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A large body of work argues that scientific research increases the rate of technological advance,
and with it economic growth. The precise mechanism through which science accelerates the rate
of invention, however, remains an open question. Conceptualizing invention as a combinatorial
search process, this paper argues that science alters inventors’ search processes, by leading them
more directly to useful combinations, eliminating fruitless paths of research, and motivating
them to continue even in the face of negative feedback. These mechanisms prove most useful
when inventors attempt to combine highly coupled components; therefore, the value of scientific
research to invention varies systematically across applications. Empirical analyses of patent data
support this thesis. Copyright  2004 John Wiley & Sons, Ltd.

A long line of work supports the idea that scien-
tific research stimulates technological innovation,
thereby accelerating economic growth. Though
one can trace this notion as far back as Adam
Smith (Stephan, 1996), researchers did not begin
empirically testing it until the second half of the
twentieth century. One set of studies has focused
on establishing the relationship between the invest-
ments in, or outcomes of, scientific research and
their effects on economic growth (e.g., Mansfield,
1972; Rosenberg, 1974; Sveikauskas, 1981). For
instance, a paper by James Adams (1990) demon-
strates that cumulative research output, in the form
of published papers, appears to accelerate growth.
Another set—typically drawing on either rich case
histories or patent data—has investigated the more
proximate linkages between scientific research and
technological innovation. Adam Jaffe (1989), for
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example, finds a positive relationship between uni-
versity research expenditures and local patenting
rates (cf. Jaffe and Trajtenberg, 1996). Together,
these complementary lines of research provide
strong empirical support for a link between scien-
tific research, technological innovation, and eco-
nomic growth.

Despite this evidence for the value of scien-
tific research to innovation, inventors across fields
vary tremendously in the degree to which they
make use of science. Universities, for example,
disproportionately patent inventions in two broad
sectors: drugs and medicine, and chemicals (Hen-
derson, Jaffe, and Trajtenberg, 1998). Similarly,
most studies detailing the beneficial effects of
spillovers from academic research to the private
sector focus on biotechnology or pharmaceutical
firms (e.g., Henderson and Cockburn, 1994; Gam-
bardella, 1995; Zucker and Darby, 1996; Zucker,
Darby, and Brewer, 1998).

Why do inventors draw more heavily on scien-
tific research in these areas? Can institutional fac-
tors account for the links between academics and
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firms in particular sectors, or do industries differ in
the potential returns available to the application of
scientific research, thereby affecting the incentives
faced by firms? Though institutional factors almost
certainly play a role, Mansfield (1995) contends
that the benefits of applying science to invention
differ across sectors; for instance, pharmaceuti-
cal firms in his sample asserted that 27 percent
of their inventions required the application of sci-
ence to avoid costly delays, while electronics firms
made the same claim only 6 percent of the time.
How do these fields differ such that the application
of science appears highly beneficial in one, while
of limited use in the next? Answering this ques-
tion requires us to examine technology at a finer
grain of detail; progress in our understanding of the
value of science, in the words of Richard Nelson,
‘would appear to require a better understanding of
what knowledge actually does for inventing’ (Nel-
son, 1982: 455).

To address this issue, this paper investigates the
importance of science at the level of the individual
invention, explicating one factor—the difficulty of
the inventive problem—that might influence the
returns to the application of science at that level.
We suggest that science proves most useful when
inventors seek to combine tightly coupled com-
ponents. Following a long tradition in the study
of innovation (e.g., Gilfillan, 1935; Schumpeter,
1939), we conceptualize invention as a process
of searching for better combinations of existing
components. When inventors seek to combine rel-
atively independent components (i.e., those with
a low degree of coupling), finding useful new
configurations proves relatively easy—any search
algorithm can locate the most useful combinations.
As the space searched becomes increasingly com-
plex, however, local search routines break down,
failing to identify the best combinations (Fleming
and Sorenson, 2001). In these cases, we posit that
science may transform invention from a relatively
haphazard search process to a more directed iden-
tification of useful new combinations, thus mitigat-
ing the complications typically encountered when
combining coupled components.

Our empirical analyses estimate the returns to
the application of science using patent data. Fol-
lowing a common practice in studying patents, the
future citation count provides our measure of the
value of the resultant invention. We measure cou-
pling by observing the ease with which subclasses
have previously been recombined, and identify the

use of science by noting when patents reference
published articles in refereed scientific journals.
Our results broadly support our expectations: sci-
ence has no apparent effect when inventors work
with relatively independent pieces; it only appears
beneficial when inventors seek to combine highly
coupled components—a particularly difficult task.

INVENTION AS RECOMBINANT
SEARCH

Before considering how science alters the process
of invention, one must first ask what inventors
actually do. One popular view in the history of
technology conceptualizes invention as a process
of recombination.1 Research out of this tradition
holds that invention comes either from combining
technological components in a novel manner (Gil-
fillan, 1935; Schumpeter, 1939; Usher, 1954; Nel-
son and Winter, 1982; Basalla, 1988; Weitzman,
1996), or through reconfiguring existing combina-
tions (Henderson and Clark, 1990). By ‘technolog-
ical components,’ we mean any fundamental bits
of knowledge or matter that inventors might use
to build inventions. For example, Gilfillan (1935)
describes the steamship as a combination of the
boat with a steam engine, or one might think of
the computer workstation as a novel aggregation
of several components and subsystems: a CPU, a
motherboard, virtual storage and memory, a dis-
play, graphics processors, as well as systems and
applications software.

Though complex physical systems quite clearly
combine multiple elements, many inventions—
such as nylon, a polymer—intuitively seem like
one component, unbreakable without resorting to
atomic-level decomposition. A closer look, how-
ever, typically reveals that these inventions also
arise from the recombination of discrete com-
ponents and processes. For example, polymers
involve the linkage of several molecules into a sub-
stance with new properties (Smith and Hounshell,
1985). Moreover, innovation in these substances
frequently occurs in the processes for producing
them—often themselves recombinations of exist-
ing manufacturing steps. For instance, after the

1 Other theorists view invention as exogenous shocks (e.g.,
Klepper, 1996). Though this point of view undoubtedly has
validity in many cases, it also relegates the invention process
to a black box without first considering whether recombination
might usefully characterize the process.
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initial synthesis of polymers, Wallace Carothers
greatly increased polymer length by applying gen-
tle heat in a molecular still, thereby eliminat-
ing interference from water molecules (Smith
and Hounshell, 1985). Alternatively, an inven-
tion might involve the application of an exist-
ing technology to a new purpose. Nylon once
again provides a salient example. Though imme-
diately recognized as a replacement for silk, the
advent of World War II saw nylon’s application
to parachutes, flight suits, and glider towropes.
Thus, conceiving of inventions as recombinations
of existing components does not greatly limit our
scope. The question remains, though, how do
inventors search for these new inventions?

Local search

Researchers most commonly point to local search
—also referred to as exploitation—as the predom-
inant algorithm used in innovation (March and
Simon, 1958; Cyert and March, 1963; Hansen
and Lovas, 2004; Nelson and Winter, 1982; Stu-
art and Podolny, 1996). Local search implies that
inventors typically alter one component at a time,
either reconfiguring it relative to the other compo-
nents or replacing it with a different component;
in other words, inventors search incrementally.
Traditional drug discovery, for example, follows
this pattern; after identifying a promising candi-
date through high-throughput screening or luck,
researchers attempt to find commercially viable
drugs by slightly altering this initial candidate
(Drews, 2000). The label ‘local’ refers to the fact
that research activities relate quite closely to prior
research activities, by definition implying some
experience with the technologies being developed.

