AUTHOR
TITLE
I NSTITUTION
PUB DATE
NOTE
PUB TYPE
EDRS PRICE
DESCRIPTORS

1

Buccino, Alphoonse; And Others
Science and Engineering Education: Data and Information.
' National Science Foundation, Washington, D.C. 82
355p.; Not available in paper copy due to colcred paper.
Reports - Descriptive (14i) -- Statistical Data (110)
MFOl Plus Postage. PC Not Available from EDRS. College Faculty; *Degrees (Academic); *Educational Resources; Educational Trends; Elementary Secondary Education; Employment;*Engineering Education; Engineers; Enrollment; Females; Financial Support; Higher Education; *Mathematics Education; Minority Groups; Participation; Salaries; *Science Education; Science Teachers; Scientists; *Scores; Student Attitudes; Teacher Attitudes

I DENTIFIERS

ABSTRACT

Science and Engineering Education data and information are presented in six chapters, each chapter containing detailed statistical charts and tables. Resources data contained in. Chapter l are grouped into four categories: $k-12$, higher education, funding, and informal edučation. Resources may take the form of capital, personnel, and teaching materials and may be expressed in types of educational programs offered, curricula used, and amount of. time spent on them. Chapter 2 presents data on how many and what kinds of people participate in science, mathematics, and technology education and what form that participation takes. Chapter 3 focuses on student, faculty, and public attitudes, goals, and needs concerning science and mathematics education. Test data are exalmined. fin-chapter 4. Degree data in chapter 5 are grouped into three 'categories: total number of earned degrees by subject and level, percent distribution of earned degrees by subject and level, and degree and distribution data for women and minorities. Science/engineering employment data (focusing on employment and salaries) are presented in chapter 6. Each chapter begins with an introduction and highlights of the data presented therein. (Author/JN)

[^0]Science and Engineering Education: Data and Information嶎
\qquad
湤 \qquad

Prepared by
Alphonse Buccino Paul Evans
George Tressel

$\$$

Acknowledgement

Table of Conterits

1

Chapter I: RESOURCES

Chart 1-1:

Introduction and Highlights K-12
Public Secondary School Teachers, by Subject Taught, Spring 1961 to Spring 1976
Chart l-2: . Percent of Male and Female Sçience, Mathematics, and Social Science Teachers, by Grade Range
Chart 1-3: Employed Teachers and Teacher Layofis and Shortages by Field , as Percent or Total Employed Teachers and Teaóher Layoffs and Shortages
*
Most Frequerit!y Used Social Studies Texthooks/Programs, by Grade Range
Chart 1-4: Most Frequerıtly Used Social Studies Texthooks/Programs, by
Chart 1.5: Most Frequently Used Science Textbooks/Programs, by Grade Range
Chart 1-6:

Chart 1-7: Percent of Teachers Using Federally Funded Curriculum Materials in Each Subject, by Grade Range
Chart 1-8: \quad Average Number of Minutes per Day Spent, Teachlng Each Subject in Self-Contaıned Classes, by Grade Range
Chart 1.9: \quad Percènt of Mathematics and Science Classes that Úse Métric Concepts, by Subject and Grade Range

Chart 1-11: 16 Percent of Schools with Specific Budgets for Science Equipment and Science Supplies, and Average Amounts of these Budgets per Pupil, by Grade Range
Chart 1-12: Percent of Schools with Various Kinds of Equipment, by Grade Range 17
Chart 1.13: Teaching Methods Used in Courses Taken by High School Seniors 20
Chart 1.14: Percentages of Tejacting Faculty in Subject Fields, 1969.75 21
Chart 1-15: Distribution of Full-Time Faculty by Rank, Tenure Status, and Sex in 1979-1980 28
Chart 1.16: University and Four-Year College and Mathematical Science Faculty, 1965-1980 29
Chart 1.17: Doctorates among Full-Time Mathematical Science Faculty 30
Chart 1.18: Distribution of Full-Time Mathematical Science Faculty by Age and Sex, 1980 31
Chari 1-19: Trends in Numbers of Full- and Part-Time Mathematics Faculty 32
Chart I.20. Educational Qualifications of Part-Time Mathematics Faculty in Two-Year Colleges 33
Chart 1.21. Percent of Higher Education Institutions with Access to Computers, $1965 \cdot 77$ 34
Charts I.22: National Science Fqundation, Instructional Scientific Equipment A \& B Program !(SEP) Data 35
Chart I-23. National Science Foundation Science Education Obligations by Function as Percent of Total 36
Chart I-24. National Science Foundation Science Education Obligations by Level of Education ǎs, Percent of Total 38
Chart 1-25. Number of Continuing Education Degree Credit Courses for Scientists and Engineers, 40
Chart 1-26. Number of Continuing Education Non-Credit Activities for Scientists and Engineers, Offered by Universities and Professional/Technical Organizations 41
Informal EducationChart 1.27: Distribution of Institutions Offering Specific Programs, by Typeol Museum45
Chart 1-28: Museums Offering Special Programs for Specific Groups: United States, 1979 46
Chart t.29: , Museums Offering Teacher Training, by Type of Museum 47
Chart I.30. Federal Funding of Science Technology Centers and Museums 48

Chart 11.1Chart II.2. Percentages of 13- and 17-Year-Olds Participating in Various Science-

Related Activities Outside of Science Classes

Related Activities Outside of Science Classes 52 52 52 52 52 52

Charts II.3. Attendance at Science Museums, Association of Science Technology

Charts II.3. Attendance at Science Museums, Association of Science Technology

Charts II.3. Attendance at Science Museums, Association of Science Technology

Charts II.3. Attendance at Science Museums, Association of Science Technology

Charts II.3. Attendance at Science Museums, Association of Science Technology

Charts II.3. Attendance at Science Museums, Association of Science Technology

$A \& B$

$A \& B$ Centers (ASTC) Members, 1975•1977 Centers (ASTC) Members, 1975•1977 53 53 53 53 53 53

Chart II-4

Chart II-4

Chart II-4

Chart II-4

Chart II-4

Chart II-4 Science Museuri Attendance by Age, as Percent of Total, Survey of Science Museuri Attendance by Age, as Percent of Total, Survey of Science Museuri Attendance by Age, as Percent of Total, Survey of Science Museuri Attendance by Age, as Percent of Total, Survey of Science Museuri Attendance by Age, as Percent of Total, Survey of Science Museuri Attendance by Age, as Percent of Total, Survey of ASTC Members ASTC Members ASTC Members ASTC Members ASTC Members ASTC Members 54 54 54 54 54 54

Chart-II.5: Circulations of Popular Science Magazines

Chart-II.5: Circulations of Popular Science Magazines 55 55 55 55 55 55

Chart II: 6.

Chart II: 6. Sources Used by Young Adults to Obtain Information about Selected Sources Used by Young Adults to Obtain Information about Selected Sources Used by Young Adults to Obtain Information about Selected Sources Used by Young Adults to Obtain Information about Selected Sources Used by Young Adults to Obtain Information about Selected Sources Used by Young Adults to Obtain Information about Selected Energy Issues Energy Issues Energy Issues Energy Issues Energy Issues Energy Issues 56 56 56 56 56 56

Chart II.7. Mean Number of Years of Study by Subject of College-Bound Seniors, by

Chart II.7. Mean Number of Years of Study by Subject of College-Bound Seniors, by

Chart II.7. Mean Number of Years of Study by Subject of College-Bound Seniors, by

Chart II.7. Mean Number of Years of Study by Subject of College-Bound Seniors, by

Chart II.7. Mean Number of Years of Study by Subject of College-Bound Seniors, by

Chart II.7. Mean Number of Years of Study by Subject of College-Bound Seniors, by Sex, 1980.81 Sex, 1980.81 Sex, 1980.81 Sex, 1980.81 Sex, 1980.81 Sex, 1980.81 57 57 57 57 57 57
Chart il-8. Percent of College-Bóund Seniors Who Took an Honors Course, by
Chart il-8. Percent of College-Bóund Seniors Who Took an Honors Course, by
Chart il-8. Percent of College-Bóund Seniors Who Took an Honors Course, by
Chart il-8. Percent of College-Bóund Seniors Who Took an Honors Course, by
Chart il-8. Percent of College-Bóund Seniors Who Took an Honors Course, by
Chart il-8. Percent of College-Bóund Seniors Who Took an Honors Course, by $\begin{array}{cc}\text { Chart II-8. } & \begin{array}{l}\text { Percent of Colle } \\ \text { Subject, } 1980.81\end{array}\end{array}$ $\begin{array}{cc}\text { Chart II-8. } & \begin{array}{l}\text { Percent of Colle } \\ \text { Subject, } 1980.81\end{array}\end{array}$ $\begin{array}{cc}\text { Chart II-8. } & \begin{array}{l}\text { Percent of Colle } \\ \text { Subject, } 1980.81\end{array}\end{array}$ $\begin{array}{cc}\text { Chart II-8. } & \begin{array}{l}\text { Percent of Colle } \\ \text { Subject, } 1980.81\end{array}\end{array}$ $\begin{array}{cc}\text { Chart II-8. } & \begin{array}{l}\text { Percent of Colle } \\ \text { Subject, } 1980.81\end{array}\end{array}$ $\begin{array}{cc}\text { Chart II-8. } & \begin{array}{l}\text { Percent of Colle } \\ \text { Subject, } 1980.81\end{array}\end{array}$ 58 58 58 58 58 58

Chart 11.2

Percent of Teachers as of 197? Who Have Attended an NSF sponsored Institute, Workshop, or Conference 51

Chapter II:PARTICIPATION
 Chapter II: PARTICIPATION

 /Introduction and Highlights 49
K. 12 1PageChart II-9: Percent of High School Seniors Who Had Taken Various MathematicsCourses by Sex 1980 Had Taken Various MathematicsCourses, by Sex, 198059
Chart II.10: Percent of High School Seniors Who Had Taken Varicus Mathematics Courses, by Race, 1980 60
Chart II.11: Remedial and Advanced Courses in Mathematic̀s Taken by High School Seniors 61
Chart II-12A: Full Time-Equivalent Enrollments in All Higher Education 64
Chart II-13: Enrollments in Two Year Colleges, by Sex and by Field, Fall 1978 65
Chart II-14. Percentages of Undergraduate Enrollments, by Field, 1969 and 1976 67
Chart II-15: Trends in Women's Enrollment for Master's and Doctor's Degrees, by Field, 1969, 1972, 1976 68
Shartillf. Undergraduate Enrollments of Women and Minorities, by Field, Fall 1980 70
Chart II-17: Graduate Enrollments of Women and Minorities, by Field, Fall 1978 71
Chart II-18: Engineering Enrollments, in Engineering Schools, 1968-1980 72
Chart II-19: Full Time Undergraduate Engineering Enrollments. 73
Chart II-20: Bacheior's Degrees in Engineering Granted to Women, 1968.69 to 1980.8i 74
Chart II.21: Masters and Doctor's Degrees in Engineering Granted to Women, 1968.69 to 1980.8.1 53
Chart II-22: Mathematical Science Enrollments in Universities and Four-Year Colleges 76
Chatt II.23: Remedial Mathematics in Universities and Four-Year Colleges 77
Chart II-24: Computer Science Enrollments in Universities and Four-Year Colleges 78
Chart II-25: Enrollments-in Continuing Eaucation Degree Credit Courses by \circ
Scientists and Engineers, 1975.76 80 80
Chart II-26. Enrollmẹnts in Continuing Education Non-Credit Activities by Scientisis ahd Engineers, 1975.76 81Chart III-1.Introduction and Highlights83
Students
Attitudes of Students in Grades 1 to 6 Toward School 85
Chart III-2: Percentages of Students Naming Various Subjects in School as Their Favorite, Ages 9, 13, and 17 87
Chart III-3: Percent of College-Bound Seniors Intending to Study Science, Enginee,ing, Matnematics of Social'Science, by Sex, 1978.79 88
Chart ${ }^{\prime}$ II-4 Plans of College-Bound Seniors to Ask Colleges for Specia! Assistance, 1980.81 89
Chapter III:ATTTITUDES, GOALS,

\& NEEDS
Faculty
Chart III.5: Attitudes Toward the Teaching Profession: Opinions of Public School Teachers 91
Chart III.6: Job Satisfaction: Opinions of Public Sćhool Teachers 93
Chart III.7: K-12 Science, Mathematics, and Social Studies Teachers' Needs for Assistance 95
Chart III.8: K-12 Science, Mathematics, and Social Studies Teachers' Perceptions of Classroom Needs 96
Chart III.9: ' K-12 Mathematics Teachers' Perceptions of Problem Areas 97
Chart III.10: K-12 Science Teachers' Percéptions of Problem Areas 98
Chart III-11: K-12 Social Studies Teachers' Perceptions of Problem Areas 99
Chart III-12. Elementary Teachers' Perceptions of Their Qualifications, by Sübject 101
Chart III.13. Secondary School Teachers' Perceptions that They Are Inadequately Oidalified to Teach One or More of Their Classes 102
Chart III-14: Public Vie N of Subjects Essential to All High School Students 103
Chapter IV:TEST DATA
Chart IV.1. Factors Contributing to Achievement on Spring Mathematics Scores 107
Crart IV.2: , Effects of Time Spent in Mathematics Instruction on Achievement Scores. 108
Chart IV.3: \quad Change in Mathematics Performance of 9., 13., and 17-Year.Olds: 1973-1978 110
Chart IV-4: - Mainematics Knowledge of 9., 13-, and 17-Year-Olds a 112
Chart IV.5: Changes in Şcience Achievement 1969-1977, for 9., 13., and 17-Year- Olds: National Assesšment of Educational Progress 114
Chart IV.6: Changes in Physical Science Achievement, 1969-77, for 9., 13., and 17. Year-Olds: National Assessment of Educational Progress 115
Chart IV.7: Changes in Biological Science Achievement, 1969.77, Ior 9., 13., and 17.Year-Olds: National Assessment of Educationad Progress 116

- Chart IV.8. Changes in Mathematics Achievement 1973-78, for 9., 13., and 17-Year:- Olds: National Assessment of Educational Progress 118
Chart IV.9: Mathematics Test Scơres of High School Seniors Related to Types of Courses Taken. 119
Chart IV.10. ' Mathematics Test Scores of High School Seniors Related to Years of Coursework 121
Chart IV-1i: Scholastic Aptitude Test Score Averages for College-Bound Seniors, 1967-81 123
Chart IV.12: Scholastic Aptitude Test (SAT) Score Averages'for College Bíound Seniors 124
Chayt IV-13: Intended Undergraduate Fields of College Bound Seniors, by Combined Average SAT Scores, 1980.81 126
Chatt IV-14: Admissions Testing Program Achievement Test Score Averages, 1972.81 128
Chart IV-15: Gràduate Record Examination Quantitative Aptitude Mean Scores for Prospective Graduate Sludents in Science, 1970-78 130
Chart IV-16: * Graduate Record Examination Verhal aptitude Mean Scores for Prospective Graduate Students iri Science, 1970.78 132
Chart V'1.
Introduction and Highlights 135
Total Degrees
,Earned Associate Degrees in Engineering Related OccupationalCurricula, 1970.71 to 1978.79137
Chart V.2: Pe cent Distribucion oi Associate Degiees, by Curriculum Category, 1972.73 to 1!978.79 138
Chaits V-3, A \& B:
Earned Degrees in the Biological Sciences by Level of Degree, 1951.52 to 1979.80 139Charts V.4,A \& B:
141Earned Degrees in the-Physical Sciences, by Level of Degree, 1951.5210 1979.80
Chart V. i: Chartv.i. Earned Degraes in Physics, by Levei of Degree, 1951.52 to 1979.80 143
Charts V-8, Earned Degrees in Chemistry, by Level of Degree, 1951.52 to 1979.80. 145
A \& B:
Charts V-7 Earned Degrees In Mathematics, by Level of Degree, 1951.52
$A, B, \& C:$ to 1979.80 147
Charts V-8, Earned Degrees in Engineering, by Level of Degree, 1951.52 to 1979.80 149
A, B \& C:
Charts V-9, Earned Degrees in Psychology, by Level of Degree, 1951-52 to 1979.80 153$A \& B$:
Charts V-10,
A \& B: Earned Degrees in Sociology, by Level of Degree, 1951.52 to 1979.80 155
Chart V.11: Earned'Degrees in Mathematics and Science Education, by Level of Degree and by Sex, 1979.80 157
Chart V.12: Percent Distribution of Earned Bachelor's Degrees, by Field, 1968.69 , 1988.89 158
Chart V-13: Percent Distribution of Earned Master's Degrees, by Field, 1968-69 to 1988.89 159
Chart V-14: Percent Distribution of Earned Doctor's Degrees, by Field, 1968-69 to 1988 -89 160
Chapter V: DEGREE DATA
Women and Minorlties
Chart V-15: Bachelor's Degrees in Science Earned by Women, 1951-52 to 1979.80 164
Chart V-16: Master's Degrees In Science Earned by Women, 1951.52 to 1979.80 166
Chart V-17: Doctor's Degrees in Science Earned by Women, 1951.52' to 1979.80 168
Chart V-18: Percent of Bachelor's Degrees in Science Earned by Women, 1951.52 to 1979.80 170
Chart ㄴ-19: Percent of Master's Degrees in Science Earned by Women, 1951.52 to 1979.80 171
Charl V-20: 'Percent of Dọctor's Degrees in Science Earned by Women, 1951.52 10 1979.80 172
Charts V-21; Percent of Bachelor's Degrees in Science Earned oy Mlnorities, by $A, B \& C:$ Field, 1978-79. 173
Introduction and Highlights 181
Chart VI-1. s Employers of Doctoral Scientists and Englneers, 1973 afid 1979 183
Chart VI.2. Prımaty Work Activity of Doctoral Scientists and Engineers, 1973 and 1979 184
Chart VI.3. Unemployment Rates of Science/Engineering Graduates, by Field and Sex, 2 yalars After Graduation 185
Chart VI.4: Unemployment Rates of Doctoral Sciantists and Engineers, by Fleld and Sex, 1973, 1975, 1977 and 1979 188
Chart VI-5: Average Underemployment of 1976.77 Bachelor's Degree Recipients Working Full-Time, by Field and Sex, February 1978 190
Chart VI.6. Percent of Science and Engineering Doctorate Reclpients Still Seeking Posilion at Time of Ph.D., by Sex, 1965.77 191.
Chart V1.7: Median Annual'Salaries of Bachelor's and Doctoral Degree Recipierts: 1980 192
Chart VI.8. 1979 Median Annual Salaries of 1977 Bachelor's Graduates Employed Full-Time in Science and Engineering, by Field of Study and Sex 193
Chart VI.9: Average Annual Salaries of 1976.77 Bachelor's Degree Reclpients
- Working Full.Time, by Fleld and Sex, February 1978 195
Chart VI-10. Beginning Offers to Bachelor's Deqgree Candidates, July 1981 196
Chart VI.11. 1979 Median Annual Salaries of 1977 Master's Graduates Employed Full-Time in Science and Éngineering, by Field of Work and Sex. 198
Chart VI-12.' Median Annial Salaries of Doctoral Scientlsts and Engineers, by Field and Sox, 1977 and 1979 200
Chapter VI: EMPLOYMENT IN SCIENCE
AND ENGINEERING

Chapter I RESOURCES

INTRODUCTION

Resources may be provided by personnel acting' as teachers, or by institutions offering courses of instruction, or by scciety making tax-dollars available to suppcrl colleges and museums. Resources may take the form of capital, personnel, and teaching materials and may also be expressed in tre types of educational prugrams offefed. the cur. riculaused, and the amount of time spent on them.

The resources data contanned in this chapter ard grouped into four categories: K.12, higher educa. , tion, funding, and informal education.

HIGHLIGHTS

K-12
1 The fraction of all socondary teachers spend ing the largest portion of their time in science. mathematics. or social studies increased by almost 22% from 1961 to 1976. (Chart 1.1).

- 2 State supervisors from most states feel that there are shortages of feachers in mathematics, physics, chemistry and earth science (Tables 1.4 A \& B).

3. The supply of individuals with new degrees in mathematics and science education has been falling since 1972 (Table I.5).
4. Slightly more than half of all grade 10.12 science teachers were using one or more of the Federally funded sciance curriculum: materials during the 1976.1977 school year. (Chart 1.7)
5 Sudents in K 3 spend an average of less tnan 20 minutes a day on science. (Chart 1.8)
6 Approximately 90% of the grade 712 sca ence classes make use of the metric system. (Chart 1.9)
7 Relatively lew schools have separate bud gets for scientific equipment and supplies (Chart 1.10)
8 Over one-third of k. 6 clasurooms have no science lacillies (Chart (1-1))
9 There has been an merease in the proportion of students participating in individualized instruction and computer aided instruction. (Chart I 13)

Higher Education

1. Between' 1969 and 1975 the number of nathematical and physical sciences faculty, as a percentage of tota, college teaching faculty, decreased by 50%. (Chart $1-14$)
2. Between 1969 and 1975, the number of binlogical science faculty, as a pe:centage of iotal teaching faculty, increased by 50% (Chart 1.14)
3. Since 1965, the full time faculty in higher education has increased by 89% and the part time faculty by 76%, however. the student - faculty ratio has also increased. (Table I-14A)

4 Faculty in computer science university depart ments ($+25^{\circ}$) and in private college mathe matics departments $i+16 \%$) have increased since 1975. (Table 1.14B)
5 The number of teaching assistants doubled from 1975 to 1980 in computer science and private coltege mathemalics departments: (Tabiel-14C)
6. 10% of all engintering faculty positions wore unlitled as of September 1980. (Tablel-16)
7 The greatest number of engineering faculty moves were in the field of computer engineer ing. (Table (17)
8. Nearly 25°. of all junior faculty teaching engineering in the U.S received their baclalaureate outside the U.S. (Table l.18)
9. Engineering faculty salaries show a mean range of $\$ 34,500$ tor full professors to $\$ 20.000$ for assistant professors. (Table l.19)
10 The percent of public and private college lac ulty holding dyptorates declined (74°, to 69°. and 69°, to 64° ol durng the five year period (Charil-17)
11 The number of women on mathematical science faculties has increased from $10^{* *}$ to $14^{\prime \prime}$. with median age for women faculty about five years less than that for men (Chart $1-18$).
12 For mathematics in two-year colleges. part time faculty now outnumber full-time faculty (Chart 1.19)
i3 It is not. Ilikely that the educational qualif. cations of part-time mathematics facuity will - increase in the near future (Chart I-20)

14 The percent of higher educations with access to computers doubled between 1969 and 1977 , (Chart l.21)

Funding

1 The average amount requested for instruc. tional scientilic equipment shows a continual rise between 1976 and 1981. (Charyl-22)
2 NSF has shifted support over/time among tudents. rculty, institutions, and R\&D. (Cng(1.23)
3 In regard to levels of education NSF has also shifted priorities over time. (Chart 1.24)

Confinuing and Informal Education

1 During 1975.76 there were almost 3500 degree uredit wouses iny continuing education for scientists and gingineers. There were about 4900 non-credilactivities in continuing education. (Charts 125-26)
2 In 1979, museums received tess than one. fourth ot their total operating income from private sources, such as foundations, corporations. individual contributions, and other sources Art museums received the greatest relative percentage of their total operating \%come from private sources (25 percent) and parks and visitor centers the leasi (6 percent). On the whole, museams received approximately the same financial support (4 percent of total operating income) from each of foun. dations, individuals, and other sources. Findncial support from corporations made up enly an estimated 2 percent of total operating income. (Table 1.26)
3 Museums with higner operating income were more likely 'to have increasing educationa! roles Conversely, those institutions with the lowest operating incomes were more likely to indicate that their educational roles were staying the same. (Table 1-27)
4. An estimated 60 percent of all museums offered some type of specific program in fiscal year 1979 Childreg's museums (83 percent) and art and science museums (78 percent) were mose likelf to have specific programs than other types of museums. (Chart 1.27)
5 Approximately one.fourth of the musoums offered leacher training periodically or on a regular basis on how to use museum resources. An estimated 65 percent of the children's museums offered teacher training. Around 40 percent of science museums and art museums offered such training, only 16 percent of the specialized museurns offered some type of leacher training. (Chart 1-29)
6 Between 1972 and 1978, science and technology centers and museums received slightly over $\$ 30$ million in Federal funds. (Charl 1.30)

Chart I-1. Public secondary school \because teachers, by subject taught, spring .1961 to spring 1976

The fiaction of all secondary teachers spending the targest puition of then time in teaching science, mathematics, or social studies increased by almost 22% from 1961 to 1976.

Table 1-1: Public secondary school teachers,'by subject taught,-spring 1961 to spring 1976

Half time or more

NOTE Data are based upon samp'e strve, s of pubbic schoot teachers Becausn uf rounding. percents may nol add to 100.0 .
 Education Assowation All hghts eserved, Repminted lium Giani. W vanue and bind. C Geugg. Digost of Education Stailstics, 1977 78.p 53

Chart 1-2. Percent of male and female science, mathomatics, and social sludies teachers, by grade range

Must elementaly ouhool kache.s are women. They usually teach science, mathematics, and social studies as weli as other subjects. Most high school teachers of mathematics, science, and social studies are men and they usually teach within one subject field. 4

Table, 1.2. Percent of male and female teachers of science, mathematics, and social siudies, by grade range

Grade Range.	Mathematics			Scrence			Socrar'studies			rotal		
	Mate	Female	Unknu:il	Male	Femate	Uuhnor:in	Male	Femate	Unkıumir	Male	Female	Unknown
$\mathrm{K} 3 \mathrm{~N}=8381$	6	94	0	2	98	0	3	96	1	4	96	0
$46 \mathrm{NN}=829$	21	76	2	33	67	0	19	79	1	25	74	$\cdot 1$
$79(\mathrm{~N}=1538)$	54	46	0	62	38	0	62	38	0	59	41	0
10.12($\mathrm{N}=1624)$	68	32	0	74	24	2	75	24	1	73	26	1
									:			
Sample N		1672			1679			1478			4829	-

Chart 1.3: Employed teachers and teacher layoffs and shortages by field as percent of total employed teachers and teacher layoffs and shortages

White 23 pertent of teacher, shurtages were in elementary education, an even larger proportion pf layoffs were in that filld in 1979. Fields in which the number of shortages exceeded the number of layoffs were billingual education, industrial arts, physical sciences, and special education.

[^1]'Tạble 1.3: Employyed teachers and teacher layoffs and shortages in public and private elementary/secondary schools, by field of assignment: spring 1979

	Employed Teachers'		L. iygits?		Shortages*	
	Number ${ }^{\text {¢ }}$	Percent of All Teachers	Number	Percent of All hayofts	Number	Percent of All Shortages
Total	2,552.000	100.0	23.900	1000	11.300	1000
Preprimary	99,000	$3.9{ }^{\circ}$	1.300	5.5	700	63
Primary and General Elementary	899,000	352	$7,800$	32.8	2,600	233
Art	57.000	2.2	1.100	45	100	8
Basic Skills and						
Remedial Education	9.000	3	/ 100	5	(3)	(3)
Bilingual Education	22.000	9	200	1.0	400	3.7
Biology	30,000	1.2	300	11	100	. 9
Business ...	45,000	1.8	400	17	200	1.8
English Language		1				
Arts	188,000	74	1.800	76	200	2.2
Forergn Languages	53,000	2.1	800	3.3	100	1.1
General Sctence	76,000	30	- 700	3.0	200	2.1
Health, Physical - ducation	158.000	6.2	1.100	4.7	100	12
Hometarnomics.	36,000	14	500	2.3	(')	(3)
Industrialtas	- 41,000	1.6	400	18	600	5.3
Mathematics in	150,000	5.9	1,100	44	900	8.3
Music	87,000.	3.4	900	3.7	200	14
Reading . . .	73,000	- 29	400	15	300	2.8
Physical Scietiog	25,000	10	100	5	600	55
Social Studiedtyonal Sclenices	143,000	56	$i, 300$	55	100	8
Special Educfition ..	219,000	8.6	2.760 ,	11.5	3,200	283
Vocational Egication	101.000	4.0	,600	2.5	300	29
Other	39,000	1:5	. 100	$.4$	100	1.1

Includes all fultitme and partime classroom iqachers in public and pivale otementaryisccandary schook quiting the 197980 sthool year.
'A layoll represents a toacher whose contract was not reneved at ite ond it the, 197870 school yoar bocauso po budgot limtations, and whuse posi Alon was not subscquontly tiliod.
 sehool year) for which toachors wore sought Düt waro unable to be hited because no qualifled candidato was artilable
"Thoso figures repiosent undupiticated counts of feachers among fields. Teaphers in more than ono theld were repolicd only in the fiesd in which thoy speni most of their toaching timo, Tho oxcopilon was that any soacher ongaged in ollingual or special edvcation wa. counteo in olthos of those areas rogardiess of tha tlme spont In other oras.
-Leos than 100 positions.
Nota: Dofalis may̆ hot tidd tcitotals becaüso of rounding.
Source: U.S, Depaitment of Educillon, National dender for Éducation Statistics, Survoy ol Toacher Demand and Shottashs, Teacher Layofts; Short ades lii 1979 Small Compirgid with.Total Employod. ${ }^{*}$ NCES $81 \cdot 1214,1981$.

