (35)

Since we are interested in computing the cross section that

describes, for example, the excitation of a negative ion by pho-

ton absorption, the dipole matrix elements at small distances

are defined by the relation Dlm(E) = 〈ψℓm|ε̂ · r̂|ψinit〉. Note

that the term ε̂ · r̂ is the dipole operator with ε̂ denoting the

polarization vector and the state ψinit corresponds to the initial

state of the negative ion. Having defined the dipole matrix

elements at short distances, one can derive the dipole matrix

elements that describe the transition from the initial state to

the αth state which includes the confining potential. Therefore,
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the dipole matrix elements read

Dα = Dℓm(E)Cℓm,α =
D̃ℓm(E)U

†
ℓm,α

1 + ã2ℓ+1
ℓ (E)ηℓm(E)

, (36)

where the element D̃ℓm(E) = Dℓm(E)/(ka⊥)ℓ+1/2 typically

has less energy dependence than Dℓm(E).

In order to obtain photoabsorption cross sections, we define

the dipole matrix elements which describe the transitions

from the initial state to the incoming wave final state that

possesses only outgoing waves in the αth channel, yielding

the expression

D−
α =

∑

β

Dβ[(1 − iK)−1]βα, (37)

where the K matrix has rank 1 for each ℓm pair, with the

relevant eigenvector being proportional to the Dα . This allows

a relatively simple expression for the dipole matrix elements,

D−
α = Uα,ℓm

D̃ℓm(E)

1 + ã2ℓ+1
ℓ (E)

[

ηℓm(E) − iN2
ℓm

] , (38)

with

N2
ℓm =

αo
∑

α=0

|Uα,ℓm|2, (39)

where the summation index α indicates a sum over only open

channels. Then the total probability is proportional to |D−|2 =
∑

α |D−
α |2, which is the sum over the partial absorption terms

Pα = |D−
α |2. The sum reduces to the relation

|D−|2 = N2
ℓmD̃2

ℓm(E)
[

1 + ã2ℓ+1
ℓ (E)ηℓm(E)

]2 +
[

ã2ℓ+1
ℓ (E)N2

ℓm

]2
. (40)

C. Transmission and reflection coefficients

This section contains expressions for the transmission and

reflection coefficients of quasi-one-dimensional Hamiltonians

in terms of the Schwinger variational K matrix in Eq. (33). This

situation models the scattering aspects of two-body collisions

in the presence of a transverse harmonic potential or else

for collisional complexes of light particles being scattered by

heavy ones in the presence of a confining transverse potential.

By superposing the even and odd wave functions, the

solution with an incoming wave in the αth channel can be

obtained when s- and/or p-wave scattering dominates,

ψ+
α (r) = i

2

∑

β

ψ
(o)
β (r)[(1 − iK (o))−1]βα

+ 1

2

∑

β

ψ
(e)
β (r)[(1 − iK (e))−1]βα, (41)

where the ψ+
α (r) only has a wave incoming from negative z

in channel α. In the case of identical particle collisions having

only s-wave (p-wave) character, the odd (even) K matrix will

vanish, namely K (o) = 0 (K (e) = 0). On the other hand, in

the case of distinguishable particles, s and p waves could

potentially both be present, and then both even and odd parity

K matrices can contribute in the ψ+
α (r) wave function.

From the preceding equation one can define the matrices

of the corresponding reflection and transmission amplitudes

which fulfill the relations

r = iK

1 − iK
, t = 1

1 − iK
. (42)

In the case of s-wave scattering the reflection and trans-

mission amplitudes can be expressed in terms of the energy-

dependent scattering length and the matrix U :

rβα = −Uα,00

iã0(E)

1 + ã0(E)
(

η00(E) + iN2
00

) [U †]00,β ,

tβα = δβα + rβα. (43)

Note that similar expressions can be obtained for p- and s +
p-wave scattering but it is straightforward to derive them if

needed.

From these matrix elements, the scattering probabilities can

be obtained. The probability for an incoming wave in channel

α to reflect into channel β is |rαβ |2, while the probability to

transmit into channel β is |tαβ |2. Note that the reflection and

transmission probabilities are the same except when β = α.

This is understandable on physical grounds: a zero-range

potential scatters equally into +z and −z, but the β = α

channel has different interference with the incoming wave in

the +z and −z directions.

VI. RESULTS AND DISCUSSION

This section focuses on the various aspects and insights pro-

vided by the present framework of the Schwinger variational

K-matrix approach and its comparison with the LFT results. In

addition, a set of selected applications of the current approach

is thoroughly discussed to highlight its robustness and clarity.

A first test bed is taken to be the study of photodetachment

processes in the presence of an external confining field where

the closed-channel physics is taken into account, thus going

beyond previous studies [5].

Recall that the closed-channel physics is fully encapsulated

in the ηℓm(E) functions which depend on the particular ℓm

states of the short-range potential and on the specific type of

the confining potential.

In other words, ηℓm(E) corresponds to a collective pa-

rameter, which emerges from the strong mutual coupling of

all the closed channels caused by the spherically symmetric

short-range potential at small distances. In terms of the

LFT theory, this collective parameter is described by the

eigenvalues of the closed-closed partition of the K matrix and,

as mentioned above, these K matrices are of rank 1 despite

the fact that their dimension is M × M with M → ∞. This

particular property ensures that there exists only one nonzero

eigenvalue representing the effect of all of the closed channels.

Incorporating this concept in photodetachment processes

yields nontrivial resonant features; therefore, in the following

section the energy dependence and broad features of the

ηℓm(E) functions are studied for various confining potentials.
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A. Behavior of ηℓm(E)

1. Harmonic and infinite square-well confining potentials

Figures 3 and 4 depict the quantity ηℓm(E) as a function

of the dimensionless energy ǫ for the harmonic and infinite

square-well confining potentials, respectively. Note that the

scaled energies ǫ fulfill the relations ǫ = E/�ω⊥ and ǫ =
E/(4�

2π2/[2μa2
⊥]) for the harmonic (Appendix C 1) and

square-well (Appendix C 2) potentials, respectively.

The expressions for ηℓm for the harmonic and square-well

potentials are given in Eqs. (C4) and (C8), respectively. These

parameters are expressed in terms of sums and integrals

involving the scaled momenta and �z̃ which can be simplified

to show only the dependencies on the quantum numbers. For

the harmonic oscillator, Eq. (C4) becomes

η00 =
∞

∑

n>ν0

e−2
√

n−ν0�z̃

√
n − ν0

−
∫ ∞

ν0

e−2
√

n−ν0�z̃

√
n − ν0

dn,

η10 = −12

∞
∑

n>ν0

√
n − ν0 e−2

√
n−ν0�z̃

+ 12

∫ ∞

ν0

√
n − ν0 e−2

√
n−ν0�z̃dn,

η1±1 = 6

∞
∑

n>ν1

(n + 1)e−2
√

n−ν1�z̃

√
n − ν1

− 6

∫ ∞

ν1

(n + 1)e−2
√

n−ν1�z̃

√
n − ν1

dn, (44)

where the limit �z̃ → 0+ is understood in these expres-

sions. νm is given by νm = (ǫ − 1 − |m|)/2 and it relates

with momenta κ̃n,m in Eq. (C4) according to the relation

κ̃n,m = 2
√

n − νm. For the square-well confinement, Eq. (C8)

becomes

η00 = 4

∞
∑

α2
0>ǫ

e−2π
√

α2
0−ǫ�z̃

√

α2
0 − ǫ

− 4

∫ ∞

√
ǫ

e−2π
√

α2−ǫ�z̃

√
α2 − ǫ

π

2
αdα,

η10 = −48π2

∞
∑

α2
0>ǫ

√

α2
0 − ǫ e−2π

√
α2

0−ǫ�z̃

+ 48π2

∫ ∞

√
ǫ

√

α2 − ǫ e−2π
√

α2−ǫ�z̃ π

2
αdα,

η1±1 = 48π2

∞
∑

α2
1>ǫ

(αx + 1)2e−2π
√

α2
1−ǫ�z̃

√

α2
1 − ǫ

− 48π2

∫ ∞

√
ǫ

e−2π
√

α2−ǫ�z̃

√
α2 − ǫ

π

4
α3dα, (45)

where the limit �z̃ → 0+ is understood in these expressions.