Explanations for the prevalence of local search
frequently focus on the value of experience.
These accounts assume that inventors have an
extremely limited understanding of the elements
being recombined and the ways in which those
elements interact—due to either cognitive limits
or fundamental uncertainty (March and Simon,
1958; Nelson, 1982; Vincenti, 1990). As inventors
gain experience, they develop some (possibly
mistaken) understanding of the components that
allows them to invent with greater reliability
by avoiding elements that did not work in
the past (Vincenti, 1990). Nevertheless, local
search also has a downside: focusing on familiar
combinations can preclude the inventor from

investigating more distant—and potentially more
useful—possibilities; as inventors continue to
work with a particular set of components, they may
exhaust the set of useful combinations (March,
1991; Fleming, 2001).

Empirical research supports the prevalence and
effects of local search across a variety of levels.
At the firm level, Stuart and Podolny (1996), in
an analysis of semiconductor patents, show that
firms’ new patents concentrate in areas techno-
logically proximate to their existing patent port-
folios—a tendency that increases as firms mature,
potentially leading to obsolescence (Sørensen and
Stuart, 2000; see also Ahuja and Lampert, 2001).
Similar results appear in research on new prod-
ucts: Audia and Sorenson (2001) find that com-
puter workstation manufacturers tend to introduce
new products with features similar to their existing
offerings (cf. Martin and Mitchell, 1998), a prac-
tice that retards future sales growth. In research at
the community of practice level, Fleming (2001)
demonstrates that experience at this level does
indeed appear to enhance search, both by increas-
ing the average value of inventions and by decreas-
ing the variability of outcomes, but this beneficial
effect eventually succumbs to exhaustion.

Science and search

Scientific knowledge, by contrast, may lead to a
very different type of search; in effect, it pro-
vides inventors with the equivalent of a map—a
stylized representation of the area being searched.
Though local search portrays inventors as rummag-
ing around, blindly bumping along in the search
for new technologies, they can also proceed with
greater foresight (Vincenti, 1990). For example,
studies of engineers have found that they some-
times consult the scientific literature to resolve
technological difficulties (Gibbons and Johnston,
1974; Allen, 1977). Scientific knowledge differs
from that derived through local search, in par-
ticular, because the scientific endeavor attempts
to generate and test theories. Science attempts to
explain why phenomena occur, providing a means
of predicting the results of untried experiments
and the usefulness of previously uncombined con-
figurations of technological components. Having
an understanding of the fundamental problem—a
map—likely modifies the search process in mul-
tiple, complementary ways. Notably, it might lead
inventors quite directly to the proper combinations
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of components to solve a particular technical prob-
lem. Even absent such a direct linkage, science
could usefully increase the effectiveness of search
by identifying useless directions of search before-
hand, and by providing a glimpse of the possible.

Theoretical understanding of the underlying
properties of technological components and their
interactions may facilitate effective search. Lipp-
man and McCall (1976) argue that this advan-
tage stems from the ability to assess alternatives
‘offline’—in essence, running the experiment in
one’s mind or on paper without incurring the costs
of actually performing the test. For example, lay-
ing the groundwork for a future generation of chip
technology, researchers predicted that single-wall
carbon nano-tubes would either conduct or semi-
conduct, depending on the diameter of the tube
and the angles of the carbon bonds (Dresselhaus,
2001). This prediction pointed to two specific con-
figurations (out of an essentially infinite number of
possibilities) that resulted in the successful fabrica-
tion of conducting and semiconducting nano-tubes
(Ouyang et al., 2001). The theory did not predict
everything and researchers must still engage in
trial-and-error search to produce working transis-
tors. Theoretical guidance nonetheless accelerated
the researchers’ arrival at the proper diameter and
angles. Maps typically do not detail every rock
and crevice dotting the landscape; similarly, sci-
entific theories do not predict every property and
interaction of a new combination of technological
components. Theory may still get researchers ‘in
the ballpark,’ thereby leading them to a promising
new invention more efficiently.

By eliminating fruitless avenues, science may
also play the more modest role of reducing the
size of the combinatorial search pace (Nelson,
1982). In other words, science can tell inventors
how to avoid wasted effort. Consider the clas-
sic goal of alchemy: transforming lead into gold.
Once people understood the structure and proper-
ties of atoms, it became quite clear that anything
short of a nuclear reaction would not yield the
desired results. More recently, researchers at Lord
Manufacturing Company switched from work-
ing with electro-rheological materials to magneto-
rheological materials in their effort to develop
controllable fluids. Even after 10 years of fruit-
less effort with electrical approaches, the switch
occurred only after the lead researcher, Dave Carl-
son, investigated the physics of the materials and
calculated that the potential power available from

the use of magnetic fields exceeded the potential
of electrical fields by two orders of magnitude
(Carlson, 2001; Stix, 2001). Without realizing the
futility of the search, researchers at Lord may have
pursued an unobtainable goal indefinitely; thus,
science improves the efficacy of search by pre-
venting inventors from wasting valuable effort on
the impossible.

Even when science has an inaccurate or incom-
plete understanding of the problem, it might still
alter the search process in a useful manner. When
inventors experiment with combinations and con-
figurations of components, most of the iterations
that they try will fail to yield useful outcomes.
In the absence of a predictive model of the prob-
lem, inventors constantly face the question of how
long they should persist with a failing approach.
Should they quit after 10, 100, or 1000 failures? By
suggesting that an avenue of solution might suc-
ceed theoretically, science can encourage inventors
to continue working with a seemingly unfruitful
set of components. Consider the case of Prozac.
Bryan Molloy began Eli Lilly’s research with
local search, deriving hundreds of benadryl com-
pounds (Kramer, 1997: 62). They all failed. His
colleague David Wong continued the search, how-
ever, because he believed a theory that blocking
serotonin uptake, a property of benadryl deriva-
tives, held the key to treating depression. Using
a new experimental technique that enabled more
accurate evaluation, Wong tested the same com-
pounds as Molloy and demonstrated the efficacy
of one of them, fluoxetine (the chemical name
for Prozac). In addition to motivating inventors
in the face of failure, the belief that something
better might exist could also lead them to con-
tinue searching even after having found acceptable
solutions (Gavetti and Levinthal, 2000, provide a
similar argument for the usefulness of managerial
frameworks in strategic search).

Understanding the strengths and weaknesses of
these search processes also requires an understand-
ing of the spaces being searched; thus, we turn to
a discussion of technological landscapes.

TECHNOLOGY LANDSCAPES

Landscapes offer a useful heuristic for think-
ing about the space that inventors must search
when attempting to discover useful new inven-
tions. Wright (1932) first introduced the idea of a
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fitness landscape to describe the evolution of traits
in species. Since then, the idea has been applied
usefully to topics ranging from spin-glasses in
physics (Weinberger, 1991) to organizational rou-
tines (Levinthal, 1997; Rivkin, 2000). This same
metaphor can help us understand technological
search. Think of each possible set of compo-
nents as corresponding to a particular technolog-
ical landscape that inventors search; positions on
these landscapes represent different configurations
of components. Inventors search new landscapes
when they combine new sets of components and
move across these landscapes when they recon-
figure a particular set of components. The peaks
and higher elevations represent more useful con-
figurations. Technological landscapes can take a
variety of shapes. At one extreme, the landscape
might smoothly slope up to a single peak; at the
other, it might jump around with treacherous val-
leys and soaring zeniths. Thus, one might ask, what
determines the topography of these technological
landscapes?