Table 1.4 A: Estimated supply of secordary biology, chemistry, physics, general science, earth science and mathematics teachers by state, 1980:8i"

Slute	grolegy		Chumistry		Physics		General Science		Earth Scrence		Math	
	1920	1987	1980	1931	1989	1981	1380	1981	1980	1981	1980	1981
Aubanis	2	2	3	35	5	5	3	3	4.	4	NR	4
Alaska	1	2	1	2	1	2	1	2	1	2	1	2
Alizona,	NP	3	NR	4	NR	5	NR	5	N9	3	NR	4
Arkans is	3	3	4	4	4	1	3	3	3	3	4	4.
Califorris	12	3	2	4	1	4	3	3	1	4	2	4
cotortudo	1	3	35	4	35	4	35	4	35	s	35	1
Connectuiat	3	3	3	4	4	5	3	4.	3	4	4	5
Doldwnite	3	1	3	3	3	4	3	1	3	1	3	4
Distric tof Columbed	4	1	3	1	4	4	2	3	3	3	4	5
Fiotid.	3	3	${ }^{5}$	5	5.	5	4	4	4	5	4	4
Georgia	1	25	1	15	-	4	\dagger	5	1	4	1	5
Hawal	2	7	4	4	4	n	3	4	4	4	3	4
toane	1	t	4	4	4	\$	3	3	4	3	4	4
1llagers	\$	1	5	5	3	5	4	4	2.4	4	5	5
Indiand	2	5	5	5	5	5	5	5	5	5	5	5
towa	*	\therefore	5	4	9	5	3	3	4	4	5	5
Kution	2	1	4	4	1	4	4	${ }^{3}$	\pm	3	1	5
Kenturky	3	Э	1	4	5	5	3	3	4	4	5	5
Loustard	3	1	4	4	5	5	3	3	4	4	4	4
Maine	3	1	35	5	3 5	5	35	3	35	3	4	4
Marylard	3	,	4	4	4	4	4	1	4	4	1	5
, Mascachusatly	1	NR	*	Nit	1	NR	1	NR	1	NTR	1	NR
Mictigan	3	NR	*	$N \mathrm{~A}$	4	NR	3	NP	. 3	NR	4	NR
Minnownd	2	2	3	3	4	4	3	3	3	$\hat{3}$	NH	4
Missusspl	1	\%	?	2	4	4	,	1	4	4	NR	3
Missoul	1	1	3	*	*	5	4	4	4	4	t	5
Montins	NR	Na	$N 8$	NR	Nar	NR	NR	NR	NR	NR	NR'	NR
Nebrasky	3	3	4	4	1	4	3	3	4	3	3	4
Hevads	3	3	4	4	5	5	3	3	3	3	4	4
Hêw mamornirex	2	3	5	5	5	5	4	4	5	4	5	5
Hew Jup ery	3	Na	3*	Nat	4	NR	3	NR	3	NR	3	NR
Nen Maxa	2	NP	$?$	res	4	NA	2	NR	3	NR	s	NR
* Now Y ith	,	3	1	4	5	5	3	3	4	4	5	5
Horth Cutinion	4	z	5	$\stackrel{4}{4}$	5	5	4	3	4	5	5	5
Nult Fimen in	1		1	4	1	4	4	NT	4	4	4	4
Onic	4	3	4	4	5	5	3	3	2	3	3	3
Ontantm	:	*	t	4	F	${ }_{5}^{4}$:	2	5	5	5	4
Oregon	1	2	,	:	- 1	5	3	3	3	4	5	4
Ponnsylvanis	2	!	4	4	5	5	2	1	4	5	5	5
Rhader cidan]	Na	3	Na	3	NR	3	HR	3	NR	3	NA	4
South Camotir	1	*	${ }^{4}$	4	5	5	4	3	5	5	5	5
South Dik it	3	19	4	4	r	5	3	35	3	35	3	5
Tannessa*	3	25	35	1	is	4	3	2	4	4	35	4
Texds	2	1	3	3	3	3	4	5	5	5	5	5
Ulan	3	3	4	1	4	4	3	3	4	4	1	5
Vermont	4	4	4	5	5	5	3	4	3	$4{ }^{*}$	3	4
Virginia	1	1	1	4	4	3	2	1	5	4	1	4
Wash mit :4	1	NH	1	NH	s	NR	3	NR	4	NR	35	NR
Wast V 'yinit	1		4	4	5	5	1	4	4	4	5	4
Wusconsin	2	3	4	4	4	5	4	3	4	4	5	4
Wyomirg	3	3	1	1	4	1	3	2	4	3	4	4
Amarli in Samona	5	4	-	4	5	5	'5	5	5	5	5	4
- (3)	AR	$\stackrel{1}{2}$	NH	4	NA	5	NR	2	NR	5	NR	1

Table I.4 B: Estimated supply of secondary science and mathematics teacherś: 1980 and 1981

State supervisors from most states feel that there are shortages of teachers in mathematics, physics; chemistry and earth sclence: The percelved shortages became more extreme between the '1980 and 1981 surveys.

Summary of Stale.by-State Responses

Response	Brology		Chemusily		Physics		General Scisnco		Eath Science		Math	
	1980	1981	1980	1981	1980	1981	1980	1981	1980	1981	1980	1981
1	6	6	3	0	3	0	4	4	3	1	3	0
2	13)	10	2	2	0	1	5	5	1	1	1	1
3	24	26	13	8	6	4	27	23	14	13	10	3
4	4	4	21	28	-19	15	11	9	23	22	16	25
0	2	1	10	9	21	27	2	5	8	$: 10$	16	18
NR	4	6	4	6	4	6	4	7	4	: 6	- 7.	6

Responses. $\{=$ Surplus; 2 z Slight Surplus; $3=$ Adoquato Supply; $4 \times$ Shortago; 5 a CriticalShortago; NRy No Rosponso.
 of Secondary Scionce and Mathematies Teachers. November 19st.

Table 1-5: Supply or individuals with mathematics education and science education degrees granted: 1971.72 to 1979.80

The supply of individuals with new degrees in mathematics and sclence education has been falling since 1972 although total degrees granted in all fields have risen. The deciline in numbers has been greater fo: n.en than for women.
A. Bachelors Degres's Requring 4 or 5 Years

	Total All Fields	Mathematics Education			Science Education		
		Totair	Male	Female	Total	Male	Female
197172	887.273	2.425	1.144	1,281	1.064	577	487
1973.74	945.776	2.037	921	1,116	941	542	399
197576	934.44 .3	1.442	594	848	792	451	341
197778	921.204	1.048	439	609	755	416	339
1979.80	929.417	762	310	452	672	309	363

B. Masters Degrees

\because			Total,		Mathematucs Education		Science Education	
	All Fields	Total	Mate	Female	Total	Male	Female	
197172	251.633	764	413	351	758	446	312	
197374	277.033	828	447	381	904	604	300	
197576	313.001	746	335	411	737	421	316	
197778	31,620	598	230	368	775	406	369	
1979.80	298.081	512	211	301	591	328	263	

Souice Digest of Education Slatistico (varlous oditions). NCES

Chart 1.4: Most frequently used social studies tex!books/programs by
grade range ${ }^{1}$

Puthons Proaram

So:atsimes conceoto und Vatues ibr namom
comerpis a fogury smom.
Our Whering wotid (Sempsh
frwertiouing Maths Wota Pronram
Siter Burdet Sochat Scmence (Andarion)
Fotis of Achme leamma Sochat Studies
Contemormy sumpl Sireme Curricalum Anterson
Holt thetbane Sy, fom for Elementut, Somal Studes. (Fi-Aden)
Nip A Grob. Shit's (Nasaland)

Percent of

14

4.6 Classes

This is Amenca's Story (Wilden
The Free and the Brave Gratl
Amenc̀a Ifs Peoples and Values (Wood)
Liberty and Union A History of the U.S (Ridge)
Quest for Liberty (Chapm).
Challenge \& Change (Eibling).
Amencan Civics thartleyt
Foundations of Freedom (Eibling)

Percent of 10.12 Classes

Rise of the American Nation (Todd)
Magruder's Amentan Government (McClenaghan)
Economics Principles and Practices (Erown)
Carnegie-Mellon Social Studies Curriculum Project-Holt Social Studies (Fenton)
History of a Free People (Bragdon)
Soctology the Study of Human Relationshups (Thomas)
Amencan History (Abramowita)
Concepts in American History (Morzollo)
Mrderd and Euty Alodern Times (Hayes)
Nu*n und Nations: A World History (Mazour)
Modern Historv (Becken
7.9 Classes

5

Chart 1.5: Most frequently used science texṭooks/programs by grade range ${ }^{1}$

Chart 1.6: Most frequently used mathematics textbooks/programs by grade range

T...*ewsuh Pither m
\# *

Parennt of $=$ K 3Cla゙ミ0.

Pefectit of
$\$ 6$ Cut....

lexibunh-Prianth

7
Exolamy itodetn Nathemalics (Ke'edid (i)
 ij
 5
 4
 4
 3
Fhe Unde. : ifndina liathemathes program (Gundiach!3
2
2
Atedefn Sthoul Hathemance Pre Alqebry (Dolelani)
2
Wedern sithool stathematic: Structure and Use Duncan
Percent of

Percent of

 7.9 Classes

 13
 124
Peopmeltwiduramy3
 3

Chart 1.7: Percent of teachers using Federally funded curriculum materials in each subject by grade range ${ }^{1}$

Use of Federally funued curricula tends to incjease with incieasing giade level. Sughtly mose than half of all grade 10.12 science teachers were using one or more of the Federally funded science curriculum materials during the 1976.77 school year.

Table 1.7: Percent of teachers using Federally funded curriculum materials in each subject by grade range

 Sourco Weiss tris R, Report of the 1977 National Survoy of Selonce, Mathematics, and Soctail Sludio, Educution op 83

Chart 1.8: Average number of minutes per day spent teaching each subject in self-contained classes, by grade range'

Studepts in Grades K. 3 spend an average of about ao minutes-each day on science and on social stdies. The difference between thisamount ofime spent on reading and that spent on other subject's'decreases from K-3 to 4.6.

Table 1.8: Average number of minutes per day spent teaching each subject in self-contained classes, by grade range ${ }^{1}$

Grade Range						
-	$K 3$		$4 \cdot 6$		Total	
Subject	Average Number oi Mirnutes	Standard Error	Average Number of Minutes	Standara Error	Average Number of Minutes	Standard Error
Mathematics	41	$6:$	51	43	44	. 38
Science	17	24	28	64	20	. 28
Social Studies	21	62	34	71	25	. 53
Reading	95	160	66	- 134	86	1.18
Sample N		37	30	22	\ldots	

-Teachers sell-roported these data
NOIE Only foachers who indwated they teanh mathematics, stience, social sludios, and reading to one class of students wero included in these analysos.
Source Werss, tis R, Report of the 1977 National Survey of Selonce, Mathematics, and Sociat Sifutios Education, p. 51.

Chart 1.9: Percent of mathematics arid science classes that use metric - concepts by subject and grade range.

The use of metric concepts increases with increasing grade level in science classes; approximately 90% of the $7-9$ * and 10.12 science classes make use of the metric system.

In mâthematics classes, use is higher in the lower grades; by grades 10.12 only 56% of mathematics classes use metric concepts.

Table 1.9: Percent of mathematics and science classes that freat metric concepts in each of a number of ways, by subject and grade range

	Mathematics				Science					
Us. a Mater Cun mets	$k 3$	- 4.6	\%9		Ta, 1	K 3	4.6	79	1012	Total
--..- --	-----			-						
NotUsed	26	13	20	43	24	42	31	10	7	26
Special MetriUrit Onty	42	43	34	7	35	22	19	13	8	17
					.			t		
Unit arduseid								40	44	27
Enruaghout Comen	8	22	22	,	is	13	20	40	38	26
Miromared as Npeded Miscmat	22 2	19 3	23 1	\cdots	25 2	14 9	26 4	36 1	$\begin{array}{r}3 \\ \hline\end{array}$	5
				-						
Sample N	297	277	550	548	1672	287	271	535	586	1679

Sourco Weiss, lets. R. Report of the 1977 Survay of Scimnce. Matnematics, and Social Sludies Education p 119

Chart 1-10: Percent of schools with spécific budgets for science equipment and science supplies, and average amounts of these budgets per pupil, by .grade rañge

Relatively few schools have specific budgets for science equipment and supplies. In general, schools are somewhat more likely to have specific budgets for supplies than for, equilpment, and secondary schools are much more likely than elementary settools to have specilic budgets for both. The per pupll amounts of science budgets for secondary schools are considerably larger than those for elementary schools, but to the extent the middle schools have such budgets at all, they are not much smaller than those in grades 10-12.

Table 1.10: Percent of schools with speciific budgets for science equipment and science supplies, and average amounts of these budgets per pupll by sample grade ranget

Science Equpment						Scrence Supples				
Sampe Grade Rang.	$\begin{aligned} & \text { Sample } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { Dercent } \\ & \text { of Schools } \end{aligned}$	Averdge Budget Amount	Standard Error		Sample N	Percent of Schools	Average Budgel Amount		Standard Error
\$6	107	16	\$305	\$ 31		155	20	\$1.56	5	S . 15
79	119	21	\$503	\$209	${ }^{*}$	176	29	\$3.62		\$1.25
. 1012	117	44	\$546	\$ 84		180	57	\$4.02		\$. 65

 amoupis por puell
Soutg Weiss lris B. Roport of the 1977 Nallonar Survey of Science, Marhomallics, and Social Studies Education, p 126

Chart 1-11: Percent of elementary science classes conducted in various types of rooms

Slightly more than half of all elementary school classes receive science instruction in classrooms with portable sclence materials. .Only 4% of the elementary science classes (and virtually all of these are grados 4.6)
aie conducted in laboratorios or special science rooms. More than a third of the classes are conducted in classrooms with no science facilities at all.

Table 1.11: Percent of elemenfary science classes conducted in various types of rooms, by grade range

"Source Wols3, les R. Hepon of the 1977 Hathonat Survey of Sceence. Rathematics, ant Soctal Studies Educulton. D lis
\dot{r}

```
\therefore\quad35
```

Chart: 12. Percent of schools with various kinds of equipment, by grade range, 1977

With a few m,nor excep,uns, the availability of science equipment is directly related to grade level with the higher grades getting more equipment. Microscopes and models are the mosi frequenlly en countered equipment.

Table 112A. Percent of schools with various kinds of equipment, by sample grade range, 1974

Table 1.12 B: Public school cistricts providing students access to at least one computer for educational purposes: United States, 1980
(Tablẹ entries arè school districts providing access.)

Type of access	Type of School, by Grade Level				More Than One Level (5)
	Total (at least one level) (1)	Elementary Level (2)	Secondary Level (3)	Combined Elem: Sec Schools and Special Schools (4)	
At least one mićrocomputer or one terminal	1,606	2,196	$6,616$ percents of	$\text { umn 1) }{ }^{678}$	1,88"
At least one microcomputer or one terminai	7.606	29	87	9	25
At least ore microcomputer	6.631	29	- 84	9	22
At least one terminal	2,973	$\therefore 21$	99	5	25
Af teast one microcomputer and one terminal	1,998	17	95	3	15

 (col: 2 4) and thenanduplicated count (col, 1) roprosions the porcont of disiticta providing computer aceess al more than one iovol (col, 5).
Soutce: "Fast Response Survey System" NCES U.S. Dept. of Education. 320081
!

Table 1-13: Teaching methods used in courses taken by high school seniors, by control of school: 1972 and 1980

[^2]Chart 1-13: Teaching methods used in courses takém by high school seniors

Botween 1972 and 1980, there was an increase in the proportion of students participating in classes where individualized instrucilon and teaching machines of computei assisted instruction were likely to be used. .

Soutco: Tho Condition of Education, NCES, 1982. p. 83

Chart 1.14: Percentages of teaching faculty in higher education in subject fields 1969 and 1975

The biological, mathematical and physical sciences underwent major facully shifts during the first half of the 1970 s. As a percentage of total faculty, the mathematical and physical sciences' share decreased by 50% while the biological-sclences' share increased by a like amount. The professions showed a 16% gain while the remaining subjects held steady. These shifts are consistent with shifts in undergraduate enrollments_during this time_period.

Soufce. Catnegio fiourdativn tor the Auvancement of Yeaching. Missions of the College fuiriculum, $\rho, 103$ vevised with permission of author.)

Table $1-14$ A: Faculty in all higher eduçation, 1965-1980

Since 1965, the full-time faculty/In filgher education has Increased by 89% and the part.time faculty by 76%.
Howover, the student faculty ratio has also Increased in the same tlme period, The growth in two year college
faculty has been at a much greater rate than in four-year institutions.
Faculty in Thousands

				1965	1970	1975
Four-year InsIltutıons						

iprojector
\therefore - ETE equast.!uptrime plat ona third of patt-time
Source: Projecilons of Education Statistics to 1985-86.

Table l-14 B: Faculty in mathematics, statistics, and computer science, 1980
From 1975 to 1980 the largest faculty Increase occurred in private college mathematics departments (+832 FTE). Faculty $l_{\text {: }}$ departments of computer sclence also increased to a number about 9% of all FTE mathematical science faculty. These two types of departments also experlenced the greatest course enrollment Increases.

Type of Department		1970		1975		- 1980	
		Full	Part	Full	Part	Full	Part
Universities							
Mathematics		5.235	615	5.405	- 699	5.605	1,038
Statistics		700	93	732	68	610	132
Computer Science		688	300	987	13.3	1.236	365
Public Colleges							
Mathematics		6.068	876	6,160	1.339	6,264	2,319
Computer Science		NA		NA		- 436	361
Private Colleges		3,352	945	3.579	1.359	4.153	2.099
Total	-	17.043	2,829	16,863	3.598	18.304	6,314

Soutce. Undergmduate Mathomathas Scionces in Univorsitios, Four-Yoar Coliegos, and Two Tgai Colloges. 1980.1981 James T Fcy and Wondell H Fleming, Conference Board on Mathematical Scionces, 1981.

Tabie l－14 C：Mathematical science teaching assistañts in universities and four－year colleges

The number of teaching asslstants doubled from 1975 to 1980 in computer science and private college mathe： matics departments，while use of TA＇s decinedin statistics and public college mathematics departments．Over 20% of all TA＇s are not graduste sfudents，up from only 6% in 1975．In university mathomatics departments an even greater fraction are not mathematics graduate students．

Source Undergraduate Mathematical Scienees In Universif＇es，Four－Year Colleges，and Two－Year Colleges， 1980 －1981，James T Fay and wendell H Floming．Conferanco Board on Mathematical Sciences， 1981.

Table l－14 D：Age distribution of full－time＇mathematics faculty by sex and by educational level， 1980

From 1975 to 1980 the women on \ull－time mathematics faculties of two－year colieges increased from 21% to $\mathbf{2 5 \%}$ of the total．As might be expected，women are more heavily represented in younger age ranges，with nearly， one third less than 35 years of age．
Faculty in the 35.44 year range are more likely to hoid doctorates than the other age groups，with 52% of all doc． torates held by laculty in ṭàt agecgroup．

－	Sex		Highest Degree	
Alje Range	Mate	Female	Doctorate	Master s
－ 35	$16^{\circ} \mathrm{O}$	31%	11，	18＂，
35．44	$45^{\circ} \mathrm{O}$	35%	52＂＊	$43^{\prime \prime}$
45.54	27° 。	$24^{\circ} 0$	$19{ }^{\text {n }}$	27。
： 55	12° 。	10\％	12^{n} ．	12＂。

[^3] Fleming．Conference Board on Mathematical Sclences， 1981.

Table l.16: Unfilled engineering faculty positions, September 1980

10% of all erigineerlng faculty positions were unflled as of September 1980, a total of nearly 1600 positlons. Most of the individual engineerIng disciplines are close to this percentage except for aeronautical ongineering. which had only 4% unfilled positions, and cornputer onglieering whith ahigh' of 16% unflled and industriat engineering which had -13.4% unfilled. Generally, the-lop 50 scheots have relatively fewer vacancles than the others; averaging about 2% less in ali disciplines.

	Aeronautical		Chemical		Civil		Computer		Electrical		Indusrial		Mechanical		Other		Total	
	No	\%	No	$\%$	No	\%	No	\%	No	\%	No	$\%$	No.	$\%$	No.	\%	No.	\%
, Total Positions	649	100.0	1382	100.0	2907		914		3570		1007		3121		2658		16.208	
All institutions. Pos Unfilled	26	4.0	136	9.8	276	9.5	146	16.0	333	93	135	134	275	8.8	257	9.7	1,583	9.8
"Top 50" Pos.Unfilled	384 16	1000 4.2	$\begin{array}{r} 680 \\ .51 \end{array}$	75	1279 93	73	$\begin{array}{r} 369 \\ 51 \end{array}$	138	$\begin{array}{r} 1443 \\ 116 \end{array}$	80	433 39	90	1170 93	79	$\begin{array}{r} 1600 \\ 119 \end{array}$	7.4	$\begin{array}{r} 7,336 \\ \hline 70 \end{array}$	7.9
Publicinst. Pos Unfilled	502 22	44	1008 100	9.9	2219 211	9.5	679 115	16.9	2480 255	10.3	790 109	138	2209 226	10.2	2028 213	10.5 =	$\begin{array}{r} 11.915 \\ 1,251 \end{array}$	10.5
Public Inst Pos Unflled	147 5	34	374 35	9.4	688 65	9.4	234 31	132	1090 77	71	217 25	115	912 48	5.3.	629 44	7.0	$\begin{array}{r} 4.291 \\ 330 \end{array}$	7.7

SSörce: Highör Ed, Panol Report \#52, Amortčan Councll òn Educalion, Octoboi, 198!.

Table 1-1,7: Changes in engineering faculty 1979-80
The groatast number of faculty moves were in the field of computer enginsting, with aeronautical englneering being the most stable. Private Institutions and the top departments were somewhat more successlutin'fataining faculty than the overall average.

\cdots -	The groatast number of faculty moves were in the field of computer enginting, with aeronautical englneering being the most sfable. Private Instliutlons and the top departments were somewhat more successlutin'fataining faculty than the overall average.								
	Aeronautical No \%	Chemical No. \%	Civil No. \%	Computer No. \%	Electrical	Industrial No. \%	Mechanica! No. \%	Other No. \%	Total No. \%
All Insittutions Faculty Leaving For Industry - Pos. Unfilled .	121.9	322.6	612.3	435.6	$89 \quad 2.6$	242.8	782.7	58	3972.7
- Top 50^{*} Institutions - Faculty Leaving Ior Industry, - Pos Unfilled	30.8	142.2	$22 \text { 鿊者 } 9$	1444	$33 \quad 2.5$	92.3	2220	261.8	1432.1
Publicinst fơ's Unfilled	40.8	283.1	502.5	356.7	$62 \quad 2.8$	152.2	502.5	-49 2.7	293 2.7.
Private Inst. Pos Unfilled	85.6	41.2	111.7	83.9	$27 \quad 2.7$	94.7	283.2	$9{ }^{9} 1.5$	1042.6

Sourco: Highor Ed. Pancl Rept. \$52, Armor. Councll on Ed. Hol8t

Table l-18: Fullitime junior enginieering faculty who did nat recelve their Baccalaureates in the United States

Nearly a quarter of all junlor faculty teachlig engineering in the United States recelvad tholr baccalaureate outslde of the U.S., and In publie four.year colleges it is nearly a third.

Instututional Category	Total Junior Faculty	Percentage with Baccalaureate Outside the U.S.
Total.	3,397	23.7
Top 50 Institutions*	1,400	22.1
Public Institutions	2,416	25.0
Private institutions......	981	20.5
Public Universities	1.768	22.3
Private Universities	683	19.2
Fublic Four-Year Colleges .	648	32.4
Private Four-Year Colleges .	298	23.5

-In tevel of ongineoring RsD expenditures, FY 79.
Source: Higher Education Pancl Rept. M52 Amorican Councll on Education $10 / 81$.

Table l-19: Engineering Faculty Salaries

Faculty salapies, show a moan salary rango of $\mathbf{\$ 3 4 , 5 0 0}$ for full protessors al high-paying Institutioris down to $\mathbf{\$ 2 0 , 0 0 0}$ for assistant professors at.low.paying instliutlons. They-have ircireased in the past year by 8.8% for full protessors-and 11.4% for assistant protessors, and average-from $\$ 1,000-10-\$ 3,000$-hlgher than prolessional academics' salaries in other undergraduate disciplines. Assistant professors' saiarles are roughly comparabie to offers being made to bachelor degree engineering students when adjusted to a $12 \cdot \mathrm{month}$ basis.

Sourco Chromiele of Higher Education. Nov 1980

Chart I.15: Distribution of Full-Time Faculty by Rank, Tenure Status, and - Sex in 1979.1980

In afl higher education men comprise 74% of the full-time faculty. Over 64% of thesemen hold teriure, compared to 43% of women faculty; men represent 90% of the full professors and 80% of the assoclate protessors.

Source. Smith, C.R, Faculty Salaries, Tenure, and Beneflts $1979-80$.

Chart 1.16: University and four-year college mathematical science faculty, 1965-1980

From 1975 to 1980 full-time mathematical science faculty increased by 8% and part-time racuity incrased by 75%. The FTE laculty thus Increased by 13% compared to an Increase of 33% In mathematIcal science enrollments. The total FTE faculty in universities and fouryear colleges increased by only 3% in the same time perlod.

 Mathematical Sclonces. 1981.

52

Chart 1.17: Doctorates among fulltime mathematical science faculty

From 1975 to $\mathbf{1 9 8 0}$ the fraction of public and private four year college faculty with earned doctorates decreased, reversing the trend of 1965° to 1975.

 Matmematcal Scinncos 1981

Chart 1.18: Distribution of full-time mathematical science facuity by age and by sex, 1980

Wemen comprise 14\% of mathematical science faculty, the greatest number in public colleges (18\%) and least in universities (9%). All three flgures are up substantially from 1975 when only 10% of the be mathomatical science faculty were women. The median age for women is about flve years less than than for men.

-Source Undergraduate Mathematical Scionces in Univorsitles, Four Year Colleges, and Two Yeal Colieges, 1980 tisi. James if fey and wendell h Fleming contorence Board on Mathematical Sciences. 198;

5o
$\because 57$

Chart 1-19: Trends in numbers of full- and part-time mathematics faculty

For mathematics in two.year colleges, part.time faculty now outnumber fuil.time faculty, making up 54% of the totala. The part-time component of the mathematics faculty increased by 95% over the period 1970.1975. Equally striking is the decrease in the size of the full-time facuity. For' all tields in TYC's, part-limers constitute 56% of the faculty.

Source: Undorgeaduate Mathematical Sciences in Universities. Four Year Colleges. and Two-Year Colleges. 1980-1981 James T. Fey and Wendell H Floming. Conference Board on - Mathemancal Sclences, 1981

	.	1966	1970	1975	1980
Full Time			2677	4879	5944
Part.Time	,	1318	2213	3411	6661
FTE	,	3116	5617	7081	7843

Chart 1-20: Educational qualifications of part-time mathematics fáculty - In two year colleges

Table 1-20: Educational qualifications of part-time mathematics faculty

Highest Degree	1970	1975	1980
Oriterate	95	$39^{\prime \prime}$	67.
Masters + Y Yoar	$310^{\prime \prime}$,	29 9',	181
Mastors:	455	496°	$576^{\prime \prime}$
Bat helor ${ }^{\text {a }}$	140%	$166^{\circ}{ }^{\circ}$	1/4.

As compared with the 1970 figures, the percentages of parlitime mathematics faculty in the doctorate or "master's +1 " highest degree categories have declined. Given an increase in the number of industrial opportunitios for mathematlcians, it is not likely that the educational qualifications of pari-timers will Iricrease in the near future.

Soutce. Uncergiaduato Mathomatical Sclences in Univeraitles, Folr.Yeat Collegos, and Two-Year Colteges, 1980.1981 Jamea r . Foy and Wondell H Fteming. Conference Boajd on Maithematical Sctences, 1981

Chart 1.21: Percent of higher education institutions with access to computers, 1965 -77

The percent of institutions with access to computers has more than doubled since 1965.

2

Table l.2才 A: Estimated number and percent of U.S. institutions of higher education with access to computer faciliilies

*Table 1-21 B: Estimates of numbers of institutions with access to computers by highest level of offering June 30, 1977

Highest Level of Olleming	Fall 75 Enrollment (millions)	Total \# Institutions	\# Institutions with access to computers	Percent with access to computers
Associate	40	1196	801	67
Bachelor's	$\cdot 9$	801	495	62
Masters	2.	717	538	75
Doctorate.	39	422	328	73
Total	112	3136	2163	69

Source Hambton, John W and Bard. Thomas B, Fourth Inventory Computers in Higher Education, po 104.05

Charts 1-22, A\&B: National Science Foundation, Instructional Scientific Equipment Program (ISEP) Data

Data from the Instructional Scientific Equipment Program, the major federal support of scientific equip. ment fof undergraduate education, show fluctuallicns in proposal pressure, and a constant level of funding coupled with rising average requests.

Table 1-22: National Science Foundation, Instructional Scientific Equipment Program (ISEP) data

Chart 1.23: National Science Foundation Science Education obligations by function as percent of total

The Nallonal Sclence Foundation has shifted support ovar time among students, laculty, institutions, and R\&D.

66

Table 1.23: Estimated National sicience Foundation science educ̣ation obligations by function, by year (in millions of dollars)*.