αm is given by α2
m = (αx + [|m| + 1]/2)2 + (αy + 1/2)2, with

αx, αy independently being 0,1,2, . . .. α2
m is related with the

momenta κ̃αm in Eq. (C8) according to the expression κ̃α,m =
2π

√

α2
m − ǫ. In the integrals, the double integrals dαxdαy have

been converted to polar coordinates and the integral over angle

from 0 to π/2 has been carried out.

Figure 3 shows the results of Eq. (44) for harmonic

oscillator confinement for (ℓm) = [(00),(10),(11)] states.

We identify that the parameters η00(E) and η10(E) from

Eq. (44) correspond to the Hurwitz functions ζ (1/2,3/2 −
E/2�ω⊥) and ζ (−1/2,3/2 − E/2�ω⊥), respectively. Note

that exactly the same formulas were shown in Refs. [12,13].

Furthermore, as shown also in Ref. [38], the η00(E) (see black

solid line in Fig. 3) and η10(E) (see blue dotted line in Fig. 3)

are periodic functions of ǫ = E/(�ω): ηℓm(ǫ + 2) = ηℓm(ǫ).

However, the η11(E) function (see red dashed line in

Fig. 3) starts at a higher threshold energy because the lowest

transversal state for m = 1 is an �ω higher in energy than

for m = 0 and it is not periodic in ǫ. Actually, the η11(E)

consists of a sum of the periodic functions η00(E) and η10(E).

However, the corresponding η00(E) term is proportional

to the energy, which explains the nonperiodic character

of η11(E).

The η00 and η1±1 functions diverge as the energy ap-

proaches a channel from below due to threshold singularities,

whereas the η10 remains finite at each channel threshold.

More specifically, the η00 and η1±1 diverge due to the terms

of the 1/κα in the summation, whereas the η10 does not

exhibit such features at threshold because the summation

involves terms proportional to κα . Furthermore, at each

threshold, the value η10 = 2.494 632 . . . , which is the same

as in Refs. [13,15]. Similarly, the η00 parameter acquires

the value η00 = −1.460 354 ... by approaching the thresholds

from above, which is the same as in Refs. [10,12]. The

η11 function has the values η11 = −10.009 44 at the lowest

threshold and −18.771 57 at the first excited threshold when

approaching those thresholds from above. On the other hand,

when the threshold is approached from below the η11 function

diverges and this behavior arises from the singular behavior of

the η00.

Figure 4 illustrates the ηℓm(E) functions for the infinite

square-well potential where (ℓm) = [(00),(10),(11)] states are

considered. More specifically, the functions η00 (black solid

line), η10/50 (blue dotted line), and η11/300 (red dashed line)

are shown versus the scaled energy ǫ = E/(4�
2π2/[2μa2

⊥]).

In contrast to Fig. 3, none of the η’s are periodic functions

of ǫ. As with Fig. 3, the η00 and η11 go to ∞ as the

thresholds are approached from below, whereas they acquire

a finite negative value as the thresholds are approached from

above. This behavior arises from a similar analysis to that

for Fig. 3 but now involving the individual terms in Eq. (45).

As in the harmonic-oscillator example, η11 starts at a higher

threshold energy because the transverse functions must have

a node to contribute, since the azimuthal quantum number is

m = 1. Our threshold value for η00 = −5.853 459 . . . is in

excellent agreement with Ref. [16] result from the R-matrix

calculation but is ∼0.2% different from the result of their

regularized analytical summation. In addition, from Fig. 4 the

threshold values of the functions η10 and η11 acquire the values

η10 = 132.098 . . . and η11 = −642.613 ..., respectively. Note

that η10 has been divided by a factor of 50 and η11 by a factor

of 300 to plot them on the same graph. This indicates that the

effect of the confinement on p-wave scattering will typically

be larger for the infinite square well than for the harmonic

oscillator.
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2. Infinite rectangular-well confinement

Due to the simplicity of the current formalism, one can

explore the properties of various confining geometries. In

this section, the case of a rectangular-well confinement is

considered. This particular geometry permits us to study the

impact of lifting the degeneracy of the square-well potential.

Furthermore, in the following the discussion is restricted to

s-wave scattering which couples only on even z-parity states

of the rectangular well and/or on p-wave collisions which

couple odd-z-parity states of the rectangular well.

The rectangular potential well is defined as fol-

lows: V (x,y) = 0 when |x| < a⊥/2 and |y| < a⊥/(2c) and

V (x,y) = ∞ otherwise. Note that the parameter c controls

the degree of asymmetry in the potential. The transverse

eigenfunctions of the corresponding confining Hamiltonian

Ĥc are well known and close to the origin obey the relation

�αx ,αy
(0,0) = 2(−1)αx+αy

a⊥
√

c
(46)

for all (αx,αy) that are nonzero at the origin. The corresponding

eigenenergies for the states that are nonzero at the origin can

be written as

Enxny
= �

2π2

2μa2
⊥

(

n2
x + [ny/c]2

)

, (47)

where nx = 2αx + 1 and ny = 2αy + 1, where the αx,αy can

independently be 0,1,2,3, . . ..

Since we are interested in s- and p-wave scattering which,

respectively, couple to even- and odd-parity states of the

rectangular well the prescription given in Appendix C 2 is

followed in order to obtain the corresponding parameters.

Namely, the η00 and η10 parameters fulfill the relations

η00 = 4

c

∞
∑

α2
0>ǫ

e−2π
√

α2
0−ǫ�z̃

√

α2
0 − ǫ

− 4

∫ ∞

√
ǫ

e−2π
√

α2−ǫ�z̃

√
α2 − ǫ

π

2
αdα,

η10 = −48π2

c

∞
∑

α2
0>ǫ

√

α2
0 − ǫ e−2π

√
α2

0−ǫ�z̃

+ 48π2

∫ ∞

√
ǫ

√

α2 − ǫ e−2π
√

α2−ǫ�z̃ π

2
αdα, (48)

where where the limit �z̃ → 0+ is understood in these

expressions and α0 obeys the relation α2
0 = (αx + 1/2)2 +

(αy + 1/2)2/c2. In the integrals, the double integrals dαxdαy

have been converted to polar coordinates and the integral over

angle from 0 to π/2 has been carried out. Our numerical tests

demonstrate that the resulting equations for Ŵ and η00,η10 are

in agreement and produce results similar to those shown in

Figs. 1 and 2. The expressions in Eq. (48) use the fact that

the sums and integrals coincide in the continuum limit. To see

that this is the case, note that the sums in αy have a factor of c

more states for each interval of energy which cancel the factor

of 1/c multiplying each sum.

Figure 5 shows the η00 (black solid line) and η10/10 (blue

dotted line) from Eq. (48) as functions of the ratio of y- to

x-length scale at the threshold energy E = E1,1. The η10 stays

positive for the values shown but the η00 changes sign for c ≃
4.89. At this value of c, the effect of the infinite closed channels

disappears for any finite value of the scattering length. In other

FIG. 5. (Color online) The threshold value of η00 (black solid

line) and η10/10 (blue dotted line) for the infinite rectangular well as

a function of the ratio of confining length scales, with c defined as

|x| < a⊥/2 and |y| < a⊥/(2c). Note that η00 goes from negative to

positive at c ≃ 4.89.

words, the scattering behaves as if there were no confining

potential at all; a similar effect also exists in the harmonic-

oscillator confining potential which occurs at specific values

of energies away from the channel thresholds [15]. Over the

range shown in Fig. 5 at large values of c the threshold value

of η00 appears to be proportional to
√

c, while the η10 appears

to be a constant plus a function proportional to 1/
√

c.

Figure 6 depicts the energy dependence of η00 and η10/10

parameters for different values of c. As c becomes larger,

the corresponding Hamiltonian changes from a quasi-one-

dimensional to a quasi-two-dimensional one. Since the η00

diverges just below each threshold, these curves exhibit

many points of divergence corresponding to each threshold.

