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ABSTRACT: Twenty-seven models participated in the Earth System Model–Snow Model Inter-
comparison Project (ESM-SnowMIP), the most data-rich MIP dedicated to snow modeling. Our 
findings do not support the hypothesis advanced by previous snow MIPs: evaluating models 
against more variables and providing evaluation datasets extended temporally and spatially does 
not facilitate identification of key new processes requiring improvement to model snow mass and 
energy budgets, even at point scales. In fact, the same modeling issues identified by previous 
snow MIPs arose: albedo is a major source of uncertainty, surface exchange parameterizations 
are problematic, and individual model performance is inconsistent. This lack of progress is at-
tributed partly to the large number of human errors that led to anomalous model behavior and 
to numerous resubmissions. It is unclear how widespread such errors are in our field and others; 
dedicated time and resources will be needed to tackle this issue to prevent highly sophisticated 
models and their research outputs from being vulnerable because of avoidable human mistakes. 
The design of and the data available to successive snow MIPs were also questioned. Evaluation 
of models against bulk snow properties was found to be sufficient for some but inappropriate 
for more complex snow models whose skills at simulating internal snow properties remained 
untested. Discussions between the authors of this paper on the purpose of MIPs revealed varied, 
and sometimes contradictory, motivations behind their participation. These findings started a 
collaborative effort to adapt future snow MIPs to respond to the diverse needs of the community.
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T
he Earth System Model–Snow Model Intercomparison Project (ESM-SnowMIP; 

Krinner et al. 2018) is the third in a series of MIPs spanning 17 years investigating the 

performance of snow models. It is closely aligned with the Land Surface, Snow and 

Soil Moisture Model Intercomparison Project (LS3MIP; van den Hurk et al. 2016), which 

is a contribution to the phase 6 of the Coupled Model Intercomparison Project (CMIP6). 

The Tier 1 reference site simulations (Ref-Site in Krinner et al. 2018), the results of which 

are discussed in this paper, is the first of 10 planned ESM-SnowMIP experiments and 

the latest iteration of MIPs using in situ data for snow model evaluation. The Project for 

Intercomparison of Land Surface Parameterization Schemes Phase 2(d) [PILPS 2(d)] was the 

�rst comprehensive intercomparison focusing on the representation of snow in land surface 

schemes (Pitman and Henderson-Sellers 1998; Slater et al. 2001) and evaluated models 

at one open site for 18 years. It was followed by the �rst SnowMIP (herea�er SnowMIP1; 

Etchevers et al. 2002, 2004), which evaluated models at four open sites for a total of 19 

site years, and by SnowMIP2 (Rutter et al. 2009; Essery et al. 2009), which investigated 

simulations at �ve open and forested site pairs for nine site years.

Twenty-seven models from 22 modeling teams participated in the ESM-SnowMIP Ref-Site 

experiment (ESM-SnowMIP hereafter). A short history of critical findings in previous MIPs 

is necessary to contextualize the results. PILPS 2(d) identified sources of model scatter to be 

albedo and fractional snow-cover parameterizations controlling the energy available for melt, 

and longwave radiative feedbacks controlled by exchange coefficients for sensible and latent 

heat fluxes in stable conditions (Slater et al. 2001). SnowMIP1 corroborated the latter finding, 

adding that the more complex models were better able to simulate net longwave radiation, 

but both complex models and simple models with appropriate parameterizations were able 
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to simulate albedo well (Etchevers et al. 2004). [Baartman et al. (2020) showed that there is 

no general consensus about what “model complexity” is; for clarity, we will define models 

explicitly incorporating larger numbers of processes, interactions, and feedbacks as more 

complex.] SnowMIP2 found little consistency in model performance between years or sites 

and, as a result, there was no subset of better models (Rutter et al. 2009). The largest errors 

in mass and energy balances were attributed to uncertainties in site-specific parameter se-

lection rather than to model structure. All these projects concluded that more temporal and 

spatial data would improve our understanding of snow models and reduce the uncertainty 

associated with process representations and feedbacks on the climate.