- The lumetional ralegories of obligations aro exemplifled as followa Students includes pruglams such as letiowships and precollege stuctern science training. Faculty includes programs
 assistance to Undergraduato Science Educzitionl. Scfonce and society Includes progian is lor improving the pubic, understanding of acience and studying ine ethical issues in science and tochnolog
- Untit $6 \hat{77}$ davolopmart prolects rocived most of the nso funding.
-, 1991 Breaktown of obligations not avallablo žl timé ót printing:
Saurce: Dloćctolate for Selerico Education, Natlonal Ccianci Foundation, unpublishod data.

Chart 1-24: National Science Foundation Science Education obligations by level of education as percent of total

In regard to revels of education, NSF has shifted priorities over time. Funding of graduate and precollege education has become less significant, and undergraduate education more important.

Table 1.24: Estimated National Science Foundation Education Obligations by Level of education, by year (in millions of dollars)*

- 1881 breakdown ol obligailens not avallable
(Estimatos may inl ar.al total duo to rounding.)
Sources Diroctorato for Sclenceseducalion, Nallonal Scienco Foundation, unpubilihed data.

Chart 1-25: Number of continuing education degree credit courses for scientists and engineers

A conthuing education degree credit course is detined to be a course directed primarily lowards engizeers and scientists with at least a bachelor's degree, but excluding courses directed primarily toward full-time students. Fifty-six universities offered 3486 such courses in 1975.76.

[^4]Chart 1-26: Number of continuing education non-credit activities for scientists \& engineers, offered by universitles and professional/tectinical
organizations, 1975-76

During 1975.1976, there were 4909 separate activities for scientists and engineers. Of that total, 3519, or 72%, were given by universities and 1390 , or 28%, by professional societies. Institutes and other brief programs (i.e., activity of less than 30 accumflated hours) were the most popular form of activity. There were 2223 institutes, $\mathbf{4 5} \%$ of the total.

7.3

Table l-25: Number of continuing education non-credit activities for scientists and engineers offered by universities and professional/technical orgánizations, 1975-76

Inctitution		Number sith one or more	Number of activities	Type of Activity ${ }^{-}$					
				Short courses	After hours courses	institutes	Corres pondence courses	Self-study	Other
Universitues	\checkmark	92	3519	821	1015	1323	167	19	174
Professionali/Technical Organizations		55	1390	145	67	900	162	83	33
Total		147	4909	966	1082	2223	329	102	207

 struction in which student is provided with ali materiats and loft to proceed on histher own with no direct aid from an instructor.
Source, Klus. John P. and Joras, Judy A., Survoy of Conlinuing Education Activities for Engineors and. Scientists, pp. 6 is

In 1979, museums recelved less than one.fourth of their total operating income from private sources, such as, foundations, corporations, individual contributions, and other sources, Art museums received the greatest relative percentage of their total operating income from private sources (25 percent) and parks and visitor centers the least (6 percent). On the whole, museums recelved approximately the same financial support (4 percent of total operating income) from each of foundatlons, individuals, and cther sources, Financial s'upport from corporations made up only an estimated 2 percent of total operating income.

Source Contractor Report, Museum.Program Survey, 1979 Natonal Center for Education Statistics, p 52

Tablel-27: Trends in educational roles, by size of total operating. expenditure: United States, fiscal

Museumis with higher operating income were more likely to have increasing educiational roles. Con. versely, those institutions with the lowest operating Incomes were more likely to indicate that their educational roles were staying the same. year 1979

Trends in Educational Role	Tulai	Total Operating Expenditure								
		Nune	$\begin{gathered} \$ 1 \\ \$ 25.000 \end{gathered}$	$\begin{aligned} & \$ 25,001 \\ & \$ 50,000 \end{aligned}$	$\begin{aligned} & \$ 50,001 \\ & \$ 75,000 \end{aligned}$	$\begin{gathered} \$ 75,001 . \\ \$ 100,000 \end{gathered}$	$\begin{aligned} & \$ 100,001 \\ & \$ 200,000 \end{aligned}$	$\begin{aligned} & \$ 200,001 \\ & \$ 300.000 \end{aligned}$	$\begin{aligned} & \$ 300,001 \\ & \$ 400,000 \end{aligned}$	More Than \$400,000
Total. ${ }^{\text {. }}$	4.408°	65	1,800	578	365	269	545	173	150	463
Percent	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Increasing.	2.935	18	1,003	422	269	195	396	140	103	390
Percent.	66.6	27.1	$\cdots 55.7$	73.1	73.6	72.6	72.7	80.8	68.7	84.1
Decreasing	89	0	50	8	4	11	6	4	5	3
Percent	2.0	- 0	2.7	1.3	1.1	4.1	1.0	2.0	3.0	. 7
Remains the Same	1,384	47	748	148	93	63	143 .	30	43	71
Percent	31.4	72.9	41.5	25.6	25.3	23.4	26.3	17.2	28.3	15.2

'Sources Contractor'Repon, Busoum Program Su'vey, 1970, Nátonal Centor for Education Statistics, p. 71.

Chart 1-27: Distribution Jf institutions offering specific programs, by type of inuseum

An estimated 66 percent of all museums offered some type of specific program in fiscal year 1979. Children's museums (83 percent) and ant and science museums (78 percent) were more likely to have specific programs than other types of museưs.

 $8 i$

Chart 1-28: Museums offering special programs* for specific groups: United States, 1979

Chart 1.26 depicts the percentage of all museums offering programs for pre school children, gifted and talented, adulls (member and nonmember), members only, senior citizens, handicapped persons, and other special audiences.

-
n

Sourcs Combactor Report, Museum Program Survey. 1979 National Center for Education Statistacs o 76

Chart 1.29: Museums offering leacher training, by type of museum

Approximately one-fourth of the museums offered teacher training periodically or on a regular basis ori how to use museum resources. An estimated 65 percent of the children's museums offered teacher training. Around 40 percent of science museums and art museums offered such training; only 16 per. cent of the specialized museums offered some type of teacher tralning.

Chart 1.30: Federal funding of science-technology centers
 and museums ${ }^{1}$

These data estimate federal support to sciencétechnology centers and museums. Between 1972 and 1978, the Federal government made grants of slightly over $\$ 30$ million. National History museums recelved about $\$ 12.2$ million, general museums $\$ 9.2$ million, science-technology, centers $\$ 6.9$ million, and aquariums and zoos $\mathbf{\$ 2 . 6}$ million.

Table 1.30: Federal funding of science•technology centers and museums

[^5]
Chapter II

PARTICIPATION

INTRODUCTION

This chapter presents data on how many and what kinds of people participate in science, mathe matics. and tectinoligy education and what form that participation takes. The data are gruuped into two categones. K 12 and higher education.

HIGHLIGHTS

K. 12

1. More than one-third of all hrgh school ma:h ematics teachers and aimost half of all.igh school science teachers have participated in at teast one NSF-sponsored activity. (Chartll-1)
2 On the average, a higher percent of 13-yearolds than 17 -year-olds report participating in science-related activities outside of scnool. (Chat 11-2)
2. There has been an increase in the total num ber of people astending museums belonging to the Association of Sciencel Technology Centers (ASTU) between 1975 and 1977 (Charts $11 \cdot 3, A \& B)$
3. TV is the most frequently reported suurse of information about energy issues, but the punt media is the most frec, uentiy reported source of information about new develop ments dn unergy science and technology (Chart II-6)
4. Most college bound aigh school students continue to take the standard course prepar ation ir ${ }^{\text {lluding }} 3+$ years of mathematics and $2+$ vears of science (Chart $11-7$)
5. Honors courses in mathematics and English enrolled higher percents (both 14.5) of students than other honors courses. (Chart II-8)
6. In high school nearly equal proportions of males and females take mathematics courses. (Chart ll.9)

8 A substantially larre percent of Asian or Pacific Islander seniors take algebra I algebra II, and geometry. (Chart II-10)

Higher Education

1. Biack, Hispanic, and American Indian seniors were significantly more likely than whites to have taken remed,al mathematics courses, whe AstaniPacific Isianders were less likely to have taken such courses. (Chart II-1i)
2. Since 1965, full-time-equivalent ($F T E$) enrollments in higher education have grown b: 100%. The two-year college share of this enrollment has increased from 17\% to 34%, but more than hall of the TYC enrollment is in non degree credit occupationalitechnical programs. (Chart II-12)
3. Among those declaring a major in the sciences at two-year institurions, engineering accounts for as many students as all the other sciences combined. (Chart II 13)
4. Between 1969 and 1976, undergraduate enrollments in the social sciences Jeclined by more than 50% (Chart II-14)
5. As a percentage of total engineering degreas, nomen have increased their share. (Chart I!-15)
6. While more undergraduates enroll in en.ji neering than any other science, womentind minurites find their greatest representation in the biological sciences. (Chart II-16)
7. At the graduate level in 1978, women accounted, for approximately one-third of the entollments in the biological sciences but for only 7% of those in engineering. (Chart II-17)

- 8. Undergraduate engineering enrollments are rising significantly. (Chart || 18)

9. From arelative minimum in 1973. undergraduate engtieering enrollments have grown steadily to an all-time high of 365,000 in 1980. Since the number of treshman engineering students was also an all-time high in that year, the influence of engineering enrollments on mathematics course demand is likely to continue strong over the next several years. (Ghart ||-19)
10. Between 1975 and 1980 all mathematical science enrollments increased by: 33%. compared to 7% for FTE enrollments in all fields. The 30% increase in calculus and the 196\% increase in computing courses led the way. (Chart II-22)
11. Since 1960, enrollment in remedial arithmetic, general nlathematics, and algebra has increased by 165%. Those courses now constitute 16% of all mathematics enrollments, compared to 13% in 1960. The biggest increase occurred between 1975 and 1980, matching a period of widespread reports that high school preparation in mathematics has declined sharply. (Chart II-23)
12 Computer science courses now generate over 16% of all mathematical science enrollments and they are increasingly given by separate departments of computer science. As in mathematics and statistics, the largest share of computer science enrollment is n tower level courses. (Chart II-24)
12. There has been strong enrollment growth in nearly every computer science course offering. However, the buik of the increase from 1975 to 1980 occurred in beginning programming courses. (Table If 12 C)
13. Approximately 30,000 scientists and engineers enrolled in continuing education credit-granting courses in 19:5.76. (Chart II-25)
\circ
15 Almost 187,000 scientists and engineers ehrolled in continuing education non-credit activities during 1975-76. (Chart II-26)

Chart II-1: Percent of teachers as of 1977 who attended an NSF-sponsored institute, workshop, or conference

Participation by teachers in NSF sponsored activittes increases with grade level. More than one-third of all high school mathematics teachers and almost half of all high school science teachers have participated in at least one such activity. Mathematics and science teachers, especially at the higher grade lovels, are much more likely to have participated than social studies teachers.

 (Highught Report)

Tabie I1-1: Percent of educators attending one or more NSF-sponsored institules, workshops or conferences

 circted one or most
Gource Wens. Itis R Report of the 1977 Notionul Survey of Sclence, Mathematics. and Social studies Educaticn. o 69

Chart II.2: Percentages of 13 - and 17-year-olds participating in various sciencerelated activities outside or science classes

On the average, a higher percent of. 13-year-olds than 17-year-olds report participating in sciencerelated activitles outside of school. The activities that 17 -year-olds report more irequently than.i3-yearolds, however, are reading science articles and watching sciencerstiows on TV.

Table 1i-2: Percentages of 13- and 17-year-olds participating in various science-related activities outside of science classes

How often have you done each of the following activities when not required for sclence class?

	Percent Saying They Olten or Sometimes Particionte	
-	Age 13	Age, 17
Read science articies in magazines	47	48
Read science articles in newspapers.	41	47
Watched science shows on TV.	58	62
Gone to hear people give talks on science	8	8
Readbooks aboul science or scientists . .	45	29
Talked about science topies with your friends	41	37
Done science projects	68	49
Worked with science.related hobbies	45	37
Average percentage reporting participation. .	44	39

Sourco. National Assejement of Educational Progress, Abitudes Toward Science, p. 0.

Charts II-3, A\&B: Attendance at science museums, Association of Science-Technology Centers (ASTC), 1975.77

The Associatlon of Sclence-Jechnology Centers (ASTC) reports a general Increase in attendance at its members - sclence museums, and science and technology conters, Forty-nine of lis members showed a 13% increase in their combined attendance flgures over a three-year period.

Table I1-3: Attendance at science museums, Association of ScienceTechnology Centers (ASTC), 19;15-77

Year	Combined Allendance	Average At-endance
1975	-	-
1976	25010114	510.410
1977	26.556 .428	541,967
$N=49$		577.404

Source: Association of Sclence-Technology Centors, unpubllshed dath.

Chart II-4: Science museum attendance by age; as percent of total

Science musium attendance is aboul equally divided between aduits and children

Source: Association of Science-Tochnology Centers, 1977.78 momber survey, unpublishea data.

98

Sources Circulation depattments of each magazine

Chart II.6: Sources used by young adults' to obtaln information about selected energy issues

TV Is the most frequently reported source of Information about energy issues. For information about pollution, conservation, and alternative energy sources, TV provides information to nearly as many young adults as all the print media combined. For new developments in energy science and technology, however, young adults tend to use the print media.

'Dotinod as $26-35$ yoars ọid."
Sourco; Rational Assessment of Educallonai Pregross. Energy Knowlodge and Allitudes. A Nationai Assessment et Energy Awollenoss Among Young Adults a 38

Chari II-7: Mean number of years of study, by subject of college-bound seniors, by sex, 1980:81

College-bound senlors continue to show the standard course preparation: 4 years of English, $3+$ of mathematics, 2 of a foreign language, $1+$ of blology, 1-2 of a physical sclences, and 3.+ of social sfudies. The greatest inter-sex differences appear in the physical sciences and mathematics where the miales take more course work.

Table II.7: Number of years of study by subject of college•bound seniors, by sex, 1980.81

	English		Mathematics		For Languages		Bro Sciences'		Phy Sciences'		Soc Studies*	
	Mate	Female	Male	Female	Mate \therefore	Female	Male	Female "。	Male "*	Female	Male "。	Female $\%$
No Coursm	03	22	0.3	0.4	162	113	57	4.4	64	114	07	0.6
One Year	11	08	15	24	141	129	611	603	26.2	38.1	23	23
Two Years	16	11	83	148	368	342	253	278	361	338	164	178
Three Years	61	55	225	319	189	21.4	52	52	24.4	137	39.0	41.5
Fout Years	82 :	811	54.4	429	111	156	19	16	52	2.2	35.6	32.1
Five or More Yrs	89	112	12.9	76	29	47	08	07	17	07	6.0	5.6
Nu Respondirg	438404	431554	438052	491151	434591	488.388	455997	489320	434,359	487357	435085	488695
Mean No Yrs	395	400	368	338	203	231	139	141	201	1.59	324	3.19
Mean No (rotal)	398		3.52		218		140		179		3.22	

[^6]103

Chart II.8: Percent of college:bound seniors who took an honors course, by subject, 1980.81

The percentage of students taking honors courses from among those who ieported subjecl courses on the Student Descriptive Questionnaire of the Admissions Testing Program Included 9.0% for social studies, $\mathbf{1 4 . 0 \%}$ for mathematics and over 9.0% for physical and biological sciencos.
.

Table II-8: Number and percent of college-bound seniors who took an honors course, by subject, 1980.81

Honors Courses	Enqlesh	Mathematics	Foreme Languates	Broloqual Science:	Physical Sumber:	Suthil Studes
Number Who Took an Honors Coursa, by Subject	136.706	129565	56430	81747	80.470	82.498
Number Who Took a Regular Course, by Subject	788944	705.632	753611	803.639	75.4843	838.435
Total	925.650	925.19.	810.541	885.386	835.319	921:83
Percent Who Took Honors Courses	14.8	140	70	92	96	90

Source: Admissions Testing Program of the College Boza, National Report, Colloge Bouno Seniors, 193t, o 21

Chart 11.9: Percent of high school soniors taking mathematics by sex, 1980

Table .11-9: Percent of high school seniors taking mathematics', by sex, 1980

.	Algebral	Geometry	Algebra ll	Trigonometry	Precalculus or Calculus
* of all Seniors	79.	56	49	26	¢
- Males	79	50	451	30	10
*. Females	79	55	47	22	6

Source. Hign School and Boyond: a national tongitudinal sfudy fot the 1080's. A Capsule Description of High School Students, page 5.

Chart II-10: Percent of 1980 high school seniors taking mathematics courses, by course title and racial/ethnic group

Source: High School and Beyond - A National Longltudinal Study for the 1080's. \mathbf{y}. 5.

Table II-10: Percent of 1980 high school seniors taking mathematics courses, by course title and racial/ethnic group

Chart II.11: Remedial and advanced courses in mathematics taken by high school seniors

Black, Hispanic, and American Indian seniors were significantly more likely than whites to have taken remedial mathematics courses, while-AsianlPacific Islanders were less likely to have taken such courses. The higher the socioeconomic background, the less likely a student had taken remedial courses and the more likely a student had taken advanced or honors couises.

0

Source: The Condtion of Educblion, NCES, 982 . p. 79.
111

Tabble II-1i: Remedial and advanced courses in mathematics taken by high school sophomores and seniors, by race/ethnicity; sex, and socio-economic status: 1980
(Percent)

Student Characteristic	Remedial Mathematics	Advanced or Honors Mathematics
All Sophomores	34.2	242
Racelethmicty		
White'	33.5	244
Black'	$37.0{ }^{\circ}$	218.
Hispanic	$39.1{ }^{*}$	$19.9{ }^{\circ}$
American Indian	$45.4{ }^{\circ}$	173^{*}
Astan/Pacific Istands	24.6 *	397°
Sex		
Male	35.8	251
Fianale	$237{ }^{\circ}$	234°
Soco. Efonomo Status		
LON	41.0**	$180 \cdots$
Mindie	35.3	233
High	249° -	326^{*}
All Seniors	300	230
Race Einnicity		
Whute	293	234
Blark*	$34.3{ }^{\circ}$	203.
Hispanic	375°	180°
American Indian	$419{ }^{\circ}$	187
Astan'Pacific Istands	224^{*}	$419{ }^{\circ}$
Sex		
Mate	317	255
Female	28.5 -	208.
Socio-Economic Status $\quad 10 \ldots \ldots$		
Luw .	390%	$161 \cdots$
Middie	309	223.
High.	196..	$326^{\circ} \cdot$

- Reprosents stonileant difterence from the whito population at tho 05 level
- Ropresents signticant difforence from the mato population at the .05 lovel
**Represents eignticant difference from the middie socio-economic status population at the os level Non Hispanic
Soufco. US Dupatmont of Edueation, National Centor for Education Stalistics, unpublishod tabutation from the High School and Bayond Survey

Table Il-12f: Total enrollment in higher education, by selected broad field, sex, and level of institution, 1978

	All Institutions			Universitues			Other Four Year Colleges			Two-Year InstitutionsTotal \quad Women $\% \mathrm{~W}$		
Field	Total	Women	$\% \mathrm{~W}$	Total	Women	$\%$ W	Total	Women	$\%$ W			
Agriculturel												
Nat. Res	146.772	42.550	29.0	90.530	27.520	304	35,768	9.804	27.4	20.474	5.236	25.6
Agriculture Env Des	66.371	17.398	26.2	42.508	11.458	270	15.430	4.173	270	8.433	1.767	2.6
Biological	60.37	17.308	26.2	$4!$	11.458	270	15.430	4.173	270	8,433	1,767	20.9
Sciences	301,868	133.330	44.2	115.035	45,509	396	164,031	75.735	462	22.802	12.086	53.0
Physical												
Sciences.	164,413	40.447	24.6	72.187	15.097	20.9	76.861	19.387	252	15,266	5,963	39.1
Engineering	521,578	55.472	10.6	249.805	26.832	10.7	193.494	20.671	107	78,179	7.969	10.2
Business \&												
${ }_{\text {Mgmt }}$	1509.127	591.280	39.2	376.940	124.868	331	753.682	267,991	356	378.505	198.421	52.4
Dentistry	22,034	3.140	143	13,607	2,031	149	8.427	1.109	13.2	-		
Medicine	67,280	15,674	23.3	31,404	7.536	241	36.951	8.154	221	-	-	-
Med	7.186	2.424	33.7	6,273	2.047	326	913	377	413	-	-	-
Law	119.120	36,251	30.4	68.812	21,631	31.4	50.186	14.592	291	122	28	23.0
All Other	8,465,301	4,756,223	56.2	1.737,163	977,761	56.3	3,186.766	1,845.663	579	3.541 .376	1.932,799	54.6
Total												
Erroliments .	11.391 .050	5.694,199	50.0	2,804.014	1,262.317	450	4,522,609	2.267,656	50.1	4,064,157	2, 164,269	53.3

Source: Fat Enrottment - Highor Education, 1978. National Conter for Education Statistics, 1980

Table Il-12B: Full-time graduate enrollment in doctorate institutions by race/ethnicity, 1979*
Percent Distribution

	Total	Black 1	Am Indian Alaskan	Astan'Pac Islands	Hispanic	Whitel	Foreign
Total. All Fields	1000	27	2	18	19	740	195
Engineering	1000	11		22	9	527	430
Physicar Sciences	100.0	13	1	20	16	703	24.2
Environmental Screnzes.	100.0	7	i	11	13	835	134
Math/Computar Sciences	100.0	15	1	19	14	650	302
Lie Sciences.	1000	21	2	20	18	818	122
Agricultural	1000	. 9	1	7	1.2	754	216
Biological	1000	13	1	23	16	833	11.4
Health	100.0	39	4	2 \%	23	826	87
Psychology .	100.0	4.1	2	16	28	882	3.0
Social Sciences	100.0	5.4 ।	4	13	27	73.3	16.9

In 3.953 responding departmonts
Non.Hispanic :
Sourco: Nallonal Sclonce Foundation, unpublished data.

$$
114
$$

Chart II-12: Full-time equivalent enrollments in all higher education

Since 1965, full-time-equivalent (FTE) enrollments in higher education have grown by 100\% The twoyear college share of this enrollment has increased from 17% to 34%, but more than half of the TYC enrollment is in nondegree-credit occupationaltechnical programs. Current projections suggest levelling off and modest decline in total enrollments for higher education during the next decade.

Source Proiections of Education Siausucs to 1986-87

Chart II.13: Enrollments in two year colleges, by sex and by field, fall 1978

Less than $4^{\circ} .{ }^{-u}$ of two year institution students declare a major in agnculture/natural resources, biological sciences, enginecring, of physical sciences. Withitt the $4:$, women in two year institutions exhibit the same pattern as those in four-year institulions and graduate school. They are most concentrated in the blological sciences, over 50%, ol the totat, and least represented in engineering, about 11% of the total.

Table II-13: Enrollments in two-year colleges, by sex, and by field, fall 1978

14.1	A 81.4.	remale
Aymintifa unt	-	
		-, ${ }^{3} 4$
	\%"*	1. 12 ki
	的. 1	7469
	' 11	5.463
allomme		$\therefore 133015$
Fotaty ers	- 90\% 386	$? 164.80$
Twhatinoturent		

Table II•13A: Probable majors of entering freshmen in higher education (percent of all freshmen)

From 1975 to 1980 student cholces of academic major shifted toward business, engineering, and computer sci ences and away from the physical sciences, arts and humanities, and education. Since 1966, the number of entering feeshmen planning a major in mathematics has dropped from 4.5% to $.6 \%$ of the tolal.

Subpect Areas	1966	1970	1975	1980
Brotogeat Scmenes.	109	129	175	178
Business	143	162	189	239
Education	106	116	99	77
Enginuerina	98	86	79	1:8
Humanites and Ats	243	211	128	C°
Mathernaticsami Statistucs	45	32	11	06
Physicalsciences	3.1	23	27	20
Social Sciences	82	89	6 2.	67
Othey Yechmical ${ }^{-1}$	22	37	86	82
Underended ime Other	118	11.6	145	124
Fiflat Number o' Full Tme Fresnmen in thousandst	$=1.163$	1.617	1.71	1,712

Table II.13B: Number of freshmen probable mathematical science majors in higher education (numbers of full-time freshmen)

Since 1970, the number of sludents planning, to major In mathematics or stalistics has decilined by $80^{\circ} \%$. The number of students planning to malor in computing has grown to over 84,000 in the same perlod.

	1970 Mithematic. ard Statishics	1975 Mathematic: ard Statiatic:	$\begin{aligned} & \text { Mathematics } \\ & \text { and Statishics } \end{aligned}$	Combuthig
Universilus	15.600	6.400	3.178	15688
	27600	9.300	1,712	2856
mourer Culleres	9.200	3.000	1.359	$40: 81$
All Insithution:	52.400	18.300	10.249	84,439

- Comparable data not avatable tor eather years

Chart II-14: Percentages of undergraduate enrollments by-field,

1969 and 1976

Although enroilment in blological sciences increased somewhat, mathematical, physical, and social sclences lost substantlal portions of their eirollments. Professional subjects such as journallsm gained considerable enrolments. ?.?ost of these changes were paralleled by faculty changes.

Soutce Garnogie Fundativa tor the Adrancement ot Teaching, Missions of the Coltege Curficulum. ρ i03 wevised per advico ut Carnegio Foundations

Chart Il-15: Trends in women's enrollment for master's \& doctor's degrees, by field, 1969, 1972, 1976.

I

123
124

Table 11-15: Trends in women's enrollment for master's and doctor's degrees, by field, ${ }^{\prime} 1969,1072,1976$

	1969			1972			1976		
	Total	Women	$\% \mathrm{~W}$	Total	Woimen	$\cdots \mathrm{W}$	Total	Women	\%W
All Fields	756,865	264,266	35	858,580	326,675	38	1,030.007		
Agriculture	6,908	476	7	11,322	320.672 942	8	$1,030.007$ $15,206^{2}$	451,594 2,592	43.8 17.0
Architecture	1.948	240	12	7.240	1,466	- 20	$10.128{ }^{3}$	$2.774^{\text {x }}$	27.4
Biological Sciences	34.861	9,367	27	38.914	10,784	28	43.957	14.281	32.5
Business \& Commerce	76.372	3,798	5	36.213	2,795	8			
Computer Science \& Systems Analysis.	6,201	684	11	8.826	2,795 1.164	13	149.976	27.854	18.6
Education	234,042	128.617	55	275,053	1.164 159.683	13 58	11.852 324.475	2.180 209.129	18.4
Engineering	65,048	796	1	56.006	1,219	5	524.45 57.330	209.129 2868	64.5
Fine \& Applied Arts	26,614	12.481	47	24,890	11,713	47	30.222	2,868 15,995	5.0 529
Foreign Languages	20,721	11.755	57	16,796	10,029	60	12.808	8,255	64.5
Health Professions	12,564	5.372	43	23.692	12,172	51	38.101	24,534	64.4
Law English Language	2.521	- 102	4	2.870	259	9	3.586	551	15.4
English Language \& Literature.	34,569'	18,932 ${ }^{\prime}$	55	30,162					
Library Science	12,092	9.633	80	12.756	17,245 9,969	78	13.982 13.307	24.082 10,628	54.8 79.9
Mathematics	22,974	5,639	25	19,238	5,101	27	14.926	4442	29.8
Physical Sciences	39,885	4,240	11	36,047	4,374	12	36,147	5.661	15.7
Psychology	22,726	7.827	34	29.157	11.189	38	35.363	16,686	17.7
Social Sciences	90,569	28,274	31	73,207	20.686	28	67.128	, 2016	47.2
Theology	10.765	1,799	17	10.334	1.757	17	16.791	3,484	34.7

TInciudos Journalism.

-Ineludes Natural Rosources.

Bincludes Environmontal Design.
Source: Votter, Botly M., Protessional Womon and Minoritles. A Manpower Dala Rosource Service, Second Edilion, 1978, p. 13.

Chart II-16: Undergraduate enrollments of women and minoritios, by field, fall 1980

About 49% of the undergraduates enrolled in biology were women but only about 13% of the engineering enrollees ware vomen.
Minority science en.ollments ranged from 8% in agriculture and nafural résources to 99% indological sciences.

Table II-16: Undergráduate* enrollments of women and minorities, by field, fall 1980

Fiold	Total Enrollinent	Women		Minorities*	
		Number	Percent	Nuruber	ercent
Agreulture and					
Natural Resources	125,102	810.941	33	9.451	8
Bioloqical Sciences	233.293	114839	49	43.787	19
Engineering	- 540,875	69.490	13	72,639	13
Physical Suences	133.738	39.444	29	14.844	11

- Fultimo and partime
* Inctudes. Black. Non hispunic, Ametican Indian/Alaskan native, Asian or Paclife islandot and Hispanic Source NCES (UnDublished data).

120
127

Chart II•17: Graduate enrollments of women and minorities, by field, fa!l 1978

About 46% of all graduate students are women. Women's graduate enrollments are similar to women's undergraduato enrollmeats: high in blology (35%) and low in engineering (7%). About 10% of all graduate students are minorities._They_comprise 5 to 8% ot.the_enrollments in the_fields shown.