FIG. 6. (Color online) The η00 parameter is depicted in panels (a)

and (b) for c = 5 and c = 40, respectively. The η10/10 parameter is

depicted in panel (c) for c = 5 (black solid line) and c = 40 (red

dashed line). All the η parameters are plotted as a function of the

scaled energy ǫ = E/(4�
2π 2/[2μa2

⊥]). The magenta arrows in panel

(b) show the thresholds for the tight confinement in one direction,

i.e., c ≫ 1, which acquire the values ǫ = 1/4, 9/4, 25/4, . . . .
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However, an overall pattern can be seen in panels (b) and (c).

This pattern is clearer in the plot of η10/10 [see red dashed

line in Fig. 6(c)], which does not diverge at threshold. In

Figs. 6(a) and 6(b) the c parameter acquires the values c = 5

and c = 40. In these panels is observed that as c increases

the system behaves more like it is only confined in the x

direction and therefore those thresholds [see the magenta

arrows at ǫ = 1/4, 9/4, 25/4, . . . of Fig. 6(b)] dominantly

characterize the energy dependence in the corresponding η00

functions. Moreover, Fig. 6(b) demonstrates that the multiple

divergences of the η00 parameter occur around an envelope

curve. This overall behavior can be captured by defining an

averaged η00 according to the relation

〈η00〉 = 1

2δν

∫ ν+δν

ν−δν

η00(ν)dν, (49)

which will give a smooth curve in the limit that the energy

spacing is smaller than δν.

3. Off-center scattering for a square-well confining potential

The above results for the infinite square and infinite

rectangular wells are based on the assumption that the

scattering center, i.e., the short-range potential V̂s , is placed

at the center of the confining potential. In this section,

the confining potential is considered to be an infinite

square well where the scattering center is located at a

generic point, (xs,ys) = a⊥(x̃s,ỹs) whereby the transverse

wave function |�(xs,ys)| is no longer only 0 or 2/a⊥ as

in the previous cases with (xs,ys) = (0,0). Note that similar

systems have been investigated where the interacting parti-

cles are confined in separate harmonic waveguide geome-

tries, yielding in this manner confinement-induced interlayer

molecules [39].

In the following, the discussion is restricted to s-wave

scattering which couples on even-z-parity states of the

confining square well and/or p-wave collisions which cou-

ple on odd-z-parity states of the corresponding confining

potential.

In this case the eigenenergies are defined as

Enxny
= �

2π2

2μa2
⊥

(

n2
x + n2

y

)

, (50)

but now the nx and ny can independently be 1,2,3. The one-

dimensional wave function is ψ(x) = √
2/a⊥ sin(nxπ [x̃ −

1/2]). The transverse eigenfunction of the corresponding

confining Hamiltonian Ĥc at the scattering center behave

as

�α(xs,ys) = 2

a⊥
sin(k̃x[x̃s − 1/2]) sin(k̃x[ỹs − 1/2]), (51)

where k̃x = nxπ and k̃y = nyπ . The only nonzero terms when

the scattering center is at the origin is from the nx and ny ,

which are the odd integers.

For the case of s-wave scattering which couples on

even-z-parity states of the square well and for the case of

p-wave scattering which couples on odd-z-parity states the

prescription given in Appendix C 2, defining in this manner the

corresponding η parameters. Namely, the η00 and η10 functions

fulfill the relations

η00 = 4

∞
∑

α2
0>ǫ

Rnx ,ny
(x̃s,ỹs)

e−2π
√

α2
0−ǫ�z̃

√

α2
0 − ǫ

−4

∫ ∞

√
ǫ

e−2π
√

α2−ǫ�z̃

√
α2 − ǫ

π

2
αdα,

η10 = − 48π2

∞
∑

α2
0>ǫ

Rnx ,ny
(x̃s,ỹs)

√

α2
0 − ǫ e−2π

√
α2

0−ǫ�z̃

+ 48π2

∫ ∞

√
ǫ

√

α2 − ǫ e−2π
√

α2−ǫ�z̃ π

2
αdα, (52)

with

Rnx ,ny
(x̃s,ỹs) = a2

⊥
4

|�α(x,y)|2

= sin2(k̃x[x̃ − 1/2]) sin2(k̃y[ỹ − 1/2]), (53)

where α2
0 = (nx/2)2 + (ny/2)2. In the integrals, the double in-

tegrals dαxdαy have been converted to cylindrical coordinates

and the integral over angle from 0 to π/2 has been carried out. It

may appear that these expressions do not satisfy the condition

that the sum and the respective integral should have the same

form in order for their divergences to cancel and leave a finite

difference. To see that the condition still holds, note that the

sum is over 4 times as many terms as the centered square well,

but the average value of Rnx ,ny
(x̃s,ỹs) is 1/4. Numerically, tests

have confirmed that the resulting equations for Ŵ and η00,η10

exhibit excellent agreement, and they depict features similar

to those shown in Figs. 1 and 2.

Figure 7 depicts the η00 function for different positions

of the scattering center: (x̃s,ỹs). As in Fig. 4, the quantity

η00 is singular as the energy approaches thresholds from

FIG. 7. (Color online) The parameter η00 for infinite square-well

confinement is shown as a function of the scaled energy ǫ =
E/(4�

2π 2/[2μa2
⊥]) with the scattering center at the scaled position

(x̃s,ỹs). Panel (a) (0.0,0.0) is the black solid line, (0.1,0.1) is the red

dot-dashed line, and (0.2,0.2) is the green dot-dot-dot-dashed line.

Panel (b) (0.0,0.0) is the black solid line, (0.1,0.0) is the red dotted

line, and (0.2,0.0) is the green dashed line. The solid line is the same

result as in Fig. 4.
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below. In addition, Fig. 7 demonstrates that there are many

more thresholds when the scattering center is shifted from the

origin. This is due to the possibility of scattering into states

that have a node at the origin. In discussing the position of

thresholds, we only give the values for nx � ny . The black

solid line in panels (a) and (b) refers to the position (0,0)

and is the same result as plotted in Fig. 4. At this position,

there are only singularities at the values of nx,ny equal to odd

integers. The thresholds in Fig. 7 are 1,3 at ǫ = 2.5; 3,3 at

ǫ = 4.5; 1,5 at ǫ = 6.5; and 3,5 at ǫ = 8.5. In Fig. 7(b) the η00

parameter is shown for a scattering center being placed along

the x axis, namely at (0.1,0.0) (red dotted line) and (0.2,0.0)

(green dashed line) can have additional singularities than in the

case of a scatterer placed at the origin [see black solid line in

Fig. 7(b)]. Specifically, the additional structure emerges when

one of nx ,ny is an even integer. The additional singularities

over those for the scatterer at the center are for 1,2 at ǫ = 1.25;

for 2,3 at ǫ = 3.25; for 1,4 at ǫ = 4.25; for 3,4 at ǫ = 6.25;

for 2,5 at ǫ = 7.25; and for 1,6 at ǫ = 9.25. In Fig. 7(a) the

η00 parameter is shown for a scattering center being placed

along the diagonal of the x-y plane, namely at (0.1,0.1) (red

dot-dashed line) and (0.2,0.2) (green dot-dot-dot-dashed line),

where both curves possess additional threshold singularities in

comparison with the black solid line and the curves in Fig. 7(b).

Specifically, the additional structure emerges when both nx,ny

are even integers. The additional threshold singularities are for

2,2 at ǫ = 2; for 2,4 at ǫ = 5; for 4,4 at ǫ = 8; and for 2,6 at

ǫ = 10.

The coefficient of the diverging term is proportional to

Rnx ,ny
and, thus, has different effect depending on the value of

the transverse function at the scattering center that corresponds

to that threshold. For example, the divergence at ǫ = 2

(corresponding to 2,2) is clearly visible when the scattering

center is at (0.2,0,2) but is not visible when the center is at

(0.1,0.1). This is because the latter position is not far shifted

from the origin so that it is still near enough to the node of the

transverse function to be suppressed. The divergence at ǫ = 5

(corresponding to 2,4) is visible in both because the larger

quantum number increases the amplitude of the transverse

function at the point (0.1,0.1). Another interesting feature is

that the divergence at ǫ = 4.25 corresponding to 1,4 has a large

strength partly because it is near the divergence at ǫ = 4.5

corresponding to 3,3.

