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Abstract

Despite extensive research efforts in recent
years, computational argumentation (CA) re-
mains one of the most challenging areas of
natural language processing. The reason for
this is the inherent complexity of the cogni-
tive processes behind human argumentation,
which integrate a plethora of different types of
knowledge, ranging from topic-specific facts
and common sense to rhetorical knowledge.
The integration of knowledge from such a
wide range in CA requires modeling capabil-
ities far beyond many other natural language
understanding tasks. Existing research on min-
ing, assessing, reasoning over, and generating
arguments largely acknowledges that much
more knowledge is needed to accurately model
argumentation computationally. However, a
systematic overview of the types of knowledge
introduced in existing CA models is missing,
hindering targeted progress in the field. Adopt-
ing the operational definition of knowledge as
any task-relevant normative information not
provided as input, the survey paper at hand
fills this gap by (1) proposing a taxonomy
of types of knowledge required in CA tasks,
(2) systematizing the large body of CA work
according to the reliance on and exploitation
of these knowledge types for the four main
research areas in CA, and (3) outlining and dis-
cussing directions for future research efforts
in CA.

1 Introduction

The phenomenon of argumentation, a direct re-
flection of human reasoning in natural language,
has fascinated scholars across societies and cul-

∗Equal contribution.

tures since ancient times (Aristotle, ca. 350 B.C.E./
translated 2007; Lloyd, 2007). The computational
modeling of human argumentation, commonly re-
ferred to as computational argumentation (CA),
has evolved into one of the most prominent and
at the same time most challenging areas in natural
language processing (NLP) (Lippi and Torroni,
2015).

CA encompasses several families of tasks and
research directions, the main ones in NLP be-
ing argument mining, assessment, reasoning, and
generation. Although it bears some resemblance
to other NLP tasks, such as opinion mining and
natural language inference (NLI), it is widely ac-
knowledged to be of much higher difficulty than
the other tasks (Habernal et al., 2014). While opin-
ion mining (Liu, 2012) assesses stances towards
entities or controversies by asking what the opin-
ions are, CA provides answers to a more difficult
question: Why is the stance of an opinion holder the
way it is? In a similar vein, while NLI focuses on
detecting simple entailments between statement
pairs (Bowman et al., 2015; Dagan et al., 2013),
CA addresses more complex reasoning scenarios
that involve multiple entailment steps, often over
implicit premises (Boltužić and Šnajder, 2016).

CA targets reasoning processes that are only
partially explicated in text. Its mastery thus re-
quires advanced natural language understanding
capabilities and a substantial amount of back-
ground knowledge (Moens, 2018; Paul et al.,
2020). For example, the assessment of an ar-
gument’s quality not only depends on the actual
content of an argumentative text or speech but also
on social and cultural context, such as speaker and
audience characteristics, including their individual
values, ideologies, and relationships (Wachsmuth
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et al., 2017a). Such contextual information re-
mains most often implicit. For any concrete CA
task, we here refer to all information that is not
explicitly provided as input to models tackling
the task but is (potentially) useful for it and (in
most cases) normative in nature as knowledge (we
detail this notion in §3.1).

Although there is ample awareness of the need
for integrating various types of knowledge in CA
models in the research community, there is no
systematic overview of the types of knowledge
that existing models and solutions for the different
CA tasks rely on. This impedes targeted progress
in pressing subareas of CA, such as argument
generation. While general surveys on CA (e.g.,
Cabrio and Villata, 2018; Lawrence and Reed,
2020) and its subareas (e.g., Al Khatib et al.,
2021; Schaefer and Stede, 2021) represent good
starting points for targeted research along these
lines, they lack a systematic analysis of the roles
that different types of knowledge play in different
CA tasks.

Contributions. In this work, we aim to sys-
tematically inform the research community about
the types of knowledge that have—or have not
yet—been integrated into computational models
in different CA tasks. For this purpose, we (1) pro-
pose a pyramid-like taxonomy systematizing the
relevant types of knowledge. The pyramid is or-
ganized by knowledge specificity, from linguistic
knowledge and world and topic knowledge to
argumentation-specific and task-specific knowl-
edge. Starting from 162 CA publications, we (2)
survey the existing body of work with respect to
the level of integration of the various types of
knowledge and respective methodology by which
the knowledge of each type is integrated into mod-
els. To this end, we carry out an expert annotation
study in which we manually label individual pa-
pers with the types from the knowledge pyramid.
Finally, we (3) identify trends and challenges in
the four most prominent CA subareas (mining,
assessment, reasoning, and generation), summa-
rizing them into three key recommendations for
future CA research:

1. All CA tasks are expected to benefit from
more modeling of world and topic knowl-
edge. Although several studies report empir-
ical gains from incorporating these types of
knowledge, their inclusion is still an excep-

tion rather than a rule across the landscape of
all CA tasks.

2. Argument mining tasks are expected to ben-
efit from more modeling of argumentation-
and task-specific knowledge. Such specialized
knowledge has been proven effective in as-
sessment, reasoning, and generation tasks.
Yet, it has so far been exploited only spo-
radically in argument mining approaches.

3. All CA tasks are expected to benefit from
applying key techniques to other types of
knowledge and data. As an example, methods
that represent symbolic input in a semantic
vector space (e.g., pretrained word embed-
dings or language models) are still rarely
applied to sources other than text (e.g.,
to knowledge bases). The bottleneck to a
wider application of general-purpose tech-
niques such as representation learning in CA
is the lack of structured knowledge resources.
We thus argue that significant progress in CA
critically hinges on the availability of such re-
sources at larger scale. Accordingly, based on
the results of this survey effort, we strongly
encourage the CA community to foster the
creation of knowledge-rich argumentative
corpora.

Structure. We start with an overview of the
field of CA and its four most prominent subareas
(§2). In §3, we describe our survey methodology,
before we establish the knowledge pyramid and
present the results of the survey with respect to
the types of knowledge from the pyramid (§4).
On this basis, we summarize emerging trends (§5)
and offer recommendations for future progress in
CA (§6).

2 Background

The study of argumentation in Western soci-
eties can be traced back to Ancient Greece. With
the development of democracy and, thereby, the
need to influence public decisions, the art of
convincing others became an essential skill for
successful participation in the democratic process
(Aristotle, ca. 350 B.C.E./ translated 2007). In that
period, rhetorical theories also started appearing
in Eastern societies and cultures, such as Nyaya
Sutra (Lloyd, 2007). Since then, a plethora of
phenomena in the realm of argumentation, such
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Figure 1: The four main subareas of computational ar-
gumentation (argument mining, argument assessment,
argument reasoning, and argument generation) with
three of their most prominent respective tasks each.

as fallacies (Hamblin, 1970) and argumentation
schemes (Walton et al., 2008), have been studied
extensively, usually focusing on specific domains,
such as science (Gilbert, 1977) and law (Toulmin,
2003).

With the growing amount of argumentative data
available publicly in Web debates, scientific ar-
ticles, and other Internet sources, the computa-
tional modeling of argumentation, computational
argumentation (CA), gradually gained promi-
nence and popularity in the NLP community. As
depicted in Figure 1, CA can be divided into
four main subareas that represent the main high-
level types of tasks being tackled with compu-
tational models: mining, assessment, reasoning,
and generation.