Table II-17: Graduate enrollments of women and minorities, by field, fall 1978

Field	Total Enroltment	Womeat		Minorttes	
		number	percent	number	peremt
\cdots - .			- -	-	----
Agriculture dind					
Niturat Rewources,	16.923	3613	21	84.4	5
Brohogual Sciencos	41785	14716	35	3.015	7
Eugineering	57.123	3.98 .4	7	4.52?	8
Physical Sciences	35.279	6,247	18	1.944	6
Allfields	1.076795	498995	46	111,625	10

Source: Pepir, Andrew J. Fall Enrollment in Higher Education 1978 (to bo published)

Chart II.18: Total engineering enrollmersts in engineering schools, 1968-1980

Fill	Bachelors						Graduate Students	
	Firit Yodil	Second Year	Trird Year	Fourtm: Fith Year	Total		Full Time	Part Time
					Fu! Time	Part Time		
1969	74.113	52.972	50039	56406	233530	20984	34.312	32645
1970	71661	53.419	49855	56.795	231,730	16,445	30018	30,802
1971	58566	47.948	485.43	55768	210,825	18222	36505	27.302
$197 ?$	52100	42.272	45,874	94.481	194.737	14149	26.337	24.940
1973	51.929	40.519	41.673	52588	186705	15692	34.492	26.114
1974	63444	45.939	43.007	48745	201099	16689	32,627	27.572
1975	75.343	55.891	49,338	50807	231.379	17.041	37.285	21173
1976	82.250	63,003	56.835	55.747	257835	19.844	36.479	26.842
1977	88.780	70.326	64.721	65.421	28928	20.634	39.235	25055
1978	98.805	72.150	69.816	73.466	31:237	22.843	38:381	24.133
1979	103.724	78.594	74.928	83.242	340,488	25.811	41.384	25.768
1980	110.149	84.982	80.024	89.962	365,117	32.227	44.335	23.250

Source Englncating and Technology Enrollments Seties, 1069.1980, Engineoring Manpower Commission

Chart II-19: Full-time undergraduate engineering enrollments

From a relative minimum in 1973, undergraduate engineering enrollments have gre wi: steadily to an alltime high of 365,000 in 1980. Since the number of freshman engineering students vas also an all-time high in that year, the influence of engineering enroliments on mathematics course demand is likely to continue strong over the next several years.

Sourco: Englueering Manpower Commission. Enginering and Tectnology Enrollmemis, Fall 1880

Table II.19: Full-time undergraduate engineering enrollments (enrollments in thousands)

		1965	1970.	1975	1976	1977	1978	1979	1980
Freshmen		80	72	75	82	89	96	104	110
All Engincering	.	220	232	231	258	289	311	340	365

Sourca: Englnearing Manpower Commisslon. Engineesing anderechnology Enrollments, fall 1980 132

Chart II.20: Total number of bachelors degrees in engineering granted to women, 1968.69 to 1980.81

Chart 11.21: Masters and doctors degrees in engineering granled to women, 1968.69 to 1980.81

13.4

Table 11.20: Enginearing degrees granted to women by degree level, 1968.69 through 1979.80

tinctudas Engineer Dogroos:
 complete estimatos.)
Source: Englneoring and Tochnologh Dogreos, 1969 through " $\$ 80$ seiles, Engineering Manpower Commission.

Table l1-21: Engineering technology degrees awayded, by sex and level of degree, 1970-71 • 1979.80

	\sim Bachelor's .			Master's		
	Total Both Sexes	Women 'Only	Women	Total Both Sexes	Women Only	women
197011	5,148	42	80	134	-	0
197172	5.772	46	80	237	1	0.42
1972.73	4.854	52	1.07	122	2	1.64
197374	7.456	105	140	209	9	:4.30
- 1974.75	7.497	192	257	221	4	1.80
- 197576	7.943	165	2.07	328	14	4.26
197677	8.347	196	234	284	23	8.09
197778	8.787	246	2.80	360	25	6.94
1978.79	9.355	327	3.49	268	18	6.71
Total	65:159	1,371	2.10	2,163	96	4.44

Sourca: Eafose Degraes Conforfed. Serles 1070.71, 1970-00, U.S, Office ol Education, NCES.

Chart II-22: Mathernatical science enrollments in universities and four-year collegeś

Between 1975 and 1980 all mathemat'cal science enrollments increased by 33%, compared to 7% for FTE enrollments in all flelds. The 30\% increase in calculus and the 196\% increase incomputing courses led the way.

 Mathemalfal Sclonces, 1981.

136
13%

Chart 11-23: Remedial mathematics in .universities and four-year colleges

Since 1960, enrollment in remedial arithmetic, general mathematics, and algebra has increased by 165%. Those courses now constitute 16% of all mathematics enrollments, compared to 13% in 1960 . The biggest increase occurred between 1975 and 1980, matching a period of widespread reports that high school preparation in mathematics häs declined sharply.

Source. Undergraduate Mathematical Sctences in Universities, Fout Yeat Cuthyes, and Two Year Coltegos. 1980-1981 James T Fry and wendell theming, Contorence Boatd on Mathematical Sciences, 1081.

Chart 11-24: Computer science enrollments in universities and four-year colleges

Computer science courses now generate over 16% of all mathematical science enrollments and they are increasingly given by separate departments of computer science. As In mathematics and statistics, the largest share of computer sclence enroliment is in lower level courses.

 sclence courses are oftón taught by mathematics dopatimonts.
 Mathomalical Sclences, 1981.

140

Table 11.24. Course enrollments in computer science at universities and four-year colleges (enrollments in thousands)

There was strong enrollment growth in nearly every computer science course offering. However, the bulk of the increase from 1975 to 1980 occurred in beginning programming courses. The new course "Computers and Society" established a substantial enroliment:

Subject	1975	1980
1 Computer Programing l/CSu ${ }^{\circ}$	50	154
2 Computer Programming IICS2)	J 13	32
3 Introduction to Computer Systems (CS3)	f 13	16
4 Discrete Structures	3	9
5 Computer Organzation(CS4)	3	12
6 Fin Processing (CS5)	3	7
7 Operating Systems and Computer Architecture (CS6)	2	7
* Data Structures and Algonthm Analysis (CS7)	3	12
9 Organization of Programming Languages (CS8)	7	6
10 'Computers dind Society CS9).	NA	16
11 Operating Systems and Computer Architecturailicsio)	NA	2
12 Database Maragement Systems Design (CS11)	1	4
13 Altifu, it intelingencea CSi2)	1	1
14 Algunther :CS13i	1	2
15 Soltwate Desmu and Oevelopment (CS14)	NA	2
	NA	1
17 Actornat. Computabity and Formal Lanquages ;CS16,	1	2
18 Numerical MathematusiCS17 18)	1	6
19 Other Computer Science	5	30
Totat.	107	321

- CS numbers meter tu wourses desubed in Curnwium 78, Communcations of the Associntion tur Computing Machinery, 1979. 22(d). 147 166 Enroliments are only those reported by mathematicat scienco departments, thus nut inkiudiag cumputet pruyidmming taught by a ousingss w ongineoting schos, for example
 Fieming Conforence Board on Matnematical Srtence. $108:$

$$
142
$$

${ }^{4}$ Chart II-25: Enrollments in continuing ; education degree credit courses by scientists and engineers, 1975.76

In 1975.76, over 30,000 scientists and engineers enrolled in degree credit courses offering an average of 3 hours credit. Aboutt two-thirds of the enrollments occurred in on-campus courses and one-third offcampus. Comparing this chart with chart I.18, we can see that the average course had an enrollment of approx" "atoly nine students. Furthermore, while there were more off campus activities, attendance was ruch greater for the on campus activitles.

Chart 11-26: Enrollments in continuing education non-credit activities by scientists and engineers, 1975.76

Almosi 187,000 scientists and engineers enrolled in continuing education non-credit activities in 1975.76. About 60% of the enrollments took place in university sponsored activities and 40% with professional societies. Comparing this chart with chart I 19 we can see that while universities offered roughly three times as many activities as the professional associations they attracted only.one and one-half times as many enrollees.

Table 11.26: Enrollments in continuing education non-credit activities by scientists and engineers, by type of activity and institution offering activity, 1975.76

Truentmantutum	Namber with One or More Ac, fivitios.	Type of Actuvit ${ }^{\text {a }}$						
		Iotut Emalliment.	Sha:t Contro.	Attom hus. Conta'sory	Insitute.	Cortespondence Coutrex,	Self study	Other
Untrersthe.	92	114×688	22190	14.6)	65893	4481	175	3.244
Prufessturn Iterhotat Onganiations	55	7190.4	4918	9.288	46523	45.83	5.817	4,780
Tal	147	186.592	27,108	2399	112416	9.064	5.987	8.024

-Soo Table 119 for detiotions of activites

Chapter III
 ATTITUDES, GOALS, AND NEEDS

INTRODUCTION

Rasources and participation determine the form and content of American educdition But knowing only that gives us an incompleto pleture of our educational systen, sirice that alone does not tell us how people feel about the system, what their oducational aspirations are, or in what areas they feer the system needs improvement. Such data, generally termed alloctive, are crucial if we are to understand why our educational system is the way It is and which changes are most likely to occur. "
Oblaining allective information regarding science and mathematics education exclusively is viry diflicut Nationat pons historically neglect to ask about atlltudes towards science and mathematics education Nevertheless, this chapter assembles a collection of data grouped according to three categories of bellef holders (students, faculty, public), which is reasonably reprosentative of people's atlitudes, goals, and needs concorning science and mathematics education.

HIGHLIGHTS

Students

1. Students attitudes toward school decilne with increasing grade levels. (Chart III-1)
2. The populanty of science and social studies increases somewhat with students' ages. while the pupulanity of mathematios debueds es. Even sü, mathematics is more popular al all ages than either swence or sucial studies. (Chart III-2)
3. Abuut 41^{1} " of the college tuand senturs in tend to study the physical sciences, sucial scienses, of psycholagy. (Chart III 3)
4. In the basic skills area, more college.bound sentors say they need help in mathematics than in reading and writing. (Chart III-4)
5. The proportion of teachers who would choose the teaching protession if they had a chance to start all over has declined since 1951. (Chart III.5)
6. Most teachers belteve that salary, community attitudes, status and student attitudes have had i negative effect on lob satis. faction. (Chart III.6)

Faculty

1. A total of $67^{\circ} \%$ of science, mathematics, and social studies leachers reported needing as. sistance in obtaining information about in structional materials (Chart III.7)
2. The availability of lab assistants or parapro. fessionals and money to buy supplies on a day to day basis were seen as mapor need areas for mathematics, science. and social studies teachers (Chart III.8)
3. Issues retated to tacilities, equipment, and supplies are significantly more troublesome in science classes than in mathematics or soctal studies classes. (Chart III.8)
4. The largest prublem percervod by mathemat us teachers is the lack of materials for in dividualizing instruction. (Chart III-9)
5. Science teachers perceived three serlous prublems. inadequate facilities, insufficient funds for purchasing equipment and sup phes, and lack of materials for individualizing instruction. (Chart III-10)
6. Socral sludies teachers perceive themselves as having more problems than mathematics and science teachers, but the severity of the problems does not seem as great. Their most troublesome problems are inadequate student reading abilities and need for individualized materials. (Chart III-11)
7. Only 22% of elementary school teachersiteel "very well qualified" to teach science and 16% feel "not well qualified" to teach it. Sixty percent teel "adequately qualified." (Chart III-12)
8. A sizable number of secondaty school science, mathematics, and social studies teachers feel inadequately qualified to teach one or more of their courses. (Chart III-13)

Public

Ninety- seven gercent of the public views mathematics as an essential tor high school students. Eighty.three percent regard science as essential (Chart III- 14)

Chart III•1: Attitudes of students in Grades 1 to 6 tovesard school

Attlitudes toward school exhibit a steady decllne with increasing grade levels.
$\hat{*}$

Sourcs. The Condition of Education, NCES, 1982. D. 201 :
143°

Table lli-1: Attitudes of students in grades 1 to 6 toward mathematics and school, by race: fall and: spring 1976.

Race and Grade Level	Mathematics		School in General	
	Fall	Spring	Fall	Spring
	Mean Positive Responses'			
White:				
Grade 1......... ${ }^{\text {a }}$.	-	2799	-	24.41
Grade 2.	26.74	27.28	23.97	23.81
:Grade 3.	26.28	26.96	23.79	23.47
Grade 4.	24.20	25.47	23.20	2256
Grade 5..	24.10	24.48	222	21.88
Grade 6..	23.56	23.42	22.31	21.12
Other races:				
Grade 1.	-	31.72	-	26.65
Grade 2..	29.72	31.07	25.35	2558
Grade 3	29.97	31.09	25.43	24.95
Grade 4	28.18	28.61	24.76	23.98
Grade 5	28.10	29.22	24.27	23.37
Grade 6 .	28.10	2813	23.63	22.74

- Not Avallablo.
-Atliudes ate based on the mean positive responses to 56 Itams of student aflective measures.
Source. U.S, Office of Education, Oltice of Êvaluátion and Dissemination, Study of Sustaining Effeuts of Cumpansalury Edulaliuri wa Basic Skits, speclal tabulations.

Chart III-2: Percentages of students naming various subjects in school as their most favorlte, ages 9, 13, and 17

The popularity of science and social studies, never vary high amongstudents, increases somewhat as students age. Mathematics, by contrast, is the favorite cf nearly half the 9 year-olds yet becomes less popular as students age. It is, even so, the favorite of more 13- and 17-year-olds than either science or social studies.

Tabie III-2: Percentages of students naming various subjects in school as their most favorite, ages 9, 13, and 17

	Percent Naming Fidorte Subject		
	Ag.'3	Age 13	Age 17
Serence	6	11	12
Mathematics	± 8	30	18
English'language arts	24	15	16
Soctal studies	3	13	13
Other	19	31	41

Source: Nallonal Assessment of Educational Progiess, Atlitudes roward Science, of 5

Chart 111-3: Percent of college-bound senlors intending to study science, engineering, mathematics or social sciences, by sex, 1979

About 32% of collegebound seniors said that they intended, as a first choice, to study science, engineering, mathematics, or social science. The greatest differences between the sexes were in psychology and engineering.

154

Table ill-3: Peicent of college-bound seniors intending to study various fields, by sex, 1980-81

Soutce; Admisalons Tosting Program ol the College Board, National Report, Collego Bound Sonlors, 1981, p. 18.

Chart III.4. Plans of college-bound senlors to ask colleges for special assistance, by areas of need añd ethnic group, 1980.81
in the busic skillo, a greater percentage of sludents felt that they would need help in mathematics than in reading and writing.

Source Admissions Tostung Program at the College Board. National Redont Collego Bound Somots, 1981 o 17
Table III.d:: Plans of college bound seniors to ask college for special assistance, by areas of need and ethnnic group, 1980.81

	Amersean modian	8u, ${ }^{\text {a }}$	 	Orment	Puerto Rican	What	Other	Tutal \cdots
Efuraternt Cownematil	33:	318	424	4.1	363	335	3.44	331
Vor Camet Comnewn	246	? 35	\%6	329	231	26.2	253	257
Matherratt, itskl!,	222	214	\cdots	188	206	1.4	202	165
Readiny Skil',	134	1.4\%	11, ${ }^{\text {a }}$	209	148	102	133	110
Writing Skuts	162	185	206	25, 1	175	125	177	136
Study Skuts	269	32	301	2.41	250	214	23.4	224
Put Ime. Werk	411	524	$4!$	393	4.8	186	392	393
	d 3	47	46	5.4	43	32	49	34
Seeking Assutaniee	812	944	921	893	903	795	866	804
Number Resnonding	5048	82162	15.765	31.329	10.393	747.712	20.274	947.879

[^7]Chart III-5: Attitudes toward the teaching profession: opinions of pubtic school teachers

The proportion of teachers who would choose the teaching profession if they had a chance to start over declined considerably from 1961 to 1981. In every year, men were less likely than women to alfirm their original cholce, and secondary teachers were less likely tian elementary teachers to do so.

Soutco The Condilton of Education. NCES. 1982, p. 107

Table III.5: Opinions of public school teachers toward their profession: 1961, 1966, 1971, 1976; and 1981
"Suppose you could go back to your college days and start over again; in view of your present knowledge, would you become a teacher?

0	Year				
	1961	1966	1971	1976	1981
Responses	Percent Distribution of Respunses				
Total	100.0	100.0	1000	100.0	100.0
Certainly Would	499	52.6	44.9	375	218
Male	352	380	330	273	16.0
Female	56.6	59.2	511	42.5	24.8
Elementary	573	59.6	501	43.5	26.4
- Secondary	43.0	44.9	391	317	181
Under Aga 30	-	49.2	41.4	356	28.5
Age 30 to 39	-	50.9	401	345	16.2
Age 40 to 49	-	48.9	471	416	21.3
Age 50 and Over	-	60.2	53.0	41.3	27.3
Probably Would	269	254	29.5	261	246
Chances Are About Even	125	12.9	130	175	17.6
Probably Would Not	79	$\cdots 1$	89	13.4	24.0
Certainly Would Not	28	20	3.7	5.6	12.0

- Not avaliablo.

Sourco: National Education Association, Stalus of the American Public Schoot Tescher, various yoars.

Chart III.6: Job satisfaction: opinions of public school teachers

More than half of all teachers belleved that salary, community and media altitudes, teacheis' status, and student attitudes towards learning had a negatlve effect on thelr job satisfaction. Salary had a more negative effect in the South than in other reglons. In nearly every catagory, secondary school leachers were more llkely than teachers of other levels lo respond that any item had a negative effect.

Soutce the Cordttom ol Eduaghtion. NCES, 1382.p 100

162

Table IIf.6: Opinions of public school teachers foward job satisfaction, by region, enrollment, size of school district, and teaching level: 1980

Each of the following affects teacher morale. Has each nad a positive or negative effect on your jub satisfaction?

- Regions cetined on the National Education Association

Soutce* National Eduction Associatlon, Natlonal Toacher Opinlon Poll, 1980
-
164

Chart III.7: K. 12 science, mathematics, and social studies teachers' needs for assistance

A total of 67°. of teachers reported needing assistance in obtaining information about new instruc. tlonal materials. Of that number, less than half received adequate assistance.

Table III.7: K. 12 science, mathematics, and social studies teachers' needs for assistance

[^8]Chart III.8: K-12 science, mathematics -and social studies teachers' perceptions of classroom needs

Issues related to facilities, equipment and space for classroom preparation áre more troublesome in science classes than in mathematics or social studies classes. However, the availability of lab assistants or paraprofessionals and money to buy supplies on a day to-day basis were seen as problems for teachers of all three subjects.

Table III•8: K•12 science, mathematics, and social studies teachers' perceptions of classroom needs (by percent of classes)

	Mathematies					Science						Soctal Studies				
	K 3	: 6	79	1012	Thlal		K3	46	79	1012	Total	K 3	4.6	7.9	1012	Total
	l	13	20	\checkmark	14	,	$2 ?$	42	44	34	36	12	13	24	17	16
Equmme	06	52	40	30	40		46	55	38	35	45	26	28	33	32	30
Whtie.	$\therefore 2$	36	2	11	\therefore		38	53	27	21	36	27	38	38	39	35
	dr	',	43	19	is		49	57	57	47	53	46	53	53	52	50
	3t,	$3{ }^{5}$	30	. 11	is		4)	60	42	39	42	31	39	38	38	36
	24	13	17	11	15		3)	60	39	28	37	17	20	28	27	23
 	33	13	43	A	41		35	, 4	50	4.	46	28	42	53	51	43
	37	5.4	51	4	46		8	5	72	62	58	42	50	54.	48	48
', ${ }^{\text {e }}$:	297	277	550	549	167		281	271	535	586	1679	254	281	453	490	1478

16%

Chart III.9: K-12 mathematics teachers' perceptions of problem areas

For the most part, mathematics teachers do njt seem beleaguered by problems. In only two categories, insufficient funds for purchasing equipment and supplies, and lack of materials for individualizing in struction, did the combined problem options account for more than 50% of the responses and no category recelved as much as a 20% response indicating a serious problem.

Chart III-10: K-12 science teachers' perceptions of problem areas

Compared to the mathematics leachers, science teachers perceive science instruction as having more problems. In three categories - inadequate lacilities, insufficient funds for purchasing equipment and supplies, and lack of materials for individualizing instruction - the two problem options accounted for more than 50% of the responses and the same three categories received more than $\mathbf{2 5 \%}$ response as indicating a serlous problem.

Chart III-11: K-12 social studies teachers' perceptions of problem areas

Compared to the mathematics and science teachers, social sludies teachers perceive social studies instruction as having more problems. in six categories, the two problem options accounted for 50% or more of the responses: insufficient funds for purchasing supplies and equipment, lack of materials for indlvidualizing instruction, out-of-date teaching materiats, lack of student interest in subject, inadequate student reading abilities, and belief that the subject is less important than other subjects.

173

Tablej11.9, 10, 11: $\mathrm{k}-12$ mathematics, science and social studies teachers perceptions of problem areas.

Chart III.12: Elementary teachers' - perception of their qualifications by súbject

Nearly two thirds of all elementary teachers feel "very well qualified" to teach reading, while only 22% feel "very well quallied" to teach science. At the other end of the scale, 16% of the teachers feel "not well qualifled" to teach science, compared to 6% or fewer in each of the nther three areas.

Table III-12: Elementary teachers' perceptions of their qualifications to teach each subject

Source. Weiss, Its R., Report of the 1977 Nutlonal Survey of Science, Mathematics. and Social Studies Education, p 142

While most secondary school science, mathematics, and social studies teachers feel at least adequately qualified to teach all of their courșes, a sizable number of them feel inadequately qualified to teach one or more of their courses.

Table III.13: Percent of secondary teachers of each suibject who feel inadequately qualified to teach one or more of their courses

		Yes	No	Unknown
Mionemat				
77A 6 6\%		11	88	1
		5	95.	0
Suente				
? 3 N 5 3		13	er	1
10 12 iN 58 m	- 7	13	82	3
	0			
Soche Studie.				
		9	89	2
$1012 \mathrm{~N} \quad 19 \mathrm{H}$		16	81	3

Soutce Werss tils R. Report of the 1977 National Survey of Science. Mathematics, ana Social Studies colucation op isa

Chart III-14: Public view of subjects: essential to all high school students

Mathematics is viewed as essentlal by more people thian any other subject. Science ranked filth out of elèven:subjèctş.

Table III-14: Public view: of subjects essential to all high school students

	Nationartotals		
	Essential	Not Too Essential "。	'Ben'i Knowl NoAnswer俞
Mathematics	97	1	2
English grammars compositun	94	3	3
Civicsiqovernment	83	8	4
US hritery	86	11	3
Surnace	83	14	3
Geography	81	16	3
Physicaleducation .	70	21	3
Interdependence of nations formor relations	60	32	8
Music	44	52	4
Foreigntanguage	43	53	4
Ari	37	58	5

[^9] Phi Delta Kappan, Soptember, 1979.

INTRODUCTION

No measure of the health of American education receive: as much scrutiny as student test data Recent attention has focused on measures of what people know and what intellectual and performance skills they possess Such measures are usually standardized tests (e.g., Scholastic Aptitude Tests, Graduate Record Examinations, National Assessmert uf Educational Progress instruments).

The test data contained in this chapter are gruaped fur K 12 students and higher education students

HIGHLIGHTS
K. 12

1 Background and instructional grouping fac tors have been found to influence achieve ment test scores (Chart IV-1)

2 Time spent in mathematics instruction has a positive effect on matherratho dureve ment ili grade schuol (ChartIV 2)
39 year-old black students showed a signifi. cant gain between 1973 and 1978 NAEP mathematics asses sments. (Chart IV-3)
4. Nevertheless. overall mathematical knowledge of black students. according to the NAEP results, was lower than white stu dents in 1978 (Chart IV-4)
5 According to Natıonăl Assessment of Edu cational Progress (NAEP) data. all age groups experienced statistically significant declines in science achievement during the firsi test interval (1969.70 to 197273) There were no significant changes during the second test irterval (197273 to 1976-77) (Chart IV 5)
6 When analyzed separately as to type of science. NAEP data showed that all age groups experienced statistically significant declues in physical science achievement during the first iest interval Only the dectine of the 9 year olds was significant during the second interval (ChartIV-6)
7 In biological science achievement. NAEP di ta shows that the only statistically signifi cant change is the decline demonstrated by 17 year olds during the first test interval Chart IV.7)
8 According to NAE' data, overall mathemat ics achievement declined fur allages tested in the test interval 1973 to 1978 The decline was statistically significanif for the 13 and 17-year-olus (Chart IV-8)

9 High school students who complete advanced mathematics courses perform better on mathematics achievement tests. (Chart IV-9)
10 Additional years of mathematics course taking is associated with higher mathematics achievement scores (Chart IV-10)
11 Scholastic Aptitude Test (SAT) scores declined from 1969.1980; however, 1981 scores remained at the 1980 low point. (Chart IV-11)
12 Regarding SAT scores, the mathematics scores for men have consistently been well above those for women, and since 1972 verbal scores fo: men have also exceeded those of women. (Chart IV.12),
13 College-bound students who intended to major in biological sciences, engineering. math and physical sciences had SAT scores that were above the average for all college bound seniors. (Chart IV-12)
14 The college bound seniors sconing, on the average. highest on their SAT's, tend to plan on studying science, engineering, mathematics, or English literature. (Chart IV.13)
15 In contrast to the SAT scores, the Admissions Testing Program Achievement Tests scores, averaged across all subjects. have held steady over the past six years, within a range of 526 in 1972 to 538 in 1976. (Chart IV.14)

Higher Education

As reftected by Graduate Record Examination (GRE) scores there were no statistically siguficant changes in either the verbal or ouantitative aptitudes of prospective sctence graduate students. (Charts IV.15, 16)

Chartiv. Factors contributing to achievement onispilng mathematics. scores:

Factors Ranked by Order of Importance
Among background factors, fall mathematics scores, parental education, and race contributed to mathematics scores

Background Factors
Fall Mathematics Scores.
Parental Education*
Race ${ }^{-}$
Compensatory Education
Family Income
Among instructionat factors, large group instruction and futoring contributed to mathematics scores. although tirne with a tutor was negatively associated

Instructional Grouping Factors
Classroom Teacher Over 20 Students*
Tutor ${ }^{-}$
Chassroom 1 eacher, 14 to 20 Sludents
Independent Work Program Materrals
ClassroomiSpecial Teacher, 1 to 0 Students
Classroorr Teacher, 7 to 13 Students
*Statistiçatiy signilicant eftcet on sping mathematics scotes based on the results of a mulliple regression analysis ($\boldsymbol{R}^{2}-865$ i)
.Sourco: The Condition of Ecucation, NCES, 1932, D. 181.
Table IV-1: Mean mathematics achlevement scores of students in Grades 1 to 6 for significant instructional groupings, by time spent in instruction: spring 1978

Time Spent in Instructional Grouping	Mean Math Scores
- Classroom teacher, over 20 stude.its No Time	524.24
Less than 10 Percent	519.87
10 to 19 Percent	523.90
20 to 29 Percent	52344
30 fercent and Over	52749
- Tuior	
ivo Time	525.50
Less Than 4 Percent	519.58
4 Percenta 1 Over	521.81

Soutco: U.S. Office of Education, Office of Evaluation and Dissomination, Study of Sustaining Effocts of Com. pensatory Education on 8asic Skilis spocial tabutations.

Chart IV-2: Effects of time spent in mathematics instruction on achievement scores.

Time spent in mathematics classes had a slight effect on mathematics achievement of grade school students.

Source: The Condition of Educationin NCES, 1082, p. 117. ${ }^{*}$

Table IV-2: Máthématics achievement scores of students in grades 1 to 6, by educational attainiment of adult in housohold and time in instruction per dayy: spring 1976

Item	Mean Mathematics Scores
Education of Adult Household Merrber	
Male of Househoid	
8th Grade or Less	52289
1 to 3 Years of High School	523.34
High School Graduate	525.79
Some College	526.77
College Degree	52935
Post-Graduate	53307
Female of Household	-
8 th Grade or Less	523.82
1 10 3 Years of High School	52237
High School Graduate	52561
Some College	53068
College Degree	53058
Post G aduate	52805
Time in Instruction Per Day	
Mathematics	
47 Minutes	52249
51 Minutes	524.43
57 Minutes	526.39
60 Minutes	527.95

Source. U.S. Olfice of Educiatitn, Olfica of Evaluation and Dissemination. Giudy of Sústaining Effects of Compensatory Education on Basic Skills, spocial tabulatlons.
.Chart IV.3: Change in mathematics performance of 9., 13-, and 17-yearolds: 1973 to 1978

While mathematical achlevement test scores for 19-, 13-, and 17-year- olds fell natlonally between 1973 and 197e, blacks' scores showed signilicant gains among the $9 \cdot y e a r-o l d s$.

Sourca Tro Condition of Education. NCES. 1982, p 189

Table IV.3: Mean mathematics performance of 9-, 13-, and 17-year-olds, by race, type of community, and parental education: 1973 and 1978

 rural - arese with a population undof 10,000 where most of tho resldents aro farmers or farm workers.
 have at loast ons parent with some post.hgin school educatlog.

Nole: Percent corfect on Identcal mathematics Items for assessments in 1973 and 1978.

Chart IV-4: Mathematical knowledge of 9., 13., and 17-year olds: 1978

Although the gap appears to be narrowing between assessments, the mathematical knowledge of black students was substantially lower than that of white students in 1978.