One important factor influencing the shape of
these landscapes is coupling. By ‘coupling,’ we
mean the degree to which components interact in
determining the functionality of the overall inven-
tion.2 A rugged landscape implies that adjacent
points of the terrain differ dramatically in their
usefulness. Coupled technologies exhibit precisely
such a characteristic: the functionality of cou-
pled inventions overall becomes highly sensitive
to minor changes in the individual components
(Ulrich, 1995). For example, a change of one par-
ticle in 10 million of semiconductor dopant can
change its conductivity by a factor of 10 thou-
sand (Millman, 1979).3 In contrast, independent
components—those with no coupling—gradually
change the functionality of the overall system,
with each component contributing individually to

2 This idea goes by a variety of monikers in different literatures.
Milgrom and Roberts (1990) refer to it as complementarity.
Kauffman (1993) and Sorenson (2002) call it interdependence,
and many use the term modularity to refer to the inverse of
interdependence (e.g., Baldwin and Clark, 2000). Given our
technological context, we prefer Ulrich’s (1995) definition of
coupling: ‘Two components are coupled if a change made to
one component requires a change to the other component for
the overall product to work correctly.’
3 Other examples abound. The fluoxetine molecule resembles
other benadryl derivatives quite closely, yet it provides much
more effective relief against depression (Kramer, 1997). Super-
conductor research continues to find unexpectedly high temper-
ature breakthroughs with novel combinations of common mate-
rials, such as boron (Campbell, 2001).

overall usefulness. Kauffman (1993) presents this
relationship in stark simplicity. His simulations
include two parameters: the number of compo-
nents and the degree of interaction between those
components. These simulations characterize the
landscapes produced by different types of com-
ponents; interacting components create more jum-
bled, uncorrelated landscapes, while independent
elements generate a landscape with a single peak.
In short, the ruggedness of the technological land-
scape increases as the degree of coupling among
the components intensifies.

Landscapes and search

Combining these landscapes with a search algo-
rithm allows us to make predictions regarding the
likely outcomes of inventive search. Consider local
search. When inventors search locally, they move
across adjacent positions on the fitness landscape.
Although gradually climbing uphill will eventually
bring the inventor to an optimum, this peak might
not represent the ‘best,’ or even a particularly
‘good,’ configuration. Rather, the topography of
the landscape importantly affects the efficacy of the
search algorithm. Local search processes work best
on smooth, correlated landscapes because incre-
mental improvements more frequently find the
global maximum. In contrast, local search pro-
cesses operate less effectively on jumbled, uneven,
and uncorrelated landscapes. On these landscapes,
local search processes yield unpredictable out-
comes and often trap the searcher on a local peak
because any incremental change yields less desir-
able outcomes (March, 1991; Kauffman, 1993).
Inventors who search incrementally with strongly
coupled components make slow progress and have
no assurance of ultimate success.

Although coupling between components makes
the search process more difficult, it also cre-
ates the potential for very useful inventions. On
flat landscapes, inventors searching locally can
find the optima, but few exist and those that
do rise only modestly above alternative config-
urations (i.e., they offer minimal gains in use-
fulness). Competitors may also find these inno-
vations easy to imitate (Rivkin, 2000). Rugged
landscapes contain a large number of potentially
useful configurations, if inventors can only find
them. Together these processes generate a non-
monotonic relationship between the usefulness of
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inventions found through local search and the cou-
pling of the components combined (Fleming and
Sorenson, 2001). On flat landscapes—those with
little coupling—local search can locate the high-
est peak, but that apex offers limited functionality.
At low levels of coupling, somewhat rugged land-
scapes provide a larger number of taller peaks that
inventors can still find through local search. As
the coupling increases, however, the difficulty of
search rises, and the average usefulness of inven-
tions declines. Coupling also increases the uncer-
tainty of invention. As the number of unpredictable
interactions rises, the uncertainty, or variability, of
the expected outcomes also increases. Fleming and
Sorenson (2001) find strong support for this model,
using patent citations as a measure of invention
usefulness.

By contrast, inventors can proceed quite dif-
ferently when science provides them with some
understanding of the underlying landscape. The
exact effect of this process on inventive outcomes
depends on how science influences the search pro-
cess. Consider the first mechanism: cheap offline
experimentation. If science allows a rough predic-
tion of the expected interactions between coupled
components, it should allow inventors to move
quite directly toward the highest peaks—the most
useful configurations—on the landscape, thereby
reducing the variability of inventive outcomes. As
the potential for useful inventions increases with
coupling, it should also allow inventors to exploit
synergies more effectively; thus, the average use-
fulness of inventions should rise with coupling
when inventors use science. It might also reduce
the number of times that inventors use the same
combinations of components since they can effi-
ciently focus on the most useful configurations
while avoiding the rest.

Even if science plays the more modest role of
allowing inventors to rule out unfruitful direc-
tions, our second mechanism, this narrowing of
options should have a similar—though less pro-
nounced—beneficial effect. One would still expect
an improvement in the average usefulness of
inventions, as researchers avoid the worst regions
of the solution space. The variability of outcomes
would likely remain high, however, as even the
best regions in fitness landscapes of highly coupled
components include peaks and valleys (Kauffman,
1993).

Under the third mechanism, motivation, the
expected effects of science on search may differ.

Having some sense of the height and location of
the tallest peak may lead inventors to better out-
comes by preventing them from becoming trapped
in local optima (Gavetti and Levinthal, 2000).
However, in this case, inventors might actually
search more when directed by science because they
will continue to look for better alternatives even
after finding ‘good’ ones. In the words of Gavetti
and Levinthal (2000), they may begin ‘chasing
cognitive rainbows.’

EMPIRICAL ANALYSIS

Studying how science affects the process of inven-
tion can prove quite difficult and, as a result, much
of the work on this topic relies on careful case stud-
ies. Though useful, these studies lack the statistical
power necessary to distinguish potential patterns
linking science and invention from random noise.
Thus, we analyzed patent data to examine the role
of science.

Patent data admittedly offer imperfect measures
of invention. Companies sometimes avoid patent-
ing, and industries vary in their propensities to
patent (Levin et al., 1987). Patents also do not
allow us to observe all points on the fitness land-
scape. Because inventors may limit their patent
applications to their most successful inventions,
patents likely represent only the higher positions
on these landscapes. This implies that we must
infer the topography of the underlying landscape
from truncated data.4 Despite these imperfections,
patents do offer a window into the process of
invention, allowing us to develop a quantitative
measure of fitness across a broad range of tech-
nologies, to identify those inventions in which sci-
ence likely played a role, and to develop a measure
of component coupling—the variables needed to
investigate our proposition empirically. We col-
lected information on all U.S. patents granted in
May and June of 1990 (n = 17,264)5 listed in the
Micro-Patent product; from these, we excluded the

4 Simulations demonstrate, however, that increases in the mean
of a normal distribution generate corresponding increased means
in right truncated observations; thus, these truncated observations
should still allow us to observe the rough structure of the
technology landscapes (Fleming and Sorenson, 2001).
5 We chose 1990 to allow sufficient time to observe future
citation patterns, our dependent variable; we used a random
number generator to select the starting month, May, and included
only 2 months of data due to resource limitations (calculation
of the coupling measure required months of CPU time and the
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442 patents that do not cite any prior art (previ-
ous work in the area) because these patents may lie
beyond our theory, involving the discovery of fun-
damental new components rather than the recom-
bination of previous technologies (their inclusion
does not change the results). Thus, our analyses
include 16,822 patents granted in May and June
of 1990.