Argument Mining. Argument mining deals with
the extraction of argumentative structures from
natural language text (e.g., Stab and Gurevych,
2017a). Traditionally, it has been addressed with a
pipeline of models each tackling one analysis task,
most commonly component identification, com-
ponent classification, and relation identification
(Lippi and Torroni, 2015). The set of argument
components and relations is defined by the se-
lected underlying argument model which reflects
the rhetorical, dialogical, or monological structure
of argumentation (Bentahar et al., 2010b).

For instance, the model of Toulmin (2003),
designed for the legal domain, encompasses six
components: a claim with an optional qualifier,
data (i.e., a fact supporting the claim) connected
to the claim via a warrant (i.e., the reason why
support is given) and its backing, and a rebuttal

(i.e., a counterconsideration to the claim). Rela-
tions model the support or attack of components
(or arguments) by others, sometimes with more
fine-grained subtypes (Freeman, 2011). In contrast
to argument reasoning (see below), the informa-
tion needed for inferring argumentative relations
is contained in the text.

Argument Assessment. Computational models
that address tasks in this subarea typically focus
on particular properties of arguments in their con-
text and automatically assign discrete or numeric
labels for these properties. This includes the classi-
fication of stance towards some target (Bar-Haim
et al., 2017a) as well as the identification of frames
(or aspects) covered by the argument (Ajjour
et al., 2019). Arguably, the most popular family
of tasks belongs to argument quality assessment,
which has been studied under various conceptual-
izations, such as clarity (Persing and Ng, 2013) or
convincingness (Habernal and Gurevych, 2016b).
Wachsmuth et al. (2017a) propose a taxonomy
that divides the overall quality of an argument
into three complementary aspects: logic, rhetoric,
and dialectic. Each of these three aspects further
consists of several quality dimensions (e.g., the
dimension of global acceptability for the dialec-
tical aspect).

Argument Reasoning. In this subarea, the task
is to understand the reasoning process behind
an argument. In NLP, reasoning is instantiated
in tasks such as predicting the entailment rela-
tionship between a premise and a hypothesis by
means of natural language inference (Williams
et al., 2017), or the more complex task of warrant
identification, that is, to find (or even reconstruct)
the missing warrant (Tian et al., 2018). Others
have tried to classify schemes of inferences hap-
pening in arguments (Feng and Hirst, 2011) or
to recognize fallacies of certain reasoning types
in arguments, such as the common ad-hominem
fallacy (Habernal et al., 2018c; Delobelle et al.,
2019).

In argument reasoning, the challenge lies in
inducing additional knowledge—not explicated
in the text—from existing components, as op-
posed to relation identification, which focuses
on recognizing argumentative content present in
the text. In other words, argument mining struc-
tures explicated arguments and their connections,
whereas argument reasoning infers knowledge
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missing from the text (e.g., a warrant that connects
the premise to the claim). In practice, however,
there is no guarantee that annotators for argu-
ment mining tasks (e.g., relation identification)
do not resort to out-of-text reasoning, leveraging
their commonsense and world knowledge to per-
form the task. However, from a structural point of
view, a premise may still be given by an author
to support a claim (e.g., indicated by lexical cues
like because), while from a reasoning perspective,
the premise might be irrelevant to the claim (e.g.,
the claim does not logically follow from the given
premise).

Argument Generation. With conversational AI
(i.e., dialogue systems) arguably becoming the
most prominent application in modern NLP and
AI, the research efforts on generating argumen-
tative language have also been gaining traction.
Main tasks in argument generation include the
summarization of arguments given (Wang and
Ling 2016), the synthesis of new claims and other
argument components (Bilu and Slonim, 2016),
and the synthesis of entire arguments, possibly
conforming to some rhetorical strategy (El Baff
et al., 2019).

The impact of argument generation is, for ex-
ample, demonstrated by Project Debater (Slonim,
2018), a well-known argumentation system which
combines models for several generation tasks.

3 Methodology

In this section, we first provide the definition
of knowledge upon which we base this work.
Then, we detail the methodology that we devised
and pursued in order to organize the types of
knowledge that CA approaches and models utilize.

3.1 An Operational Definition of Knowledge

Various definitions of ‘‘knowledge’’ have been
proposed in the literature. One of the oldest is the
tripartite definition of Plato (ca. 400 B.C.E.), who
accepted as knowledge any justified true belief.
This definition was later often challenged as being
too narrow and was, accordingly, extended (e.g.,
Goldman, 1967; Hawthorne, 2002). As part of this
effort, Dretske (1981) dressed Plato’s view into an
information-theoretic gown, defining knowledge
as information-caused belief, specifying more nar-
rowly the informational source of the belief as the

only valid justification and de facto eliminating
the veracity constraint.

Departing from attempts to define knowledge
ontologically, Gottschalk-Mazouz (2013) adopted
an impact-based viewpoint and argue that it is
more important to understand what knowledge can
do and what it is like than to ontologically answer
what knowledge is. In their view, knowledge is
thus normative and has practical implications. In
the work at hand, we adopt this impact-oriented
view on knowledge. We further operationalize the
view, in the context of NLP and CA, as follows:

Knowledge is any kind of normative information
that is considered to be relevant for solving a task
at hand and that is not given as task input itself.

In CA research, knowledge has been be modeled
in a variety of forms that conform to this definition,
ranging from lexicons, and engineered features to
specially tailored pipelines, model components, or
overall algorithm design (e.g., auxiliary tasks, or
special training objectives). While this is not the
primary dimension of our analysis (see §4.1), it
is worth noting the difference between knowl-
edge that is presented explicitly, namely, that
can be rather directly used to shape the input
representations for the task (e.g., lexicons, fea-
ture engineering, predictions of existing auxiliary
models), and knowledge that is introduced implic-
itly through the algorithm or model design (e.g.,
auxiliary tasks in multi-task learning, or ordering
of individual models in model pipelines). Both,
we argue, conform to the above operational defi-
nition of knowledge to which we subscribe in this
work. Finally, we emphasize that we consider the
annotated corpora, leveraged in supervised task
learning, to be input and not external knowledge
brought to facilitate learning.

3.2 Analysis Scope

Generally, we focus on natural language argu-
mentation and its computational treatment in
NLP. Hence, we exclude work outside of this
community, for example, studies on abstract ar-
gumentation (e.g., Vreeswijk, 1997), except if
there is a strong link to natural language ar-
gumentation. For articles published in non-NLP
venues, we made the decision based on the title.
When unclear from the title whether the work pri-
marily addresses natural language argumentation
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(e.g., as in the case of McBurney and Parsons,
2021), we analyzed the whole article before mak-
ing the scope decision. Our survey covers the
four subareas of CA in NLP from §2, with the
following restrictions:

In argument mining, we do not include methods
that have been designed strictly for a specific genre
or domain and are not applicable elsewhere. Argu-
mentative zoning (e.g., Teufel et al., 1999, 2009;
Mo et al., 2020) and citation analysis (e.g., Athar,
2011; Lauscher et al., 2021), both specific to sci-
entific publications, exemplify such methods. In
contrast, we include methods that the general min-
ing of argumentative structures, even if evaluated
only in specific domains (e.g., Lauscher et al.,
2018).

