
Articles

WINTER 2014   47Copyright © 2014, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Science Autonomy for 

Rover Subsurface Exploration 

of the Atacama Desert

David Wettergreen, Greydon Foil, 

Michael Furlong, David R. Thompson

R
obotic explorers communicate only intermittently

with scientists because of limited opportunities for vis-

ibility by Earth-based antennas and the growing num-

ber of spacecraft needing attention. The data rate of deep

space communication is also very limited. Autonomy can

signiWcantly improve science productivity in intervals

between communication opportunities. In particular, sci-

ence autonomy employs on-board analysis to make deci-

sions affecting the scientiWc measurements that will be col-

lected or transmitted.

We deWne science autonomy as using information about sci-

ence objectives and interpretation of science instrument

data to determine rover actions. Science autonomy encom-

passes detection and intelligent selection of measurements

and samples, automatic acquisition of measurements. This

includes automated approach and instrument/tool place-

ment as well as calibration and veriWcation, meaning col-

lecting the intended measurement or sample. Intelligent col-

lection of scientiWc measurements can increase both the

quantity and quality of information gathered. Science

autonomy describes utilizing scientiWc information to guide

rover actions, for example, to execute an intelligent survey

n As planetary rovers expand their capabili-

ties, traveling longer distances, deploying

complex tools, and collecting voluminous sci-

entiAc data, the requirements for intelligent

guidance and control also grow. This, coupled

with limited bandwidth and latencies, moti-

vates on-board autonomy that ensures the

quality of the science data return. Increasing

quality of the data requires better sample

selection, data validation, and data reduc-

tion. Robotic studies in Mars-like desert ter-

rain have advanced autonomy for long-dis-

tance exploration and seeded technologies for

planetary rover missions. In these Aeld exper-

iments the remote science team uses a novel

control strategy that intersperses preplanned

activities with autonomous decision making.

The robot performs automatic data collection,

interpretation, and response at multiple spa-

tial scales. SpeciAc capabilities include instru-

ment calibration, visual targeting of selected

features, an on-board database of collected

data, and a long-range path planner that

guides the robot using analysis of current sur-

face and prior satellite data. Field experi-

ments in the Atacama Desert of Chile over the

past decade demonstrate these capabilities

and illustrate current challenges and future

directions.
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Figure 1. Zoë in the Atacama Desert.

or mapping strategy that adapts as data is collected.

Decisions about which samples to acquire and where

and when to travel next can be based upon metrics of

information gain. Similar metrics can also be used to

prioritize science data for download. Intelligent com-

pression strategies use knowledge or models of con-

tent to interpret and summarize in a compact form.

The ultimate goal of science autonomy is to embody

sufWcient understanding, quantiWed by models and

metrics, so that rovers can independently choose

actions that best support the scientiWc investigation

in which they are engaged. Rovers will take their

goals and guidance from scientists, but when isolat-

ed they should make scientiWcally rational decisions

and when in communication they should provide

the most relevant information possible.

Science autonomy is especially valuable for surface

rover operations because missions have Wnite lifetime

and rarely revisit sites after the Wrst encounter — the

rover must make good decisions and get it right the

Wrst time. Recent demonstrations on spacecraft show

increasingly sophisticated science autonomy capabil-

ities. Milestones include target tracking during the

Deep Impact comet Xyby (Mastrodemos, Kubitschek,

and Synnott 2005); target detection and response by

the Mars Exploration Rovers (Castaño et al. 2008;

Estlin et al. 2012); and spectral detection, discovery,

and mapping by the EO-1 spacecraft (Chien et al.

2005; Davies et al. 2006; Doggett et al. 2006; Ip et al.

2006; Thompson et al. 2013). At the same time, new

smart instruments are beginning to incorporate

autonomous science data analysis directly (Wagstaff

et al. 2013) and provide information that can be used

to guide the rovers’ targeting and operation.

These techniques and others will enable surface

rovers to achieve multiday autonomous operations.

Currently multiday rover plans do not travel over the

horizon of yesterday’s imagery, which limits the dai-

ly science yield. However, rover navigation already

permits safe over-the-horizon traverses, and in prin-

ciple a rover could autonomously survey large areas

of terrain with its full suite of instruments. In one

natural arrangement, operators would direct the

rover using waypoints determined from satellite

images, relying on rover autonomy for low-level haz-

ard avoidance and science target selection en route.
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A robot could even divert its path slightly to pursue
science targets of opportunity (Woods et al. 2009).
Multiday plans could therefore make very efWcient
use of communications and personnel resources,
enhancing long-distance survey missions.