Key variables

Science

We began by identifying when science likely influ-
enced the process of invention. Much of the
work linking science to invention focuses only
on research that occurs at a university or public
research institution (e.g., Henderson et al., 1998).
Since science also gets applied outside the univer-
sity context (Narin, Hamilton, and Olivastro, 1997;
Cockburn, Henderson, and Stern 2000), we took a
different approach, identifying the usage of science
through non-patent references (Narin et al., 1997;
Perko and Narin, 1997).6

We took a reference to the scientific litera-
ture as an indication that the inventor made use
of—or at least had some awareness of—scientific
knowledge in the process of invention. In addi-
tion to citing the prior art (previous patents), U.S.

coding of the non-patent references involved hundreds of hours
of research assistance).
6 Though Schmoch (1993) and Meyer (2000) question the use of
the non-patent references as indicators of the direct application
of science, their contention that these references simply denote
a relationship between the technology and science fits well with
our assumption of their meaning.

patents also cite a variety of non-patent litera-
ture. Our sample made 16,698 references to the
non-patent literature (Table 1). The majority of
these non-patent references (67%) cite journals
listed in the Scientific Index : a publication that
covers peer-reviewed scientific journals.7 Unlike
references to patent prior art, often added by
the patent examiner, non-patent references more
frequently come from the inventors themselves;
Tijssen (2001) reports that 81 percent of patents
with non-patent references include an inventor’s
citation to their own scientific work. Thus, non-
patent references provide a reasonable indicator of
the influence of science; as Tijssen notes, ‘these
citations at the very least indicate an awareness of
scientific results with some indirect bearing on ele-
ments of the invention. In the best case, they reflect
strong evidence of substantial direct contributions
of scientific inputs to breakthrough technological
innovations’ (Tijssen, 2001: 52).8 A dummy vari-
able indicates if a patent referenced one of these
publications.9

7 References to science most commonly appear in the following
classes: 505 Superconductor technology (85%), 530 Natural
resins and derivatives (81%), 435 Molecular biology (78%), 512
Perfumes (71%), 548 Organic compounds (69%).
8 In our own survey of inventors (detailed below), 62 percent
of inventors indicated an awareness of the specific scientific
papers cited on their patents and 71 percent reported a awareness
of the broader scientific literature on the subject. Though our
results suggest a weaker link than Tijssen (possibly because we
draw a representative sample of all patents while Tijssen selects
on patents citing Dutch science), non-patent references to the
scientific literature still appear a good proxy for the availability
of scientific knowledge to inventors.
9 Using a count of the number of scientific articles referenced in
place of this dummy variable produced qualitatively equivalent
results; including both a dummy and the count reveals that
the count adds no significant information to the models. We

Table 1. Descriptive statistics of references to non-patent literature

Number of Conditional statistics
patents making

references Mean S.D. Min. Max.

Scientific Index journal
(reference to science)

2,919 3.56 4.90 1 75

Non-Index journal (non-science
reference)

290 1.56 1.19 1 8

Corporate non-technical
(non-science reference)

700 2.11 2.42 1 34

Corporate technical 331 1.91 2.26 1 27
Book 870 1.59 2.24 1 55
Technical report 320 1.54 1.30 1 12
Conference proceedings 465 1.66 1.30 1 11
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Coupling

Next we characterized the difficulty of the inven-
tive problem according to the degree of coupling
among the components. Our measure essentially
observes the degree to which an invention’s com-
ponents have been previously recombined.10 To
calculate this measure, we used the subclass ref-
erences on each patent. In effect, we treated the
subclass assignments as proxies for the underly-
ing components that combine to create that inven-
tion. The U.S. Patent Office uses subclass refer-
ences to indicate which technologies relate to the
patent, developing and updating these subclasses
such that they consistently track technology back
to 1790.11 The approximately 100,000 subclasses

also investigated classifying technical references together with
Scientific Index journal cites as indicators of science; using
this more inclusive definition yielded weaker, but substantively
identical, results.
10 Economists seeking to identify complementarity—a closely
related concept—have also proposed using the realized combi-
nations of activities to identify the pattern and strength of these
interdependencies (Athey and Stern, 1998).
11 The Patent Office often redraws the boundaries of patent
subclasses and retroactively reassigns patents to subclasses based
on these changes. This system has the advantage of making
subclasses usable over time; however, this reclassification likely

allow for fine-grained classification of inventions
(Trajtenberg, Henderson, and Jaffe, 1997). Though
in many cases subclasses correspond quite closely
to physical components (such as the example in
Figure 1), they do not always match so well. Our
measure, however, only requires that these sub-
classes define pieces of knowledge rather than
identifiable physical components. Combining some
pieces which interact sensitively to each other
proves more difficult than connecting relatively
independent chunks of knowledge.

We calculated our measure of coupling in two
stages. Equation 1 details our measurement of
the observed ease of recombination, or inverse
of coupling, of an individual subclass i used in
patent j . The score increases as a particular sub-
class combines with a wider variety of subclasses,
controlling for the total number of applications;
thus, it captures the observed ease with which
a component has been recombined. Since most
patents (92%) belong to more that one subclass
of technology, we averaged the inverse of these
subclass scores to create a patent-level measure

introduces noise into our measure of coupling, making our tests
of its effects more conservative. We used the concordance of
1996 for our calculations.

326/16: Test facilitate feature
Ei = 205/116=1.77

326/31: Switching threshold stabilization Ei =104/69=1.51
Average observed ease of recombination=
(1.77+2.02+1.21+1.51)/4=1.63=> Kj = 0.61

326/56: Tristate
Ei =158/131=1.21

326/82:
Current
driving
fan in/out,
Ei =101/50=2.02

Figure 1. Calculation of K for patent 5,136,185
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(Equation 2). We computed this measure using
the entire 200 years of pre-sample history and
tested its robustness to temporal bias with a 10-
year window.

Observed ease of recombination of subclass i ≡ Ei

=
Count of subclasses previously

combined with subclass i

Count of previous patents in subclass i
(1)

Coupling of patent j ≡ Kj

= Count of subclasses on patent j∑
j∈i

Ei

(2)

As an example of the coupling calculation, con-
sider one of the first author’s patents, #5,136,185.
Figure 1 illustrates calculation of the measure and
the correspondence between the USPTO classifi-
cation scheme and the components used, all stan-
dard elements described in digital design text-
books at the time of invention (see, for exam-
ple, McCluskey, 1986). 326/16 identifies the ‘Test
facilitate feature’ subclass, which implements a
testing mode within a semiconductor chip. Prior to
the author’s use of this component (i.e., subclass),
it had been recombined 116 times with 205 other
components, implying an observed ease of recom-
bination score of 205/116 = 1.77. 326/56 indi-
cates the ‘Tristate subclass’, and 326/82 points to
‘Current driving fan in/out.’ 326/31 identifies the
‘Switching threshold stabilization’ subclass (essen-
tially a priority encoder). Figure 1 illustrates the
location of these components on the circuit, and the
calculation of their ease of recombination scores,
as well as the calculation of the patent’s coupling
score of 0.61. This score, slightly below the mean
value of 0.63, seems reasonable as digital hardware
recombines with relative ease.

To validate the measure across a wider range
of technologies, we surveyed inventors about the
coupling of the components of their inventions.
Randomly choosing 0.2 percent of U.S. patents
granted to U.S. inventors in the year 2000 gave us a
sample of 199 patents. Of these, we located current
contact information for the patent holders for 189,
from which we received responses in 64 cases. To
assess the coupling between an invention’s com-
ponents, we asked (from Ulrich, 1995), ‘Modules
are said to be coupled when a change made to one
module requires a change to the other module(s) in

order for the overall invention to work correctly.
How coupled were the modules of your inven-
tion?’ The Pearson correlation coefficient between
the responses and our measure of coupling is 0.30
(p ∼ 0.03); though not perfect, the relationship is
highly significant.12 Most importantly, our auto-
mated procedure allows us to analyze a large set
of patents, and appears to provide at least a rough
estimate of coupling.