In argument assessment, we exclude work tar-
geting sentiment analysis (e.g., Socher et al.,
2013; Wachsmuth et al., 2014), as it is inherently
more generic than other argumentation tasks and,
accordingly, well-explored in general natural lan-
guage understanding. Also, we exclude work
on general-purpose natural language inference
and common-sense reasoning (Bowman et al.,
2015; Rajani et al., 2019; Ponti et al., 2020) in
argument reasoning, and we do not cover the
body of work on leveraging external structured
knowledge for improved reasoning (e.g., Forbes
et al., 2020; Lauscher et al., 2020a); we view these
methods as more generic reasoning approaches
that can, among others, also support argumenta-
tive reasoning (e.g., Habernal et al., 2018b), which
we do cover in this survey. Finally, our over-
view of argument generation is limited strictly
to argumentative text generation, as in argument
summarization (e..g, Syed et al., 2020) and claim
synthesis (e.g., Bilu and Slonim, 2016). The enor-
mous body of work on (non-argumentative) nat-
ural language generation (Gatt and Krahmer,
2018) is out of our scope.

Note that some applications of CA are typi-
cally addressed through larger systems, which are
composed of models tackling several of the tasks
above. For instance, in argument search, a sys-
tem might be composed of an argument extraction
component (mining), a retrieval component that
determines relevant arguments, as well as a quality
rating component (assessment) to rank the mined
arguments retrieved for given a topic (Wachsmuth
et al., 2017b). In this work, we focus on core CA
tasks and do not specifically discuss such com-
posite systems. Within the described scope, we

aim for comprehensiveness. However, given the
immense body of work on natural language ar-
gumentation, we do not claim that this survey
is complete.

3.3 Analysis and Annotation Process

We survey the state of the art in CA through the
prism of the knowledge types leveraged in exist-
ing approaches. For each of the four CA subareas,
we conducted our literature research in two steps:
(1) in a pre-study, we collected all papers that
we saw as relevant. To this end, we combined
our expert knowledge of the field with extensive
search in scientific search engines and proceed-
ings of relevant conferences and workshops. On
this basis, we established the knowledge pyramid.
(2) In an in-depth study, we then selected the 10
most representative papers (according to scien-
tometric indicators and our expert judgment) for
each subarea and annotated them with the types of
knowledge from the pyramid. We instructed three
expert annotators to read each paper carefully.
Based on our knowledge definition above and
common forms of knowledge we identified in the
pre-study, they were asked to decide what types
and what forms of knowledge were involved, thus
assigning all applicable types from the pyramid to
each of the 40 sampled papers.

Agreement. We measured inter-annotator
agreement (IAA) in a top-level and an all-levels
variant across all sampled 40 papers (10 for
each CA area) in terms of pair-wise averaged
Cohen’s κ score. First, for each of the papers, we
determined the most specific type of knowledge
that it exploits (i.e., the one that is highest in
the pyramid). Here, we observe a moderate IAA
(Landis and Koch, 1977) with κ = 0.54. Second,
across all categories, we observe a substantial
IAA of κ = 0.74. All cases of disagreement
were discussed thoroughly and resolved jointly.

The final distribution of knowledge types iden-
tified in papers for each CA subarea is shown
in Figure 2b. As expected, almost all works
(36 out of 40) leverage linguistic knowledge in
some form. In contrast, world and topic knowl-
edge (e.g., common-sense and factual knowledge,
logic and rules) seem to be used least across
the board. A reason for the latter may lie in
the computational complexity of encoding such
knowledge in a way that it can benefit concrete
approaches to tasks—whereas this is often much
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Figure 2: (a) Our proposed argumentation knowledge pyramid, encompassing four coarse-grained types of
knowledge leveraged in CA research: The pyramid is organized according to increasing specificity of the
knowledge types, from the bottom to the top. (b) Relative frequencies of the presence of knowledge types in the
40 representative papers (10 per CA subarea: mining, assessment, reasoning, and generation) selected for our
in-depth study.

more straightforward for argumentation-specific
knowledge (e.g., using lexicons) and task-specific
knowledge (e.g., adopting a multitask learning
setup). Moreover, topic knowledge is likely to
make approaches more topic-dependent, namely,
less broadly applicable, which is, more generally,
often seen as an undesirable property for NLP
approaches. We discuss the distribution in detail
in the next section.

Pre-Study. Our aim was to collect as many rel-
evant publications as we could for each of the
four CA subareas. We first compiled a list of
publications that we were personally aware of
(i.e., leveraging ‘‘expert knowledge’’). Then, we
augmented the list by firing queries with rele-
vant keywords (again, compiled based on our
expert knowledge) against the ACL Anthology1

and Google Scholar.2

For example, we used the following queries
for argument mining: ‘‘argument[ation] min-
ing’’, ‘‘argument[ative] component’’, ‘‘argu-
ment[ative] relation’’, and ‘‘argument[ative]
structure’’. For argument generation, we queried
‘‘argument generation’’, ‘‘argument synthesis’’,
‘‘claim generation’’, ‘‘claim synthesis’’, and
‘‘argument summarization’’. In addition, we ex-
amined all publications from the proceedings of
all seven editions (2014–2020) of the Argument
Mining workshop series.

In each subarea, we included only publications
that propose a computational approach to solv-
ing (at least) one CA task; in contrast, we did

1https://aclanthology.org/.
2https://scholar.google.com/.

not consider publications describing shared tasks
(Habernal et al., 2018b) or external knowledge
resources for CA (Al Khatib et al., 2020a). With
these rules in place, we ultimately collected a to-
tal of 162 CA papers, entirely listed in Table 1.
By analyzing the types of knowledge used by
approaches from collected publications, we in-
duced the pyramid of knowledge types in Figure 2
with four coarse-grained knowledge types (§4.1),
which was then the basis for our in-depth study
(§4.2–§4.5).

In-Depth Study. In the second step, we used the
knowledge pyramid as the basis for an in-depth
analysis of a subset of 40 publications (10 per
research area; bold in Table 1). Our selec-
tion of prominent papers for the in-depth study
was guided by the following set of (sometimes
mutually conflicting) criteria: (1) maximize the
scientific impact of the publications in the sam-
ple, measured as a combination of the number
of publication citations and our expert judgment
of publication’s overall impact on the CA field
or subarea; (2) maximize the number of different
methodological approaches in the sample;3 and
(3) maximize the representation of different re-
searchers and research groups.