Source: Thie Condition of Education, NCES, 1982, $\rho 187$

Table IV-4: Mean percent correct responses of 9.13 , and 17-year-olds on the same - mathematics exercises, by race: 1978

Mathematical Applications						
Race	9.Year Oids	13-Year-Oids	Yearly Progression Rate ${ }^{2}$	13-Year-OIds	17-Year-Olds	Yearly Progression Rate ${ }^{2}$
	Same 33 Items			Same 83 Items		
All Races	364	648	155	38.3	551	95
White	386	681	152	408	584	9.4
Black	267	485	161	256	35.3	8.4
Mathematical Knowledge'						
	Same 78 Items			Sarne 120 Items		
All Races	534	77.0	96	648	769	44
White	558	800	94	67 ,	796	41
Black	429	622	9.7	507	60.9	4.7
Mathematical Skills'						
	Same 98 Items			Same 2:8 Items		
All Races	416	696	137	486	661	80
White	439	731	13.6	518	69.2	75
Black	306	519	14.1	324	472	9.9

[^10]19

Chart IV.5: Changes in science achievement for 9 ., 13. and 17-year olds: : $1969-77$

Overall achlevement in science dechlnc a for all age groups at every test interval. All three declines in the lirst Nallonal Assessment and Educational Progress NAEP Testing interval were statistically signifi cant (at the .05 level) while only that for 17 -year-olds was significant in the second interval.

[^11]198
19%

Chart IV-6: Changes in physical sclence achievement 1969.77 for 97 13. and 17-year olds: National Assessment of

Educational Pragress

Achievement In the physical sclences declined for all age groups at every test interval. All three decilnes in the first finteryatwere statistically slgnificant (at the .05 level) while the decilnes for the nine-year-olds and 17-year.oids ware significant in the second interval.

Chart IV.7: Changes in blology achievement 1969-77 for 9-, 13- and 17-year-olds: National Assessment of Educational Progress

Although it appears that achievemfint in the blological sciences declined for all three age groups in the first Interval and continued to deciline for 17 year olds while improving for the younger groups, the only statistically significant change (at the .05 level) occurred lor the 17 year-olds belween 1968.70 and 1972.73.

Source: Natlonal Assessment of Educational Progress, riseo Nationai Assessments of Scionce Changos in Achovoment iv69 77 , 17

Table IV-5, 6, 7: Change in sclence achievement, 1969.77 for 9 ., 13., and 17.year olds: National Assessment of Educational Progress

Item	196970 and 197273 rtems			1972.73 and 1976.77 tems		
	196970°	197273	Change	197273	1976.77	Change
9 -year olds						
All exercises			-			
Mean percent correct	6097	5981	- 117	5233	5224	-009
Standard error .	35	44	56	42	45	62
Physical science						
Mean percent correct	5670	5521	- 149	4750	4624	- -120
Standard error	38	48	61	42	44	61
Brologreal science						
Mean percent correct	7035	6933	- 102	5785	5922	138
Standard error	38	40	55	45	55	71
13 year olds						
All exercises						
Mean percent cormact	6018	5847	- 171	54.47	5380	- 67
Standard error	40	47	62	40	42	58
Physical science						
Mean percent , urred	5967	5710	- -258	5043	4959	- 84
Standarderror	42	51	66	41	41	- 58
Brological science						
Mean percent correct	6089	5963	126	6108	6199	92
Standard error	51	50	71	45	50	67
17 year olds						
All exercises		,				
Mean percent correct	4525	4246	- -279	4841	4649	- 192
Standard error	34	32	47	37	44	57
Physical scrence						
Mean percent, orrect	4287	3934	- 352	4683	4445	- - 238
Standard error	38	35	52	37	43	57
Biological science						
Mean percent correcl	5230	5112	- -118	5330	5219	- 112
Standard error	42	42	59	49	50	70

'Change statistically signilicant al the 0.05 lovel.
Fैंear of assasment for 17 -yoarolds is 1969.
Sources Dearman, Naney i. and Plisko, Vaiena Whitn, The Condition of Edreation. 1979 Edilion, 3.176.

Chart IV-8: ©Changes in mathematical achievement, 1973.78, for 9-, 13., and 17-yearcolds: National Assessment of Educational Progress

Overali mathematics achievement dechined for all three age groups with the decline for the two older groups being statistically stgniticant at the .05 level, with the exceplion of the knowledge items. Where there were no statistically significant differences, the older the group the steeper the decline in each of the assessed areas.

Chart IV-9: Mathematics test scores of high school seniors related to types of courses taken

Within each racialrethnic group, high schoo, seniors who had compieted increasingly complex mathe matics courses performed signillcantly better on the mathematics achievement test than students who had completed lower-level courses only.

Source The Cordition ol Education, NCES. 1982, p 197

Table IV.9: Mean mathematics test scores of high school seniors, by types of mathematics courses taken and racial/ethnic group: 1980

 standardized, compailsons can only be mado within each test.
Nole: Scores aro standardzed to a moan of 50 polnts and a standard doviation of to points.
Source: U.S. Departinent of Educalion, National Centor for Education Statisits, 1980 High School and Bayond Study, umpubishou labulations.

Chart IV-10: Mathematics test scores of high school seniors related to years of coursework

Additional years of mathematics were associated with higher mathematics test scoros, although white and Asian students with fewer years of math often performed bettor than other racial/othnic groups with more years.

Source The Condition al Education, NCES: 1982, D 195

Table IV-10: Mean mathematics test scoros of high school seniors, by number of years of mathematics taken, racial/ethnic group, sex, and socioeconomic status: 1980

4

0
 fandardized, compailsons can only be made within oach tost.
Note; Scores ate stindatdized to a mean of 30 points and a standard deriation of 10 polnts.
Soutce, U.S: Dapatment ol Education, Nationat Centef for Education Slatistics, 1980 High Schoul and, Beyond Study, unpubushed tabuiatiuns

210

Chart IV-11: Scholastic Aptitude. Test (SAT) score averages for collegebound seniors, 1967.81

For 1981, the average verbal and mathematical scores were identical to the dverages of 1980 predecessors. For the lirst time since the score decline began, neither the verbal nor mathematical score averages declined from the previous year. Men outperform women on the verbal test with average scores of 430 versus 418. This difference by sex has widened from 3 points in 1976 to 12 points in 1981. Part of this dliference may be due to the larger number of women taking the iest. In the mathematical section. average scores for males increased one point from the previous year to 492, and those for females remained the same as in the provious two years (443). Between 1973 and 1981. the difference in male and female averages widened from 42 points to 49 points. This difference is even greater for students with an outstanding high school record, men in the top tenth of their class have a mathematical average that is 63 points higher than that of womon in the top tenth of their class.

Table IV-11: SAT score averages for college-bound seniors, 1967-81*

Chart IV-12: Scholastic Aptitude Test (SAT) score averages for collegebound seniors
∞

From 1973 to 1981, the national mean SAT verbal and math scores dropped from 445 and 481 to 424 and 466, respactivaly. During the same time period, among college bound who Intended to major in blological sclence, engineering, math and physical science, SAT verbal and math scores remained above the average for all college-bound seniors.

Table IV-12: Scholastic Aptitudé Test (SAT) scores of college-bound seniors, by intended area of study: 1973 to 1981

Intended Area of Study	1973		1975		1977		1979		1981	
	Verbal	Math								
	Mean Test Score									
National rotal.	445	481	434	472	429	470	427	467	424	466
Art and Humanites.	-	-	-	-	444	460	436	452	434	453
Architecture/Environmental Design	438	515	430	507	425	505	418	495	414	489
Art	440	451	435	445	. 412	425	404	421	403	421
English/Literature	- 500	481	488	465	504	478	505	478	507	482
Foreign Language	491	498	481	486	481	483	475	476	474	477
Music -	465	487	448	464	445	463	437	456	435	454
Philosophy and Religion	479	500	469	484	467	487	465	482	463	481
Theater Arts .	-	-	-	-	447.	438	437	433	439	436
- Biological Sciences and Related Areas	-	$\overline{7}$	-	-	438	479	435	472	433	472
Agriculture. .	427	471	423	459	418	457	408	443	404	440
Blologrcal Sciences	493	533	481	525	475	- 515	472	507	471	504
ForestrylConservation	-	-	-	-	426	467	420	456	418	452
Health and Medical	-	-	-	-	433	474	430	469	428	469
Nursing and Health	419	444	410	444	-	-	-	-	-	
Business, Commerce, and Communication	-	-	-	-	412	454	408	448	406	446
Business and Commerce	409	463	406	461	402	453	400	447	398	446
Communications	476	483	458	461	459	460	448	449	443	446
Physical Sciences and Related Areas	-	-	-	-	454	549	448	535	443	527
Computer Science/Systems Analysis	-	-	-	-	422	505	419	498	416	492
Enaineering	460	548	450	541	448	546	445	50 ${ }^{5}$	446	534
Mationalics	481	595	463	580	464	588	459	580	456	572
Physical Sciences.	505	570	501	565	500	572	498	561	498	558
Social Sciences and Related Areas	-	-	-	-	432	453	429	449	429	449
Education.	418	449	405	434	400	426	392	420	391	418
Ethnic Studies	-	-	-	-	381	396	372	386	381	395
Geography	-	-	-	-	421	473	438	481	422	474
History and Cultures	-	-	\square	-	478	474	478	471	482	472
Home Economics	413	441	409	442	399	428	389	417	383	411
Library Science	-	--	-	-	478	453	476	448	464	431
Military Science	-	-	\cdots	-	435	489	434	481	433	474
Psychology	\cdots	-	-	-	444	455	435	447	433	447
Social Sciences	476	490	465	476	456	474	455	472	456	474
Miscellaneous	-	-	-	-	431	473	420	458	420	459
Otherr.... .	-	-	-	-	422	458	. 396	430	395	431
Trade and Vocational	400	450	370	405	357	400	. 353	394	350	391
Undecided	-	-	-	-	448	491	441	480	440	480
Otherルndecided	446	489	438	477		,	-	-	-	-

- Not Avaltable.

(Nöte: 1973 and 1275 data are bused on a 10 porcent random samplo.
 fab: colloge 3otrd, copytioht.

Chart IV.13: Intended undergraduate fields of college-bound seniors, by combined avarage SAT scores, 1980.81

College-bound seniors planning to study the physical sciences and mathematics have higher SAT scores on the average than those planning, to major in other flelds. cores or

Table IV:13: Intended undergraduate fields of college bourid seniors by SAT scores, 1980.81

Number Fesponding	906.195 Total		
	SAT Verbal Mean	SAT Math Mean	Selected SAT Totals
Arts and Humanites	434	453	887
Architecture/Environmental Design	414	489	903
Art . .	403	421	824
EnglishiLiterature	507	482	989
Foreign Languages	474	477	951
Music .	435	454	889
Philosophy and Religion	463	2. 481	944
Theater Arts	439	8. 436	875
Biological Sciences and Related Areas	433	472	905
Agriculture .	404	4.10	84.4
Biological Sciences	471	504	975
Forestry/Conservation	418	452	870
Health and Medical	428	469	897
Business. Commerce, and Communications	406	446	852
Business and Commerce .	398	446	844
Communicatuons	443	446	889
Physical Sciences and Related Areas	443	527	970
Computer Science/Systems Analysis	416	492	908
Engineering	446	534	980
Mathematics	456	572	1028
Physical Sciences	498	558	1056
Social Sciences and Related Areas	429	449	878
Education	391	418	809
Ethnic ${ }^{\text {ciudies }}$	381	395	776
Geography	422	474	896
History and Cultures	482	472	954
Home Economics	383	411	794
Library Science	464	431	895
Millary Science	433	474	907
Psychology	433	447	880
Social Sciences	456	474	930
Miscellaneous	420	459	879
Other	395	431	826
Trado and Vocational	350	391	741
Undecided	440	480	920

FSource; Admiations Testing Program of the College Boatd, National Repori, Colloge Boulind Senlors, 1981, p. 18.

Chart IV.14: Admissions Testing Program (ATP) achievement test score averages, 1972.81

The average Achievement Test scorss range from 526 (1972) to 532 (1981). The number of students taking the Achievoment Tests, however, decreased 41\% between 1972 and 1981. Also, the average scores for physics tests Increased sign!ficantly from 1979 to 1981.

SQurce Admissigns thating peogram of the college bourd. Natonal Roport College bound Sumers 1977 1975, 1979 1980.1981

219

Table IV-14: Admissions Testing Program (ATP) achievement test.score averages, 1972.81

	$\begin{gathered} 1972 \\ \text { AV } \end{gathered}$	$\begin{gathered} 1973 \\ A V \end{gathered}$	$\begin{gathered} 1974 \\ \text { AV } \end{gathered}$	$\begin{gathered} 1975 \\ \text { AV } \end{gathered}$	$\begin{gathered} 1976 \\ A V \end{gathered}$	$\begin{gathered} 197 / \\ \mathrm{AV} \end{gathered}$	$\begin{aligned} & 1978 \\ & \text { AV } \end{aligned}$	$\begin{gathered} 19 P^{9} \\ A V \end{gathered}$	$\begin{gathered} 1980 \\ \text { AV } \end{gathered}$	$\begin{gathered} 1981 \\ \mathrm{AV} \end{gathered}$
Average for all										
English Compusition	416	517	517	915	$\cdots 3{ }^{\circ}$	'16,	' 3 '	',4	918	512
Mathematics Levell	1,4i	5,37	(1,45	(4)	9,16,	4.3;	6,1	637		¢39
American History and Social Studies	492	498	498	414	49.3	493	4%	480	501	',08
Biology	535	5.32	545	514.4	9.4	5 43	S.4	',4	(, 51	546
Chernistry	568	572	581	'69)	'fil	59.8	¢,7\%	',25	, 173	571
Mathematics Levelll	n/a	ma	n/a	660	665	6.66	665	$66^{6} 7$	653	654)
French	539	54.7	\%60	563	以)	66) 3	54.7	65,4	550	546
Spanish	530	539	960	6,4.4	4.41	135,	S6:	542	52.4	529
Literature	m / l	n/a	n/a	92,	525	596	's1	9?	924	517
Physics	nia	n/a	W/ ${ }^{\text {a }}$	601	993	593	991	980	592	595
German	n/a	ma	ma	'47	5, 6,5	$6 \cdot 1$	6.3	5	552	551
Europede Hestory and										
World Cultures	n/a	na	n/a	4.21	¢,31	5.6	907	516	539	544
Latin	n/d	m / d	n/d	51.4	624	511	${ }_{6} 98$	5.4	529	548
Hobrew	n/a	n / d	n,	571	519	5881	689	4,88	600	602
Russian	n/a	n / d	nas	¢,40	4,0]	5, 75	${ }^{6} 87$	613	622	6.12
Average SAT scores for taker, of Achievement tesis.										
Verbal.					501	50.4	507	'008	506	505
Mathematics					563	563	5,4	5 r 4	551	551

$A V=$ Moan

- Oata not computud pifor to 10̇70. Data for 1970 are estimated from seores of indivifual achiovomiont lesta tor that year
 .1

Chart IV.15: Graduate Record Examination quantitative aptitude mean scores for prospect|ve graduate students in science, 1970.78

As reflected by GRE scores, there nave been no signifficant changes in the quantitativo apitude of pros. pectlve sclence graduato sludents. Howover, candidates in the life sciences and baslc social sclences averago noticeably lower than those in. other science disciplines.

Sourcn National Sciencee Fqunustion Selence indicators 1980

Trable IV-15: Number of students taking Admissions Testing Program (ATP) achievement tests, 1972.81

E Eatimatod

Chart IV-16: Graduate Record Examination verbal aptitude mean scores for prospective graduate
_ . students in science, 1970.78

As reflected by GRE scores, there have been no significant changes in the verbal aptitude of prospectlve science graduate students. However, engineering sandidates averaged noticeably lower than those in other science disciplines.

Sourco. National Sciance Foundation. Science Indicators, 1980

220
22%

Table.IV-16: Trends in Graduate Record Examination mean verbal and quantitative test scores by field, 1970/71-1977/78

Pros nēctive fiefd of	Aptitude	192017	1971/7	197273	1973/74	. 1974175	197517	- 1976177	197.7\%
		'			ce Fields				
Physical Sciences	v	512	500	519	502	508	500	514	517
	Q	650	643	648	648	630	623	63.4	636
Mathematical Sciences	\checkmark	517	495	510	513	506	520	513	504
	Q	675	673	676	675	661	673	666	669
Engineering	V	444	478	455	449	440	471	462	459
	Q	656	651	665	663	649	654	657	657
Lite Sciences	V	491	491	504	508	508	506	506	503
	Q	556	553	570	569	568	557	558	559
Bastc Social Sciences	. \quadQ	533	$\begin{aligned} & 527 \\ & 526 \end{aligned}$	$\begin{aligned} & 522 \\ & 521 \end{aligned}$	$\begin{aligned} & 525 \\ & 521 \end{aligned}$	$\begin{aligned} & 521 \\ & 518 \end{aligned}$	$\begin{aligned} & 534 \\ & 526 \end{aligned}$	$\begin{aligned} & 526 \\ & 518 \end{aligned}$	$\begin{aligned} & 516 \\ & 414 \end{aligned}$
		530							
	Nonscience Fields								
Health Protessions		500	502	509	508	502	513	507	498
		496	501	508	507	513	530	527	517
Education	v	472	463	452	449	454	464	454	446
	0	462	457	450	442	445	459	449	449
Arts and Humanities	v	546	534	537	541	542	537	543	532
	0	494	492	493	494	490	494	502	497
Applied Soctal Sciences	v	492	482	484	493	488	471	477	483
	Q	480.	475	475	477	464	461	465	472
Other Nonscience ${ }^{\text {* }}$	\checkmark	496	490	501	498	496	507	498	486
	Q	498	500	502	495	498	509	510	50.4
			\checkmark						

*Note: Ve verbal, $\mathrm{O}=$ quantltative. Standard deviltions cannol be computad for all yoars. For 1976m7, however, standard deviations ranged botwoen 100 and 138.
Sources: Data for the years 197071 through 107475 are from a ono. In.lifteen sample study of examinees of those years Sue Robert F Boldi, Trends in Aplitude of Graduato Students in
 vice; based on the test rosults of a hlah proportion of aft examineos of those years. Mean scorca for 197778 aro from A Summary of Dota Collected from Graduate Record Examinalion Test

Seo tiguié 5 -s.
Soućc: Natlonal Sctenço Foundatlaon, Science Indicators - 1980

HIGHLIGHTS

Earned Degrees
1 Between 1970 and 1979. the total number of associate degrees in science/engineering re lated occupational curncula increased by 1837% (Chart V.1)
2. The total number of degrees a darded in most science disciplines peaked in the early 1970's and has now declined, however. Bachelor's degrees in engineering continue to climb (Charts V. 3 to 10)
3 In 1979 80, Wumen obatined more degrees in mathematics education at the bachelor's and master's level than men. (Chart V 11)
4 From 1975 to 1980 earned bachelor's degrees in mathematics. statistics. and secondary teaching decreased by 42% Computer science degrees increased by 145% in universities 83° of computer science degrees are from computer science departments. in public colleges the fraction is 56% However, many public colleges have joint mathematics anci computer science departments (Table V 14C)

Distribution:

1 As a percent of total associate degrees. scienc engineering related occupational curri a grew from 25% to 37.5% between 197C and 1979. (Chart V-2)
2 The number of science degrees as a percent of all degrees declined at all degree levels be-- \quad tween 196869 and 1978-79. (Charts V-12 to 14)

Women and MInorities:

1. With a few exceptions, the number of science degrees at all levels earned by females has steadily increased. (Charts V-15 to 17)
2 Women have increased their share of science degrees in almost every discipline and at every level. (Charts V. 18 to 20)
3 Minorities earn a greater percent of bachelor's degrees in the social sciences than in the natural sciences. (Chart V-21)

Chart V-1: Earned associate degrees, sciencelengineering-related occupational curricula, 1970.71 to 1978-79.

The total number of degrees in sciencelengineering related occupational curricula has increased by 183.7\% since 1970.

Table V.1: Earned associate' degrees in science/englneering•related occupational curricula, 197071 to 1978.79

Curriculum Categiory and Division	$19707{ }^{\circ}$	197172	$197273{ }^{\circ}$	197374	197475	197576	197778	1978.79	Percent Change 1970.711978 .79
An Curricula Totat O. upationat Curricula	272,862	313757	337757	369,9.43	388122	422.586	524,057	515.371	889
3) wemerengmepring fielated	68213	83069	946.33	107332	118.505	127.579	194,270	193.507	1837
Data Prom essiny Techrolugie", Hodith Services Pammedual	7564	7841	16.40	6998	6829	7176	10.830	12,454	646
Tecnnologes Mechanicalenqumering	24370	32288	42910	51207	57.943	61.918	90575	90.022	2694
	30172	34546	34781	37.631	40775	45169	71617	71.288	1363
Natural Sermmer Termonlogles	6.107	8.39 .4	9292	11.496	12966	13.316	21.248	19.743	2233
All Other Currueld	204.649	230.690	243134	26<,611	269.617	295.007	329.787	321.864	60.3

- Does not include those bolow the tochnical or-somiprofessional fovet
'An associate degroe is usually one granled tor the first two years of formal academic study
 Degress and Oinor formai Award's Bolow the Baccapaureate. D. 6 $\in J$

Chart V-2: Percent distribution of
associate degrees, by curriculum
category, 1972-73: to 1978.79

Table V.2: Percent distribution of associate degrees by curriculum category, 1970.71 - 1975.76

Curticulurn Category and Division		197071	197172	197273	197374	$1974 / 5$	197576	197778	197879
All Curncula Tolal		1000	1000	1000	1000	1000	1000	1000	1000
Arts und Scrence or General Programs		545	513	485	455	438	425	329	316
Ocrupational Currcula		455	48	515	645	562	575		
Scionceengineering Related		250	265	280	290	305	302	311	375
Data Processing Technologies		28	26	23	19	18	17	21	24
Health ServicesiParamedicat Technolo jies		89	103	127	138	149	1.46	17.3	115
Mechanicall Engineering Technologies		111	110	103	102	105	107	131	138
Natural Science Technologies		22	21	28	31	33	32	41	38
NonsciencelNonengineering-Related		205	222	235	255	256	273	301	309
Business and Commerce Technologres	v	160	163	16.4	17.	175	187	22.	235
Public Service-Related Technologies		45	59	72	18	81	86	80	14

 and Other Formal Awrids Below the Baccaloureate, 1978-79, p. 0

Charts V.3, A\&B: Earned degrees in the blological sciences, by level or degree, 1951.5z to 1979.80

Table V.3: Earned degrees in the biological sciences' conferred by institutions of higher education, by level of degree and by sex of student: 1951.52 to 1979.80

'Includes degress in analomy, bacterlology, blochemitity, blotogy, bolany, entomology, physiology, zoology, anc other biological seionces.

 degroes. Data for all years are for 50 States and the Districirol Columbla.
Source: Grant, W. Vance and Und, C. Georgo, olgest of Education Statistlcs, 1979, p. 122; 1980. p. 120.

Charts V-4, A\&B: Earned degrees in the physical sciences, by level of degree, 1951-52 to 1979-80

The number ol bachelor's degrees In the physical sciences declined somewhat in the early 1970's and rose to its highest point by 1979-80. The numbers of both master's and doctor's degrees have decreased since 1970-71.

Source Grant'W Vance and Eicen. Leo J. Digrst of Education Statistics, 1980, p 123

Table V:4: Earned degrees in the physical sciences' conferred by institutions of higher education, by level of degree and by sex of student: United Ştates, 1951-52 to 1979-80

	Year	Bachelors degrees			Masters degrees			Doctor's degrees		
		Total	Men	Women	Total	Men	Women	Total	Men	Women
	1	2	3	4	5	6	7	8	9	10
195152		12.118	10.799	1319	3054	2.830	244	1720	1.663	57
1953.54		9.838	8.584	1.254	2.374	2.197	177	1.686	1,625	61
195556		11.629	10.140	1484	2655	2.435	220	1667	1.599	68
1957.58		14317	12.659	1,658	3030	2,759	271	1.655	1.589	66
195960		16007	14.013	1994	3.376	3.049	327	1.828	1.776	62
196162		15851	13.728	2123	3928	3.544	384	2.122	2.035	87
196364		17456	15044	2412	4561	4.155	406	2.455	2.342	1.13
1965.66		17.129	14822	2 307	4.987	4462	525	3.045	2.914	131
1967.68		19.380	16.739	2641	-5,499	4.869	630	3.593	3.405	188
196970		21.439	18,522	2917	5.935	5093	842	4312	4.077	235
197071		21.412	18.459	2953	6201	5.521	846	4.390	9.144	246
197%		20.745	17.603	3081	6.287	5404	883	4.103	3.830	273
197?		20.606	17.626	3070	6257	5.414	843	4.006	3.738	268
199314		21178	17674	3504	6,062	5186	876	3.626	3,373	253
197. 9		20778	16.992	. 3786	5807	4969	838	3.626	3.325	301
1975 ${ }^{6} 6$		21,465	17353	4112	5466	4.648	818	3.431	3.132	299
197677		22497	17996	4501 \%	5331	4.450	881	3.341	3.022	319
197778		22986	18090	4896	5.561	4,620	941	3.133	2821	312
197879		33.207	17985	5222	5451	4.461	990	3102	2.752	350
197980		23.410	17.864	5.546	5.219	4.248	971	3.089	2.705	384

'includes degreos in astronomy, chemistry. geology, metaliuroy, meteorology, physics, and other phystcal sciences
NOTE Although a strenuous effort has beon made to provice a consistent senes of data, minor changes havouccureduvat kme inthe way dagnew are wassitien and reported Any degiees
ciassitied in eatly surveys as lirst-prolessional areyncluded above with bachelor sdegrees. any degrees classitiod as secuid professional of sacund level aro included with master
degrets. Data lor all yoars are for 50 States and the District ol Columbia
Source Grant. W Vance and Lind. C George. Digest of Education Statistics, 1979, p 121
Giant. W Vance and Erden. Leo J., Digest of Education Stalishcs, 1980, p 123 NCES uripublishod data

Chart V-5: Earned degrees in physics, by level of degree 1951.52 to 1979.80

The numbers of physics master's and bachelor's degrees were greatest in ${ }^{3}$ 1969.70, the number of doctor's degreos greatest in 1970.71.

Table V-5: Earned degrees in physics* conferred by institutions of higher education, by level of degree and by'sex of student: United States, 1949.50 to 1979.80 -

	Year	Bachelars degrees			Master's degrees			Doctor's degrees		
		Total	Men	Women	Total	Men	Women	Total	. Men	Women
	1	2	\geqslant	4	5	6	7	8	9	10
1949.50		3.413	3.286	127	9.2	888	3.4	358	353	5
;95152		2245	2.139	106	886	851	35	485	476	9
1953.54		1949	1874	75	714	685	29	485	479	6
1955.56		2.329	2228	101	742	119	2.3	410	462	8
195758		3.179	3.038	1.41	195	170	25	464	455	9
195960		4322	41504	168	1073	1039	35	487	477	10
196162		4808	4620	188	1425	1763	62	667	65%	12
1963.64	,	4946	. 214	232	18.18	1782	66	778	767	11
7196566		4,601	4378	223	1949	1869	80	973	952	21
$196 / 68$		5038	4745	293	2088	1993	45	1260	1234	26
196970		${ }_{5} 320$	4993	327	2.200	2.043	157	; 439	1.402	37
19771		5971	4.729	342	2188	2038	150	1482	1439	43
197:72		4634	431.4	320	$\therefore 1933$	1874	159	1344	1.301	43
1972;		$4{ }^{259} 9$	39.49	310	1.41	1634	113	13.38	1.287	51
19737.1		195\%	36,18	134	it ${ }^{5}$	- 520	155	1115	1068	49
197475		3706	3341	15.9	157.4	1460	124	1080	1028	52
1975,76		3544	3156	388	4.45i	1319	132	997	952	45
19767		3420	3062	358	1319	1193	126	945	890	5
197778		3330	2901	369	1294	117	123	873	82.4	49
197879		3337	2938	349	1319	1184	135	918	852	66
197980		3396	2962	434	1,192	1.074	118	830	167	63

classitind in eatly survers as rita for all yeers aro for 50 States and the DIstivet of Columbia

- Physice includes: General, Motocular and Nuciorr.

Source: Grant, W Vance and Lind, C. Geor0e, D'gest of Education Statistics, 1979, p 12
Grant. W. and Elden, Leo J., Digest of Equrdtion Statistics. 1980. p 123

244

Charts V.6, A\&B: Earned degrees in chemistry by level of degree, 1951.52 to 1979.80

The number of bachelor's degrees in chemistry remains near the peak reached in 1969.70, while the numbers of master's and doctor's degrees are decllning since the early 1970's.

Grant W vance and Eiden Lec J Oigest of Education Statistics. 1980. p 123

Table V.6: Earned degrees in chemistry* conferred by institutions of higher education, by level of degree and by sex of student: United States, 1949-50 to 1979-80

 degrees Data for all yoars ate tor 50 States and the Distict of Columbia
-Chemistry inctudes, General, Inorganic, Organic. Physical, Analyticat ana Phatmacoutical
Soutce Grant. W. Vance and Lind, C. George, Digest of Education Statistics. 1979. o 120 Grant, W and Eidon, LeoJ. Digest of Education Statistics, 1980. p 123

Chart V-7, A, B\&C: Earned degrees in mathematins, by leval of degree, 1951.52 to 1979.80

In 1969-70 at every level more mathematics degrees were earned than in any other year. Since then there has been a steady decline in bachelor's and master's degrees and a leveling oll in doctorates since 1976.77.