There are similar types of features in the plots of η10.

However, because η10 does not diverge at thresholds, there

are discontinuities in slope at the newly allowed thresholds.

B. Photoabsorption cross section in a harmonic

and square-well confining geometries

This section investigates the impact of the transversally

harmonic or square-well confining potentials on the photoab-

sorption cross sections. In Fig. 8, the absorption probability is

plotted as a function of the scaled energy ǫ = E/�ω⊥ for the

harmonic-oscillator confining potential. The different plots are

for different scattering lengths for (ℓ,m) = (0,0). This figure

has both lines and symbols. The lines are from Eq. (40), while

the symbols are from an ab initio quantum calculation that

used a grid in r and angular momentum to compute the total

outgoing flux. The only adjustment between the two types of

FIG. 8. (Color online) The total absorption probability |D−|2 (in

arbitrary units) for a harmonic oscillator confining potential as a

function of the scaled energy, ǫ = E/(�ω⊥). The lines correspond in

calculations using Eq. (40), with (ℓ,m) = (0,0). The symbols refer to

the ab initio quantum calculations using coupled angular momenta

for the energy range 0.9 � ǫ � 5.5. In panel (a) the s-wave scattering

lengths take the values of −a⊥/4 (black solid line) and −a⊥/2 (red

dotted line). In panel (b) the s-wave scattering lengths refer to values

of a⊥/4 (black solid line), a⊥/2 (red dotted line), and 0.684 75a⊥
(green dashed line).

calculations was an overall scale size. The good agreement

between the two types of calculations shows that Eq. (40) is

an excellent approximation.

Two interesting features are worth noting. The most obvious

feature is that the total probability goes to 0 at every threshold.

The probability goes to zero as the threshold is approached

from below and from above. As the energy approaches a

channel threshold from below, the parameter η00 → ∞, which

means that |D−|2 → 0 since the η00 is in the denominator

of |D−|2. As the energy approaches a channel threshold

from above, N2
00 → ∞ because the corresponding channel

momentum vanishes, namely kβ → 0. In the expression for

|D−|2, there is an N2
00 in the numerator and an N4

00 in

the denominator, yielding |D−|2 → 0. The total absorption

probability is proportional to
√|E − Eα| at each channel

threshold Eα . This behavior is in strong contrast to the

unconfined absorption probability where there is a discon-

tinuity in the slope at each channel threshold, but the total

absorption does not go to zero at each threshold. Also, in the

case of confinement, the photoabsorption probabilities possess

discontinuous slopes near the channel thresholds.

Another important feature is that a negative scattering

length causes a resonancelike structure just below each channel

threshold [see Fig. 8(a)]. On the other hand, in Fig. 8(b) no

resonant structure emerges below each threshold if the s-wave

scattering length is positive. This behavior can be understood

by the fact that for negative s-wave scattering lengths the term

1 + as(E)η00(E) in the denominator of the total absorption

probability vanishes, yielding in this manner a maximum in

the total probability. This effect clearly originates from the

closed-channel physics. In addition, in Fig. 8(a) we observe

that for smaller (in magnitude) values of scattering length, the
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FIG. 9. (Color online) The partial absorption probability, |D−
α |2

(in arbitrary units) for a harmonic-oscillator confining potential in

arbitrary units as a function of the scaled energy, ǫ = E/(�ω⊥). The

lines are calculations using Eq. (40) with (ℓ,m) = (0,0). Panels (a)

and (b) correspond to s-wave scattering lengths of −a⊥/4 and a⊥/4,

respectively. The black solid line is for absorption into the first open

channel, the red dotted line is second open channel, the green dashed

line is third open channel, and the blue dot-dashed line is fourth open

channel.

resonance occurs closer to threshold and is narrower in energy.

This is to be expected because the smaller (in magnitude)

scattering length corresponds to a state that is more weakly

bound and, hence, there is a smaller overlap with the scattering

center, leading to a longer lifetime and narrower resonant

features.

Figure 9 depicts the partial absorption probability |D−
α |2

for a negative [see Fig. 9(a)] and a positive s-wave scattering

length [see Fig. 9(b)] case. The partial cross section is

proportional to |Uα,00|2, which is proportional to 1/kα since the

�α(0,0) has no dependence on the α-channel quantum number.

The channel momentum kα decreases with increasing α, which

means the partial cross section increases with increasing α.

Also, the partial absorption cross section exhibits differences

between channels just above a channel threshold, as demon-

strated in Fig. 9; i.e., in panels (a) and (b) for the energy interval

3 < ǫ < 5 the |D−
α |2 of the second channel (red dotted line)

is larger than the partial photoabsorption in the first channel.

In this case, the channel that just opened will have kα ∼ 0 and

will therefore have nearly all of the outgoing probability.

Figure 10 demonstrates the cases of total absorption

probabilities for the infinite square-well case for negative [see

Fig. 10(a)] and positive [see Fig. 10(b)] s-wave scattering

lengths. The black solid lines indicate the s-wave scattering

length with magnitude a⊥/16, the red dotted lines refer to

magnitude a⊥/8, and the green dashed lines denote magnitude

a⊥/4. The general features are the same as for Fig. 8. Unlike

the Fig. 8 case, there are degenerate channel thresholds for the

square-well confining potentials. For example, the first excited

threshold at ǫ = 2.5 is doubly degenerate: nx,ny of 0,1 and

1,0. Also, not all thresholds are equally spaced, in particular

for ǫ > 10 which leads to features that change with threshold.

FIG. 10. (Color online) The total absorption probability |D−|2
(in arbitrary units) for an infinite square-well confining poten-

tial in arbitrary units as a function of the scaled energy ǫ =
E/(4�

2π 2/[2μa2
⊥]), with (ℓ,m) = (0,0). The lines refer to calcu-

lations based on Eq. (40). In panel (a) the s-wave scattering lengths

acquire the values −a⊥/16 (black solid line), −a⊥/8 (red dotted line),

and −a⊥/4 (green dashed line). In panel (b) the s-wave scattering

lengths have the values a⊥/16 (black solid line), a⊥/8 (red dotted

line), and a⊥/4 (green dashed line).

C. Negative-ion photodetachment in magnetic fields

The result of photodetachment of an electron from a

negative ion in a magnetic field was treated in Ref. [5] and

is similar to the example of photodetachment in an isotropic,

two-dimensional harmonic oscillator potential. However, in

Ref. [5], only the effect of open channels is taken into account.

This is equivalent to setting ηℓm(E) = 0 in Eq. (40) above.

Thus, the results in Ref. [5] are an approximation to the full

treatment, which includes the effects of the closed channels.

Since the formalism of Ref. [5] has been successfully applied

in many circumstances, it is worth investigating the regimes

where this approximation (ηℓm = 0) is adequate. Figure 11

depicts the total photoabsorption probability (in arbitrary

units) for different s-wave scattering lengths that are a small

fraction of a⊥, which is the typical case for photodetachment

in laboratory-strength magnetic fields. The black solid line

is the result from the approximation of Ref. [5]. For small

positive scattering length [see red dotted and blue dash-dotted

line in Fig. 11(a)], the photoabsorption cross section vanishes

below and above each channel threshold, whereas the black

solid line vanishes only above every the threshold. Note that the

cross section vanishes around every threshold also for negative

scattering lengths [see green dashed and purple dot-dot-dot-

dashed lines in Fig. 11(a)]. Moreover, the case of negative

scattering lengths exhibits another qualitative difference from

the approximation of Ref. [5]. More specifically, this can be

seen in Fig. 11(b), where the total photoabsorption probability

for negative scattering length (green dashed and purple dot-

dot-dot-dashed lines) possesses a resonance barely below

the channel threshold. This nontrivial resonant feature is

absent from the black solid line manifesting in this manner

the importance of the closed-channel physics. In addition,
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FIG. 11. (Color online) The total absorption probability |D−|2
(in arbitrary units) for a harmonic oscillator confining potential is

plotted as a function of the scaled energy, ǫ = E/(�ω⊥). In panels

(a) and (b) the lines are calculations using Eq. (40). The black solid

line is the result when η00 = 0. The red dotted and green dashed lines

correspond to as(E)/a⊥ = 0.02 and −0.02, respectively. The blue

dash-dotted and purple dot-dot-dot-dashed lines are as(E)/a⊥ = 0.04

and −0.04, respectively. Panel (b) consists of a magnification of panel

(a) around the threshold energy ǫ = 3.