Once we had selected the 40 publications, three
authors of this paper independently labeled all of

3Note that diversifying the sample with respect to meth-
ods is different than diversifying it according to knowledge
types: two approaches may use the same type(s) of knowl-
edge (e.g., linguistic) while adopting different methods (e.g.,
syntactic features vs. neural LMs). Our aim was to reduce the
methodological redundancy of the sample.
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Task Paper Top Pyramid Level Task Paper Top Pyramid Level
Argument Mining

Comp. identification Boltužić and Šnajder (2014) World and topic Multiple tasks Stab and Gurevych (2014) Arg.-specific
Ajjour et al. (2017) Linguistic Persing and Ng (2020) Task-specific
Spliethöver et al. (2019) Linguistic Lawrence and Reed (2015) Arg.-specific
Petasis (2019) Linguistic Sobhani et al. (2015) Arg.-specific
Trautmann et al. (2020) Linguistic Peldszus and Stede (2015) Task-specific

Comp. classification Ong et al. (2014) Linguistic Persing and Ng (2016a) Arg.-specific
Sobhani et al. (2015) Arg.-specific Eger et al. (2017) Linguistic
Rinott et al. (2015) Task-specific Lawrence and Reed (2017a) Arg.-specific
Al Khatib et al. (2016) Linguistic Lawrence and Reed (2017b) Arg.-specific
Liebeck et al. (2016) Linguistic Potash et al. (2017b) Arg.-specific
Daxenberger et al. (2017) Linguistic Aker et al. (2017) Arg.-specific
Levy et al. (2017) Arg.-specific Niculae et al. (2017) Arg.-specific
Shnarch et al. (2017) Arg.-specific Stab and Gurevych (2017a) Arg.-specific
Habernal and Gurevych (2017) Arg.-specific Saint-Dizier (2017) Task-specific
Dusmanu et al. (2017) Arg.-specific Schulz et al. (2018) Linguistic
Lauscher et al. (2018) Arg.-specific Shnarch et al. (2018) Linguistic
Lugini and Litman (2018) Arg.-specific Eger et al. (2018) Linguistic
Stab et al. (2018b) Arg.-specific Morio and Fujita (2018) Arg.-specific
Jo et al. (2019) Linguistic Gemechu and Reed (2019) Linguistic
Mensonides et al. (2019) Arg.-specific Lin et al. (2019) Arg.-specific
Reimers et al. (2019) Arg.-specific Hewett et al. (2019) Arg.-specific
Hua et al. (2019b) Arg.-specific Haddadan et al. (2019) Arg.-specific

Relation identification Cabrio and Villata (2012) World and topic Eide (2019) Arg.-specific
Carstens and Toni (2015) Arg.-specific Chakrabarty et al. (2019) Arg.-specific
Cocarascu and Toni (2017) Linguistic Huber et al. (2019) Arg.-specific
Hou and Jochim (2017) Task-specific Accuosto and Saggion (2019) Task-specific
Galassi et al. (2018) Linguistic Morio et al. (2020) Linguistic
Paul et al. (2020) World and topic Wang et al. (2020) Arg.-specific

Argument Assessment
Stance Detection Ranade et al. (2013) Arg.-specific Quality assessment Habernal and Gurevych (2016b) Linguistic

Hasan and Ng (2014) Linguistic Ghosh et al. (2016) Arg.-specific
Sobhani et al. (2015) Arg.-specific Wachsmuth et al. (2016) Arg.-specific
Persing and Ng (2016b) Arg.-specific Wei et al. (2016) Task-specific
Toledo-Ronen et al. (2016) Task-specific Tan et al. (2016) Task-specific
Sobhani et al. (2017) Linguistic Chalaguine and Schulz (2017) Linguistic
Bar-Haim et al. (2017a) Arg.-specific Stab and Gurevych (2017b) Linguistic
Boltužić and Šnajder (2017) Task-specific Potash et al. (2017a) Linguistic
Bar-Haim et al. (2017b) Task-specific Wachsmuth et al. (2017c) Arg.-specific
Rajendran et al. (2018a) Linguistic Persing and Ng (2017) Task-specific
Sun et al. (2018) Arg.-specific Lukin et al. (2017) Task-specific
Rajendran et al. (2018b) Arg.-specific Wachsmuth et al. (2017a) Task-specific
Kotonya and Toni (2019) Linguistic Simpson and Gurevych (2018) Linguistic
Durmus et al. (2019) Linguistic Gu et al. (2018) Linguistic
Durmus and Cardie (2019) Task-specific Passon et al. (2018) Arg.-specific
Toledo-Ronen et al. (2020) Linguistic Ji et al. (2018) Task-specific
Kobbe et al. (2020a) Arg.-specific Durmus and Cardie (2018) Task-specific
Sirrianni et al. (2020) Arg.-specific El Baff et al. (2018) Task-specific
Somasundaran and Wiebe (2010) Arg.-specific Dumani and Schenkel (2019) Linguistic
Porco and Goldwasser (2020) Task-specific Potthast et al. (2019) Linguistic
Scialom et al. (2020) Task-specific Gleize et al. (2019) Linguistic

Frame identification Ajjour et al. (2019) Task-specific Toledo et al. (2019) Linguistic
Trautmann (2020) Linguistic Potash et al. (2019) Linguistic

Quality assessment Liu et al. (2008) Task-specific Gretz et al. (2020b) Linguistic
Persing et al. (2010) Linguistic El Baff et al. (2020) Linguistic
Persing and Ng (2013) Linguistic Wachsmuth and Werner (2020) Linguistic
Ong et al. (2014) Linguistic Li et al. (2020) Arg.-specific
Persing and Ng (2014) Linguistic Al Khatib et al. (2020b) Task-specific
Song et al. (2014) Arg.-specific Lauscher et al. (2020b) Task-specific
Persing and Ng (2015) Arg.-specific Skitalinskaya et al. (2021) Linguistic
Stab and Gurevych (2016) Linguistic Other tasks Kobbe et al. (2020b) Task-specific
Habernal and Gurevych (2016a) Linguistic Yang et al. (2019) Linguistic

Argument Reasoning
Warrant identification Boltužić and Šnajder (2016) Linguistic Scheme classification Feng and Hirst (2011) Task-specific

Sui et al. (2018) Linguistic Song et al. (2014) Task-specific
Liebeck et al. (2018) Linguistic Lawrence and Reed (2015) Linguistic
Tian et al. (2018) Linguistic Liga (2019) Linguistic
Brassard et al. (2018) Linguistic
Sui et al. (2018) Linguistic Fallacy Recognition Habernal et al. (2018c) Linguistic
Botschen et al. (2018) World and topic Habernal et al. (2018a) Linguistic
Choi and Lee (2018) World and topic Delobelle et al. (2019) Linguistic
Niven and Kao (2019) World and topic Other tasks Becker et al. (2021) World and topic

Argument Generation
Summarization Egan et al. (2016) Linguistic Argument synthesis Zukerman et al. (2000) Task-specific

Wang and Ling (2016) Linguistic Carenini and Moore (2006) Task-specific
Syed et al. (2020) Arg.-specific Sato et al. (2015) Linguistic
Alshomary et al. (2020a) Arg.-specific Reisert et al. (2015) Arg.-specific
Bar-Haim et al. (2020) Arg.-specific Hua and Wang (2018) World and topic

Claim Synthesis Bilu and Slonim (2016) Task-specific Wachsmuth et al. (2018) Arg.-specific
Chen et al. (2018) World and topic Le et al. (2018) Arg.-specific
Hidey and McKeown (2019) Arg.-specific Hua et al. (2019a) World and topic
Alshomary et al. (2020b) Arg.-specific Hua and Wang (2019) World and topic
Gretz et al. (2020a) Arg.-specific El Baff et al. (2019) Arg.-specific
Alshomary et al. (2021) Task-specific Bilu et al. (2019) Task-specific

Schiller et al. (2021) Task-specific

Table 1: List of all publications surveyed in this study, across the four subareas of CA (argument
mining, argument assessment, argument reasoning, and argument generation) sorted by task and year of
publication, with the indication of the most specific level of knowledge used. Publications in bold are
those selected for the in-depth study (§3).
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them with the knowledge types from the pyramid.
This allowed us to measure the inter-annotator
agreement and to test the extent of shared under-
standing of the knowledge types captured by the
pyramid and their usage in individual method-
ological approaches in CA. While we are aware
that we cannot draw statistically significant con-
clusions based on a sample of such a limited
size, we believe that our findings and this in-
depth perspective will still be informative for the
CA community.