Invention usefulness

We defined usefulness as the number of citations
that a patent receives in the 5 years following its
grant date.13 Each patent by law must cite previous
patents that relate closely to its own technology.
Research demonstrates that the number of cita-
tions a patent receives correlates highly with its
technological importance, as measured by expert
opinions, social value, and industry awards (Tra-
jtenberg, 1990; Albert et al., 1991). It also corre-
sponds closely to the economic value of an inven-
tion (Harhoff et al., 1999, Hall, Jaffe, and Trajten-
berg, 2000). Thus, citation counts offer a means
of measuring inventive usefulness across a broad
range of technologies.14 Descriptive statistics for
these variables, as well as the others used in the
models, appear in Table 2.

Science, coupling, and citations

One can see the relationship between science, cou-
pling, and the usefulness of the inventions even
without running a complex statistical analysis.
Figure 2 depicts this relationship graphically: the
points plot the mean number of citations received
against the average level of coupling for each quin-
tile of the coupling distribution. It plots this rela-
tionship separately for patents that cite a scientific

12 While we provided inventors with specific definitions of how
they should think about their subsystems and components, they
may still have placed different boundaries in the organization of
their inventions. This would increase the error of our measure.
Increased error, however, should only dampen our estimates
of the effects of coupling, making our empirical tests more
conservative.
13 We chose this period to capture the bulk of the citations to a
patent, as citations typically peak about 3 years after the grant
date (Jaffe, Trajtenberg, and Henderson, 1993). Although citation
rates to patents appear quite consistent over time, we tested the
sensitivity of this assumption by also using a 10-year window
of citation counts; the results remain robust across both.
14 The propensity to cite does vary across technologies as a
function of the level of activity in that technology. We introduce
multiple methods for controlling for this heterogeneity below.
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Table 2. Descriptive statistics of the variables used in the models

Full sample
N = 16,822

Cite science
N = 2,919

Do not cite science
N = 13,903

Mean S.D. Mean S.D. Mean S.D.

Cites 2.75 3.54 3.43 4.25 2.60 3.34
Mean technology control 1.19 0.41 1.27 0.45 1.17 0.39
Number of prior art cites 7.63 6.99 7.90 8.66 7.27 6.04
Single subclass dummy 0.08 0.27 0.08 0.28 0.08 0.27
Number of subclasses 4.31 3.31 4.97 4.86 4.02 2.79
Number of classes 1.78 0.95 1.90 1.06 1.74 0.91
Number of trials 2.94 15.23 2.55 18.01 2.98 14.07
Recent technology 3.96 0.65 4.17 0.49 3.92 0.67
Science stock 0.21 0.22 0.45 0.24 0.16 0.17
Reference to science 0.18 0.38 1.00 0.00 0.00 0.00
Coupling 0.63 0.35 0.50 0.28 0.66 0.36
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Figure 2. Mean citations (±1 S.E.M.) across quintiles of the coupling variable

article and for those that do not. Patents that refer-
ence science receive more cites on average. More
importantly, the figure illustrates the predicted pos-
itive interaction effect. One can clearly see that
while the relationship between coupling and cita-
tions first rises and then falls for patents that do
not cite science, those that do reference an article
in the Scientific Index show a positive relation-
ship between coupling and citations. Even at this
cursory level, the data support the claim that sci-
ence helps most when inventors attempt a difficult
recombination task.

Multivariate analysis

To investigate the process in more detail and to
control for a variety of factors, we estimated fixed
effects negative binomial models of future cita-
tions. The dependent variable of citation counts
takes on only whole number values (i.e. 0, 1, 2,
3 . . .). Using linear regression on such data can
yield inefficient, inconsistent, and biased coeffi-
cient estimates. Count models can avoid these
problems (Cameron and Trivedi, 1998). We em-
ployed one particular variant suggested by Haus-
man, Hall, and Griliches (1984): the fixed effects

Copyright  2004 John Wiley & Sons, Ltd. Strat. Mgmt. J., 25: 909–928 (2004)



Science as a Map in Technological Search 919

negative binomial. This procedure usefully allows
for overdispersion—where the variance exceeds
the mean—which these data exhibit. It also allows
us to control broadly for differences across tech-
nological domains by defining fixed effects at the
level of the USPTO class.15 In this case, using the
fixed effects negative binomial amounts to taking
the number of citations received by all patents in
a particular class as a given and estimating which
factors predict the distribution of those citations
among the patents within the class.

Several measures captured other potential
sources of heterogeneity. First, we developed a
technology control, which essentially refines the
fixed effects. In the first stage, we calculated the
average number of citations that each patent in
a particular USPTO class received from patents
granted between January of 1985 and June of
1990 (Equation 3).16 We weighted these param-
eters according to the patent’s class assignments
(Equation 4), where p indicates the proportion of
patent k’s subclass memberships that fall in class
i.

Average citations in patent class i ≡ µi

=

∑
j∈i

Citationsj (before 7/90)

Count of patents j in subclass i
(3)

Technology mean control patent k ≡ Mk

= pikµi (4)

To augment our technology control, we included
several additional variables. We incorporated a
count of the number of major classes. Patents that
cover a broad range of technologies may carry a
higher risk of being cited simply because future
inventions from each field might potentially cite
them—similar to what happens when an aca-
demic article spans several literatures. This mea-
sure also controls for the interdisciplinary breadth

15 In unreported analyses, we also defined fixed effects at the
level of the inventing firm, with qualitatively equivalent results.
Thus, firm-level differences cannot account for our results.
16 We allow all patents issued between January 1985 and June 30,
1990 to enter the estimation of the technology control, meaning
that the patents used to calculate it vary in the time during which
they can receive citations. Alternatively, we could select a small
set of patents from 1985 and base the measures on the subsequent
5 years of citations; however, this approach would ignore the
patent activity just prior to our sample.

of the invention.17 We also included the number
of prior art citations —references to prior patents
assigned by the U.S. Patent Office—as a control
for the degree of local search (Podolny and Stuart,
1995); it may also capture idiosyncratic differ-
ences in citation propensity that our technological
class controls miss. We additionally measured pre-
vious local search as the number of repeated trials
on a particular landscape (Fleming and Sorenson,
2001). Specifically, we counted the number of pre-
vious patents that combined exactly the same set
of subclasses.

We control for the number of components or
problem domains in an invention by including the
number of subclasses. Eight percent of the patents
in our data belong to only one subclass. Although
we suspect that these inventions also arise from
a process of recombination—as the prior art ref-
erences in these patents reveals, they do build on
previous inventions—this combination occurs at a
finer grain than our measures can capture. There-
fore, we added a single subclass dummy variable to
capture any systematic differences between these
inventions and those assigned to multiple sub-
classes. A recent technology control accounts for
any differences in citation patterns for technolo-
gies closer to the ‘cutting edge’ (Katila, 2002);
we calculated this variable by averaging the patent
numbers of the prior art cited.18 Finally, we con-
trolled for the cumulative science stock in a field of
technology by calculating the percentage of patents
up to 1990 that cite a non-patent reference in the
same primary subclass as the focal patent. Table 3
presents the correlations between these variables,
as well as those of theoretical interest.