The Life in the Atacama project is a NASA-spon-
sored effort to evaluate these techniques in the con-
text of desert subsurface biogeology (Cabrol et al.
2007). It uses Zoë (Wettergreen et al. 2008), a rover
capable of traveling more than 10 kilometers per day
and autonomously drilling up to 0.7 meter depth
(Wgure 1). As a mobility platform it combines navi-
gational autonomy with a changing payload of on-
board science instruments. Previous investigations
have used a Xuorescence imager capable of detecting
very speciWc organic compounds and neutron detec-
tors to measure hydrogen abundance. The current
conWguration incorporates a Raman spectrometer, a
visible near infrared point spectrometer, and naviga-
tion and science cameras. During a series of experi-
ments in the summer of 2013, scientists guided Zoë

remotely through the desert while exploring its geol-

ogy and biology.

This article describes the science autonomy system

developed and tested with Zoë. It performed auto-

matic acquisition of visible/near infrared (Vis-NIR)

reXectance spectroscopy throughout the 2013 Weld

season. This involved a range of different auton -

omous decisions exercised at various spatiotemporal

scales. We begin by describing the rover platform and

instrument payload. We then discuss instrument self-

calibration, science feature detection, and targeting

capabilities. We describe larger-scale path planning

used to select informative paths between waypoints.

We also detail the operational protocols used to com-

mand the rover and the results of its autonomous

data collection. These experiments provide a case

study of science autonomy deployed continuously

over long distances. We report on system perform-

ance, lessons learned, and plans for future develop-

ment.

Figure 2. Locales Visited During the 2013 LITA Field Season.
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Figure 3. Examples of the Different Data Products.

Top: Landsat image used in traverse planning. Bottom: Geologic classiWcation map derived from ASTER data.
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Rover Platform, Instruments, 
and Operations

In typical Weld work, rover operations follow a daily

cycle in which a remote science team reviews the pri-

or data, decides the next day’s navigation waypoints

and measurements, and then sends these commands

to the rover over a satellite link. This is similar to the

sporadic communications of a planetary mission.

The rover then executes its commands over the

course of the subsequent day. In the Atacama cam-

paign, typical command cycles for Zoë cover 5–10

kilometers per day. Figure 2 shows the entire traverse

path: red dots show locations for imaging and spec-

tral data collection, while white paddles indicate sites

of particular interest where more in-depth study is

performed.

Scientists determine the waypoints for the next

day using geologic and compositional maps pro-

duced from orbital remote sensing data. Here the

ASTER instrument proves particularly useful: its

images have a spatial resolution of 15 meters (visible)

and 30 meters (SWIR), making them capable of

resolving details such as isolated rock outcrops.

While the three visible and six SWIR bands are not
sufWcient to conclusively identify mineralogical
composition, they do help discriminate the princi-
pal units of surface material and suggested represen-
tative sites to visit.

Figure 3 shows examples of the different data
products: a Landsat image with three visible bands
reveals terrain morphology and desirable outcrops,
and a multiband ASTER image provides a rough clas-
siWcation of mineralogical units.

The rover itself is capable of driving more than 10
kilometers per day on challenging desert terrain
(Wettergreen et al. 2008). On-board obstacle avoid-
ance uses three-dimensional geometry from stereo
imagery to identify hazards above the ground plane
and plan local drive arcs that go around them (Wgure
4). Figure 5 shows the robot and the components
used by its science autonomy system. A pair of for-
ward-facing navigation cameras provide hazard
avoidance capability through a local path planner.
The vertical drill structure delivers subsurface soil to
a microscopic imager and a Raman spectrometer
inside the rover. Analyzing the drill samples takes an
hour or more, so these are deployed judiciously at
speciWc locations. However, we found that autono-

Figure 4. Hazard Avoidance.



my could play a role in improving the science data

collected by the Vis-NIR spectrometer. The spectrom-

eter is a modiWed Analytical Spectral Devices Field-

spec Pro that acquires radiance spectra from 0.4–2.5

micrometers at 0.001 micrometer resolution, housed

in the rover body and connected by a Wber optic

cable to a foreoptic telescope mounted on a pan-tilt

mechanism. The foreoptic provides a 1 degree  Weld

of view, and can be directed at speciWc targets in the

environment. Its Weld of regard spans a full 360

degrees azimuth and 90 degrees elevation. A colocat-

ed camera provides visual context to interpret the

spectra.