4 Knowledge in Argumentation

As a result of our survey, we now introduce the
argumentation knowledge pyramid, our proposed
taxonomy encompassing four coarse-grained
types of knowledge leveraged in CA. We then
profile the large body of papers from the four CA
subareas through the lens of the pyramid.

4.1 Argumentation Knowledge Pyramid

Based on the findings of our pre-study, we iden-
tify four coarse-grained types of knowledge being
leveraged in CA research, which we organize
in a taxonomy, as depicted in Figure 2. We
chose to visualize our organization as a pyramid
because it allows us to express a hierarchi-
cal generality-specificity relationship between the
different types of knowledge.

Linguistic Knowledge. At the bottom of the
pyramid is linguistic knowledge, leveraged by vir-
tually all CA models and needed in practically all
NLP tasks. In our pyramid, linguistic knowledge
is a broad category that includes features derived
from word n-grams, information about linguistic
structure (e.g., part-of-speech tags, dependency
parses), as well as features based on models of dis-
tributional semantics, such as (pre-trained) word
embedding spaces (e.g., Mikolov et al., 2013;
Pennington et al., 2014; Bojanowski et al., 2017)
or representation spaces spanned by neural lan-
guage models (LMs) (e.g., Clark et al., 2020;
Devlin et al., 2019). We also consider leveraging
distributional spaces (word embeddings or pre-
trained LMs) built for specific (argumentative)
tasks and domains as a form of linguistic knowl-
edge, since such representation spaces are induced
purely from textual corpora without any external
supervision signal.

World and Topic Knowledge. Above the lin-
guistic knowledge, we place the category of world
and topic knowledge, in which we bundle all
types of knowledge that are generally considered
useful for various natural language understand-
ing tasks, but that are not (or even cannot be)
directly derived from textual corpora. This in-
cludes all types of common-sense knowledge,
task-independent world knowledge (also known
as factual knowledge), logical general-purpose
axioms and rules, and similar. In most cases, such
knowledge is collected from external structured
or semi-structured resources (Sap et al., 2020;
Lauscher et al., 2020a; Ji et al., 2021). Knowledge
about a specific debate topic (e.g., legalization
of marijuana) falls under this category, since top-
ics encompass a set of real-world concepts (e.g.,
marijuana) and related facts (e.g., medical aspects
of marijuana usage). Some systems explicitly re-
quire the debate topic as input, in order to gather
topic knowledge from external sources.

Argumentation-Specific Knowledge. The third
category in our knowledge pyramid encompasses
knowledge about what constitutes argumentation,
arguments, and argumentative language, includ-
ing knowledge about subjective language (Stede
and Schneider, 2018). This includes models
of argumentation and argumentative structures
(Toulmin, 2003; Bentahar et al., 2010a), models
of cultural aspects and moral values (Haidt and
Joseph, 2004; Graham et al., 2013), lexicons with
terms indicating subjective, psychological, and
moral categories (Hu and Liu, 2004; Tausczik
and Pennebaker, 2010; Graham et al., 2009),
predictions of subjectivity and sentiment clas-
sification models (Socher et al., 2013), and so
forth. While sentiment, emotions, and affect are
not argumentative per se, subjectivity is in-
grained in argumentation and strongly influences
argumentative manifestations (or lack thereof).

Task-Specific Knowledge. As the most specific
type of knowledge, this category covers the types
of knowledge that are relevant only for a specific
CA task or a small set of tasks. For instance,
leveraging discourse structure is considered ben-
eficial for argumentative relation identification
(Stab and Gurevych, 2014; Persing and Ng,
2016a; Opitz and Frank, 2019), a common argu-
ment mining task.

Table 2 illustrates the four types of knowledge
from the pyramid by means of concrete examples.
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Knowledge Source CA Subarea (Task) Introduced Explanation

Linguistic
Habernal et al.
(2018c)

Argument reasoning
(fallacy recognition)

Explicitly Semantic associations between lexical units in the word embed-
ding space enable generalization across different lexicalizations
of ad hominem arguments (e.g., ‘‘pretentions [explanation]’’
vs. ‘‘narcissistic [idiot]’’) and wordings that point to falla-
cious reasoning (e.g., ‘‘[if only you wouldn’t rely on] fallacious
arguments’’ vs. ‘‘[another] unsubstantiated statement)’’.

World
and topic Hua and Wang

(2019)

Argument generation
(argument synthesis)

Implicitly The structure of the argument – sequence of Premise, Claim, and
Functional utterances – is conditioned by the topic of debate. For
example, Reddit arguments in political topics (e.g., ‘‘US cutting
off foreign aid’’ tend to start with a Claim (‘‘It can be a useful
political bargaining chip’’), continue with supporting Premises
(e.g., ‘‘US cut financial aid to Uganda due to its plans to make
homosexuality a crime’’) and finish with Functional utterances
(e.g., ‘‘Please change your mind!’’).

Arg.-
specific Wachsmuth et al.

(2017c)

Argument assessment
(quality assessment)

Explicitly Argument relevance is determined in an ‘‘objective’’ way. Ar-
gument ‘‘reuse’’, where one argument leverages the conclusion
of another argument is the base for the induction of a large-scale
(directed) argument graph. Running a PageRank algorithm on
that graphs yields relevance scores for all arguments. Such ob-
jective and content-agnostic argument relevance score can be
useful for a wide variety of CA tasks; knowledge about argument
reuse thus represents argumentation-specific knowledge.

Task-
specific Peldszus and Stede

(2015)

Argument mining
(multiple tasks)

Implicitly Argumentative structure of the text assumed to be a tree: There
is one central claim for the text which is the root of the tree, other
argumentative components are the nodes of the tree, and edges
reflect the support or attack relations between argumentative
discourse components.

Table 2: Concrete examples for the four types of knowledge distinguished in the knowledge pyramid
(see Figure 2). We additionally indicate for each example whether the knowledge is introduced in an
explicit or implicit manner (column ‘‘Introduced’’; see §3.1).

4.2 Knowledge in Argument Mining

Pre-Study. From the 162 papers we surveyed,
56 belong to the subarea of argument mining,
which is the second-largest subarea after argument
assessment. The publications that we analyzed
were published in the period from 2012 to 2020.
Of these 56 publications, 17 relied purely on lin-
guistic knowledge, three exploited world and topic
knowledge as the most specific knowledge type,
30 leveraged argumentation-specific knowledge,
and six task-specific knowledge. We next describe
the detailed findings of our in-depth analysis.