This paper discusses results from model simulations at five mountain sites (Col de Porte, 

France; Reynolds Mountain East, Idaho, United States; Senator Beck and Swamp Angel, 

Colorado, United States; Weissfluhjoch, Switzerland), one urban maritime site (Sapporo, 

Japan), and one Arctic site (Sodankylä, Finland); results for three forested sites will be dis-

cussed in a separate publication. Details of the sites, and of forcing and evaluation data are 

presented in Ménard et al. (2019). Although the 97 site-years of data for these seven reference 

sites may still be insufficient, they do respond to the demands of previous MIPs by providing 

more sites in different snowy environments over more years.

The false hypothesis

In �ction, a false protagonist is one who is presented as the main character but turns out not 

to be, o�en by being killed o� early [e.g., Marion Crane in Psycho (Hitchcock 1960), Dallas 

in Alien (Scott 1979), Ned Stark in A Game of Thrones (Martin 1996)]. This narrative tech-

nique is not used in scienti�c literature, even though many scienti�c hypotheses advanced in 

project proposals are killed early at the research stage. Most scienti�c journals impose strict 

manuscript composition guidelines to encourage research studies to be presented in a linear 

and cohesive manner. As a consequence, many “killed” hypotheses are never presented, and 

neither are the intermediary steps that lead to the �nal hypothesis. This is an arti�ce that we 

all comply with even though “hypothesizing a�er the results are known” (known as HARKing; 

Kerr 1998) is a practice associated with the reproduction crisis (Munafò et al. 2017).

Our working hypothesis was formed at the design stage of ESM-SnowMIP and is explicit in 

Krinner et al. (2018): more sites over more years will help us to identify crucial processes and 

characteristics that need to be improved as well as previously unrecognized weaknesses in 

snow models. However, months of analyzing results led us to conclude the unexpected: more 

sites, more years, and more variables do not provide more insight into key snow processes. 

Instead, this leads to the same conclusions as previous MIPs: albedo is still a major source of 

uncertainty, surface exchange parameterizations are still problematic, and individual model 

performance is inconsistent. In fact, models are less classifiable with results from more sites, 

years and evaluation variables. Our initial, or false, hypothesis had to be killed off.

Developments have been made, particularly in terms of the complexity of snow process rep-

resentations, and conclusions from PILPS2(d) and snow MIPs have undoubtedly driven model 

development. Table 1 shows that few participating models now have a fixed snow density or 

thermal conductivity, only two models still parameterize snow albedo as a simple function 

of temperature, no model uses constant surface exchange coefficients, more models can now 

represent liquid water in snow, and only three still have a composite snow–soil layer. These 

changes demonstrate progress for individual models, but they do not for snow science: most 

of these parameterizations have existed for decades. Differences between models remain, but 

the range of model complexity is smaller than it was in previous MIPs.

The pace of advances in snow modeling and other fields in climate research is limited by 

the time it takes to collect long-term datasets and to develop methods for measuring complex 

processes. Furthermore, the logistical challenges of collecting reliable data in environments 
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where unattended instruments are prone to failure continue to restrict the spatial coverage 

of quality snow datasets.

False protagonists allow narrators to change the focus of the story. Our “false hypothesis” 

allows us to refocus our paper not on what the model results are—doing so would merely 

repeat what previous snow MIPs have concluded—but on why, in the 24 years since the start 

of PILPS 2(d), the same modeling issues have repeatedly limited progress in our field, when 

other fields relying on technology and computing have changed beyond recognition.

The beauty contest

Ranking models (or the “beauty contest,” as insightfully described by Ann Henderson-Sellers 

when presenting results from PILPS) o�ers little or no insight into their performance, but it 

has become the compulsory starting point for presenting MIP results. Figures 1 and 2 show 

models ranked according to errors in daily averages of snow water equivalent (SWE), surface 

temperature, albedo, and soil temperature (note that not all of these variables were measured 

at all sites or output by all models). To avoid errors in simulations for snow-free or partially 

snow-covered ground, errors in albedo and surface and soil temperatures were only calculated 

Table 1. Key characteristics of snow model parameterizations and variables on which they depend, and number of papers per 
model over which descriptions of the seven parameterizations are spread. Abbreviations and symbols: LWC = liquid water 
content, SCF = snow-cover fraction (“point” means models used point-specific parameterizations, “grid” means they did not), 
MC = mechanical compaction, OL = Obukhov length, PC = personal communication, Ri

B
 = bulk Richardson number, * = refer-

ences provided by personal communication and cannot be traced in the existing literature about this specific model. A more 
detailed version of this table including full references for parameterizations is available in the supplemental material.