Zoë’s Vis-NIR reXectance data overlaps in wave-

length with ASTER orbital images; it is a more spa-

tially  and spectrally reWned version of the satellite

data. By visiting distinctive terrain units of Wgure 3,

analysts can reWne the remote view with detailed

spectral information and speciWc mineral absorption

features. In this manner the Vis-NIR data serves as

both a validation of the orbital data and a means to

better interpret the mineralogical constraints and

context for biogeology studies. Each session of Vis-

NIR acquisitions begins with the rover calibrating its

instrument for temperature, solar geometry, and

atmospheric conditions using a white reference tar-

get mounted on the rover deck (Wgure 5 inset).

Dividing the radiance from the target by the refer-

ence measurement produces reXectance data of the

form shown in Wgure 6. These spectra were acquired

at locations indicated in the adjacent panoramic

camera subframe, from a distance of approximately 2

meters. The reXectance values represent the fraction

of light reXected at each wavelength; more speciWc
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Figure 5. The Main Components of Zoë’s Vis-NIR Spectrometer System. 

A Raman spectrometer inside the rover measures pulverized samples from the subsurface drill.



formulations are possible (Schaepman-Strub et al.

2006), but we will use reXectance here in the ordi-

nary Lambertian sense. This assumption should gen-

erally hold for the geologic materials of interest. Note

that the light-colored sediment area in spectra I-III is

associated with a higher average reXectance, as well

as unique spectral features such as the dip near 2

micrometers. These spectra were smoothed using

local linear regression, but some lingering noise

spikes at longer wavelengths evidence the lower sig-

nal level in these spectral regions.

Science Autonomy Methods

Zoë’s science autonomy system includes two basic

capabilities that operate on mesoscale and

macroscale features respectively. Smart targeting can

identify science features in rover navigation imagery

and use this information to point the Vis-NIR spec-

trometer. Adaptive path planning navigates on scales

of tens or hundreds of meters, using satellite images

to select waypoints with distinctive or novel spectra.

We describe each of these techniques in turn.

Smart Targeting

Zoë began each autonomous target selection process

by acquiring a navigation camera image. On-board

image processing then analyzed the scene to Wnd

large contiguous regions of a desired terrain class.

Typically these classes were rough surface features

like rock outcrop or bright sediment patches with

distinctive spectral signatures. Upon Wnding a feasi-

ble target, the rover recalibrated its Vis-NIR spec-

trometer, pointed at the feature, and collected a

small 3 x 3 raster of spectra centered on the target of

interest. For context, it also acquired a high-resolu-

tion color image of the scene.

The image analysis used a random forest pixel clas-

siWcation system described in previous work (Foil et

al. 2013; Wagstaff et al. 2013) and adapted to the

Atacama environment. This supervised classiWcation

method learns a mapping from local pixel intensities

to the surface class of that pixel. The model is instan-

tiated as an ensemble of decision trees trained in

advance. At run time, the rover tested each pixel in

the new image and averaged the classiWcation of

each tree in the ensemble. The end result was a clas-

siWcation map of the entire image, along with asso-

Articles

WINTER 2014   53

II II

I

III

IV

V

0.5

0.45

0.4

0.35

0.3

R
e
fl
e
c
ta
n
c
e

0.25

0.2

0.15

0.1

0.05

0
0.5 1 1.5 2 2.5

Figure 6. Panoramic Camera Subframe.

Dive spectrometer Welds of view (PP24), and associated reXectance spectra.



ciated class posterior probabilities. By subsampling

each image by a factor of four prior to classiWcation,

processing time was less than a second on Zoë’s on-

board laptop-scale CPU.

After image classiWcation, connected components

analysis was used to identify contiguous targets. The

rover then promoted the single largest target of the

desired class for followup data collection. For each

target, a center pixel was determined using the

largest inscribed circle heuristic (Estlin et al. 2012)

and transformed to a pan-tilt angle using the

assumption of a planar terrain surface. Use of navi-

gation camera stereo data would identify a true three-

dimensional position and enable more sophisticated

kinematic solutions. Here we relied on an approxi-

mate planar solution coupled with rastering to

ensure that an inaccurate pointing would still cap-

ture the target in at least one of the Vis-NIR spectra.