In-Depth Study. Table 3 shows the results of
our assignment of all applicable knowledge types
to 10 sampled argument mining papers, published
between 2012 and 2018. All but one rely on lin-
guistic knowledge: Earlier approaches leveraged
traditional linguistic features, such as n-grams and
syntactic features (e.g., Peldszus and Stede, 2015;
Lugini and Litman, 2018), whereas later work
resorted to word embeddings as the dominant rep-
resentation (e.g., Eger et al., 2017; Niculae et al.,
2017; Daxenberger et al., 2017; Galassi et al.,
2018).

A few papers exploit other types of knowledge.
Cabrio and Villata (2012), for example, leverage
a pretrained NLI model to analyze online debate
interactions.4 While they resort to the abstract
argumentation framework of Dung (1995), they
do so only for the purposes of the evaluation,
which is why we do not judge their approach
as reliant on argumentation-specific knowledge.
Lawrence and Reed (2017b) use, in addition to
word embeddings, world and topic knowledge
from WordNet and argumentation-specific knowl-
edge in the form of structural assumptions for
mining large-scale debates. Ajjour et al. (2017)
combine linguistic knowledge in the form of
GloVe embeddings (Pennington et al., 2014) and
other linguistic features with an argumentation-
specific lexicon of discourse markers. Task-
specific mining knowledge is mostly leveraged

4Note that our judgments reflect only the types of knowl-
edge that the approach presented in the paper directly exploits:
this is why, for example, we judge the reliance of the approach
of Cabrio and Villata (2012) on a pretrained NLI model as
exploitation of world and topic knowledge only, even though
the NLI model itself (Kouylekov and Negri, 2010) had been
trained using a range of linguistic features.
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Approach Linguistic World Arg. Task.
and Topic specific Specific

Argument Mining
Cabrio and Villata (2012) ✗ ✓ ✗ ✗
Peldszus and Stede (2015) ✓ ✗ ✓ ✓
Daxenberger et al. (2017) ✓ ✗ ✗ ✗
Eger et al. (2017) ✓ ✗ ✗ ✓
Niculae et al. (2017) ✓ ✗ ✗ ✗
Lawrence and Reed (2017b) ✓ ✓ ✓ ✗
Levy et al. (2017) ✓ ✓ ✓ ✗
Ajjour et al. (2017) ✓ ✗ ✓ ✗
Galassi et al. (2018) ✓ ✗ ✗ ✗
Lugini and Litman (2018) ✓ ✗ ✗ ✓

Argument Assessment
Persing and Ng (2015) ✓ ✗ ✓ ✗
Habernal and Gurevych (2016b) ✓ ✗ ✓ ✗
Wachsmuth et al. (2017c) ✗ ✗ ✓ ✗
Bar-Haim et al. (2017a) ✓ ✓ ✓ ✗
Durmus and Cardie (2018) ✓ ✗ ✓ ✓
Trautmann (2020) ✓ ✗ ✗ ✗
Kobbe et al. (2020b) ✓ ✗ ✓ ✗
El Baff et al. (2020) ✓ ✗ ✓ ✓
Al Khatib et al. (2020b) ✓ ✗ ✗ ✓
Gretz et al. (2020b) ✓ ✗ ✗ ✗

Argument Reasoning
Feng and Hirst (2011) ✗ ✗ ✗ ✓
Lawrence and Reed (2015) ✓ ✗ ✗ ✓

Boltužić and Šnajder (2016) ✓ ✗ ✗ ✗
Habernal et al. (2018c) ✓ ✗ ✗ ✗
Choi and Lee (2018) ✓ ✓ ✗ ✗
Tian et al. (2018) ✓ ✗ ✗ ✗
Botschen et al. (2018) ✓ ✓ ✗ ✗
Delobelle et al. (2019) ✓ ✗ ✗ ✗
Niven and Kao (2019) ✓ ✗ ✗ ✗
Liga (2019) ✓ ✗ ✗ ✗

Argument Generation
Zukerman et al. (2000) ✗ ✗ ✓ ✓
Sato et al. (2015) ✓ ✗ ✓ ✗
Bilu and Slonim (2016) ✓ ✗ ✓ ✓
Wang and Ling (2016) ✓ ✗ ✗ ✗
El Baff et al. (2019) ✓ ✗ ✗ ✓
Hua et al. (2019b) ✓ ✓ ✗ ✗
Bar-Haim et al. (2020) ✓ ✗ ✓ ✗
Gretz et al. (2020a) ✓ ✗ ✗ ✗
Alshomary et al. (2021) ✓ ✗ ✗ ✓
Schiller et al. (2021) ✓ ✗ ✓ ✓

Table 3: The types of knowledge involved in the
approaches of all publications that we included in
the second stage of our literature survey (in-depth
study) ordered by the high-level task they tackle
and the year.

in multi-task learning scenarios (Lugini and
Litman, 2018) or when aiming to extract argu-
ments of more complex structures, that is, with
multiple components and/or chains of claims
(Eger et al., 2017; Peldszus and Stede, 2015).
For instance, Peldszus and Stede (2015) jointly
predict different aspects of the argument structure
and then apply minimum spanning tree decod-
ing, exploiting that mining of argument structure
bears similarities with discourse parsing. The only
template-based approach we cover is that of Levy
et al. (2017), who construct queries using tem-
plates and use ground sentences in Wikipedia
concepts (i.e., world and topic knowledge) for un-
supervised claim detection. Their approach also
leverages an argumentation-specific lexicon of
claim-related words (i.e., arg.-specific knowl-
edge), next to the linguistic and world/topic
knowledge.

4.3 Knowledge in Argument Assessment

Pre-Study. The largest portion of the 162 pub-
lications, 64 in total, belong to the area of
argument assessment, spanning the time period
from 2008 to 2021. Of those publications, 29
leverage only linguistic knowledge, but almost
20 rely on task-specific knowledge as the most
specific knowledge type. Interestingly, none of
the surveyed papers use world and topic knowl-
edge as the most specific knowledge type. That
is, if they rely on world and topic knowledge,
they also leverage argumentation-specific and/or
task-specific knowledge.

In-Depth Study. The 10 assessment papers an-
alyzed in-depth (period 2015–2020) reveal that,
much like in argument mining, most of the work
models linguistic knowledge (e.g., Trautmann,
2020; Kobbe et al., 2020b). For example, Gretz
et al. (2020b) assess argument quality based
on a representation that combines bag-of-words
(i.e., sparse symbolic text representation) with
latent embeddings, both derived from static
GloVe word embeddings (Pennington et al.,
2014) and produced by a pretrained BERT model
(Devlin et al., 2019). Most of the papers at the
linguistic knowledge level of the pyramid, how-
ever, predominantly rely on sparse symbolic (i.e.,
word-based) linguistic features (e.g., Persing and
Ng, 2015; Bar-Haim et al., 2017b; Durmus and
Cardie, 2018; Al Khatib et al., 2020b; El-Baff
et al., 2020).