Tablo v.7: Earned degrees iri mathematics "conferred by institutions of higher education, by level of degree and by sex of student United. States, 1949.50 to 1979.80

'Includes dogreos conlerred, in atatistics.

 degreos. Oata fot all years ate lot 50 Statos and the Dlstifct of Columbla.
Source: Grant. W. Vancaind Lind, C. Goorge, Dlgost oli Education Stalistics, 1079. p. 120 Gran.. W. and Elden, Leo J., Digest of Education Stallsiles. 1980, p. 123.

Chat V 8,A, BaC: Earned degrees in engineering by level of degrea, 1951:52

In 1978:1979 the number of englineering bachelor's degrees awarded surpassed the peak reached in 1972.73. and continued to galn in 1978-1980. The number of master's degrees was highest in 1971.72 but the subsequent dacline appears to have stablilized. The number of doctor's degrees has hallon şteadily sInce '1969.70 and also appears to have stabllized:

255

Table V-8 A: Earned degrees in engineering conferred by institutions of higher education, by level of degree 0 and by sex of student: United States, $1949-50$ to 1979.80

NOTE: Athougha strenuous aftort has been mado to provide a consistent sories of data, minut changes havouccuited ovei time in the way degrees are classified and reported Any degrees
 dugroos. Data for all years ate for 50 Statoz and the Distrlct of Columbla.
Sources Giant, W. Vance and Lind. C. Gcorge, Olgest of Education Slatisticz, 1079, p. 122
Grant, W. and Eiden, Leo J., Oigest of Education Stat/st/Gs, 1980. p. 122. NCES unpublishod data.,

Table V.8.B: Number and percent of engineering degrees granted by level of degree and minority group, 1978.79-1980.81

- Tolals tor minorly groups in these years include only numbers actually reportod. The number would bo highoi all wistikuivia had repuitgu dill walegulies - "includos englneer degrees.
tData were not broken by any minority group oxcept blacks, pilor to 1972.73. howovir, some foreign national data was avanable Iincludos Univarsity of Purtio Fico as follows:

1073-1980 Bechelors:343, $387,416,339,333,324,404,329$.
0 Mastors: $-13,6,-2,7,0,9,15,7$.
nilitle Manpower Commission, Bolfy Volles.

Table V.8.C: Engineering degrees by curriculum and level, 1981
Electrical Engineering produces the most graduates at all three degree levels followed by mechanical, civil and chemlcal engineering. Although chemical engineering awarded only hall the number of bachelor's degrees as did mechanical, the number of Ph.Ds was approximatoly the same.

	Bachelor	Master	Engıneer	Doctor
Aerospace	1.587	380	10	114
Agricultural	666	157	0	52
Architectural	474	53	0	1
Broengineering	496	184	0	54
Ceramic	291	54	0	18
Chemical	6.863	1.312	14	312
Computer	2.356	1.294	7	171
Civil	10.547	3.002	40	357
Electrical	14.558	3.762	83	503
Engineering Sciences	1067	487	2	187
Environmental	248	473	14	49
General	2.169	101	26	123
Industrial \& Manufacturing	3.225	1.597	11	109
Marine \& Naval	854	152	22	22
Mechanical	13462	2.471	24	339
Mining	1.054	151	0	45
Materials	1.081	447		206
Nuclear	444	304	7	112
Petroleum	1031	161		13
Other	227	69	0	6
Systems	235	432	5	48
Total	62.935	17,643 ${ }^{\text {- }}$	271	2.841

[^12]Chart V.9, A\&B: Earned degrees in psychology, by level of degree, 1951-52

Since 1973.74 there has been a decline in the numbers of bachelor's degrees granted in psychology; the numbers of master's and doctor's have leveled off.

Sourco Grant W Vance and Eiden, Leo J. Olgest of Education Statistics, 1980, p 123

Table V-9: Earned degrees in psychology conferred by institutions of higher education, by level of degree and by sex of student: United States, 1949-50 to 1979.80

 cegroes. Data for all years ate for 50 States and the Oistret of Columbla.
 Statistics, mports on Earned Degrees Conferted.

Grant, W. eñ'́ Elden, Leo J., Dlgest of Education Statistics, 1980, p. 123. NCES unpublished data

Chart V-10, A\&B: Earned degrees in sociology; by level of degree, 1951.52 to 1979.80

The numbers of both bacielor's and master's degrees In n sociology havo declined since 197374 The number of doctor's degrees appears to bettectining silightly.

(7) Gute Grant, W Vance and Eiden Leo J. Digest of Education Stalisics. 1980, o 124

Table V-10: Earned degrees in sociology conferred by institutions of higher eciucation, by level of degree and by sex of student: United States, 1949.50 to 1979-80

 deorees. pata for all years ara fog 50 States and the Distict of Columbia.
 Siatisilis, repons on Exmed Dogrees Conierred.

- Orant. W. and Elden, teo J. Digóst of Education Statistics. 1980.0 124 NCES unpublished data
o
$26 \hat{6}$

Chart V-i1: Earned degrees in mathematics and science education, by level of degree and by sex, 1979.80

Women obtain more degrees in mathematics education at the bacheior's and master's levels than men.

$$
-2
$$

\qquad

fable V.11. Earned degrees in mathematics and science education, by level of degree and sex, 1979-80

Type	Bacnelor s degrees			Masters degrees			Doctur's degrees		
	Total	Men	Whomen	Total	Men	Women	Total	Men	Women
	832	338	494	517	212	305	38	23	15
Scommorshat on	725	327	398	-591	328	263	73	50	23

Source US Depatment of Meath. Education and Wellare, Nationat Center for Education Statistics, Eurned Degreos Contened, 197980, op 21

263

Chart V-12: Percent disti, , oution of earned bachelor's degrees by field, 1968.69 to 1988:89

The most significant trend in the percent distribution of bachelor's degrees is the projected decrease in mathematics and statistics between 1908 69 and 198889 and the rise of comiputer and information

Source. Ffanksi, Matin M. Profactions of Education Statistics to :958.89 P 63

Chart V-13: Percent distribution of earned master's degrees by field, 1968.69 to 1988.89

The most significant trend in the percent distribui.on of master's degrees in the sciences is their overall deciine, between 1968-69 and 1978-79 and a slight projected increase by 1988.89.
Mathenatcs statsics 30 ,

Souret Frankg Mathr in Pro,ections ol Education Statistics to 199809 p. 64

Chart V.14: Percont distribution of earned dractors degrees by, field, 1968.69 to 1988.89

The most significant trend in the percent distribution of doctor's degrees in the sciences is their overall decline, between $1968-69$ and 1978.79 and a further projected decline by 1988-89. This decline is lediby physical sciences, engineering, and mathematics and statistics.

Soures: Fiankel, Martin M. Projections of Education Statistlcs to 198889.p 65

Table V.12, 13, 14: Percent distribution of earned degrees, by field of study and level: 1968-69 to 1988-89

Year (1)	A. Social sciences						B. Humanities			
	Total social sciences (2)	Social science (3)	Psy. chology (4)	Public affairs and services	Library science (6)	Total humanities (7)	Architec. ture and environ. mental design (8)	Fine and applied arts (9)	Foreign language (10)	Communications (11)
Bachelor's										
1966.69	236	190	40	0.5	01	34	05	: 3	29	07
197879	211	120	49	41	$0:$	94	10	43	12	29
1988.89	175	86	38	51	(1)	102	10	42	10	4.0
-					Master's	8				
1968.69	166	85	19	31	31	72	06	38	24	04
191879	158	49	27	62	20	59	10	30	08	11
- 1988.89	179	36	34	93	16	60	10	32	06	12
Doctors										
1968.69	177	$: 13$	58	05	01	53	01	26	25	01
197879	213	$\because 16$	82	113	02	51	03	22	20	06
1988.89	215	109	84	219	03	51	03	26	15	07

Table V-12, 13, 14: Percent distribution of earned degrees, by field of study and level: 1968-69 to $1988: 89$ (cont.)

(i) less than 005^{5}

- NOIE Daia are for 50 stales . . The Distrer ot Columbia for all yeass

Soutce: Frankil, Mattin M Prejections af education Statistics to 1988.89. op 6365

Table V. 14 B: Earned bacholor's degrees for selected fields
Trends in the dlstributton of oarned bacheler's degrees have roughly followed the projected majors of entering Ireshmen, with a time lag. Englneering and business have grown, while humanliles, social sclences (including education), and mathemalics have docilned.
(Degrees in thousands)

Subume: Arsa	196051	1965.06	1976:1	197576	197980°
Himanties and Redted Fietd,	52	d^{7}	140	1.40	129
Socia' Scences an. Retatejfe:	136	226	38%	369	323
Gunness ata Vanagemerit	56	6.4	1.6	1.3	17.4
N.tural Sc on, .n, 1mid 	114	126	172	216	253
Brong - 1^{-}- ent.	16	2	$3{ }^{1}$	5	5
Comastersuarice			2	"	8
E"] ceenm	36	38	50	46,	\cdots
	13	20	25	16	9
pr.e as unce	15	17	21	21	24

- Propeted
 Sourco protectons of Educjiton Statislics to 1987.8s

Table V-14 C: Specialization of earned bachelor's degrees in mathematical sciences

From 1975 to 1980 earnod bacholor's degrees in mathematics, statistlcs, and secondary teaching decreasod by 42%. Computer sclonco degrees increased by 145%. In universlties 83% of computer science degrees are ftom compuler science departments; in public colleges the fraction is 56%. However, many public colleges have joint mathematics and computer science dopartments.
(Numbers of bachelor's degrees)

	197475	197980
	17713	10160
	$5{ }^{517}$	467
	3636	8917
	70	146
	885	801
'sem	4:78	1752
Of. $\cdot \mathrm{F}$	164	580

CLart Y-15: Bachelor's degrees in science earned by women, 1951-52
to 1979.80

Except in sociology and mathematics, women have steadily increa_ed their number of bachelor's degrees in science.

Table V-15: Bachelor's degrees in science-earned by women, 1951.52 to 1979-80

Includes degrees in anatomy, bacteriolog., blochemistry, blology, betany, entomology, physlology, zoology, and othe biulogical sciences
Includes degrees conforied in statistics.
inciudes degreas in astionomy, chemisley, deology, metallurgy, meterology, physics, and other physical selences,
 Education Statisilcs, reports on Earned Dogrees. Conferred; IBID., 1880 pp; 120.24.

 degrees, Datia tor all years are for 50 Statés and the Olsentet of Columbla,

Table V.16: Master's degrees in science earned by women, 1951.52 to 1979.80

Includes degreas in anatomy, bactoriolo gy, biochemistry, blology, botany, entomology, phystotgy, zootogy, and othor biviogthal swances
Includes degieos conterred in stallstics.
inficludes degrés In astronomy, chemistry, peology, motallurgy, meterology, physics, and other physlcal sciences.
 Educallon Statistics, reports on Earned Degrees Conlorrcd; IBID. 1080, D. 120.124,

 dogrees. Data for allyeats ero for 50 Slates and the Distifet of Columbla.

Chart V-17: Doctor's degrees in science earned by women, 1951-52 to 1979-80
-

Year	Psychology	Biological sulence'	Sociology	Mathematics ${ }^{2}$	Physical sciences	Chemistry	Engineerang	Physics.
1951.52	73	84	20	11	57	$45 \sim$	3	9
1953.54	$\cdot 66$	100	23	14	61	45	-	6
$1955 \cdot 65$	86	117	29	10	68.	52	-	8
1957.58	84	138	28	15	66	49	4	9
1959-ถ0	97	119	26	18	62	48	3	10
1961.62	149	159	26	24	87	69	4	12
1963.64	182	193	29	29	113	92	7	11
1965.66	220	305	36	57	131	91	9	21
1957.68	286	439	68	52	188	139	12	26
1969.70	372	469	104	96	235	166	24	37
1970.71	427	595	119	93	246	173	23	43
1971 -72	467	622	136	89	273	193	22	43
1972.73	605	710	154	102	268	178	54	51
1973.74	691	699	177	100	253	173	55	49
1974.75	754	743	209	110	301	204	66	52
1975:76.	819	729	- 218	94	299	196	66	45
1976.77	991	726	234	109	319	187	73	55
1977.78	966	798	223	124	312	203	57	49
1973.79	1,065	906	221	122	350	230	83	$60 \cdots$
1979.80	1.166	946	228	100	384	258	95	63

Includes degrees in anatomy, Dacteriology, Diochemistry, blotogy, botany, entompiogy. phystology, zuoiugy. and uther brougical sulences
Uncludes degreos contertod In statistics.
'Includés degrees in astionomy, chemistry, geology. motallurgy, meterology, physics, and other physical sciances.
 Education Statisticis, reports on Eaned Dogreos Conferred. IBlD, 1880, pp. 1202 s.

 dogrecs. Data for all yoars aro for 50 Siates and tho Distict ol Columbla.

Chart V-18: Percen̂ of bachelor's degrees in science earned by women, 1951.52 to 1979.80

As a percent of total bachelor's degrees, the female share continues to grow in every sclentific disct. pline. The relative positlon of the ilields is stable; however, soclology and psychology have had and continue to have the most degrees, physics and engineering, least.

Table V.18: Percent of bachelor's degrees in science earned by women, 1951.52, 1979.80

	1951.52	190758		196364	196970	197273	197576	197778	1979.80
Mathematics	281	284		$32 \times$	374	402	407 ,	$411{ }^{\circ}$	422^{20}
Physics	47	44		47	61	70	109	109	121
Phystay semen.	108	116		138	136	148	191	213	233
Butuquat cofornes	26,0	220		281	278	298	346	38.4	42.2
Psychotogy	427	411		411	433	476	542	588	633
Socrutory	553	547		994	593	560	593	034	667
Enquneering	2	3		4	7	12	31	67	93
Chemistry	169	186		195	179	190	224	24.7	286
Computer \& Information Scrences	\dagger	1	*	1	129°	149	198	257	303

-Called Computàr Science a Systems Analyais in 1969.72
tData not colleci'ed.
 1977.70, fp. 118. 1 and Grant, Wi Vance and Eldon, Lio J. Digost of Education Statisuce, 1980, pp. 120.124 nd Unpubilished NCES Data.

Chart V-19: Percent of master's degrees in sclence earned by women, 1951.52 to 1979.80

Table V-19: Percent of master's degrees in science earned by women, 1951-52 to 1979.80

	195152	195758	1963.64	1969-70	1972.73	1975.76	1977.78	1979.80
Mathematics	17.3\%	19 4"。	$191^{n} \mathrm{n}$	296\%	$29.9{ }^{\circ}$	34.0?	33.9\%\%	36.1\%
Physics	4.0	31	36	71	6.5	9.1	9.3	9.7
Physical sitences	73	89	89	14.2	13.5	15.0	16.9	18.6
Brological sciences	173	218	288	315	30.5	31.7	35.4	37.1
Psychology	24.2	323	334	380	401	466	520	\%.0.8
Sociology	253	35.0	279	372	404	420	45.5	50.3
Engineering	4	3	3	11	17	3.6	5.3	7.0
Chemistiy	119	9.7	176	22.4	20.9	211	23.2	26.1
Computer 8 Intormation Sciences	1	1	1	$9.3{ }^{\circ}$	10.6	14.5	18.7	20.9

-Callad Computer Sćienco \& Systéms Analyais in i969-70.
tDatia not collacted.
 1977.7. pp. 110.19 and Grant. W. Vance and Eldon, Loo J. Digest of Educallon Stalistics. 1080, DP. 120-124 and Unpublighod NCES Data.

Chart V.20: Percent of doctor's degrees in science earned by women, 1951-52

As a percent of total doctor's degrees, the female share is now at an all time high for every scientific discipline, except computer and information science.

Table V-20 A: Percent of doctor's degrees in science earned by women, 1951-52 to 1979-80

	1951.52	195758	1963.1.4	1969.70	197273	1975.76	197•78	1979.80
Mathematics	5.3\%	$61{ }^{1}$	47^{\prime}	$78{ }^{\circ}$	96°	$110^{\prime \prime}$ 。	154"。	138°
Phystes .	19	19	14	26	38	45	56	76
Piosscal sciences	33	4.0	47	54	67	87	100	125
Biologicalsicences	110	123	119	143	195	215	241	26.0
Psychology	13.5	147	194	223	290	317	373	422
Sociology	142	187	146	195	264	29.9	372	391
Engineering	7	6	4	7	1.5	23	23	38
Chemistry.	4.4	5.2	7.2	77	95	121	139	16.0
Computer \& Information Sciences	1	1	1	19°	77	94	77	112

-Calfed Computer Sclenco \& Systems Analysis in 1969-70.
toala nót cóllócted.
tincludes physics and chemistey.

Charts V-21, A, B \& C: Percent of bachelor's degrees in science earned by minorities and by field, 1978:79

Minoritles earn more degrees in psychology and social sciences than in physical sciences. American Indians earn degrees in an amount more representative of their share of the population than do blacks or Hispanics.

C. Hispanics
 the 1970 Census. Also, pertons of Hispanie ofighn may be of any race.

Table V-21: Percent of bachelor's degrees in science earned by, minorities, by field, 1978.79

	All Fields	Science	Psychoiogy	Computer	Mathematics	Biology	Englimering	Physics
Blacks	66	84	76	60	56	51	31	31
Amencan Indian	04	0.5	0.4	01	-0.4	03	0.3	03
Hispanic ...	3.3 .	3.6	4.1	2.5	25	3.7	2.7	2.2

Source: This table was derived from vatious Nattonal Center for Education Statistics Reports.

Table V.22: Degrees granted by all higher education institutions, by science and engineering field and minority status (excluding non?resident aliens) 1975.76 and 1978.79

A-1: Bachelor's Degrees - Minority Status within Field

				Black. Non-Hispanic		Amer IndI Alask Nat		Asian or Pacific is		Hispanic		Whte, Non-Hispanıc	
				7576	78.79	75.76	78.79	75.76	78.79	75.76	7879	75.76	78./9
	No	978.432	911,637.	58.093	60.301	3.482	3.410	10.994	15.542	17,801	29.719	888,062	802.665
All Fields	'。	1000	1000	59	66	04	04	11	17	18	33	908	88.0
Blological		53.341	48.674	2:228	2.491	140	149	1.200	1.464	858	1.825	48.915	42.745
Scrences		1000	100.0	48	51	03	03	2.2	3.0	16	37	917	878
Computer \& Information Sc		5.382	8.392	322	507	7	11	122	263:-	87	207	4.8 .44	7.404
		1000	1000	60	-60	01	01	23	31	16	25	900	88.2
		42.526	58.003	1317	1.775	150	164	963	1,853	837	1.555	39.259	52.651
Engincenng		1000	1000	31	31	04	03	23	32	20	27	923	90.8
		20.706	22,659	624	704	62	63	308	439	284	495	19.423	20,958
PhysicalScrences		1000	1000	30	31	03	03	15	19	14	22	9:8	92.5
		15.582	11,534	781	652	54	41	307	324	243	288	14.197	10,229
Mathematics		1000	100.0	50	57	04	04	20	28	16	25	91.1	88.7
Psychology		49.378	42.561	3.131	3.218	191	177	593	781	1.243	1,737	44.220	36,648
		1000	1030	63	76	04	04	12	18	25	\&	89.6	86.1
		124.712	107.604	10,716	9,050	509	498	1,345	1.627	2.992	3.912	109.150	92.517
Social Sciences		100.0	100.0	86	84	0.4	0.5	1.1	15	24	3.6	87.5	86.0

Sources: All tables in this series derived by Juel Aronson from vatious National Center for Education Stalistics reports.

Tàble V.23: Degrees granted by all higher education institutions, by science and engineering figld and minority status (excluding noṇresident aliens) 1975.76 and 1978.79

A-2: Bachelor's Degrees - Field within minority status

Sources: All tables In this seriss derived by Joel Aronson from varlous National Conter for Education Stalistics raports.

Table V.24: Degrees granted by all higher education institutions;-by science and engineering field and minority status (excluding non-resident aliens). 1975:76 and 1978:79

'3:1: Master's Degrees - Minority Status wilhin Field

		Total		Black, Non-Hispanic		Amer. Ind. Alash Nat.		Asian ory Pacific is		Hispanic		White, Non-Hispanic	
		75.76	78.79	75.76	78.79	75.76	78.79	75.76	78.79	75.76	78.79	3576	78.79
All Fields	$\begin{gathered} \text { NO } \\ 3 \end{gathered}$	$\begin{array}{r} 295,363 \\ 100.0 \end{array}$	$\begin{array}{r} 281.811 \\ 100.0 \end{array}$	$\begin{array}{r} 19.906 \\ 6.7 \end{array}$	$\begin{array}{r} 19.422 \\ 7.0 \end{array}$	$\begin{array}{r} 774 \\ 03 \end{array}$	$\begin{gathered} 999 \\ 0.4 \end{gathered}$	$\begin{array}{r} 3.861 \\ 1.3 \end{array}$	$\begin{array}{r} 5,519 \\ 2.0 \end{array}$	$\begin{array}{r} 5158 \\ 17 \end{array}$	$\begin{array}{r} 6.470 \\ 2.3 \end{array}$	$\begin{array}{r} 265,664 \\ 8.99 \end{array}$	$\begin{array}{r} 249,401 \\ 88.8 \end{array}$
Biological Sciences.		$\begin{aligned} & 6.191 \\ & 100.0 \end{aligned}$	$\begin{aligned} & 6.415 \\ & 100.0 \end{aligned}$	$\begin{gathered} 206 \\ 3.3 \end{gathered}$	$\begin{array}{r} 217 \\ 3.4 \end{array}$	$\begin{array}{r} 15 \\ 02 \end{array}$	$\begin{array}{r} 16 \\ 03 \end{array}$	124 2.0	205	55 $\cdots \quad 09$	$\begin{array}{r} 115 \\ 18 \end{array}$		$\begin{array}{r} 5,862 \\ 91.4 \end{array}$
Computer \& Information Sci.		$\begin{aligned} & 2.235 \\ & 100.0 \end{aligned}$	$\begin{aligned} & 2,528 \\ & 100.0 \end{aligned}$	54 2.4	65 2.6	7 03	$\begin{array}{r} 16 \\ 06 \end{array}$	66 3.0	$\begin{array}{r} 149 \\ 59 \end{array}$	15 -07	$\begin{aligned} & 25 \\ & 1.0^{*} \end{aligned}$	$\begin{array}{r} 2.093 \\ 93.6 \end{array}$	$\begin{array}{r} 2,273 \\ 89.9 \end{array}$
Engineering		$\begin{array}{r} 12.561 \\ 100.0 \end{array}$	$\begin{array}{r} 11417 \\ 100.0 \end{array}$	$\begin{array}{r} 208 \\ 17 \end{array}$	$\begin{array}{r} 246 \\ 22 \end{array}$	$\begin{array}{r} 38 \\ 03 \end{array}$	$\begin{array}{r} 24 \\ 0.2 \end{array}$	487 3.9	$\begin{gathered} 850 \\ 74 \end{gathered}$	219 17	$\begin{gathered} 215 \\ 19 \end{gathered}$	$\begin{array}{r} 11.609 \\ 92 . \end{array}$	$\begin{array}{r} 10,802 \\ 88.3 \end{array}$
Physical Sciences.	\cdots		4.713 100.0	127 27	86 1.8	9 0.2	29 0.6	138 29	160 34	53 1.1	65 1.4	4.449 93.2	$\begin{array}{r} 4.373 \\ 92.8 \end{array}$
Mathematics		$\begin{aligned} & 3.562 \\ & 100.0 \end{aligned}$	2.571 1000	119 3.3	71 2.8	8 02	8 03	93 26	104 4.0	51	34 1.3	3.291 924	2,352 $\mathbf{9 1 . 5}$
Psychology		$\begin{aligned} & 7.624 \\ & 1000 \end{aligned}$	7.852 1000	409 5.4	476 61	14 02	$\begin{gathered} 200^{\circ} \\ 03 \end{gathered}$	88 1.2	87 11	183 24	111 2.4	$\begin{array}{r} 6.930 \\ 909 \end{array}$	$\begin{array}{r} 7.078 \\ 90.1 \end{array}$
SocialSciences ..		$\begin{array}{r} 14.625 \\ 1000 \end{array}$	$\begin{array}{r} 11.423 \\ 100.0 \end{array}$	$\begin{gathered} 858 \\ 5.9 \end{gathered}$	7.18 65	37 03	$\begin{gathered} 45 \\ 04 \end{gathered}$	193 13	236 21	278 1.9	276 2.4	$\begin{array}{r} 13,259 \\ 907 \end{array}$	$\begin{array}{r} 10.118 \\ 88.6 \end{array}$

Sources: All tabtos in this series derivad by Joel Aronson from various Natlonal Center for Education Statistics repgrts

Table V.25: Degrees granted by, all higher education institutions; by science and engineering field and minority status (excluding non-resident aliens) 1975.76. and 1978.79
E.2: Mas! or's Degrees - Field within Minority Status *

[Sources: All tables in this series derivod by vol Aronson from various National Confer for Education Statistics reports.

Table V.26: Degrees granted by all higher education institutions, by science and engineering field and minority status (excluding non resident aliens) 1975.76 and 1978.79

Sourcos: All tablos in inis series delved by Joel Aronson from various Natlonal Contor for Education Statistics reports

Table V.27: Degrees granted by all higher education institutions, by science and engineering field and minority stațus (excluding non-reșident aliens) 1975.76 and 1978-79

C-2: Doctor's Degrees - Field within Minority Status

Sources: All tabies in this setios derived by Joel Aronson frem valious Nationat Contor for Euucation Statistics reports.

Chapter VI
 EMPLOYMENT IN SCIENCEAND ENGINEERING

INTRODUCTION

A full ünderstanding of American science education requires that it be related to the context of American society. To what uses do individuals put their science education? Of what use to society is their science education? Most of the data available helps answer the first question and presented here are what seem re'evant and useful of that data.

Data in this chapter are presented in two groups: employment and salaries.

HIGHLIGHTS

1. More than half of all doctoral scientists and engineers are employed by educational insti tutions. (Chart VI-1)
2. Approximately 32% of doctoral scientists and engineers are engaged in R\&D as their primary work activity. (Chart VI.2)
3. In general, female scientists and engineers have a higher unemployment rate than males. (Charts VI.3, 4)
4. Male scientists and engineers claim a greater degree of underemployment than lemales. (Chart VI.5)
5. From 1965.78, male scientists and engineers outearned women scientists and engineers in most fields at all leveis; in 1979 median annual salaries for baccalaureate reciplents were less divergent. (Charts VI. 7 to 11)
6. Beginning salary o iers are highest in engineering. (Chart VI.10)
"

Chart V1-1: Employers of doctorail scientists and engineers; 1973 and 1979

More than half of all doctoral sclentists and engineers are employed by educational institutions. No signiffcant trends developed between 1973 and 1979.

Table VI•1: Employers of doctoral scientists and engineers, 1973, 1975, 1977 and 1979

:	Characteristics	1973		1975		1977		1979	
		Number	Percent	Number	Percent	Number	Percent	Number	Percent
	Total Employed	220.410	1000	'256.045	1000	284,312	1000	313.736	100.0
	Type of Employment								
	ScienceiEngineering	206,230	936	240,100	938	261.099	918	287,082	915
	OtheriUnknown Field	14.180	64	15.945	6.2	23.213	8.2	26.654	8.5
	Sector of Employment								
	Businessilndustry	53.403	24.2	64.627	25.2	71.475	251	82.824	- 264
	Educational Institutions	129,408	587	149.184	58.3	163,140	574	173.966	- 554
	Hospitals/Clinics	4.543	21	7.469	29	8,587	30	9.706	3.1
	Nonprofit Organzations	8.006	3.6	8.337	3.3	10,198	3.6	12,549	4.0
	Federal Government	18,200	83	18,995	74	21.368	7.5	23.923	76
	Other	331	2	82	-	584	. 2	945	. 3
	No Report.	286	1	326	1	1.350	. 5	1.401	4

loss than 05 percent.
Source: Chatacteristics of Doctoral Sclonilists and Enginoors in tho United States: 1979, NSF 80.323, p. 3.
30 g

Chart VI.2: Primary work activity of doctoral scientists and engineers, 1973 and 1979°

R\&D actlvities accnunt for approximately 32% of primary work activities among doctoral scientists and engineers. Between 1973 and 1979, there was a 19.3% relative decline in those reporting teaching as their primary work activity.

Table VI-2: Primary work of doctoral scientists and engineers, 1973, 1975, 1977 and 1979

Chart VI:3: Unemployment rates of science/engineering bachelor's and master's- degree recipients by field of degree and sex: 2 years after graduation

Data not ävallable.
brio unamployment rato computed for groups with lass than 1500 in labor force. cless ítan 0.5 percont.

Table VI.3A: Selected employment characteristics of 1977 bachelor's degree recipients ${ }^{1}$ in science and engineering by field and sex: 1979

'Excludes those ontolled full Ime in graduate school.
'Less than 50.
 absolute numbers.
Source: National Sctence Foundatlon, Employment Attibutes of Rocent Science and Engineoring Graduatos. 1980. p. 15.