Scientists developed several different ways to

incorporate this capability into multiday rover oper-

ations. The Wrst approach was a target check used in

the middle of long traverses. This only deployed the

spectrometer if a feature of interest was found at the

check point. If there was no feature in the rover’s

Weld of view, it would carry on without spending the

time to calibrate and deploy its spectrometer. In this

fashion, Zoë could cover long distances without

spending undue time on bare or uninteresting ter-

rain. This strategy was also useful near the boundary

of geologic contacts where the precise location was

uncertain. A second strategy involved a paired

panorama that acted as a supplement to a com-

manded Vis-NIR spectral raster. Here the rover com-

mitted all time resources in advance. It calibrated its

spectrometer and acquired data in columns of Wve

spectra spaced at 10 degree increments directly in

front of the robot and to either side. This provided a

representative sampling of the terrain comprising the

rover’s current ASTER pixel. It then augmented this

dataset with a 3 x 3 raster centered on any target of

interest. Together, these two products gave a better

insight than either taken individually. They met the

dual needs of having representative spectra as well as

capturing distinctive (outlier) features.

Adaptive Path Planning

The science autonomy system also operates on larg-

er scales of tens or hundreds of meters, where it ana-

lyzes satellite data to adjust its traverse path. We

model the explored environment using a standard

geographic or area mixing model where each meas-

urement is a mixture of a small number of end-mem-

ber materials. End members’ spectra combine in pro-

portion to their physical extent on the surface. Most

scenes contain just a few end-member spectra, and

any measurement x can be reconstructed with appro-

priate constituents and mixing fractions. For a scene

with m end members we deWne the mixing fractions

to be vectors ϕ ∈ Rm. More generally we can model a

spectral image using a linear combination of library

spectra given by a d x m matrix Y. This gives the rela-

tionship x = Y ϕ.

In practice there is always residual error separating

the reconstruction from the measurement. This is

partly attributable to measurement noise, but unless

the library is comprehensive there may also be

incompleteness errors (for example, spectral features

that are expressed in the observations but not present

in the library). A library that reconstructs all spectra

well can be said to have explained the scene, and pro-

vides insight into the mineral compositions in the

remote sensing data. This intuition provides a Wgure

of merit for an adaptive path-planning system to

select future measurement locations. Zoë’s planner

selects locations, the measurements at which, when

used to augment the collected library Y, provide the

largest expected reduction in unmixing error. The

planner aims to visit locations that are spectrally dis-

tinctive, collecting samples that fully explain the

orbital image.

In detail, we begin with a space of candidate meas-

urement locations L. The robot collects a library of

spectra by sampling at sites B = {b : b ∈ L }. We deWne

a stochastic measurement function, y = f(b) + ε with

Gaussian-distributed measurement noise ε, that

yields spectral measurements Y = {yi : yi ∈ Rd, 1 ≤ i ≤

m}. Together the observations form a spectral library,

a random m x d matrix written YB. Good measure-

ments reduce the total reconstruction error for select-

ed remote sensing observations given by X = {xi : xi ∈

Rd, 1 ≤ i ≤ n}. We impose a resource cost C(B) to rep-

resent limited time, power, and bandwidth; it must

not exceed a total budget β. For simplicity we will ini-

tially ignore the cost of point-to-point travel.

We deWne a risk function as the expected recon-

struction error incurred from unmixing the remote

images with the library of spectra collected at the

surface:

(1)

Here we are taking the expectation over the rover’s

observation matrix, which is a random variable.

Computing this expectation is analytically challeng-

ing, so instead we solve the related problem:

(2)

The linear geographic mixing assumption allows us

to infer the expectation E[YB] since in situ spectra

combine in proportion to their extent on the surface.

Due to geographic mixing we can directly substitute

the remotely observed spectra as the expectated

observations. We rewrite the objective function using

remote measurements at sites B, written XB:

R(B) = E min
φ

Y
B
φ −x

2
x∈X

∑










            for φ ≥ 0, C(B) ≤ β

arg min
B
= min

φ
X

B
φ −x

2
x∈X

∑

                  for φ ≥ 0,C B( ) ≤ β
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(3)

This allows direct computation of the objective for

any candidate set of measurement locations.

As the robot begins to collect spectra, some ele-

ments of E[Y]  become observed. The matrix ZA rep-

resents the library of spectra collected at previous

locations A = {a : a ∈ L.}. These measurements are a

realization of YA, and can be substituted into the

expectation as the library of in situ spectra grows.