Figs. 11(a) and 11(b) show that away from the channel

thresholds our results are practically the same as in the

approximation of Ref. [5] (black solid line in Fig. 11). Note

that there is one energy between each threshold where all of

the results are the same. These are the energies where η00 = 0.

Evidently, the role of the closed channels becomes im-

portant only around each threshold due to small scattering

lengths. This explains why the result of Ref. [5] works well

for photodetachment in a magnetic field. In this situation, the

scattering length is of the order of a few Bohr radii while

the confinement length is a⊥ = a0

√
Ba.u./B, where a0 is the

Bohr radius and Ba.u. is the atomic unit of magnetic field.

Thus, even in a 1-T magnetic field, the scattering length

will typically be less than a⊥/100. However, we expect that

experiments would show differences from the treatment of

Ref. [5] in stronger magnetic fields or for a negative ion whose

photodetachment probes a final state having a much larger

electron-atom scattering length.

The photodetachment for higher partial waves may possess

shape resonances, which allows for a larger effect from the

FIG. 12. (Color online) The ℓ = 1 phase shifts used in the calcu-

lations of Fig. 13. The black solid line is a nonresonance example and

the red dotted line is the resonance case. The energy of the resonance

is ǫr = 7.8.

closed-channel collective state described by ηℓm(E). There-

fore, in the following, consider a photodetachment process

into ℓ = 1,m = 1 for a harmonic-oscillator confinement. The

confining potential does not have as strong an effect on the

ℓ = 1,m = 0 case because the outgoing flux is mostly along

the z axis compared to m = 1 where the outgoing flux is mainly

perpendicular to the z axis. The energy-dependent scattering

volume is given by the relation tan δ1(E)/[ka⊥]3, where a

resonance form for the phase shift, δ1, is chosen according to

the relation

tan δ1 = −k3

[

fsca
3
⊥ + γ /k3

r

ǫ − ǫr

]

, (54)

where ǫ = E/(�ω⊥) is the scaled energy with E = �
2k2/2μ,

ǫr = Er/(�ω⊥) is the scaled energy of the resonance with

Er = �
2k2

r /2μ, γ is a parameter proportional to the scaled

energy width of the resonance, and fsc is the scaled scattering

volume. Figure 12 shows the δ1 phase shifts for a resonance

case (red dotted line) with fsc = −(1/8)3, γ = 1.4, and ǫr =
7.8 and for a nonresonance case (black solid line) with fsc =
−(1/8)3 and γ = 0. For the energy-dependent smooth dipole,

Ds(E), a form is chosen,

Ds(E) = k3/2

[

ds + (dr/a
3
⊥)

γ /k3
r

ǫ − ǫr

]

, (55)

where ds represents the amplitude for photoabsorption directly

to the continuum and dr represents the amplitude for pho-

toabsorption into the resonance. Figure 13 shows the results

from four different calculations. In all calculations, the green

dotted line is the photoabsorption that would occur if there

were no confining potential, the black solid line corresponds

to the full calculation with the confining potential, and the

red dashed line is the approximation in Ref. [5] where the

effect of the closed channels is neglected, which is equivalent

to setting η11 = 0. As expected, the resonance features from

the confinement calculations give an overall shape that tracks

the nonconfinement calculations, but with sharp features near

the thresholds. The topmost calculations are when there is

no resonance γ = 0. The “Lorentz” calculation has ds = 0;
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FIG. 13. (Color online) The ℓ = 1 photoabsorption |D−|2 (in

arbitrary units) for different cases. In all calculations, the green dotted

line is for photoabsorption with no confining potential, the red dashed

line is the approximation that includes the confining potential but

does not include the effect of closed channels (equivalent to setting

η11 = 0), and the black solid line is the full calculation including

the confining potential. The “Smooth” calculation does not have a

resonance. The “Lorentz,” “Window,” and “Fano” calculations only

differ in the energy dependence of the dipole matrix element when

no field is applied.

it does not look like the standard Lorentzian shape resonance

due to the overall increase proportional to ǫ3/2. The “Window”

calculation has dr = 0; as with the Lorentz calculation, this

does not look like the symmetrical window resonance due to

the overall increase. The “Fano” calculation has dr/ds = 60,

which gives a 0 in the dipole matrix element at ǫ ≃ 9.1 which

is at a somewhat higher energy than the resonance position at

7.8. The full and approximate confinement calculations differ

most strongly where tan δ1 is large, which is near the resonance

and an energy range near the thresholds.

VII. SUMMARY AND CONCLUSIONS

A. Summary of method

It is evident that there are many steps in the derivation and

application of the Schwinger variational approach to collisions

involving a short-range spherically symmetric potential in the

presence of various types of confining geometries. Therefore,

in this section, the important steps are pointed out for applying

the method. First, Eq. (33) gives the expression for the K

matrix and Eq. (36) gives the dipole matrix element in terms

of the scattering length or volume and the energy-dependent

parameters Uα,ℓm and ηℓm. The conversion from spherical

coordinates to the confinement geometry is encapsulated in

the Uα,ℓm in Eq. (34), which depends on the confinement wave

functions �α(x,y) at the scatterer.

In this paper, the expressions for the ηℓm were obtained from

a detailed examination of the confinement Green’s function,

Ĝc, and various integral expressions for the free Green’s

function, Ĝf . There is a conceptual shortcut that can be used

to obtain the ηℓm: The Ĝc becomes the Ĝf in the limit that

the confinement length scale, a⊥, goes to infinity. This is the

reason that the ηℓm have the form of a sum (from the Ĝc) minus

an integral that has the same functional form (from the Ĝf as

formulated from Ĝc in the limit a⊥ → ∞). Similar to Eq. (34),

define a transformation for the closed channels

Ūα,ℓm =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

2π
κ̃α

a⊥�α(ρs), ℓ = m = 0,√
6πκ̃αa⊥�α(ρs), ℓ = 1,m = 0,

∓
√

12π
κ̃α

a2
⊥(∂±�α)

∣

∣

ρs
, ℓ = 1,m = ±1,

(56)

where the operators are defined below Eq. (28), ρs is the

position of the scatterer, and E = −�
2κ̃2

α/(2μa2
⊥) + Eα . Since

�α is proportional to 1/a⊥, the Ū only depends on the form

of the confining potential, the scaled energy, and the ρs/a⊥.

In this paper, we restricted the confining potential to be

independent of z and symmetric in xy. For these cases, the

relation between η and Ū ,

ηℓm = (−1)ℓ+m

[ ∞
∑

α>αo

|Ūα,ℓm|2e−κ̃α�z̃

−
∫ ∞

α�αo

|Ūα,ℓm|2e−κ̃α�z̃dα

]

, (57)

holds, where the limit �z̃ → 0+ is understood. The integral

over dα is the result of the quantum numbers for Gf giving an

infinitesimal spacing of κα in the limit a⊥ → ∞. For the case

of Sec. VI A 3, which does not satisfy the restrictions on the

confining potential, the |Ūα,ℓm|2 is replaced with the average

value as a⊥ → ∞.

B. Conclusions

In the preceding sections, the development of a Schwinger

variational framework is presented as a treatment of scattering

in a confined geometry. The current formalism is nonperturba-

tive, permitting the treatment of a wide class of Hamiltonian

systems which possess two potentials. The particular type of

Hamiltonians studied in this work consists of systems where

the interaction at short distances is spherically symmetric

and, at large distances, a confining potential is considered

which bounds the motion of the particle in the degrees of

freedom perpendicular to the direction of its propagation. The

restriction in the current formalism amounts to the fact that the

considered potentials dominate at different scales. For the sake

of simplicity, we restricted the confining potential to have no

dependence in the z coordinate and symmetry in xy. However,

this theoretical method could treat general confining potentials

where length-scale separation holds.