The results of the fixed effects negative bino-
mial models appear in Table 4. Model 1 provides
a baseline. After controlling for a variety of factors,
strong coupling generates an even stronger nega-
tive effect on citations than suggested by Figure 2.
Science clearly has a positive effect on citation
counts. The fact that this effect persists while con-
trolling for the science stock reveals that these
benefits accrue specifically to the patents drawing

17 Unreported models indicated that coupling actually decreases
the likelihood that a patent receives citations from other classes.
Hence, our measure of coupling does not appear to pick up the
breadth of application.
18 Because patenting occurs at a relatively constant rate, this
measure correlates at roughly 0.99 with the average age of the
patent’s prior art measured in terms of days.
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Table 3. Correlation matrix

Correlation
matrix

Cites Mean Priors Single Subclass Classes Trials Recent Science

Mean technology control 0.298
Number of prior art cites control 0.117 0.020
Single subclass dummy control −0.056 0.002 −0.065
Number of subclasses control 0.110 0.013 0.079 −0.288
Number of classes control 0.074 −0.021 0.063 −0.244 0.513
Number of trials control −0.028 −0.028 −0.007 0.448 −0.168 −0.143
Recent technology 0.208 0.377 −0.160 −0.005 0.066 0.044 −0.012
Reference to science 0.095 0.089 0.018 0.006 0.107 0.061 −0.012 0.146
Coupling −0.029 −0.057 0.017 0.194 −0.309 −0.275 0.364 −0.135 −0.178

Table 4. Negative binomial estimates of citation counts (5-year window, standard errors in parentheses)a

Model 1
baseline

Model 2 Model 3
10-year variable

Model 4

Mean technology control 0.246 0.245 0.212 0.246
(0.036) (0.036) (0.036) (0.036)

Number of prior art cites 0.015 0.015 0.015 0.015
(0.001) (0.001) (0.001) (0.001)

Single subclass dummy −0.186 −0.187 −0.201 −0.185
(0.036) (0.036) (0.036) (0.038)

Number of subclasses 0.027 0.027 0.029 0.027
(0.003) (0.003) (0.002) (0.003)

Number of classes 0.059 0.059 0.062 0.059
(0.009) (0.009) (0.009) (0.009)

Number of trials −0.000 −0.000 −0.001 −0.000
(0.001) (0.001) (0.001) (0.003)

Recent technology 0.316 0.316 0.290 0.316
(0.016) (0.016) (0.016) (0.016)

Science stock in subclass 0.083 0.085 0.073 0.083
(0.052) (0.051) (0.051) (0.052)

Cite to scientific publication 0.098 0.105 0.079 0.098
(0.022) (0.058) (0.052) (0.022)

Coupling 0.462 0.485 0.632 0.471
(0.071) (0.076) (0.079) (0.078)

Coupling2 −0.116 −0.136 −0.155 −0.121
(0.028) (0.030) (0.036) (0.032)

Coupling × cite to scientific publication −0.097 −0.023
(0.127) (0.125)

Coupling2 × cite to scientific publication 0.118 0.099
(0.049) (0.051)

Number of trials × coupling −0.000
(0.003)

Number of trials × coupling2 0.000
(0.001)

Constant −1.891 −1.893 −1.783 −1.894
(0.084) (0.085) (0.078) (0.085)

Fixed effects 363 Classes 363 Classes 363 Classes 363 Classes
Log-likelihood −33,619.4 −33,614.5 −33,571.3 −33,619.4
N 16,822 16,822 16,822 16,822

a Bold type indicates that the coefficient estimate differs signification from zero with 95% confidence.
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on science, rather than to all patents in a particu-
lar technological area. The primary test of the role
of science appears in Model 2; this model inter-
acts coupling with whether or not the patent cites
a journal in the Scientific Index. The interaction
significantly improves the model (χ2 = 9.8, d.f. =
2)19 and shows that while coupling has a non-
monotonic relationship with citations for patents
that do not cite science, the relationship remains
positive for patents citing science. Because of this
fact, the benefits to science increase with coupling:
at the mean level of coupling, patents that refer-
ence science receive 9.5 percent more citations
than those that do not; at one standard devia-
tion above the mean on coupling, the advantage
increases to 13.1 percent; and at two standard devi-
ations it reaches 20.3 percent. Model 3 tests the
robustness of our measure of coupling by substi-
tuting a measure based only on the 10-year window
preceding our sample rather than on the entire his-
tory of the U.S. Patent Office. The relationship
between science and the effects of coupling remain
the same.

Still, one might also ask whether scientific
knowledge influences the process of search in a
different manner from empirical knowledge (expe-
rience). Model 4 investigates this proposition by
interacting the number of trials—a measure of
the technological community’s experience with a
set of components—with coupling. The results
reveal that, unlike science, experience does not
mitigate the detrimental effects of high coupling,
strongly corroborating the notion that search with
the aid of science differs fundamentally from local
search. Unreported models also attempted interac-
tions, following Podolny and Stuart (1995), with
the number of prior art citations as an indicator of
local search; these models similarly failed to find
an interaction between local search and interde-
pendence.

If science helps inventors predict the results of
their recombinant search, it should also reduce the
variance of search outcomes—the uncertainty of
invention. Thus, we analyzed the residuals from
the negative binomial models to determine whether
science reduced the variation in the usefulness of
inventive outcomes. Table 5 presents ordinary least

19 Haberman’s (1977) chi-squared, two times the difference in
log-likelihoods, provides a test of the statistical significance of
the difference between two nested models.

Table 5. OLS analysis of absolute residuals (standard
errors in parentheses)a

Model 5

Citation count 0.967
(0.001)

Coupling 0.068
(0.007)

Cite to scientific publication −0.008
(0.013)

Coupling × cite to scientific publication −0.257
(0.022)

Constant −0.076
(0.006)

R2 0.99

a Bold type indicates that the coefficient estimate differs signifi-
cation from zero with 95% confidence.

squares estimates of the absolute value of the resid-
uals from Model 2.20 We included the number of
future citations in the model to account for the
relationship between the mean and the variance of
a count variable. As one would expect if science
helps direct inventors, science reduces the disper-
sion of outcomes as the degree of coupling rises.
At the mean level of coupling, the application of
science reduced variability by 6.5 percent; at one
standard deviation above the mean, this reduction
in risk increases to 9.0 percent.

Robustness checks

Some additional robustness checks appear in
Table 6. Models 6 and 7 examine the importance
of the definition of the dependent variable. In
particular, Model 6 excludes self-citations (when
the future citing patent belongs to the same
assignee) from the dependent variable. Self-
citations may differ in their meaning from citations
by competitors—notably Sørensen and Stuart
(2000) interpret self-citations as an indicator that
the organization’s patents may not fit the current
state of the market; thus, self-citations have an
ambiguous role as a measure of patent importance.
The results hold, however, even when excluding
self-citations from the dependent variable. Model
7 increases to 10 years the length of the future

20 In unreported analyses, we estimated the mean and variance
effects simultaneously, using the variance decomposition nega-
tive binomial (King, 1989). Simultaneous estimation produced
equivalent results. The variance decomposition negative bino-
mial, however, has the disadvantage of not being able to incor-
porate fixed effects; thus, we report the two-stage estimation.
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Table 6. Negative binomial estimates of citation counts (standard errors in parentheses)a

Model 6
no self-citations

Model 7
10-year citations

Model 8 Model 9
Selection

Mean technology control 0.256 0.135 0.248 0.242
(0.038) (0.028) (0.036) (0.036)

Number of prior art cites 0.014 0.015 0.015 0.014
(0.001) (0.001) (0.001) (0.001)

Single subclass dummy −0.181 −0.176 −0.188 −0.200
(0.038) (0.031) (0.036) (0.037)

Number of subclasses 0.029 0.024 0.026 0.027
(0.003) (0.002) (0.003) (0.003)

Number of classes 0.061 0.050 0.059 0.059
(0.010) (0.008) (0.009) (0.009)

Number of trials −0.000 −0.000 −0.000 0.000
(0.001) (0.001) (0.001) (0.001)

Recent technology 0.275 0.218 0.318 0.297
(0.016) (0.013) (0.016) (0.019)

Science stock in subclass 0.145 −0.013 0.068 0.087
(0.054) (0.045) (0.052) (0.052)

Cite to scientific publication 0.085 0.062 0.097 0.118
(0.062) (0.053) (0.022) (0.060)

Cite to non-scientific publication 0.106
(0.112)

Coupling 0.423 0.418 0.459 0.441
(0.080) (0.064) (0.072) (0.100)

Coupling2 −0.123 −0.121 −0.112 −0.109
(0.032) (0.025) (0.028) (0.035)