Only one of the 10 selected publications re-
sorts to world and topic knowledge: Bar-Haim
et al. (2017a) map the content of claims to
Wikipedia concepts for stance classification. A
common technique in argument assessment is to
include argumentation-specific knowledge about
sentiment or subjectivity: this is motivated by the
intuition that these features directly affect argu-
mentation quality and correlate with stances. For
instance, Wachsmuth et al. (2017a) note that emo-
tional appeal, which is clearly correlated with
the sentiment of the text, may affect the rhetor-
ical effectiveness of arguments. Technically, the
information on subjectivity is introduced either
by means of subjective lexica (e.g., Bar-Haim
et al., 2017a; Durmus and Cardie, 2018; El-Baff
et al., 2020) or via predictions of pretrained
sentiment classifiers (Habernal and Gurevych,
2016b). In a different example of the use of
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argumentation-specific knowledge, Wachsmuth
et al. (2017c) exploit reuses between arguments
(e.g., a premise of one argument uses the claim of
another) to quantify argument relevance by means
of graph-based propagation with PageRank.

A notable task-specific knowledge category is
the use of user information for argument qual-
ity assessment. According to theory (Wachsmuth
et al., 2017a), argument quality does not only
depend on the text utterance itself but also on
the speaker and the audience, for example, on
their prior beliefs and their cultural context. To
model this, Durmus and Cardie (2018) include
information about users’ prior beliefs as predic-
tors of arguments’ persuasiveness, Al Khatib et al.
(2020b) predict persuasiveness using user-specific
feature vectors, and El Baff et al. (2020) train
audience-specific classifiers.

4.4 Knowledge in Argument Reasoning

Pre-Study. According to our pre-study, argu-
ment reasoning is the smallest subarea of CA,
with only 17 (out of 162) papers published (in
the period between 2011 and 2021). The tasks in
this subarea include argumentation scheme clas-
sification (Feng and Hirst, 2011; Lawrence and
Reed, 2015), warrant identification and exploita-
tion (Habernal et al., 2018b; Boltužić and Šnajder,
2016), and fallacy recognition (Habernal et al.,
2018c; Delobelle et al., 2019). Linguistic knowl-
edge denotes the most commonly used type of
knowledge in reasoning as well (11 out of 17 pa-
pers rely on some type of linguistic knowledge),
and four papers in this subarea exploit world and
topic knowledge.

In-Depth Study. In our subset from argument
reasoning, general-domain embeddings are by far
the most frequently employed type of knowledge
injection approach (Boltužić and Šnajder, 2016;
Habernal et al., 2018c; Choi and Lee, 2018; Tian
et al., 2018; Botschen et al., 2018; Delobelle
et al., 2019; Niven and Kao, 2019). In contrast,
Lawrence and Reed (2015) use traditional lin-
guistic features, and Liga (2019) models syntactic
features with tree kernels to recognize specific
reasoning structures in arguments. Task-specific
knowledge is modeled by Feng and Hirst (2011),
who design specific features for classifying ar-
gumentation schemes, and Lawrence and Reed
(2015) utilize features specific to individual types

of premises and conclusions. Choi and Lee (2018)
use a pretrained natural language inference model
to select the correct warrant in warrant identifica-
tion.5 For the same task, Botschen et al. (2018)
leverage event knowledge about common situ-
ations (from FrameNet) and factual knowledge
about entities (from Wikidata).

4.5 Knowledge in Argument Generation

Pre-Study. Finally, we surveyed 23 gener-
ation papers, ranging from 2000 to 2021.
Argumentation-specific knowledge is the most
specific knowledge type in most (10) publications.
Six publications have task-specific knowledge as
the most specific knowledge type, and four do not
employ anything more specific than world and
topic knowledge. Unlike in other subareas, only a
few publications (3) in argument generation rely
purely on linguistic knowledge. Common argu-
ment generation tasks include argument summa-
rization (Egan et al., 2016; Bar-Haim et al., 2020),
claim synthesis (Bilu et al., 2019; Alshomary
et al., 2021), and argument synthesis (Zukerman
et al., 2000; Sato et al., 2015).

In-Depth Study. As in the case of argument rea-
soning, many generation approaches employ lin-
guistic knowledge in the form of general-purpose
embeddings (Wang and Ling, 2016; Hua et al.,
2019a; Bar-Haim et al., 2020; Gretz et al., 2020a;
Schiller et al., 2021). Only Sato et al. (2015) report
using traditional (i.e., sparse, symbolic) linguistic
features; Bilu and Slonim (2016) used traditional
linguistic features for predicting the suitability of
candidate claims.

World and topic knowledge is utilized by Hua
et al. (2019a), who retrieve Wikipedia passages
as claim candidates. As argumentation-specific
knowledge, Bar-Haim et al. (2020) use an exter-
nal quality classifier. In a similar vein, Schiller
et al. (2021) incorporate the output from argument
and stance classifiers from the ArgumenText API
(Stab et al., 2018a) and condition the generation
model on control codes encoding topic, stance,
and aspect of the argument. Alshomary et al.
(2021) condition their model on a audience be-
liefs by deriving bag-of-words representations

5As in the case of Cabrio and Villata (2012) in argument
mining, we consider a pretrained NLI model to represent
world and topic knowledge.

1402

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00525/2064612/tacl_a_00525.pdf by guest on 20 Septem
ber 2023



Type Common Modeling Techniques
Task-specific Structure (e.g., multitask learning), user information (e.g., features), . . .
Argumentation-specific Sentiment (e.g., lexicon, external classifier), argumentation (e.g., fine-tuning), . . .
World and topic Inference knowledge (e.g., infusion), world knowledge (e.g., linking to Wikipedia), . . .
Linguistic n-grams (e.g., traditional features), general semantics (e.g., GloVe embeddings), . . .

Table 4: Common techniques used for modeling the four types of knowledge from the proposed
knowledge pyramid.

from the authors’ texts and then fine-tuning a pre-
trained language model. Sato et al. (2015) model
(argumentation-specific) knowledge about values.
Predicate and sentiment lexica are employed by
Bilu and Slonim (2016), whereas El Baff et al.
(2019) learn likely sequences of argumentative
units from features computed from argumentation-
specific knowledge. They additionally include
task-specific knowledge by using a knowledge
base with components of claims. A pioneering
work that stands out is the approach of Zukerman
et al. (2000), which uses argumentation-specific
knowledge about micro-structure in combination
with task-specific discourse templates.

5 Emerging Trends and Discussion

We now summarize the emerging trends and open
challenges in the four CA areas, abstracted from
our analyses of the use of knowledge types.

General Observations. Most of the 162 publi-
cations that we reviewed aim to capture some type
of ‘‘advanced’’ knowledge, that is, knowledge be-
yond what can be inferred from the text data alone:
60 publications rely purely on linguistic knowl-
edge, whereas the remaining 102 model at least
one of the other three higher knowledge types. This
empirically confirms the intuition that success
in CA crucially depends on complex knowledge
that is external to the text. Also, unsurprisingly,
argumentation-specific knowledge is overall the
most common type of external knowledge used in
CA approaches: Argumentation-specific knowl-
edge can, in principle, facilitate any computational
argumentation task. In comparison, world and
common-sense knowledge are fairly underrepre-
sented: Only seven of the 40 publications in our
in-depth study rely on some variant of it. This is
surprising, given that the approaches that lever-
age such knowledge consistently report substantial
performance gains.