The theoretical formalism presented in this paper allows a

self-consistent treatment of scattering in a confined geometry

where the results are manifestly convergent at each step

of the derivation. This formalism has been used to derive
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results obtained in previous studies (e.g., s- and p-wave

scattering within a harmonic confining potential and s-wave

scattering in a square-well confining potential) and to quickly

derive results in novel geometries (e.g., s-wave and p-wave

scattering in off-center confining potentials and scattering in

rectangular confining potentials). Results for the scattering

parameters in different geometries were presented and main

qualitative features were explained. In Fig. 8, comparison

between the analytical and the fully numerical results showed

excellent agreement even though the length scales of the

two potentials are not strictly separated. The formalism was

also used to derive a treatment of half-scattering problems

(e.g., photodetachment) in confining potentials. For example,

the photodetachment results in a harmonic confinement was

compared to a previous LFT treatment that only accounted

for open channels to assess the role of the closed channels

which are included in this treatment: The effect from the closed

channels is most important near thresholds and becomes more

important as the scattering length becomes a sizable fraction

of the confinement length scale.

An interesting possibility for the formalism in this paper is

to aid in the understanding of the implementation and possible

limitations of the LFT. The basic steps in the current formalism

were cast in a form strongly reminiscent of the LFT. However,

these two frameworks possess a conceptual difference which

is mainly focused on the physics of the closed channels.

More specifically, in the LFT approach the K-matrix formulas

include diverging sums and therefore regularization schemes

are employed to remove such singularities. In the Schwinger

variational approach, such divergences do not emerge, which

eliminates the need for the regularization techniques that are

often used in the LFT theory. In particular, we observe that in

the physical K matrix of the LFT the information of the free

space Ĝf is absent and it has been indirectly incorporated via

regularization schemes [13,14,16].

In view of the rigorousness of the Schwinger variational

approach, we expect that it can be equally applied to other

physical systems where the LFT method has been used. For

example, this method can be used to derive the scattering

of an electron in a Rydberg state from a neutral perturber

and, for ℓ = 0, the same result as Eq. (14) of Ref. [20] is

obtained. Note that the frame transformation ideas have been

used in many different circumstances. A short list of examples

could include the jj -LS transformation, molecular rotational

transformations, molecular vibrational transformations, and

LFTs involving external electric and/or magnetic fields. In all

cases, wave functions in one representation are projected on

those in another representation at a surface (or indirectly in a

region) where both representations are expected to be accurate.

However, the level of error involved in such a procedure is not

clear. It is conceivable that the method described above might

enable a more systematic derivation of the frame transforma-

tion so that the level of expected error would be clearer.
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APPENDIX A: MATRIX ELEMENTS WITH V̂s |ψs〉

The volume integral in Eq. (25) can be simplified by

employing the relation V̂s |ψs〉 = (E − Ĥf ) |ψs〉. Then, as-

suming length-scale separation, the confining potential V̂c

is practically zero in the range of V̂s where the following

relation is valid: (E − Ĥc) |ψc〉 ≈ (E − Ĥf ) |ψc〉 ≈ 0. Thus,

integrating by parts twice Eq. (25), the terms of (E − Ĥf ) |ψc〉
vanish and only the surface ones survive. In general, a relation

is fulfilled,

〈ψc|V̂s |ψs〉 = �
2

2μ

∫

σ (τ )

n̂ · {ψ∗
c (r)[ �∇ψs(r)]

− [ �∇ψ∗
c (r)]ψs(r)}dσ, (A1)

where σ (τ ) indicates the surface containing the volume τ and

n̂ is the unit vector which is outward normal to the surface. If

the region τ is a sphere of radius r , this matrix element can be

written as

〈ψc|V̂s |ψs〉 = �
2

2μ
r2

∫ [

ψ∗
c (r)

∂ψs(r)

∂r
− ∂ψ∗

c (r)

∂r
ψs(r)

]

d�,

(A2)

where d� = sin θdθdφ is the solid angle differential element.

This section recast the integrals which involve V̂s |ψs〉 into

surface integrals when length-scale separation between V̂s and

V̂c is a good approximation. The following sections focus on

special cases where |ψs〉 is an eigenstate of angular momentum

ℓ and its projection, providing explicit analytical equations for

this situation.

1. Analytic expressions of 〈ψc|V̂s|ψs〉 for ℓ = 0,m = 0

Assume that in this case study the states |ψs〉 ≡ |ψs,ℓm〉
possess ℓ = 0,m = 0 character. At distances where the V̂c

potential is considered small, the ψc(r), to a good approxi-

mation, can be written as a linear combination of spherical

Bessel functions times spherical harmonics, jℓ(kr)Yℓm(�).

Note that the wave number k corresponds to the total energy

and � denotes the (θ,φ) angles. The coefficients of the linear

combination can be specified by expanding in Taylor series the

ψc(r) and jℓ(kr)Yℓm(�) functions and matching them term by

term. However, at small distances only few terms are needed

to be matched.

The coefficient of the j0(kr)Y00(�) term is simply
√

4π

times the value of ψc(r) at the origin giving

ψc(r) ≃ ψc(0)
√

4πj0(kr)Y00(�). (A3)

After substituting this expression into Eq. (A2) the surface

integral yields the general form

〈ψc|V̂s |ψs〉 =
√

π�2

μ
ψ∗

c (0)

√

2π

k

(

− 1

π
tan δ0

)

, (A4)

where the expressions have been used for the ψc(r) ≡ ψ (e)
c,α(r)

[see Eq. (5)] and ψs(r) ≡ ψs,00(r) [see Eq. (4)], then Eq. (A4)

reads

〈

ψ (e)
c,α

∣

∣V̂s |ψs,00〉 = �∗
α(0,0)

√

2π

kkα

(

− 1

π
tan δ0

)

. (A5)
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2. Analytic expressions of 〈ψc|V̂s|ψs〉 for ℓ = 1,m = 0

This section focuses on the case where |ψs〉 ≡ |ψs,ℓm〉
possesses an ℓ = 1,m = 0 character. In a similar way as

was discussed in the previous section the ψc(r) functions are

matched to the superposition of spherical Bessel functions

times spherical harmonics, jℓ(kr)Yℓm(�). In this particular

case the coefficient of the j1(kr)Y10 term is simply
√

12π/k

times the value of ∂ψc(r)/∂z at the origin.

ψc(r) ≃ ∂ψc(r)

∂z

∣

∣

∣

∣

|r|=0

√
12π

k
j1(kr)Y10(�). (A6)

Substituting this expression into Eq. (A2), the surface

integral reads

〈ψc|V̂s |ψs〉 =
√

π�2

μ

∂ψ∗
c (r)

∂z

∣

∣

∣

∣

|r|=0

√

6π

k3

(

− 1

π
tan δ1

)

, (A7)

where using the expressions for the ψc(r) ≡ ψ (o)
c,α(r) from

Eq. (5) and ψs(r) ≡ ψs,10(r) from Eq. (4), then Eq. (A7) reads

〈

ψ (o)
c,α

∣

∣V̂s |ψs,10〉 = �∗
α(0,0)

√

6πkα

k3

(

− 1

π
tan δ1

)

. (A8)

3. Analytic expressions of 〈ψc|V̂s|ψs〉 for ℓ = 1,m = ±1

This section considers the case where |ψs〉 ≡ |ψs,ℓm〉
possesses ℓ = 1,m = ±1 character. Therefore, in this case the

coefficient of the j1(kr)Y1±1(�) term is simply −
√

24π/k

times the value of [∂ψc(r)/∂x ∓ i∂ψc(r)/∂y]/2 at the origin

yielding the relation

ψc(r) ≃ ∓(∂±ψc)

∣

∣

∣

∣

|r|=0

√
24π

k
j1(kr)Y1±1(�), (A9)

where (∂±ψc) ≡ [∂ψc(r)/∂x ∓ i∂ψc(r)/∂y]/2.