Consequently the library used for unmixing consists

of (1) the actual spectra collected at previous locations

concatenated with (2) the expected spectra collected

R B A( ) = min
φ

X
B
φ −x 2

x∈X

∑

               for φ ≥ 0,C B( ) ≤ β

at the future candidate locations. The objective is:

(4)

To summarize, this Wnal form reXects the key ele-

ments of Vis-NIR surface exploration: the overall

goal of an accurate model using a handful of spectra,

reXected in the squared error term; the physical

behavior of geographic mixing, which appears as a

positivity constraint; and the overall path-length

budget β representing Wnite rover energy and time

resources.

Figure 7 portrays the planning process. Here the

robot has collected two spectra to form its library ZA.

R B A( ) = min
φ

Z
A
X

B[ ]φ −x 2

x∈X

∑

               for φ ≥ 0,C B( )+C A( ) ≤ β
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Figure 7. Formulation of Adaptive Path Planning.



It calculates the expected risk of a candidate path

using remote sensing data at locations XB as a proxy

for future measurements. In this manner, it can

greedily (or nonmyopically) construct an optimal

path. For our tests, the path planning was purely

greedy; we added waypoints one by one, inserting

them into the optimal location in the waypoint

sequence and stopping when the total Euclidean

path cost was exceeded.

During the Atacama Weld season we deWned a

budget deWned in terms of path length, typically pro-

viding 1.5 times the straight-line distance to the goal.

The time cost could be signiWcant for longer travers-

es, particularly including the cost of the spectral

measurements at intermediate waypoint. For this rea-

son, most navigation actions were driving com-

mands with adaptive navigation actions at particular

regions of special interest. When it encounters a sci-

ence waypoint in the plan, the science path-planning

software Wnds the complete interpolating path that

minimizes spectral reconstruction error of the nine-

band ASTER image. It drives to the next intermediate

waypoint along that path, collects a spectrum of the

terrain, and replans the remainder using whatever

path budget remains. That remainder becomes the

next science plan, which is further reWned in addi-

tional planning rounds as the rover progresses for-

ward. In this fashion, the science planner can be ful-

ly stateless and react to new data encountered during

the traverse.

Figure 8 shows the beneWt of science-aware path

planning in a simple simulation. We simulate a vir-

tual rover traversing the famous Cuprite, Nevada,

mining district, which is known for containing many

distinctive spectral features of interest in highly

localized outcrops (Swayze et al. 1992). Here we

planned rover paths using orbital ASTER data, simu-

lating 256 trials with random start and end points

within the scene. We also simulated high-resolution

in situ acquisitions using coregistered data from the

Airborne Visible Near Infrared Spectrometer (AVIRIS)

(Green et al. 1998).

The comparison considers four different strategies

to Wll the path-length budget: a random path, which

bends the path toward randomly selected intermedi-

ate waypoints; a direct path, which begins with a

straight line and then adds ”wiggles” until the total

length is reached; an unconstrained adaptive

approach that minimizes equation 3 but without the

positivity constraint; and an adaptive approach that

enforces positivity of mixing fractions. We recom-

puted the reconstruction error for every trial by

applying nonnegative least squares to the collected

high-resolution spectra. Figure 8 shows each

method’s performance with a box indicating the

median and quartile of the data and the whiskers

indicating the extrema. Both adaptive methods sig-

niWcantly outperform the nonadaptive approaches,

with the constrained adaptive method performing

best of all. This performance boost happens because

only the adaptive systems actively pursue the isolat-

ed outcrops with unique mineralogy.

On-board the real rover, a low-level control system

is required to travel safely between these features of

interest. Consequently, Zoë has on-board navigation

software to turn high-level science waypoints, spaced

on the order of tens or hundreds of meters, into low-

level vehicle actions like drive arcs. It uses a software

suite known as the Reliable Autonomous Surface

Mobility (RASM) package (Wettergreen and Wagner

2012) capable of local hazard avoidance and path

planning using a three-dimensional terrain represen-

tation. RASM extracts a cloud of three-dimensional

points from the stereo cameras, orients these points

relative to previously collected data, and builds a tri-

angulated mesh. An A* search algorithm projects

drive arcs across this mesh to compute the cost of

local control actions. On longer scales, graph search

identiWes the best path to the next waypoint. RASM

retains knowledge of the topology relating observa-

tion locations to their neighbors, permitting efWcient

loop closure and pose estimation over long distances.