Table VI.3B: Selected employment characteristics of 1977 master's-degree recipients' in science and engineering by field and sex: 1979

Fiend of Study	Total			Labor Force			Total Empluyed			Employed in St uncelengneema			Employed in Field		
	rotal	Men	Women	Total	Men	women	Total	Men	Women	Tolas	Sten	Wramen	Told	Men	Women
Tolal	45.300	35.300	10.000	44,300	35.100	9.200	43.400	34,500	8.800	33,00¢	$\because 700$	5300	33.600	27,800	5,800
Physical Sciencos	4.400	3.500	900	4200	3.400	800	4,200	3,400	800	3700	3100	600	2,400	2000	400
Chomistry... .	1.300	900	400	1.200	900	400	1.200	900	300	1.200	800	300	900	- 700	200
PhysicslAstronomy	700	600	100	700	600	100	700	600	100	700	600	100	$3!$	300	(${ }^{2}$
Environmental Sciences	2100	1.700	400	2,000	1.700	300	2,000	1.700	300	1.600	1.400	200	1.100	1.000	100
Other Physical Scciences.	300	300	(${ }^{\text {a }}$	300	300	(${ }^{\text {a }}$	300	300	(3)	200	200	(1)	100	100	${ }^{(2)}$
- Mathematical Sciences	5.700	4.200	1.500	5.500	4,100	1,300	5.300	4,000	1.300	3.600	2.900	700	3.100	2,500	700
Mathematics	3.000	1,900	1.100	3.000	1,900	1,000	2.800	i. 800	1.000	1.700	1,200	500	1,500	1.100	40
Computer Sciences	2,000	2.300	400	2.500	2.200	300	2,400	2,200	300	2.000	1.700	300	1.700	1.420	300
Engineoring	14,900	14,200	700	14,800	14,100	700	14.700	14,000	700	14.100	13.500	604	12,900	12.400	500.
Llfe Sclencos	8.100	6,000	2.100	7,900	6,000	1.900	7.700	5.900	1.800	5.500	4.200	1.200	4,100	3,100	1,000
Blology	5.300	3.500	1,800	5.100	3.400	1.700	4.900	3,300	1,600	3.400	2,400	1.100	2.600	1,700	900
Agricultural Sciences	2,800	2.600	300	2,800	2,600	200	2.800	2.600	200	2,000	1.800	200	1,500	1,400	100
Social Sciences	12,300	7,400	4,900	11,900	7.400	4, ${ }^{100}$	11.500	7.200	4,200	6.200	4.100	2.200	5,100	3.200	2,000
Psychology.	6,400	3.200	3,200	5.200	3.200	3.000	6.000	3.100	2.900	3.500	2,000	1.500	3.300	1,800	1,400
Economics	2000	1,700	200	2.000	1.700	200	1.900	1.700	200	1.300	1.200	100	1.000	900	100
Sociologylanthropology . .	2.000	1.000	1.000	1.800	1.000	900	1,700	900	800	900	500	500	700	300	300
. Other Soclal Sclences. . .	1,900	1.500	400	1.900	1,500	400	1.900	1,500	400	600	600	100	400	200	100

'Excludes those onrolted full time in graduate school.
SLass than 50.
 absolute numbars:
Sourco: Nationál Sclonce Fóundation, Employmeni Altibuies of Reconi Scionce and Engineoning Graduatos. NSF 80 325, 1216

Chart VI-4: Unemployment rates of doctoral scientists and engineers by field and sex, 1973, 1975, 1977, \& 1979

315

Table VI.4: Labor force and unemployment rates of doctoral scientists and engineers by field and sex, 1973, 1975, 1977 and 1979

	1973				1975				1977				1979			
	Min		Wormen		Mon		Viomen		Men		Whame		Mon		Women	
	$\begin{aligned} & \text { Lativ' } \\ & \text { Fooco } \end{aligned}$	U4, Trap R_{it}.	bater	Unerati R.at!	$\begin{aligned} & \text { buon } \\ & \text { Furen } \end{aligned}$	Unombl 9.ats.	Lubor Foren	Une mio. Rute	waber Foth	Unotron Rule	Lator Fore	Unecion filte	Latur Fine	Unempl Bute	Labor Fors:	Unemp: Rato
Toldallateds	21245	49	98.046	39	241.835	08	23:39	30	25?940	09	27282	36	275900	7	32,900	28
Mala Scrancas	14419	1:	871	17	13112	06	929	20	14119	10	1049	32	15.100	3	1.200	2.2
Computer Semomes	2826	04	88	co	3515	00	143	00	1.401	00	102	on	1.700	0	100	0
Phymistastomomy	16.925	' 7	418	74	19,168	17	511	78	24,709	10	0.45	57	26100	8	700	3.2
Chamisty	21014	18	1344	89	3.459	10	2123	34	39.116	09	2551	50	41100	9	2.700	3.3
Eaths Envoro Sci	1007.	05	268	19	12,376	07	355	-3	8865	09	32	48	2.500	4	500	2.5
Encruering	34689	08	141	S0	43,395	07	249	16	:2.841	00	231	30	47,200	5	400	2.5
Agreuthuratsa.	11058	06	is)	141	13.31	03	179	6,	12063	05	261	27	13500	6	300	94
Mudical Sciencess	9743	$0:$	1070	19	11,924	0.0	1.573	03	6629	10	1,048	16	7.300	8	1,300	2.2
Elowgical Serencöa	32774	05	5167	47	34.94	09	6.123	43	11191	13	7742	39	26. 100	8	9,000	3.2
Fsychatlopy	20008	06	4853	28	23999	05	6561	10	25093	09	7543	26	28.400	19	9.500	1.8
Socialscionras	23742	07	2703	32	31.948	06	3.360	43	35.142	10	5807	40	30,90c	7	7,200	35

Source. Votter, Eatty M., Babco, Eleanor L., Mcinture, Judith E., Protesstonal Wamen and Ainöntios. A Manpower Data Resource Servce. D. 56.

 1978), and Șclence, Enginveing, and Humanillos in the Uniled Stales, 1979 Prollle, Nalional Rosearch Council, 1980.

316

Chart VI.5: Average underemployment of 1976-77 bachelor's degree recipients working full-time, by field and sex, February 1978

Except in psychology, men clalm a greater degree of underemployment in science and engineering flelds.

Table VI.5: Average underemployment' of 1976.77 bachelor's degree recipients working full-time, by major degree field and sex: February 1978

- Major degree field	Percent Underemployed			
	Total		Male	Female
Total	216		237	190
Brological sciences	216		305	78
Engineering	79		84	0
Physical scrences \& mathematics	141		160	94
Psychology	368		320	410
Socid sciences \& public affars	363		404	295
Humanities	329		325	332
Business \& management	186		199	142
Education	140		159	133
Heallh protess!ons	25		34	23
Communications	230		197	263
Other . "	327		341	312

[^13]${ }^{14} 4$
\quad Chart VI.6: Percent of science and
engineering doctorate recipients still seeking* position at time of Ph:D.

It is becoming increasingly more difficult for new doctorate recipients to secure positions.
${ }^{\circ}$ "
by:sex, 1985-77

Table Vi.6: Percent of science and engineering doctorate recipients still seeking* position at time of Ph.D. by sex, 1965-1977

-Still sooking position is definad as thoso who checked response 2 to item S on the Survoy of Earned Doc torates questionnaire.
Seurco NRC. Commission on Human Rosources, Natlonai Roseatch Council, unpuollstiod data
Sourco
313
320

Chart VI.7: Median annual salarles of bachelor's and doctoral degree recipients: 1980

In all tields but engineering and mathematics, individuals with a doctoral degree and 2 to 5 years experience earned approximately twice as much as bachelor's degree reciplents with no experience.

Table VI-7: Median annual salaries of bachelor's degree recipients with no experience and doctoral degree reciplents with 2 to 5 years experience, by field of degree: 1980

	Mẹdian Salarıes'	
	Bachelor's Degree No Experience	Doctoral Degree 2 to 5 Years Experience
Engineering	\$17 933	\$28,295
Biologicalsciences	11,258	22,132
Mathematics	13,332	21,803
Chemistry	11,857	26,734
Psychology.	11.043	22.023
Social Sciences	11.090	21,694
Agricultural Sciences	13.109	23.118

'Median salaties ate for full time workers only and have been adjusted to 1980 dollars using medlan earnings tor protessional, technical, and kindred workers.
Soutce: U.S. Depaftmon, of Education, National Centor for Education Statistles, Survoy ol Recont Ćolloge Graduatos, 1978 , unpublishod tabulations, and National Academy of Science, Natlonal Resoarch Councll Sclonco, Engineering and Humanitles Doctoratos in the Unlted Statos: 1979 Profllo, 1980.

Chart VI-8: 1979. Median annual salarles of 1977 baccalaureate reciplents employed full-time in science or engineering, by field of

- No median computed for groups with fess than 20 tesponeonts

Source: National Science Foundation Employment Altabutes of Recent Sctence and Eng.ncoring Gruduates 1930 a ie

Table:Vi.8: Median annual'salarles of 1977 sciencelengineering baccalaureate recipients' by field of degree and SIE employment status: 1979

Fiold of Degree	Total Employed			Science/EngineeringEmployed					
	Total	Men	Women	Total	Men	Women	Ṫotal	Men	Women'
Total. . ${ }^{\text {a }}$.	14,100	15,300	11,500	16,300	17,100	13,200	12,100	13,100	10,500
Physical Sciences	14,200	14,300	13,600	14,700	14,700	14,500	12,00	12,200	10,200
Chemistry	14,100	14,200	13,700	14,500	14.500	14,500	11,600	12,100	${ }^{(2)}$
- Physics/Astronomy ..	15,100	15,100	$\left(^{2}\right)$	15,500	15.400	${ }^{(2)}$	${ }^{(2)}$	(2)	${ }^{(2)}$
Sciences	$\left({ }^{2}\right)$	${ }^{(2)}$	(${ }^{3}$	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$
Mathematicat Sclences	16,000	16,300	15,100	17,100	17,200	16,500	11,300	12,100	10,700
Mathematics	14,600	15,000	14,400	16,400	16,800	16,200	11,100	:1,600	10,700
Computer Sichences	18,100	18,600	${ }^{(2)}$	18,600	18,900	${ }^{(2)}$	$\left.{ }^{2}\right)$	${ }^{(2)}$	${ }^{(2)}$
Engineering	18,900	18,900	19,200	18,900	18,900	19,300	18,900	18,900	${ }^{(2)}$
Lite Sciences !	12.000	12,200	11,200	12,000	12,100	11,100	12,100	12,500	11,600
Blology . \therefore	11,600	12,100	11.400	11,200	11,400	11,100	12,100	12,200	11,700
Agricultural Sciences	12,200	12,800	10,290	12,400	12,900	10,6000	12,200	12,600	9,100
Social Sciences	12.000	13,000	10,500	12,000	11.300	12.100	12,000	13,300	10,300
Psychology.	11,600	12,200	11,100	10,400	10,100	11,100	12,000	13,200	11.000
Economics ... Sociologyl	15,000	15,300	${ }^{(2)}$	(2)	${ }^{(2)}$	${ }^{(2)}$	14.800	15,100	(2) 2
Anthropology	11,000	12,000	10.100	11,200	(2)	${ }^{(2)}$	10,800	12,100	10,100
- Other Social Sciences	12,900	13,000	11,200	(2)	(2)	(2)	13,000	13,400	9.400

'Excilutes Incividuals entolied tullitme in graduate school.
Ho modtan computed lor groups with less than 20 rospondents..
NOTE: Modian annual satarlos computed only for fullilma employed civilians.
Source: National Science Foundation, Employment Attibufes of Recont Science and Enginoering Graduates. 1980. D. 18.

Chart. VI.9: Average annual salaries of 1976,77 bachelor's-degree recipients .warking full-time, by field and sex,

February 1978
x

Men outearn women in all flelds except engineering, which is also the field providing the greatest salary.

327

Table Vl:10: Number and average staring monthly salary offers to bachelor's degree candidates by curriculum and sex, July 1980 and July 1981

Curriculum	No. Olfers July 1980		Average $\$$ Offers July 1980		No. Offers July 1981		Average $\$$ Offers July 1981	
	Men	Women	Men	Women	Men	Women	Men	Women
Business								
Accounting	5,636	2,945	\$1,293	\$1.292	4,945	2,949	\$1.418	\$1,418
Business - General (Inc. Management)	3,327	1,478	1,232	1.187	2,979	1.397	1.375	1.315*
Marketing and Distribution.......	1,260	786	1,168	1,108	1,003	738	1,293	1,227
Engineering								
Aeroanuatical	559	32	1.650	1.621	646	51	1.812	1.840
Chemical.	5,439	1,590	1.800	1.804	5.734	1,694	2.031	2,027
Civil'.....	3,645	536	1.549	1.584	3.755	661	1,771	1.796
Electrical ${ }^{2}$	10.160	960	1,690	1,688	9,694	1,074	1.822	1.886
Industrial.	1,819	475	1,648	1,683	1,401	514	1.839	1.859
Mechanical.	9,638	999	1,700	1.726	9.421 .	1.252	1.907	1.911
Metallurgical ${ }^{\text {a }}$	693	187	1,731	1,707	698	190	1.913	1,921
Mining f	170	5	1.736	1,687	253	32	1,942	1,929
Nuclear-(inc. Engineering Physics)	321	30	1.666	1.692	292	57	1.866	1,890
Petroleum....	687	75	1.986	1.994	1,27,1	174	2,224	2.206
Technology...	1.727	99	1.587	1.540	1.644	124	1,809	1.792
Hiumanllies and Social Sciences								
Hurnanities.	236		1.121	1.042	268	407	1,275	1.157
Economics ${ }^{\text {a }}$...... ...	354	232	1.265	1.232	403	235	1.389	1.336
Other Socral Sciences	472	725	1.162	1,013	389	602	1,270	1,099
Sciences								
Agricultural.	447	104	1,221	1,069	402	88	1,304	1.206
Biological . .	132	90	1,210	1.084	108	10^{-}	1,315	1.222
Chemistry	249	178	1,477	1.434	253	156	1.653	1.612
Computer ..	1.637	932	1.567	1.543	1,830	1,046	1,736	1,709
Health (Medical) Prolessions	49	251	1,233	1.139	68	398	1.557	1;305
Mathematics	404	419	1,493	1.457	380	349	1.641	1.607
Other Physical and Earth Sorences	307	46	1.576	1,324	558	145	1.854	1.813

Includos Construction, Sanliary atransportation Engineoting.
Includes Computer Enginoeting.
ITncludes Motallurgy and Englneoring Ceramics.
 flishs, Engineers, and Technicians, p, 5 .
> . Chart VI-11: 1979 Median annual salaries of 1977 master's graduates employed full-time in science and engineering by field of study and sex

Table VI-11: Madian annual salaries of 1977 sclencelengineering masters-degree reciplents' by figld of study and S/E employment status: 1979

Chart VI-12: Median annual salaries of doctoral scientists and engineers, by field and sex: 1977 and 1979

Al the doctorate level, men outearn women in every discipline.
0

Table VI-12: Medián annual salaries of doctơral scientists and engineers; by field and sex: 1977 and 1979

NOTE All median saterie? wore computed önly tor !ultume emplgyed civilians. No median wis computed for grupps with towet than 20 indivicuals iepultang salary.

寝

BIBLIÓGRAPHY

$33 j$

Adrmssiuns Testing Prugram of the College Board. National report, College bound seniors, $19^{72} 73,197374,197475,197576$, 1977, 1978, 1979. Princeion: Educational Testing Service, 1973.79.

National Report, College-Bound Seniors for the years 1973 through 1979 sumniarizes the College Board ATP records of high school seniors who registered for Scholastic Aptitude Tests (SAT) or Achievement Tests at any time during their high school years. The 1979 report presents data for about one million senoors, about a third of all seniors or 1979 and about two-thirds of all who go directly to college. Included are summaries of scores for the SAT, and the Achievement Tests, and from the Student Descriptive Questionnaire (SDQ) data on high school records of students, their socioeconomic 'characteristics, and their college plans. Results of the Test of Standard Written English (TSWE) are included from 1974.75 onwards. Copynght 1977, 1978, 1979 by College Entrance Examination Board, New York.

Atelsek, Frank J. and Gomberg, Irene L. Young.doctoral faculty m science and engineering: Trends in composition and research activity, Higher Education Panel Report. Number 43)" Washington, D.C.. American Council on Education. February 1979.

Young Doctoral Faculty in Science and Engineering: Trends in Composition and Research Activity is the report of a survey funded by the National Science Foundation, the U.S. Office of Education, and the National Institute of Education to ascer tain the extent of declines in the proportion of young doc torates in science and engineering faculties. The report discusses expected faculty hiring during 1978-79, coniparisons with earlier surveys, trends in faculty compositior. and measures of research activities of younger and oider faculty members.

Carnegie Foundation for the Advancement of Teaching. Missions of the college curriculum. San Francisco: Jossey.Bass. 1977.
Missions of the College Curriculum seeks to describe for per sons involved with curriculum, particularly those new to the responsibilitios therein, thw current statc of American cur ricula in institutions of higher education and ways of change and development. The preface sbserves that the timing of the study is such because higher education has undergone con siderable change in the past decade, that change is continuing, and that the period ahead is one of no growth for higher education but important social changes for society. Fourteen chapters and four appendices comprise the volume.

Association of Science Technology Centers. ASIC surence muse um funding study. Unpublished report, Washington, D.C., January 19. 1979.
ASTC Science Museum Funding Study represents a preliminary, unverified by agencies, draft-form report of the structure of lead agency support for science museums from federal sources. The data were gathered from agenuy annual reports, prugram office reports, and individual museum reports of federal funding. Since it provides preliminary ustimates, it can only give rough estimates until more precise data are made available.

College Placement Council Inc. CPC saldry survey. A study of 197879 beginning offers, final reporl, July 1979. Bethlehem, PA: 1979.
The CPC Salary Survey presents data on beginning monthly salary offers made to graduates at all degree levels from a representative group of colleges and universities in the United States. A broad number of job types is surveyed, although teaching is excluded. The College Placement Council issues reports five times annually to members and subscribers. This report contains 2 pages of text analysis and 9 pages of tables and charts covering offers by sex, field, type of employer, and level of degree.

Dearman, Nancy B, and White, Valena Plisko, The condition of education, 1979 edition. (National Center for Education Statistics. Statisticat Report. Stock No. 017.080.02008-4). Washington, D.C.. U.S. Government Printing Office, 1979.
The Condition of Education, 1979 Edition, is the fifth annual report in a series describing varıous conditions in education as well as in the larger society affecting education. The first of its two parts provides an ovelview of education in three sections. the social context of education (the family, work and the community), elementary and secondary education (enrollments, school environment, etc.). postsecondary educa tion (enrollments in higher and adult education, faculties, finances, etc.). The second part of the volume deats with three selected topics. financing precollege public education, out comes of education, and the status of women and minorities in higher education. There is an appendix, and a cumulative index. The format of the text is a discussion of the section followed by numerous tables each accompanied by an itlustrative chart.

Engineering Manpuwer Commission of Enigineers Joint Ccuncil. Engmeering munpower bulletı, No. 47. New York. Engıneers Joint Councll. May 1979.
Engineering Manpower Bulletin's provide information on trends and developments in manpuwer for engineurng and related technologres. Number 47 summanzes a two part report, Engineering and Technology Enrollments Fall 1978, presenting four tables, one figure and interpretive text on cur rent and past engineering enrollments.
Frankel. Martin M. Profectıons of educatıon statistıcs to 1986-87, (National Center for Education Statistics, Stock No. 017 080-019183). Washingion, D.C.. Ú.S. Government Printing Office. 1978.
Projections of Education Statistics to 1986.87 provides projections of statistics for elementary schools, secondary schools. and institutiuns uf higher education. The projections which are revised annually based upon newly collected data by .N.CES include statictics on enrollments. graduates. teacherb. and expenditures. The latest population projects and estimates frum the Bureau of the Census are also incur porated in the volume on a yearly basis.

Gulladdy. Mar, A and Nuell. Jay. The condition of education, 1978 edition. National Center for Education Statistics. Statistical Repurt. Stuck No $01708001 \mathrm{~V}^{2} 25$. Washingtun. D C. U S. Government Printring Office, 1978.
The Condition of Education, 1978 Edition is an annual statistical report describing various conditions in education as well as in the larger society affecting education This volume. which is the fourth report to be published in this series, is organized into two parts The first part is concerned with trends and developments at all levels of education in cluding the societal context for describing education (eg., public opmion. school age population, financial suppitt). elementary and secondary education (e.g... public and profes suend upinum. enruliments. outcomest, and posi secondary education ieg.. enrultment in higher education. characteristics of institutions, and adult education) The sec ond part luoks at eduuational personnel. the findncing of thigher education, and a conuparison of education and labur furce participation patterns in the Unted States and other
-- selected nations. The format of the volume is a discussion of a topic followed by numerous tables and charts in which each tabie is illustrated on the following page by a chart (ie., a statistical graph)

Guoler, Dennis D. The development and use of educational indicators. Educational indicators. Monitoring the state of educa toon. (Proceedings of the 1975 ETS Invitational Conference) Princeton: Educational Testing Service, 1976.
The Development and Use of Educational Indicators sug gested the main features of the organizing framework for this Databuok. Gooler categorizes educational indicators as folluws. access. aspirations, achievement, impact, and resources. He notes that the information base for access and resources is reasonably good, adequate for achievement, and poor for aspirations and impact.

Grant, W. Vance and Lind, C. Geurge. Digest of education stat/s tics 1977.78 and 1979, (National Center for Education Statustics). Washington, D.C.: U.S. Governmen गrinting Office, 1978, 1979.
Digest of Education Statistics, 1977.78, and 1979 contınue a series published annudlly since 1962. They provide an abstract uf statistical information covering American education from kindergarten through graduate school. The Digest includes data un the number of schools and colleges. enrollments. teachers. graduates, attainments. finances. federal funds for education, libraries, international education, and research and development. The 197778 edition. also contains a number of mnuvations 'rom previous editions, such as NAEP data on social and political attitudes of 13 and 17 year olds, years for computing school attendance in each state, trends on Scholastic Aptitude Test scores, college dropouts for the high school class of 1972. expenditures for school lunch programs, and expenditures for public libraries. The 1979 edition's innovations include data on trends in engineering enrollments and on earned degrees conferred in mathematics, biological sciences and physical sciences.

Hamblen, John W. and Baird, Thomas B., (Eds.). Fourth inventory of computers in higher education. Princeton. Edcom. 1979.
Fourth Inventory of Computers in Higher Education reparts data from the fourth national survey of computers in higher uduation. The book consists primarily of tables on computers. numbers of, expenditures, degree programs. instruc tional and administrative use. student access, and other tuphe A_{i} interpretive report is due to be published in early 1980

Klus, Juhn P. and Jones, Judy A. Survey of conlinuing education activities for engineers and scientists. Washington, D.C.. The American Suciety for Engineering Education, 1978.
Survey of Continuing Education Activities for Engineers and Scientists summarizes the findings of a poll uf 349 universities and professionalitechnical associations concerning their ac livilies in continuing education. Included in the summary are statistics related to noncredit activities, such as, intensive short courses, non credit after hours courses, institutes, seminars, etc., correspondence courses, and self study ac tivities. Also discussed are degree credit courses and the development and operation of courses with attention to such factors as needs analyses. promotion, evaluations, and funding.

Malitz, Gerald S. Associate degrees and other formal awards below the baccalaureate Analysis of 6-year trends (National Center for Education Statistics, Stock No. 017-080-01848-9). Washington, D.C.: U.S. Government Printing Office, 1978.
Associate Degrees and Other Formal Awards Below the Baccalaureate: Analysis of 6.Year Trends is based upon a survey whin is part of the Higher Education General Information Survey (HEGIS) conducted annually by NCES. This report whuch fucuses upon the years 197071 through $1975-76 \mathrm{com}$ pares data dralable on curriculum categories and divisions, typus uf instructional units, and classifications of degrees and awards. included are associate degrees and all other formal awards which require at least two but less than four years of pust scuuldary work, legardiess of whether or not the work wds intended to be applicable toward a baccalaureate degree.

National Assessment of Educational Pragress. Changes in social studies performance. 197276 (National Center for Education Statistics. Report No. 07 SS-01). Denver, Colorado: 1978
Changes in Social Studies Performance, 1972.76 studue the wharges in two surveys. xonducted by NAEP to medoure whitement in soulal studfes during the 197172 school yedr and during the 197576 school year These surveys provided data un chariges in sucial studies achievement fur young Americans aged 9, 13, and 17. Changes were repurted in knuwledge, skills. and attitudes, related to ecunumica. geugraphy, histury, and pulifics. The publication includes sample items from the surveys as well as the statistics (charts. graphs, etc) related to the changes.

Natiorial Assessment of Educational Progress. Allifudes toward science. A summary of results from the 1976.77 national assessment of science. (National Institute of Education, Report No. 08-S-02) Denver, Colorado: 1979.
Altitudes toward Science presents findings from the 1976-77 assessment of science that indicate how students ages 9,13 , and 17, and in some cases young adults (ages $26-35$), responded to questions on three major topics. 1) personal experience with science, 2) science and society, and 3) awareness of the philosophy and methodology of science. The data are analyzed by age, racial, geographic, and other categories.

Nativial Assessment of Educational Progress. Changes in mathe matical achievement, 1973.78. (National Institute of Educatıon, Report No. 09-MA.01) Denver, Colorado: 1979.
Changes in Mathematical Achievement, 1973-78, relates the changes in two surveys conducted by NAEP to measure achievement in mathematics during the school years of $1972-73$ and 1977-78. The subjects of the surveys were 9 , 13 and 17 year olds. The 197778 assessment dealt with four wugnitive process levels knowledge. skills, understanding, and application) across a variely of traditional mathematics cuntent dreas (numbers and numeration, variables and rela. tionships, geometry, measurement, and other topics such as graphs, and probability). The publication includes sample itums from the surveys as well as the statistics (tables, charts, etc.) related to the changes.

Natiunal Assessment of Educational Progress. Energy knowledge und atlitudes. A national assessment of energy awareness among young adulls. (National Center for Education Statislics, Report No. 08 E 01) Denver, Colorado. 1978.
Energy Knowledge and Attitudes: A National Assessment of Energy Awareness Among Young Adults is a report of a survey auministered tu a sample of American adults during the sum mer of 1977. Seventy knowledge questions and 76 attitudinal quebtions were given in this assessment. The questions measuring knowledge fell into three major categories. (1) basic energy facts, (2) general energy issues, and (3) energy conservation. The attitude questions were categonized into fuur major classifications. (1) feelings about the seriousness uf entergy problems, (2) belief in the effectiveness of personal dution, (3) feelings toward envirunmental hazards, and (4) feel ings toward energy trade.offs.

Natiunal Asseessment of Educational Progress. Mathematical knowledge and skilis. INational Institute of Education, Report No. 09-MA-02) Denver, Colorado. 1979.
Mathematical Knowledge and Skills presents the achevement of 9,13 , and 17 year olds during the school year 197778 as shown in-the NAEP survey. Results and sample tems, are presented for knowledge in numbers and numeration, geometry, and mtasuremeit, ior computational skills with whole numbers, fractions, decimals, integers, percents and fractional conversions, for skills in measurement, reading graphs and tables, geometric and algebraic manipulations, and estimating. Some groups and age-level comparisons are made and as observations and recommendations.

Natıonal Assessment of Educational Progress. Three natıonal assessments of science: Changes in achievement, 1969.77. (Natıonal Center for Education Statistics, Report No. 08-S.00). Denver, Colorado: 1978.
Three National Assessments of Science: Changes in Achieve. ment. 1960.77 is a study of the changes in the three national science assessments. 1969.70, 1972.73, and 1976.77. In each assessment. students were assessed for achievement in three broad objectives of science education. (1) fundamental aspect's of suence. (2) applications of fundamentals to a wide range of problem situations, and (3) apprectation of the processes of science, its consequences and limitations, and the personal and social relevance of science to society. The sec. ond and third assessments contained questions from the first assessment so that comparisons could be made.

Nationat Science Foundation. Characteristics of doctordl scientists and engineers in the United States. 1973 Detalled statistical tables, appendix B. NSF 75-312.A. Washington. DC. National Science Foundation, 1973

Characteristics of Doctoral Scientists and Engineers in the United States, 1973. Detailed Statistical Tables, Appendix B, presents demographic and employment tables of data resulting from the 1973 Survey of Doctoral Scientists and Engineers conducted by the National Academy of Science for the NSF and the National Institutes of Health. Results of the survey are discussed in Characteristics of Doctoral Scientists and Engineors in the United States. 1973 (INSF 75-312).

34

National Science Foundation. Characteristics of doctoral scien tists and engineers in the United States. 1977. Technical notes and detaled statistical tables, NSF 79-306. Washington, D.C.. National Science Foundation, 1977.
Characteristics of Doctoral Scientists and Engineers in the United States: 1977 is a set of tables affording data on the demographic and employment characteristics of doctoral suentists and engineers undividuals hoiding SiE doctorates or holding non S.E doctorates but employed in SIE positions). Twu previous surveys of this population were conducted in 1973 and 1975, sume of the results from those surveys are presented here disu for time series information. Data include types of empluyer leducation, business/industry, federal government), field, primary work activity, sex, age, race, years of experience, and other.