Coupling × cite to scientific publication −0.072 −0.016 −0.133
(0.136) (0.119) (0.127)

Coupling2 × cite to scientific publication 0.108 0.094 0.121
(0.053) (0.048) (0.047)

Coupling × cite to non-scientific publication 0.044
(0.254)

Coupling2 × cite to non-scientific publication −0.078
(0.112)

Selection (likelihood of citing scientific publication) −0.469
(0.239)

Selection × coupling 2.045
(0.609)

Selection × coupling2 −1.104
(0.403)

Constant −1.785 −1.304 −1.898 −1.837
(0.089) (0.069) (0.084) (0.091)

Fixed effects 363 classes 363 classes 363 classes 363 classes
Log-likelihood −31,411.3 −46,458.2 −33,613.9 −33,607.8
N 16,822 16,822 16,822 16,822

a Bold type indicates that the coefficient estimate differs signification from zero with 95% confidence.

citation window observed. If knowledge diffuses
at different rates across technologies, and these
rates correlate to the usage of science, this process
might influence our results. Regardless, our models
continue to show a non-monotonic relationship
between coupling and citations for patents that do
not cite a Scientific Index journal, and a strictly

positive relationship between coupling and future
citations for those referencing science.

One potential alternate explanation for these
results involves the diffusion of knowledge. Ref-
erences to non-patent sources might speed the
dissemination of information, allowing communi-
ties of practice to build knowledge more rapidly.
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This account implies that the mere act of pub-
lishing increases the flow of information, thereby
increasing citation rates. Model 8 tests this pos-
sibility directly by interacting the effects of cou-
pling with whether or not the patent references a
non-scientific publication.21 A reference to these
publications does nothing to mitigate the effect
of coupling, failing to support this account. The
diffusion story further suggests that references to
science should uniformly increase citations, rather
than primarily increasing citation rates for inven-
tions combining coupled technologies. Since the
citation to science main effect has no impact on
future citations, the models also fail to support this
account on that basis. Variation in knowledge dif-
fusion does not appear to account for our findings.

Another potential explanation for our findings
concerns the effort invested in solving the inven-
tive problem. Science may denote a greater level
of effort that proves particularly useful in the
face of difficult technological challenges. Although
we cannot measure effort directly, the number of
inventors may proxy for this factor.22 Nevertheless,
in both cases using and not using science, cou-
pling correlates negatively and significantly with
the number of inventors listed on the patent. The
evidence, therefore, suggests that we can dismiss
this alternative.

A more serious critique might contend that
patents that cite science differ in some other sys-
tematic way from those that do not. To investigate
this possibility, we first estimated a logistic regres-
sion of whether or not a patent cited a Scientific
Index journal (see Table 7). Even after control-
ling for differences across technologies using class
fixed effects (Model 11), these estimates reveal
some differences between those patents that ref-
erence science and those that do not. First, patents
that draw on science tend to come from highly
active research domains, as the positive and sig-
nificant coefficients for both the number of prior
art citations and the number of trials reveal. This
finding suggests that science does not differ from
non-science by identifying fundamental new com-
ponents. Second, patents drawing on science more

21 We coded any patent that referenced a journal not in the
Scientific Index (e.g., Time) or a non-technical corporate publi-
cation—usually a product catalog or advertisement—as having
a non-scientific reference because these publication types most
clearly do not involve the application of scientific theory.
22 Thanks go out to Riitta Katila and Steven Klepper for sug-
gesting this test.

likely come out of academia, though university
patents account for only a small proportion (4.8%)
of the total number of patents citing science in
our sample. Notably, the models fail to show that
science produces knowledge of any greater gener-
ality; neither the number of classes nor subclasses
has a significant relationship with the use of sci-
ence in the invention process. In Models 12 and 13,
we compared the factors that predict a citation to
science to those that correlate to university own-
ership (Model 12) and citations to non-scientific
references (Model 13).

Though this analysis increases our confidence
that non-patent references to the scientific lit-
erature capture a connection to science, it also
reveals one difference that requires further inves-
tigation: patents that cite science exhibit lower
coupling. Our theory actually accommodates this
fact. Because we measure coupling as a function
of the history of recombination, the prior appli-
cation of scientific knowledge in a technologi-
cal domain should facilitate prior recombination,
thereby lowering the observed coupling score. One
might worry, however, that this correlation rep-
resents some other type of selection rather than
an unfortunate (but necessary) weakness in our
measure of coupling. To test the possible influ-
ence of this selection on our models, we created a
selection term from the logistic regression results
(Model 10) representing the probability that each
patent would cite science given its characteris-
tics.23 We then interacted this selection parameter
with the coupling score and its quadratic term to
determine whether selection effects might account
for our previous findings. The results—see Model
9—demonstrate that the effects of science remain
robust even after explicitly accounting for potential
selection issues.

DISCUSSION

The results provide strong evidence that the returns
to science depend on the difficulty of the inventive

23 The logic for this specification follows that of a Heckman
selection model. The application period —the number of years
between the application and granting of the patent—allows us to
identify the procedure. Although this factor positively relates to
both university assignees and the likelihood of citing science, we
have no reason to expect that it would influence the number of
future patents that would cite the focal patent following the grant
date and the lack of correlation (r = 0.02) between application
period and future cites supports this notion.
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Table 7. Logit models of the correlates of citing scientific and non-scientific publications and of university ownership
(standard errors in parentheses)a

Model 10
cite science

Model 11
cite science

(fixed effects)

Model 12
university

Model 13
cite non–science

Number of prior art cites 0.035 0.041 0.009 0.057
(0.003) (0.003) (0.008) (0.003)

Single subclass dummy −0.041 −0.097 0.322 0.055
(0.100) (0.106) (0.246) (0.144)

Number of subclasses 0.013 0.010 −0.031 0.015
(0.008) (0.009) (0.022) (0.012)

Number of classes −0.028 0.015 0.175 −0.020
(0.029) (0.031) (0.078) (0.042)

Number of trials 0.004 0.004 0.005 0.001
(0.002) (0.002) (0.003) (0.002)

Recent technology 0.296 0.028 0.164 −0.345
(0.047) (0.053) (0.141) (0.052)

Science stock in subclass 5.594 4.806 3.010 1.830
(0.122) (0.159) (0.300) (0.176)

Application period 0.113 0.071 0.109 0.008
(0.022) (0.023) (0.053) (0.032)

Coupling −0.613 −0.297 −0.401 0.171
(0.100) (0.127) (0.283) (0.126)

University dummy 0.921 0.900 −0.324
(0.137) (0.169) (0.287)

Cite to non-scientific publication 0.274 0.538 −0.115
(0.092) (0.097) (0.289)

Cite to scientific publication 1.004 0.116
(0.166) (0.095)

Constant −4.253 −6.415 −2.518
(0.122) (0.632) (0.233)

Fixed effects None 249 Classes None None
Log-likelihood −5743.1 −4976.3 −1021.0 −3392.7
N 16,822 14,778b 16,822 16,822

a Bold type indicates that the coefficient estimate differs signification from zero with 95% confidence.
b 2,044 cases drop out of Model 11 because they belong to classes in which none of the patents cite science.

problem being addressed. When inventors work
with relatively independent components, science
offers little or no advantage. On the other hand,
science can allow inventors recombining highly
coupled components to avoid the difficulties inher-
ent in local search on a rugged landscape. Though
the size of this effect may appear modest, a 10
percent increase in citations at the mean level of
coupling, it likely corresponds to a much larger
economic benefit. If the exponential relationship
between citations and economic value found by
Harhoff et al. (1999) for German patents holds in
the U.S. market, this 10 percent increase in cita-
tions would correspond to a 214 percent increase in
economic value.24 At one standard deviation above

24 Harhoff et al. (1999) find the following relationship for value:

Dollars = 1 000 000 e

(
ln cites−2.076

0.119

)
.

the mean of coupling, the expected value of apply-
ing science would increase the average value of a
patent by 281 percent, at two standard deviations,
473 percent. Hence, the economic value of science
may increase considerably with the difficulty of the
inventive problem.