Substituting these expressions into the surface integral gives

the simple result

〈ψc|V̂s |ψs〉 = ∓
√

π�2

μ
(∂±ψc)∗

∣

∣

∣

∣

0

√

12π

k3

(

− 1

π
tan δ1

)

, (A10)

where using the expressions for the ψc(r) ≡ ψ (e)
c,α(r) from

Eq. (5) and ψs(r) ≡ ψs,1±1(r) from Eq. (4), then Eq. (A10)

reads

〈

ψ (e)
c,α

∣

∣V̂s |ψs,1±1〉 = ∓(∂±�α)∗
∣

∣

∣

∣

0

√

12π

kαk3

(

− 1

π
tan δ1

)

. (A11)

APPENDIX B: EVALUATION OF

THE Ds MATRIX ELEMENTS

At this point, all of the terms in the expression for the

K matrix, Eq. (21), have a simple analytic expression except

for the term involving the matrix element of V̂s�ĜV̂s ; see

Eq. (24). The most straightforward method for evaluating this

matrix element is to individually compute the matrix elements

of V̂sĜf V̂s and V̂sĜcV̂s and subtract. However, this method is

fraught with difficulties because each of these matrix elements

involve integrands that diverge.

At the symmetry point of V̂c, the function �Ĝ only has even

powers of (z1 − z2) and powers of ρ1 · ρ2 through second order

if the confining potential is a power series in x,y,z. The vector

ρ1 ≡ x̂x1 + ŷy1. Thus, the matrix element in Eq. (24) only has

terms from regular functions at least to order r3. If the state

|ψs〉 possesses ℓ = 0 or ℓ = 1,m character, then only terms in

�Ĝ proportional to (z1 − z2)0, (z1 − z2)2, and (ρ1 − ρ2)2 will

contribute to the integral

�G(r1,r2) ≃ �G(0) − �Gzz(0)z1z2 − �Gρρ(0)ρ1 · ρ2,

(B1)

where �G(0), �Gzz, and �Gρρ are coefficients that are

determined below. Note that terms proportional to x2
j , y2

j , and

z2
j are not included since they only affect matrix elements

for d-wave scattering or give small corrections to the s-

wave scattering. Recall that �Ĝ is a real function since its

constituents (i.e., Ĝf and Ĝc) are the principal value Green’s

functions. Using this expansion, the dominant contribution to

the Ds matrix element for the ℓ = 0,m = 0 case is the �G(0)

term

Ds,00 = 〈ψs,00|V̂s |F000〉�G(0)〈F000|V̂s |ψs,00〉

= �G(0)
π�

2

μ

2π

k

(

− 1

π
tan δ0

)2

(B2)

where F000(r) = 1. For the case of ℓ = 1,m = 0 the dominant

contribution to the Ds matrix elements is from the term

−z1z2�Gzz(0),

Ds,10 = −〈ψs,10|V̂s |F100〉 �Gzz(0) 〈F100|V̂s |ψs,10〉

= −�Gzz(0)
π�

2

μ

6π

k3

(

− 1

π
tan δ1

)2

(B3)

where F100(r) = z. Similarly, for the case of ℓ = 1,m = ±1

the dominant contribution to the Ds matrix elements emerges

from the term −ρ1 · ρ2�Gρρ(0),

Ds,1±1 = −〈ψs,1±1|V̂s |F01±1〉�Ĝρρ(0)〈F01±1|V̂s |ψs,1±1〉

= −�Gρρ(0)
π�

2

μ

6π

k3

(

− 1

π
tan δ1

)2

(B4)

where F01±1(r) = ρe±iφ .

APPENDIX C: ηℓm(E) FUNCTIONS FOR GIVEN

CONFINING GEOMETRIES

In the expressions for the Green’s functions, we only need

terms through ρ1 · ρ2. The free-space Green’s function, Ĝf

is Taylor expanded up to terms proportional to ρ1 · ρ2, which

give

cos(k̃r̃12)

|r̃12|
≃ cos(k̃�z̃)

|�z̃| + ρ1 · ρ2

a2
⊥

[

cos(k̃�z̃)

|�z̃|3 + k̃ sin(k̃�z̃)

�z̃2

]

,

(C1)

where (ρ1 − ρ2)2 ≪ �z2 and the scaled variables are k̃ =
ka⊥ and �z̃ = �z/a⊥. The strategy below is to write this

expression for Ĝf as an integral with a uniformly converging

integrand. We show that this integral will be the continuum

form of the sums that arise in Ĝc.
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In this section, the functions ηℓm(E) are derived for two

types of confining potentials, i.e., harmonic and infinitely

square-well confining potential. In addition, we compare the

approximation Eq. (32) to the full expression for Ŵ(E) as a

function of �z̃, Eq. (31), as an illustration of the accuracy of

the ηℓm(E).

1. Harmonic-oscillator confining potential

In this section, the motion of the particle in the transversal

degrees of freedom is bounded by a harmonic oscillator which

possesses the form Vc(ρ) = μ

2
ω2

⊥ρ2, where μ denotes the

mass of the particle and ω⊥ corresponds to the frequency of

the harmonic confinement corresponding to the length scale

a⊥ = √
�/μω⊥. Note that the variable ρ represents the polar

coordinate, namely ρ =
√

x2 + y2.

Under these considerations, the motion of the photoelectron

separates in the z,ρ degrees of freedom. The solutions of

the corresponding Hamiltonian, namely Ĥc, possess the form

given in Eq. (5) for even or odd parity in the z direction.

Accordingly, the eigenenergies of the Hamiltonian Ĥc fulfill

the relation E = �ω⊥(2n + |m| + 1) + �
2k2

n,|m|/(2μ), where

n = 0,1, . . .. Evaluating the harmonic-oscillator eigensolu-

tions at (ρ,φ) → 0, the following relations are obtained:

�n,m(0) = 1

a⊥
√

π
for m = 0,

(∂±�n,m)(0) =
√

n + 1

a2
⊥
√

π
for m = ±1. (C2)

The scaled energy is defined by the relation ǫ = E/(�ω⊥).

The scaled momenta can be written as k̃ =
√

2ǫ, k̃nm =√
2ǫ − 2(2n + |m| + 1), and κ̃nm = √

2(2n + |m| + 1) − 2ǫ.

Substituting Eq. (C2) in Eq. (31) with the approximation of

Eq. (C1), a relation is obtained,

Ŵ(r1,r2,E) = − 2

no,0
∑

n=0

sin(k̃n0�z̃)

k̃n0

+ 2

∞
∑

n=no,0+1

e−κ̃n0�z̃

κ̃n0

+ 2

∫ no,0

−1/2

sin(k̃n0�z̃)

k̃n0

dn − 2

∫ ∞

no,0

e−κ̃n0�z̃

κ̃n0

dn

− ρ̃1 · ρ̃24

no,1
∑

n=0

(n + 1) sin(k̃n1�z̃)

k̃n1

+ ρ̃1 · ρ̃24

∫ no,1

−1

(n + 1) sin(k̃n1�z̃)

k̃n1

dn

+ ρ̃1 · ρ̃24

∞
∑

n=no,1+1

(n + 1)e−κ̃n1�z̃

κ̃n1

− ρ̃1 · ρ̃24

∫ ∞

no,1

(n + 1)e−κ̃n1�z̃

κ̃n1

dn, (C3)

where no,m = (ǫ − 1 − |m|)/2 is the divide between open and

closed channels; in the sums, the integer part should be used.

Note that ρ̃1 · ρ̃2 = ρ1 · ρ2/a
2
⊥. This expression has many

terms but each can be identified with different parts of the

Eq. (31). The first line is the contribution from the m = 0

open (first term) and closed (second term) channels from Gc.

The second line is an integral expression that exactly equals

− cos(k̃�z̃)/�z̃ [see Eq. (C1)], which is the contribution to

m = 0 from Ĝf . The third (fifth) line is the contribution to

m = ±1 from the open (closed) channels in Ĝc. The fourth

and sixth lines are an integral expression whose sum exactly

equals the term in Eq. (C1) multiplying the ρ̃1 · ρ̃2.