National Science Foundation. Reviews of data on science re sources. June, 1978, NSF 78.310. Washington. D.C.: National Science Foundation. 1978.
Reviews of Data on Science Resources presents selected demographic and employment characteristics of recent bachelor's and master's degree recipients in science and engineerng. The report presents findings of a 1976 survey of the 197374 and 197475 graduating classes. Eight pages of charts and text are accompanied by two detailed statistical tables showing by field and sex the total number of graduates. the number in the labor force, the number employed, the number employed in science and engineering, and the number in the field of training.

Nattonal Science Foundation. Science resources studies high IIgits. Septomber 26, 1977, NSF 77318 . Washington. D.C.. Na tional Science Foundation, 1977.
Science Resources Studies Highlights presents in this issue a summary of a report by Dr. Robert Boldt of Educational Tosting Service on the Graduate Record Exam (GRE) scores over several years. The report. Trends in Aptitudes of Graduate Students in Science, is a statistical analysis of scores from 1970 to 1975 with particular emphasis on prospective science and engineering graduate students.

National Science Founclation. Science resourves sfudics high lights October 4, 1978. NSF 78-316. Washington. D.C.. Na tional Science Foundation, 1978.
Science Resources Studies Highlights presents in this issue the first analytical results of the 1977 survey of doctoral scientists and engineers (earlier surveys were in 1973 and 1975). Tables. charts and text deal with employment data by type of employer, type of work activity, sex and field of employee, in both 1973 and 1977.

Pepin, Andrew J. Fall enrollment in higher educalion 1978, to be published by National Center for Education Statıstics, DHEW. Washington, D.C.)
Fall Enrollments in Higher Education 1978 was not published at the time the Science Education Databook was cumpiled tut two tables from it were used in the Data Book. Table 26 Total Enrollment in Institutions of Higher Education by Major Degree Fieid and Sex and By Control and Level of Institution, and Table 29 - Total Enrollment in Institutions of Higher Education, by Level of Enrollment, Sex and Attendance Status of Student and By Major Degree Field and Ethnicity. Ag gregate United States, Fall 1978.

Pepin, Andrew J. Fall enrollment in higher education 1976. (National Center for Education Statistics: Stock Number 017 080-01907 8). Washington, D.C.. U.S. Government Printing Olfice, 1978.
Fall Enrollment in Higher Education 1976 is the rusult uf a single effort of the National Center for Education Statistics and the Office of Civil Rights of the Department of Health, Educa tion, and Welfare to conduct a single fall enrollment survey that would satisfy the needs of both agencies. Data in this publica tiun are organized under six major categonies. (a) enrollment by level of instituion, (b) enrollment by state, (c) enrollment by in stitutıon, (d) Enrollment by race/ethnicity; (e) enrollment by ma jor dègree field; and (f) Enrollment by major degree field and racelethnicity.

Phi Delta Kappa, Inc., The eleventh annual Gallup poll of the public's attitude toward the public schools. Phi Della Kappan, September 1979.
The Annual Gallup Poll of the Public's Attitude Toward the Public Schools surveys a replicated probability sample of American adults to determine attitudes toward such matters as school quality, problems, strengths, finances, quality com pared with previous eras, and other topics The poll is pub lished each September in the Phi Della Kappan It provides information useful to school decision makers and others in terested in the forces that shape and support the public school system.

Smith, Staniey V. and Wello, Ayitis Q. Earned degiees conferred 197576. (National Centor for Education Statistics, Stock No. 017-080-01868-3). Washıngton, D.C.. U.S. Government Printing Office, 1978.
Higher Education, Earned Degrees Conferred, 1975 76, Sum mary Data is the fifthrepurt in a series begun in 197071 to por tray all degrees granited by all institutions in the United States dentified as degree granting by the Education Directory, Higher Education. Detaled tables are provided in which bachelor s. master s, and doctur s degrees are categorized by level of degree, sex uf student, control (public or private) uf in stitution, and discipline specialty. All data collected for survey years 1970.71 through 1975.76 are directly comparable and provide excellent data for serial and trend analyses.
U.S. Dept. of Cummerce. Bureau ul the Census. Current population

Current Population Reports, Population Profile of the United States. 1978 repurts un a Sample survey conducted un 60,000 huusehulds. Data are cunsidered supplementary to that of the decennial census and not strictly comparable.
U.S., Dept. of Cummerce. Bureau of the Census. 1970 census of populalion. Vol. I, U.S. Summary, Washington, D.C.. 1975 1970 Census of Population, Vol. I, U.S. Summary provides data on the various racial groups in the U.S., as well as other information.

Vetter, Betty M., Babco, Eleanor L., Mcintire, Judith E. Professional
women dnd mmorites. A manpower data resource service, 2nd
Vetter, Betty M., Babco, Eleanor L., Mcintire, Judith E. Professional
women dnd mmorities. A manpower data resource service, 2nd edition. Washington, D.C.: Scientıfic Manpower Commission, November 1978.
Prolessional Women and Minorities: A Manpower Data Resource Service is designed to provide current and historical statistics about the professional seginerit of the U.S. population and particutariy about the participation and availability of
women and minorities in pursuits requiring at least the baction and particutariy about the participation and availability of
women and minorities in pursuits requiring at least the baccataureate level. The first tive sectionis ui the volume deal with general enrollments, general degrees, general professions, general workforce and academic workforce. The remaining sections are devoted to subject fields (chemistry,
mathematical sciences, life seiences. etc.) and provide data sections are devoted to subject fields (chemistry,
mathematical sciences, life seiences. etc.) and provide data
on degrees, enrollments general workforce and academic on degrees, enrollments, general workforce, and academic workiorce.

reports, Series P-20, No. 336, Wasbingtón, D.C.: 1979.

Vetter. Betty M. Labor force participation of women Iraned in shence and unghieterfing and factors affecting their participas tion Unpubhisted repurt submittod to National Science Foun dation undter Giant Na. SRS 77 19575, by Scientific Manpower
: Commission. Washington. D.C.. June 1979.
Labor Force Participation of Women Trained in Science and Engineering and Factors Alfecting Their Participation presents data an swellue and engineerny graduates of the past :5 y tar, tigardige empluyment status. Salaries. number and ages of uhidren, fields of training and work. mantal

- otatus, spuaives uclupations. level uf degrees, etc. Thirty oeven tables art: aclompanied by six pages of findings and detalled discussion

Auso. Ins R Repuit ut the 1977 national survey of science. mathe matics. and sacial studiesieducation (National Science Foun dation. SE 78 72, Wushington. D.C. U.S Government Printing Office. 1978
Report of the 1977 National Survey of Science, Mathematics, and Social Studies Education describes the results of a nathonal survey designed to ascertain what science courses are offered in the schools. what textbooks and materials are be:ng uset in the schoors by grade level. how much time is being spent or the teachueg of scrence, and what are the roles of foence teachers, supervisors, and administrators in working in somence education the report provides excellent base line dati for comparisons with future investigations Data were
 herais supwintendants distyict supervisors and state subitur,

Weiss, iris, R. Stake, Robert. Edsley. Jauk. Helgeson, Stanley L.. Suydam, Manlyn N., Blosser. Patricia E., Osborne. Alan. Wiley, Karen B.. \& Race, Jeanne. The status of pre college science, mathematıcs. änd social situdies educational practıces in U.S. schoots. An overview and summaries of three studies (Na tional Science Foundation. SE 78 71). Washington. D.C.: U.S. Government Printing Olfice, 1978.
The Status of Pre-College Science, Mathematics, and Social Studies Educational Practices in U.S. Schools: An Overview and Summaries of Three Studies is a summary of the three studies. (a) the 1977 National Survey of Science, Mathematics and Sucial Studies Education conducted by the Research Triangle Institute of North Carolina; (b) Case Studies in Science Education conducted by the Center for Instructional Research and Curriculum Evaluation of the University of IIhnors, and (c) The Status of Pre-College Science, Mathematics, and Social Science Education. 1955.75 (A Literature Review) conducted by the Center for Science and Mathematics Education. The Ohio State University. These studies were designed to assess the current status of pre college science education in the United States.

SUPPLEMENTARY BIBLIOGRAPHY

Aaron, Henry v. Healthy, wealthy, and wise. Back door approaches to education (An Occasional Paper of the Aspen Institute for Humanistic Studies). Cambridge, Massachusetts: Aspen Institute for Humanistic Studies, 1976.

Anderson, J. G. Causal models and social indicators. Toward the development of social systems models American Sociological Review, 1973, 38, 285-301
Association of Science Technology Centers Prelimınary reportSummary of ASTC member museums that have responded to the Membership Directory Questionnaire, 1978 Unpublished report, Washington, D.C., 1978
Baster, N. (Ed.), Measuring development. The role and adequacy of devalopment indicators. London: F Cass, 1968.
Bauer, R. (Ed.) Social indicators. Cambridge, Mass.. Massauhu setts institute of Technology Press, 1966.
Belt, S L. Measuring a'titudes of high school pupils toward science and scientists (RM-59-14). Educational Testing Service. Princeton, New Jersey, December 1959.
Beyer. J. M \& Snipper, R. Objective versus subjective indicators of quallty in graduate education. Sociology of Education, 1974. 47. 541.557.

Biderman, A. D. Social indicators and goals. In Raymond A. Bauer. (Ed.), Social indicators. Cambridge, Mass.: Massachusetts Institute of Technology Press. 1966.
Blalock, H. M., Jr. (Ed.) Measurement in the social sciences Theories and strategies. Chicago: Aldine, 1974.
Bureau of Labor Statistics Occupational outlook handbook. 1976 77 edition. Washington, D.C.: U.S. Government Printing Office. 1976.

Carpenter, Thomas, Coburn, Terrence G., Reyes. Robert E., and Wilson, James. Results from the first mathematics assess ment of the National Assessment of Educational Progress. Reston. Virginia National Council of Teachers of Mathematıcs. 1978

Ciemmer, R, Fairbanks, R, Hall. D.. Impara, J., \& Neison, C. In dicators and statewide assessment, Salem, Oregon: State Department of Education, 1973.
Conterence Buard of the Mathematical Sciences, National Ad visory Committee on Mathematical Education Overview and analyses of school mathematics. Grades K-12 Washington, D.C: Conference Board of the Mathematical Sciences, 1975

Congressional Information Service. American statistical index. Washington, D.C.. The Service, 1973-79.
Davis, Kay and Kimche, Lee. Survey of education programs at scierise-technology centers. Washington, D.C.. Association of Science Technology Centers, 1976.
de Neufville, J. : Social indicators and public policy. Interactive processes of design and applıcatıon. New York: Elevier, 1976.
Eckland. Bruce K. and Baıley, J. P. Jr. Natıonal Iongıtudinal study of the high school class of 1972. A catalog description of second follow-up survey daia, October 1974. (National Center for Education Statistics, NCES 77-265). Washington, D.C.: U.S. Government Printing Oifice, 1977.
Eckiand. Bruce K. and Wisenbaker, Joseph M. National longitudinal study. A capsule description of young adults four and one-half years after high school(RTI/884/51-015). Research Triangle Park, North Carolina: Research Triangle Institute, 1979.

Educational Testing Service. National Iongitudinal study of the high school class of 1972: Student questionnaire. (U.S. Office of Education, DE Form 2348, 2172). Princeton: Author, 1972.

Elam. Stanley M. (Ed.) 4 decad' ε oi \mathfrak{i} allup polls of attitudes toward educatıon, 1969-1978. Bloomıngton, Indiana: Phi Delta Kappa, 1978.

Elkana, Y . Lederberg, J., Merton, R. K., Thackray, A., and Zuckerman, H . (Eds.) Toward a metric of science. The advent of science indicators. New York: Wiley, 1978.
Feller, B. Directory of federal agency education data tapes Washington, D.C.: U.S. Government Printing Office. 1976.

- Felson. M . \& Land. K. C. Social, demographic and economic interrelationships with educational trends il the United States: 1947.74. Presented at the Annual Meeting of the American Sociological Association, Chicago, illinois, August 1977.
Ferris. Abbott L. Indicators of change in the American family. New York Russell Sage Foundation. 1970.
Ferriss, Abbott, L. Indicators of trends in American edication. New York: Russell Sage, 1969
Ferriss, Abbott, L. Indicators of trends in the status of American women New York. Russell Sage Foundatıon, 1971.

Ferriss. Abbott, L. Monitoring and interpreting turning points in educational indicators. Social indicators Research, 1974, 1. 73.84.

Fetters. William B National longitudinal study of the high school class of 1972: A capsule description of high school seniors, base-year survey (National Center for Education Statistics, DHEW Publication No. (OE) 74-11116). Washington, D.C.: U.S. Government Printing Office, 1974.
Fey. James L., Albers, Donald J., and Jewett, John. Undergraduate mathematical sciences in universities, four-year colleges and two-year colleges. 1975-76. Washington, D.C.: Conference Board of the Mathematical Seminar, 1976.

Foster, Betty J. and Carpenter, Judi M. Statistıcs of public elementary and secondary day schools, fall 1976. (National Center for Education Statistics, Stock No. 017-080-01834.9). Washington, D.C.: U.S. Government Printing Office, 1978.

Fox. K. Social indicators and social theory. New York: Wiley, 1974.
Frank. P. (Ed.) The validation of scientific theories. Boston: Beacon, 1956.
Gilmartin, K J, Rossi, R. J., Lutomski, L. S., and Reed, D. F. B. Social indicators An annotated bibliography of current Iterature New York Garland, 1979.
Glass, $G V$, Willsor, \vee L., and Gottman, J. M. Design and analysis of t.me jerles experimer.ts. Bou .er. Colorado Press, 1975.
Glitter. A. G.. and Peterson, R. P Toward a social indicator of education A pilot study Boston University, CRC Report Nu. 44. 1970.

Gross B (Ed) Sociat intelligence for America's future Explora toons in societal problems Boston: Allyn and Bacon, 1969.
Hamblen. Jutin W and Landis. Carolyn P The fourth inventory of computers in higher education. An interpretive report Buulder, Colorado. Westivew Press, 1980.
Hanrian. E J Time series analysis London Methein Monoyraphs, 1960
Hargan. Carol and Hunter. Eeverly. Instructional computer ten case studies Alexandrid, Va Human Resources Research Organization. 1978
Harrischfeger. Annegret and Wiley. David E. Achrevement test score dechne Do we need to worry'St Louis. Mo CEMREL. Inc. 1975

Harris. C W Problems in measuring change. Madison. University of Wisconsin Press. 1963
Hastings. P K. and Southwick. J. C (Eds.) Survey data for trend analysis An index to repeated questions in U.S national surveys held by the Roper Public Research Center. Williamstown. Mass. Roper Public Opinion Research Center, 1974
340

Hauser, P. M. Social statistics in use. New York. Russeli Sage Foundation, 1975.
Helgeson, Stanley L., Blosser, Patricia E., and Howe, Robert W. The status of pre-college science, mathematics, and social science education: Volume I, science education (National Science Foundation, SE-78-73). Wast.ngton, D.C.. U.S. Government Printing Olfice, 1978.
Holton, Gerald. Can science be measured? In R. K. Merton, et al (Eds.), Toward a metric of science: The advent of science indicators. New York. Witey, 1978.
Holton. Gerald Limits of scientitic inquiry. Daedalus, Spring, 1978, 227-234.

Human Resources Research Organization. Academic computing directory. Alexandria, Va.: Human Resources Research Oírganization, 1977.
Hunter, Beverly. What makes a computer literate college? Proceedings of the Ninth Conference on Computers in the Undergraduate Curricula. Denver, Colorado. University of Denver, 1978.
Inter-University Consortium for Political and Social Research. Guide to resources and services. Ann Arbor, Mich.. University of Michigan, 1978.
Irvine, D. j. Performance indicators in education, Albany, N.Y.. N.Y. State Education Department, 1968.
Kaplari, A. The conduct of inquiry. San Francisco. Chandier, 1964.
Keppel, Francis. Educational policy in the next decade (An Occa. ...onal Paper of the Aspen Institute for Humanistic Studies). Cambridge, Massachusetts. Aspen Institute for Humanistic Studies, 1976.
King, M. A. Primary and secondary indicators of education. In A. Shonfield and S. Shaw (Eds.), Social indicators and social policy. London: Heinemann Books, 1972.
Kish, L. Survey samping. New York. John Wiley and Sons, 1965.
Land, K. C. On the definition of social indicators. American sociologist, 1971, 6, 322-325.
Land, K. C. Social indicator models. An overview. In K. C. Land and S. Spilerman (Eds.), Social indicator models. New York: Russell Sage Foundation, 1975.
Land, K. C. Theories, models and indicators of social change. Internatıonal Socıal Scıence Journal, 1975(b), 27, 7.37.
Land, K. C and Spilerman, S. (Eds.., Social indicator models. New York: Russell Sage Foundation, 1975.

Mansfield, E. Determination of the speed of application of new technulugy. In R. B. Withams (Ed.), Sctence and technology in economic growth New York. Halstead, 1973.

Mead, Margaret and Metraux, Rhoda. Image of the scientist among high school students. A pilot study. Science, 1957, 126, 384.390.

Merriam, I. C. Welfare and its measurement. In E. B. Sheldon and W. E. Moore (Eds.), Indicators of social change: Concepts and measurements, New York. Russell Sage Foundation, 1968, 721.784.

Messick. S. The standard problem. Meaning and values in measure. ment and evaluation. American Psychologist, 1975, 30, 955.966.

Michalos, A. E. (Ed.) Socıal indicators research (4 vols.). Dordrecht. Holland: D. Reidel, 1977.
Miller, R. B. Tools for evaluation of the study of social change? Annual Converitori of the American Educatıonal Research Assoctation, 1977.
Moser, C A, and Kalton, G Survey methods in social investigation (2nd ed.). New York: Basic Books, Inc., 1972.

Mosteller, F, and Tukey, J Data analysis, including statistıcs. In G. Lindzey and E. Aronson (Eds.), Handbook of Social Psychology, (2nd ed.). Vol. 2. Research Methods Reading, Mass.: Addison.Wesley, 1968
Mushkin, Selma J. and Stageberg, Stephen. Natıonal asssessment and social indicators, January 1973. (National Center for Education Statistics). Washington, D.C.: U.S. Government Printing Office, 1973.
National Center for Education Statistics. The condition of educa. tıon, 1977. Washington, D.C.: U.S. Government Prınting Office. 1977.

National longitudinal study of the high school class of 1972. See entrıes. Eckland, Bruce K and Bailey, J. P. Jr.; Eckland, Bruce K. and Wisenbaker, Joseph M.; Educational Testing Service; Fetters, Willam B., Perg, Samuel S., et al, Research Triangle Institute (four entries).

Natıonal Science Board. Science indicators, 1978 (Natıonal Science Foundation, Stock No. 038-000-00416.6). Washington, D.C.. U.S. Government Printing Office, 1979.

Natıonal Scıence Foundation Guide to programs, fiscal year 1980 Washington, DC•US Government Printing Office, 1979

National Science Foundation. Nationa, patterns of R\&D resources. Trends and personnel in the United States, 195319781979. (Natıonal Scıence Foundation 78-313). Washington, D.C.. U.S. Government Printing Office, October 1978.
National Science Foundation. Early adolescence. Perspectives and recommendations. (SE 78.75, Stock No. 038-000-00390.9). Washington. D.C.. U.S. Government Printıng Office, September 1978.
National Science Foundation. Science and technology. Annual report to the Congress (Stock No. 038-000-00396-8). Washington. D.C.: U.S. Gevernment Printing Office, August 1978.

Natıonal Science Foundation. Stalıstıcal handbook of science education (NSF 60-13). Washington, D.C.: U.S. Government Printing Office, 1960.

O'Keefe, Michael. The adull, education and public policy. (An Occasional Paper of the Aspen Instıtute for Humanisiıc Studies). Cambridge, Massachusetts: Aspen Instıtute for Humanistic Studies, 1976.
Olkinuora. E. On the problems oi developing education indicators. Acta Sociologica, 1972, 16, 284-302.
Ostendorf, Logan C. and Horn, Paul J. Course offerings, enrollments, and curriculum practices in public secondary schools, 1972-73. (National Center for Education Statıstics). Washington, D.C.: U.S. Government Printing Office, 1976.
Parke, R., and Seidman, D. Social indicators and social reporting. The Annals of the American Academy, 1978, 435, f.22.
Parke, R., and Sheldon, E B. Social statıstics for public policy. Proceedings of the American Statistical Association, 1973, 105-112.
Perg, Samue! S.. Wisenbaker. Joseph M., Bailey, Susan S., and Marnell. Dara. Tabular summary of the third follow-up ques. tıonnaıl data (Contract No. OEC-0.73-6666) - Research Triangle Park, N.C.: Research Triangle Instıtute, 1979.
Research Triangle Institute, National longitudinal study of the high school class of 1972. A capsule description of first follow-up survey data. (National Center for Education Statistics, NCES 76-216, Stock No 017-080-01517-0). Washington, D.C.: U.S. Government Printing Office, 1976.
Research Triangle Institute. Natıonal longitudinal study of the high school class of 1972. first follow-up questionnaire, form A. (U.S Office of Education, DE Form 2367, 9/73). Research Triangle Park, N.C.: Author, 1973.

Research Triangle Institute. Nationallongitudinal study of the high school class of 1972 Second follow-up questionnaire. (Department of Health. Education, and Welfare, DE Form 2367-2) Research Triangle Park, N.C Author, 1974.

Research Triangle Institute. Natıonallongitudinal study of the high school class of 1972. Third follow• up questionnaire. (Depart. ment of Health. Educatıon, and Welfare, DE Form 2367-5) Research Triangle Park, N.C.. Author, 1976
Rossi, Robert J. and Gilmartin. Kevin J. Report on a teasibility study to develop youth-specific social indicators and data source directory Palo Alto. California. American Institutes for Research, August 1978.

Sheldon, E. B and Freeman, H. E Notes on social indicators Promises and potential. Policy Sciences, 1976, 1, 97-111.
Sheldon, E B and Moore, W E (Eds). Indicators of social change Concepts and measurements New York Russell Sage Foun dation. 1968

Sheldon, E B and Parke, R Social indicators Science, 1975, 188, 693.699

Sheldon. E B The social indicators movement. In Educational In. dicators Monitoring the State of Education, Proceedings of the 1975 Educational Testıng Service Invitational Conference. Princeton, N.J Educatıonal Testing Service, 1975, 3.10
Sowal indicators Research Program. Repoit on a feasiblity study to develop youth-specific social indicators and data source directory Technical report to the Youth Development Bureau. DHEW Palo Alto. California. American institutes for Research 1977

Social Science Research Council. Annual report. 1976-77 New York Author. 1977

Siake, Robert E and Easley. Jack A Jr Case studies in science education Volume I. The case reports Volume ll. Design. over view "and general indings (National Science Foundation SE 78 74, Wasningtun. D.C.. U S. Government Printing Office. 1978
buydan. Ma lyri N dru Osturne. Alan The status of pre college' science, mathematics, and social science education 1955-1975 Volume II. Mathematics Education (National Science Foundation. SE.78.73), Washington. D C. U.S. Govern. ment Printing Office. 1978
Tentes, ky). Neatur E (Ed) The state of science and resedrch Some new indicators Boulder. Colorado Westview Press, 1977

Thumas. T.C. and Larsun, M. A. Eduationai indicators and educa tional policy New York. Aspen Institute. 1976.
United States Commission on Civil Rights. Social indicators of equality for minorities and women Washington. D.C.. Author. 1978
US Department of Commerce Social indicators. 1976. Washington. D C U.S. Government Printing Office, 1977.

US Department of Labor Directory of data sources on racial and ethic minorities BL B Bulletin \#1879) Washington. D.C.: U.S. Government Printing Office. 1975
van der Smissen, Betty Indigators of change in the recreationalenvironment - national research symposium (Penn State HPER Series No 6) University Park. Penn. The PennsyIvania State University, 1975

Wiltarns, Jeffrey W Students and schools (National Center for Education Statistics) Washington, D.C.. U.S. Department of Health. Education, and Welfare. 1979.

Woellner, Elizabeth H Requirements for certification of teachers, counselors, llbrarians, administrators Chicago. The Universi. ty of Chicago Press. 1978.

Wiley Karcn B and Race, Jeanne The status of pre-college science, mathematics, and social science education 1955-1975, Volume III. Social Science Education (National Sulthle Fuundation, SE 7873) Washington, D.C.. U.S. Govern ment Printing Office. 1978
Zuckerman. H. and Miller, R, B Social indicators and science indicutors Unpublished manuscript. 1978.

Additional Sources Used in 1982 Update

AAssociate Degrees and Othei Formal Awards Below the Bacca. laureate, 1978-79. Andrew J Pepin and Agnes Q. Wells. NCES. Feb. 1981.
Digest of Education Statistics. 1980 W. Vance Grant and Leo J. Eıden. NCES. May 1980.

The Condition of Education 1981 Edition. Nancy B. Dearman and Valena White Plisko. NCES.

Earned Degrees Conferred, 1979.80. Curtis O. Baker. NCES.
Prolections of Education Statistics to 1988-89. Martın M. Frankel.
Salarles of Scientists, Engineers, and Technicians. Tenth Edition. Scientific Manpower Commission.

$$
35 z
$$

Scienc. Women Scientists and Engineers. Trends in Participa tion." Bêtly M. Vetter. Vol, 214. Dec. 18, 1981.
Science, Eng,neering, and Humanities Doctorates in the United States. 1979 Profile. National Research Council, National Academy of Sciences. Washington, D.C. 1980.
Science Indicators, 1980, NSF. NSB-81-1.
Characteristics of Doctoral Scientists and Engineers in the United States: 1979. NSF 80.323. Washington, D.C.
Reviews of Data on Science Resources. NSF 80-311, No. 36. May 1980.

Employment Altributes of Recent Sulence and Engineering. Grad uates. NSF 80.325.
Digest of Education Statistics, 197778 NCES. W. Vanue Grant and C. George Lind.

Digest of Education Statıstıcs, 1979 NCES. W. Vance Grant and C. George Lind.

Digest of Education Statistics, 1976. NCES. W. Vance Grant and C. George Lind.

The Condition of Education. 1982 Edition. National Center for Education Statistics, Washington. D.C.

[^0]:

 * Reproductions supplied by EDRS are the best that can be made * * from thë original document.

[^1]: Source Tho Conditon of Eduration, NCES 1982 1 101

[^2]: 'Bacausa of the smatt school sampla size, the haterogonalty of the schoois, and the high non-iosponse rato tor schoois ininis sector, the ostimatos for other pilvate schoole are not notly as accurate or es Interprotible as those for pubile or Catholle schools.
 Sourco US Departmont of Education, Nallonal Center for Education Stallstics, Nationat Longitudinat Study and High Sunuot and Boyond Survey, unpubishad tobulations.

[^3]: Source Undergradiate Mathematioal Sciences in Universities，Four Yoar Colleges，and Ywo－Yoar Colleges，1980－1981 James if foy and wencellit

[^4]: Source Kius, John ${ }^{\text {P }}$ and Junes, Judy A Survay of Lontinuing Equcation Activifies for Engincers and Scientives, pp
 1517.

[^5]: Scianco foundation
 Source: Asseciation of Scroncoriochnology Coiters, ASTC Science musaum funding Study, pe i3, and unpubishect data

[^6]:
 economics, sociology, or psychology.
 Sourag Admiasione Tosting Program of the College, Board, Nallonal Report, College Bound Saniors, 1981, p. 14.

[^7]:

[^8]:

[^9]: Sourco. Gailup, Georgeth 1979. Phi Dolta Kappa, inc. Tho Eloventh Ar,nual Galtup Poll of the Public "Altitudes Towa dtho Public Schools,"

[^10]: Assossment areas include the following cognitive abiuties. Mathematical knowiedge - ability to tevail and iocugnizo lauls, definilions and symbols, mathomatical skill - ability iu pertorm mathematicai computations, makn measuremients, road graphs ond labies, poitorm geogiaphic and algobraic manipulations and estimato answers to computations and measurements, mathematicalapplication - ability to sulve typhal textbook problems, solvo nonroutina problems, ostimate answers, and uso mathematics in reasoning and making judgoments.
 ryeariy progression rate in mean percent correct responses between younger and older age groups is determined by using ine annual compound grow th rate formula $\mathrm{r}=\vee \mathrm{R}, \mathrm{R} \mathrm{R}_{\mathrm{e}}-\mathrm{I}$, where $\mathrm{t}=$ number of yoars dillerence in ago (4), $\mathrm{R}_{\mathbf{1}}=$ score for older ago group, and $\mathrm{R}_{\mathrm{o}}=$ score for younger age group.
 Suurce. u.S. Department of Education, National instituto of Educalion, National Assnssment of Educ. Honal Progross, Maphematiceil Knowledgo and Skills, Serecteo Results trom the Second Assessment of Mathematics, Roport No. 09-HA.02, A., wust 1979. Mathematical Applications. Salected Rosults from the Socond Assessment of Mothematics, Report No, 29-MA 03, Augusi 1979.

[^11]:

[^12]: Source: Enginecting Manpower Commission of the American Association of Engineering Sncietios, ing

[^13]: Bachelor s degreo recipients wotking fuli-une are dofinod as underemployed if in a po ithat is not protegsienal, technical, manageriat, or ad minisiralivo and when asked, reṣponded that job did not requiro a ailego degroo. Dotinitiun mikudes additionar stipuiation that ihay aro not enrolled an schiol