Comparison across Types of Knowledge. We
observe differences in the form in which the
different knowledge types (e.g., linguistic vs.
argument-specific knowledge) are commonly
provided and incorporated in methodological
approaches. We provide examples in Table 4.

Comparison across Areas. We also note sub-
stantial differences across the four high-level
CA subareas. The predominant most specific
knowledge types vary across the areas: in ar-
gument mining and assessment, linguistic and
argumentation-specific knowledge are most com-
monly employed, whereas in argument reasoning
approaches, world and topic knowledge (e.g.,
knowledge about reasoning mechanisms) rep-
resents the most common top-level category
from the pyramid. In argument generation,
argumentation-specific and task-specific knowl-
edge were the most common top-level categories.
We believe that this variance is due to the nature
of the tasks in each area: Predicting argumenta-
tive structures in argument mining is strongly
driven by lexical cues (linguistic knowledge)
and structural aspects (argumentation-specific
knowledge). Despite being studied most exten-
sively, argument mining rarely exploits world
and topic knowledge (e.g., from knowledge
bases or lexico-semantic resources): There is
possibly room for progress in argument mining
from more extensive exploitation of structured
knowledge sources.

As previously suggested by Wachsmuth et al.
(2017a), we find that argument assessment re-
lies on a combination of linguistic features and
higher-level argumentation-related properties that
are assessed independently, such as sentiment.
Argument reasoning, in contrast, strongly re-
lies on basic inference rules and general world
knowledge. Finally, the knowledge used in ar-
gument generation seems to be highly task- and
domain-dependent.
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Figure 3: Techniques of employing knowledge in CA
organized by defined time periods (x-axis), knowledge
category (y-axis), and area (color). The size of the term
indicates the number of occurrences of the techniques
(between 1 and 7) in our sample of 40 papers.

Not only the types of knowledge but also the
techniques employed for injecting that knowledge
into CA models substantially differ across the
subareas. Considering linguistic knowledge, for
example, argument assessment approaches pre-
dominantly use lexical cues and traditional sym-
bolic text representations, whereas the body of
work on argument reasoning primarily relies on
latent semantic representations (i.e., embeddings).
Most variation in terms of knowledge modeling
techniques is found in the argument generation
area. Here, the techniques range from template-
and structure-based approaches to external lexica
and classifiers to embeddings and infusion.

Diachronic Analysis. Figure 3 depicts the
temporal development of knowledge modeling
techniques in CA, with year, CA subarea, and
knowledge type as dimensions. We analyze four
time periods, corresponding to pioneering work
(2000–2010), the rise of CA in NLP (2011–2015),
the shift to distributional methods (2016–2018),
and the most recent trends (2019–2021).

This diachronic analysis reveals that CA is
roughly aligned with trends observed in other
NLP areas: in the pre-neural era before 2016,
knowledge has traditionally been modeled via
features, sometimes using knowledge from exter-
nal resources and outputs or previously trained
classifiers (i.e., the pipelined approaches). Later,
more advanced techniques such as grounding, in-

fusion, and above all embeddings became more
popular. However, we note that distinct tech-
niques are used for the different knowledge types;
embeddings, in particular, have been used exclu-
sively to encode linguistic knowledge. Although
representation learning can be applied to other
argumentative resources, CA efforts in this di-
rection have been few and far between (e.g.,
Toledo-Ronen et al., 2016; Al Khatib et al.,
2020a). This warrants more CA work on embed-
ding structured knowledge and towards a unified
argumentative representation space that would
support the whole spectrum of CA tasks.

6 Where Should We Go from Here?

Mastering argumentative discourse requires vari-
ous types of advanced knowledge (Moens, 2018),
making CA one of the most complex problems
in AI (Atkinson et al., 2017). This raises the ques-
tion of a suitable path to reaching argumenta-
tive proficiency for computational models. In this
survey, we identified empirical evidence that in-
tegrating advanced knowledge can lead to perfor-
mance improvements on a range of CA tasks. In
the following, we pick out those that we see as
key ideas toward the goal of mastering argumen-
tation computationally.

Argument mining is often seen as a
structure-oriented task. Lawrence and Reed
(2017a) brought up the notion that topic knowl-
edge may actually predict relations between
argument components. Eger et al. (2017), on
the other hand, formulated mining of argument
structure as an end-to-end task. Integrating these
two views and combining respective methods
could hold much promise.

Despite an abundance of work on encoding
and leveraging common sense knowledge (e.g.,
Lauscher et al., 2020a; Lin et al., 2021), argument
assessment methods fail to decompose arguments
into concepts, with the work of Bar-Haim et al.
(2017a) on stance classification as the positive
exception. Despite some evidence of difficulty of
integration of common-sense knowledge in ar-
gument reasoning tasks (Botschen et al., 2018),
there is no alternative to accurately representing/
encoding common-sense knowledge, if we are to
build reliable CA systems. Beyond that, Kobbe
et al. (2020b) looked at the impact of morals
on argument quality. Such research on modeling
fine-grained and socially and culturally-dependent
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knowledge, such as values and social norms—
across languages, is still in its infancy in NLP in
general. Systematic research on building respec-
tive knowledge sources and benchmarks could
push CA to the next level.

As emphasized by existing work (e.g., Stede and
Schneider, 2018), argumentation is inherently so-
cial and thus highly dependent on the relationship
between the speaker and her audience. A more
straightforward integration of knowledge about
the speaker could prove beneficial: The work of
Alshomary et al. (2021), encoding speaker’s belief
in argument generation, is a step in this direction.

In sum, what we believe is missing in exist-
ing work and what could drive the future of CA
is a unified knowledge representation space that
would aggregate and consolidate all CA-relevant
knowledge, and be universally beneficial across
CA tasks. As shown in this survey, CA-relevant
knowledge is fragmented across heterogeneous
sources (e.g., corpora, knowledge bases, lexicons)
and coupled only sporadically and in an ad-hoc
(not principled) manner. Considering the modest
sizes of existing CA resources, a methodologi-
cal orientation to modular and sample-efficient
learning and adaptation (Houlsby et al., 2019;
Gururangan et al., 2020; Ponti et al., 2022)
could provide means to this end.

7 Conclusion

Motivated by the theoretical importance of
knowledge in argumentation and by previous
work pointing to the need for more research
on incorporating advanced types of knowledge
in computational argumentation, we have studied
the role of knowledge in the body of research
works in the field. In total, we surveyed 162
publications spanning the subareas of argument
mining, assessment, reasoning, and generation. To
organize the approaches described in these works,
we proposed a pyramid-like knowledge taxonomy
systematizing the types of knowledge according
to their specificity, from basic linguistic to task-
specific knowledge.

Our survey yields important findings. Many ap-
proaches employing advanced knowledge types
(e.g., world and argumentation-specific knowl-
edge) report empirical gains. Still, reliance on
such external knowledge types is far from uni-
form across CA areas: While exploitation of such
knowledge is pervasive in argument reasoning

and generation, it is far less present in argu-
ment mining. We hope that our findings lead to
more systematic consideration of different knowl-
edge sources for CA tasks.
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