A more nuanced consideration of the results
allows us to investigate which proposed mech-
anisms likely play the most important roles in
generating this effect. The results do not, how-
ever, allow us to rule out any of the mechanisms
through which science might influence the search
process of invention. As one would expect if sci-
ence either points inventors more directly to the
most useful configurations of components or sim-
ply allows them to avoid swaths of less productive
solution space, science increases the average use-
fulness of more tightly coupled inventions (see
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Tables 4 and 6). Moreover, the strong effects that
science has on reducing the variance in inven-
tive outcomes using coupled components suggests
that science operates more by leading inventors
directly to useful outcomes (see Table 5); reducing
the solution space would have a relatively weak
effect on the unpredictability in outcomes because
even the ‘best’ regions of rugged landscapes still
have highly varied terrain. Inconsistent with this
direct link, however, inventors calling on science
appear to work in regions with more search activ-
ity. Both Models 10 and 11 indicate that inven-
tions that call on science work with components
that have been recombined more frequently in the
past, whereas a direct path to the best combina-
tions should reduce the number of iterations. This
finding suggests that science also aids invention by
providing researchers with motivation to continue
searching in a particular direction despite negative
feedback.

These two mechanisms, one directing research-
ers to the most useful regions of space, the other
encouraging them in the face of failure, likely com-
plement each other in the process of inventing
with coupled components. Even in areas with well-
developed science, inventors often do not have
sufficient knowledge to predict all of the interac-
tions that might occur among a highly coupled set
of components. Hence, even after embarking on
the right path, they must typically engage in trial-
and-error learning (probably through local search)
to fill in these missing pieces. Many qualitative
accounts, such as Fleming’s (2002) history of ink-
jet printing, point to just such an interaction.25

Nucleation physics greatly enhanced the inven-
tors’ understanding of the fundamental processes
underlying the formation of ink bubbles, but they
still went through hundreds of iterations between
science and empirical search to find the right com-
bination of materials to produce consistently high-
quality printing. As in this case, science likely
operates through multiple mechanisms in improv-
ing inventive outcomes.

Science may even influence the shape of techno-
logical innovation along other dimensions beyond
the process that inventors use in recombining com-
ponents. For example, science might aid in the dis-
covery of new components (Smith and Hounshell,
1985). Although the recombination of elements
implies that the potential number of inventions

25 Rosenberg (1974) offers several additional examples.

expands very rapidly with the number of funda-
mental components (Weitzman, 1996), completely
new components must obviously arise from some-
where. Some exogenous process might govern
these arrivals, but science may also stimulate tech-
nological progress by identifying new fundamental
components for recombination. Though outside the
scope of our analysis, it seems interesting to note
that of the 442 patents excluded from our analysis
because they had no prior art, 46 percent reference
a scientific journal article (vs. 17% in the sample
as a whole).

Regardless of the particular mechanisms, the
differential returns to the application of science
likely influence when inventors call on science and
when they do not. Although the analysis of when
non-patent science references appear on a patent
suggests that these patents involve the recombi-
nation of less coupled elements (see Models 10
and 11), this result likely arises as an artifact of
the calculation of our coupling measure. We esti-
mated coupling by observing the historical ease
of recombining patent subclasses. If researchers
have used science in the past to facilitate the use
of this component, this practice would bias our
coupling measure downward (indeed, the stock of
science in a particular subclass correlates nega-
tively, r = −0.28, with its observed difficulty of
recombination). The effects of the selection terms
in Model 9 corroborate this notion; the types of
patents on which science references appear exhibit
larger marginal effects to coupling. Hence, inven-
tors appear to use science most frequently in those
domains that, because they work with highly cou-
pled components, offer the greatest returns to its
application. To some degree, then, variation in
the application of science across industries likely
stems from the types of inventive challenges par-
ticipants in these sectors face.

These results extend prior research on the link
between science and innovation. Much of the
existing work of the role of science in stimulat-
ing technological advance investigates the research
and patenting activities of universities, identifying
such features as changes in federal law,26 the

26 Prior to 1980, the property rights to the results of research
funded by government grants belonged to the federal govern-
ment. Thus, university researchers funded by federal grants had
little incentive to apply for patents. The Bayh-Dole Act, passed
in 1980, eliminated this provision and allowed researchers to
retain the property rights to federally funded research.
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establishment of university offices for technol-
ogy transfer, and increased industry funding of
university research as factors influencing the pro-
pensity of universities to patent (Henderson et al.,
1998; Mowery and Shane, 2002). Much of the
application of science, however, occurs outside the
university; in our sample, only 4.5 percent of the
patents referencing an article in the Scientific Index
had university assignees. Though private firms also
face incentives to use science (Cockburn et al.,
2000), most prior research has failed to address
the question of how these incentives might vary
systematically according to the firm’s technology.
By focusing on precisely how science might aid
inventors, this research identifies one technologi-
cal factor—the difficulty of recombining coupled
components—that appears to influence the poten-
tial returns to the application of science.

Our findings also inform research on complex
systems—particularly research applying Kauff-
man’s NK model to the social sciences. Kauff-
man’s model predicts a non-monotonic relation-
ship between coupling and the outcomes of local
search. When actors do not use science—and pre-
sumably therefore engage in local search—the
results conform closely to Kauffman’s expecta-
tions. Nevertheless, our results clearly show the
inapplicability of this model to situations in which
the searchers have some understanding or cogni-
tive model of the landscape they search; inven-
tors following science do not behave like local
searchers. Thus, researchers wishing to apply the
NK model to cognitively aware agents should
revisit the model and modify it to account for
the search heuristics that people actually use (cf.
Gavetti and Levinthal, 2000; Rivkin, 2000).

For the individual inventor, the policy impli-
cations seem straightforward. Science offers lim-
ited benefits to inventors working with modu-
lar components—given the cost of searching and
digesting the scientific literature, the price tag
for using science likely exceeds its benefits for
those working with uncoupled components. In
contrast, science offers large potential rewards to
inventors operating with highly coupled compo-
nents. Without science, inventors that search these
landscapes must rely on exhaustive search tech-
niques. Although inventors could focus resources
on developing methods for testing large numbers
of combinations cheaply, efforts along these lines
have met with limited success; for example, com-
binatorial synthesis strategies remain problematic,

as demonstrated by the recent controversy in drug
discovery over the effectiveness of combinatorial
chemistry and high-throughput screening (Drews,
2000). An understanding of the forces creating
these interactions through the development of basic
science offers an attractive means for accelerating
invention in these highly coupled technologies.

In conclusion, we wish to reiterate that this paper
proposed and tested one explanation for why the
returns to the application of scientific knowledge
to invention might vary across technological fields.
In particular, by envisioning invention as a process
of searching through combinations of technologi-
cal components for new and useful configurations,
we argue that science acts like a map—providing
inventors with a sense of the underlying tech-
nological landscape they search—thereby allow-
ing them to avoid the difficulties inherent in try-
ing to combine highly coupled components. Our
results demonstrate that scientific knowledge mit-
igates the negative effect that coupling typically
has on the outcomes of invention. In doing so,
this research elaborates the more proximate role
that science plays in technological advance and
how it influences the rate and quality of invention.
Thus, it brings a somewhat more nuanced view of
the benefits of science in stimulating technologi-
cal advance, and with it economic growth, to the
already extensive literature on the subject.
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