Field Season Results

We engaged smart targeting during three days of rover

operations. Table 1 shows the performance for typical

targets during these traverses. Columns indicate the

day (Sol) of operations; the action sequence number,

with TC indicating a target check, PP a paired panora-

ma, and AT a more speciWc planned data collection

activity; the analysts’ post hoc interpretation of the

feature that was found; and two columns indicating

whether the result was a reasonable science target and

whether the pointing was accurate. Pointing accuracy

was evaluated based on the context image collected

with each spectrum, allowing it to be placed within

the navigation camera image.

Overall, target selection performed reliably. The

majority of targets were either rocks or patches of dis-

tinctive sediment. The only arguable failure was

when the system identiWed a distant car that fell into

the rover Weld of view. The pointing solution was

slightly less reliable, since our groundplane assump-

tion tended to break down at the periphery of the

navigation camera image near the horizon.

Occasionally very distant targets would result in

the rover aiming its spectrometer too far into the dis-

tance. Only one scene was totally featureless — an

empty plain — and in this case the rover detected no

targets and successfully abstained from spending any

time resources.

Figure 9 shows several images from the real-time

classiWcation. Here the system was trained to recog-

nize rocks and high albedo soil patches, and it suc-

cessfully Wnds these features. In the center column, a

red overlay represents the surface labeled as the

belonging to the target class. The black rectangles
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show the Weld of view of the high-resolution follow-

up image collected by the mast-mounted camera

(right column). Each follow-up image is accompanied

by a 3 x 3 raster of spectra. Even when the target selec-

tion was successful, we did not notice a signiWcant dif-

ference between the on- and off-target spectra. This

may be attributed to low signal to noise. Alternative-

ly, these features may have spectral signatures that

were very similar to the background substrate.

We deployed the adaptive navigation system suc-

cessfully in two instances during the 2013 Weld cam-

paign. Near the end of the Weld season the rover vis-
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Figure 8. Adaptive Path-Planning Performance, in Simulation.

Sol Action SR Target Found Target Valid? Pointing Accurate? Notes 

12 TC30 122 Rocks OK OK  

 TC31a 123 Foreground rock OK OK  

 TC31b 125 Foreground rock OK OK  

 TC32 128 Rock pile, sediment OK OK  

13 AT-13-09 172 Disturbed rocks and sediment OK OK  

 PP22 166 Distant rock patch OK BAD 1 

 PP23 160 Distant rock patch OK OK  

 PP24 154 Foreground rocks OK OK  

 PP25 148 Foreground rocks OK OK  

 TC34 158 Foreground sediment patch / rocks OK OK  

 TC34-recon 132 None OK n/a 2 

 TC41 170 Rocks OK BAD 3 

 TC42 164 Distant rock patch OK BAD 4 

14 AT-13-10 190 Car BAD BAD 5 

 PP19 216 Foreground Rock OK OK  

 TC40 183 Rock patch OK OK  

Table 1. Target Detection Results from Playa Exploration Phase. 

1: Aims too high for distant targets. 2: No target in scene. 3: Targeted feature not the largest rock. 4: Very distant feature. 5: Cars in frame.



ited a playa — a dry lakebed approximately 2 kilo-

meters in length that was spectrally distinctive from

the surrounding terrain (Wgure 10). Figure 11 shows

a typical round of adaptive path planning near the

playa edge. Here the playa is visible as a bright area in

the lower right of the overhead satellite image. The

large pixels represent 15-meter ASTER data. Here

Zoë’s planned path, in blue, diverts to sample the

spectrally distinctive playa surface. The path

changed only slightly in subsequent replanning as

the rover visited each waypoint and incorporated the

new spectra into its solution.
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Figure 9. Examples of Targets Detected in Midtraverse, and Associated Followup Images.

Playa 

start 

end

Sediment / Rock 

Figure 10. A Composite of Rover Images Showing the Playa Where Adaptive Navigation Was Evaluated.
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A 

B 

C 

D 

Original image Detected targets Followup image 

Figure 11. Demonstration of Adaptive Path Planning.

While the on-board planning gave an intuitive

and reasonable answer, the actual rover paths were

not as expected due to misregistration between

orbital data products and the rover’s on-board GPS

estimate. Postanalysis of the data revealed the real

position was offset by more than 100 meters from the

intended location, so the actual rover path spent

most of its time on the playa. In the future we will

directly address these registration errors with the use

of explicit ground control points (GCPs).

Conclusions
This work demonstrates novel techniques integrating

adaptive autonomous science activities with pre-

planned data collection. Zoë’s system will continue

to mature in the coming year.
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