There are important features of Eq. (C3) that affect how

the scattering information is extracted. For example, the sums

and integrals that correspond to the open channels all contain

sin(k̃α�z̃) and therefore they do not contribute to Ŵ as �z̃ →
0+ for �ρ ≪ 1. Terms which refer to the closed channels do

survive in this limit and they contribute to the ηℓm(E). Lines 4

and 6 contribute to the η1±1 while the second term in each of

lines 1 and 2 contribute to the η00 and η10. The η00 is the limit as

all spatial coordinates of Ŵ go to 0. The η10 = −3∂2Ŵ/∂(�z̃)2

in the limit all spatial coordinates go to 0. This gives

η00 = 2

∞
∑

n=no,0+1

e−κ̃n0�z̃

κ̃n0

− 2

∫ ∞

no,0

e−κ̃n0�z̃

κ̃n0

dn,

η10 = −6

∞
∑

n=no,0+1

κ̃n0e
−κ̃n0�z̃ + 6

∫ ∞

no,0

κ̃n0e
−κ̃n0�z̃dn,

η1±1 = 12

∞
∑

n=no,1+1

(n + 1)e−κ̃n1�z̃

κ̃n1

,

−12

∫ ∞

no,1

(n + 1)e−κ̃n1�z̃

κ̃n1

dn, (C4)

where the limit �z̃ → 0+ is understood for all expressions.

Notice that all of the terms have the form of a sum minus a

corresponding integral. This feature ensures that the ηℓm are

well defined for any finite �z̃ and thus they give unambiguous,

finite results in the limit �z̃ → 0+.

To summarize, the expressions needed for the calculation

of the K matrix are convergent series when using a finite

�z̃ in the expression for the Green’s function. When the

scattering potential has a short range, analytic expressions can

be obtained in the limit �z̃ → 0+.

2. Infinite square-well confinement

In this section, the motion of the particle is bounded in

the x and y directions by an infinite square well. The square

well possesses the form V (x,y) = 0 when |x| < a⊥/2 and

|y| < a⊥/2 and V (x,y) = ∞ elsewhere. As in the case of

the harmonic oscillator at large distances the wave function

of the electron separates in Cartesian coordinates, where the

corresponding solutions of the Hamiltonian Ĥc possess the

form in Eq. (5) for even or odd parity in the z direction,

respectively. In addition, the energy spectrum of the Ĥc

Hamiltonian obeys the relation E = Enx ,ny
+ �

2k2
nx ,ny

/(2μ),

where Enxny
= �

2π2

2μa2
⊥

[n2
x + n2

y]. For the m = 0 case, we are

only interested in the values of the quantum numbers n

that give nonzero functions at the origin; these correspond

to the cases nx,ny = (2αx + 1),(2αy + 1), where the αx,αy

are independently 0,1,2, . . .. For the m = 1 case, we use the

functions

�±
nxny

(x,y) = 1√
2

[Fnx
(x)Fny

(y) ± iFnx
(y)Fny

(x)], (C5)
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where Fn(x) = √
2/a⊥ sin(nπ [x̃ − 1/2]), with x̃ = x/a⊥ and

nx,ny = (2αx + 2),(2αy + 1), with the αx,αy independently

0,1,2, . . .. This choice gives F ′
nx

(0) �= 0 and Fny
(0) �= 0.

This particular linear combination in Eq. (C5) ensures that

collisions with m = 1 affect the square-well states whose x-

dependent factor vanishes at the origin while the y-dependent

factor is nonzero, or vice versa. Evaluation of the square-well

eigensolutions at the origin gives

�αxαy
(0,0) = 2(−1)αx+αy

a⊥
for m = 0,

(C6)

(∂±�±
αxαy

)
∣

∣

0
=

√
2(−1)αx+αy+1

a⊥

2π (αx + 1)

a⊥
for m = 1,

where the functions �±
nxny

(x,y) are defined in Eq. (C5)

We define the scaled energy to be ǫ = E/(4�
2π2/[2μa2

⊥]).

The scaled momenta can be written as k̃ = 2π
√

ǫ,

k̃αm = 2π
√

ǫ − [(αx + [|m| + 1]/2)2 + (αy + 1/2)2], and

κ̃αm = 2π
√

(αx + [|m| + 1]/2)2 + (αy + 1/2)2 − ǫ. Substi-

tuting Eq. (C6) in Eq. (31) a relation is obtained,

Ŵ(r1,r2,E)

= −8π

αo,0
∑

α=0

sin(k̃α0�z̃)

k̃α0

+ 8π

∞
∑

α=αo,0+1

e−κ̃α0�z̃

κ̃α0

+ 8π

∫ αo,0

−1/2

sin(k̃α0�z̃)

k̃α0

d2α − 8π

∫ ∞

αo,0

e−κ̃α0�z̃

κ̃α0

d2α

− ρ̃1 · ρ̃232π3

αo,1
∑

α=0

(αx + 1)2 sin(k̃α1�z̃)

k̃α1

+ ρ̃1 · ρ̃232π3

∫ αo,1

−1

(αx + 1)2 sin(k̃α1�z̃)

k̃α1

d2α

+ ρ̃1 · ρ̃232π3

∞
∑

α=αo,1+1

(αx + 1)2e−κ̃α1�z̃

κ̃α1

− ρ̃1 · ρ̃232π3

∫ ∞

αo,1

(αx + 1)2e−κ̃α1�z̃

κ̃α1

d2α, (C7)

where αo,m denotes the divide between open and closed chan-

nels and is given by (αx + [|m| + 1]/2)2 + (αy + 1/2)2 = ǫ;

in the sums, the integer part of αx,αy should be used. Note

that ρ̃1 · ρ̃2 = ρ1 · ρ2/a
2
⊥. This expression has many terms but

each can be identified with different parts of Eq. (31). The

first line is the contribution from the m = 0 open (first term)

and closed (second term) channels from Ĝc. The second line

is an integral expression that exactly equals − cos(k̃�z̃)/�z̃

[see Eq. (C1)], which is the contribution to m = 0 from Gf ;

the lower limit of integration is −1/2 for both αx and αy . The

third (fifth) line is the contribution to m = ±1 from the open

(closed) channels in Ĝc. The fourth and sixth lines are integrals

whose sum exactly equals the term in Eq. (C1) multiplying

the ρ̃1 · ρ̃2; the lower limit of integration is −1 for αx and

−1/2 for αy . Unlike the integral expressions for the harmonic

oscillator, it is somewhat tricky to show that the integrals

exactly equal the expressions from Gf . The simplest method

we found was to change variables sx = αx + (|m| + 1)/2 and

sy = αy + 1/2 and then convert to cylindrical coordinates

s2 = s2
x + s2

y and tan(φ) = y/x and remember to only integrate

from 0 � φ � π/2 since the sx � 0 and sy � 0.

To obtain the scattering parameters ηℓm, we can repeat the

logic of the preceding section for the harmonic oscillator. This

gives

η00 = 8π

∞
∑

αo,0+1

e−κ̃α0�z̃

κ̃α0

− 8π

∫ ∞

αo,0

e−κ̃α0�z̃

κ̃α0

d2α,

η10 = −24π

∞
∑

αo,0+1

κ̃α0e
−κ̃α0�z̃ + 24π

∫ ∞

αo,0

κ̃α0e
−κ̃α0�z̃d2α,

η1±1 = 96π3

∞
∑

αo,1+1

(αx + 1)2e−κ̃α1�z̃

κ̃α1

,

− 96π3

∫ ∞

αo,1

(αx + 1)2e−κ̃α1�z̃

κ̃α1

d2α, (C8)

where the limit �z̃ → 0+ is understood for all expressions.

Notice that all of the terms have the form of a sum minus a

corresponding integral. This feature ensures that the ηℓm are

well defined for any finite �z̃ and thus they give unambiguous,

finite results in the limit �z̃ → 0.

To summarize, the expressions needed for the calculation

of the K matrix are a convergent series when using a finite �z̃

in the expression for the Green’s function. When the scattering

potential is short range, analytic expressions can be obtained

in the limit �z̃ → 0+.
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