Albedo Conductivity Density Turbulent fluxes LWC SCF Snow layering No. of papers

CABLE-SLI Spectral Power function MC OL Yes Point Single 3

CLASS Spectral Quadratic equation Time Ri
B

Yes Grid Single 2

CLM5 Spectral Density MC OL Yes Grid Multi 1

CoLM Spectral Quadratic equation MC OL Yes Grid Multi 7*

CRHM Spectral Density and humidity MC OL Yes Point Multi 4* + PC

Crocus Spectral Power function MC Ri
B.

Yes Point Multi 3

EC-EARTH Time and temperature Power function MC OL Yes Grid Single 3*

ESCIMO Temperature None Time Empirical Yes Point Single 3*

HTESSEL Time and temperature Power function MC OL Yes Grid Single 3

HTESSEL (ML) Multi 3

SURFEX-ISBA Spectral Power function MC Ri
B.

Yes Point Multi 2

JSBACH Spectral Fixed Fixed OL No Point Composite 3*

JSBACH3-PF Power function Time Multi 4*

JULES-GL7 Spectral Power function MC OL Yes Point Multi 2

JULES-UKESM

JULES-I Temperature Fixed Fixed OL No Point Composite 1

MATSIRO Spectral Fixed Fixed OL No Point Multi 3

ORCHIDEE-E Time Quadratic equation MC OL Yes Grid Multi 1 + PC

ORCHIDEE-MICT

ORCHIDEE-I Fixed Fixed No Grid Composite 3 + PC

RUC Time Fixed MC OL No Grid Multi 3 + PC

SMAP Spectral Quadratic equation MC OL Yes Point Multi 3

SNOWPACK Statistical Conductivity model Empirical OL Yes Point Multi 5

SPONSOR Time Density MC OL Yes Grid Multi 2 + PC

SWAP Density Density SWE and snow OL Yes Point Single 3

VEG3D Time Density Time OL No Point Single 4*
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for periods with measured snow depths greater than 0.1 m and air temperatures below 0°C. 

Measured and modeled snow surface temperatures greater than 0°C and albedos less than 

0.5 were excluded from the error calculations. Bias is shown for SWE, surface temperature, 

albedo, and soil temperature. Root-mean-square error normalized by standard deviation 

(NRMSE) is presented only for SWE and surface temperature because standard deviations of 

albedo and soil temperature are small during periods of continuous snow cover.

Discussion of the results in the following subsections will demonstrate why our initial 

hypothesis was rejected: no patterns emerge, no sweeping statements can be made. The 

preliminary conclusion presented in Krinner et al. (2018) that “model complexity per se does 

not explain the spread in performance” still stands. For example, Table 1 shows that RUC is 

one of the simplest models, but Figs. 1 and 2 show that it often has smaller errors than more 

complex models. This is not to say that model developments are useless: there are large differ-

ences between simulations submitted for older and newer versions of a few models. Errors in 

SWE—the most commonly used variable for evaluation of site simulations—are greatly reduced 

in HTESSEL-ML, JULES-UKESM/JULES-GL7, and ORCHIDEE-E/ORCHIDEE-MICT compared 

with HTESSEL, JULES-I, and ORCHIDEE-I, and errors in soil temperature are greatly reduced 

in JSBACH-PF which, unlike its predecessor JSBACH, includes a soil freezing parameterization. 

There is little or no reduction in errors for other variables between versions.

Errors in the ESM-SnowMIP driving and evaluation data are not discussed here because 

they are discussed in Ménard et al. (2019): implicit in the following sections is that a model 

can only be as good as the data driving it and against which it is evaluated.

Fig. 1. Model ranking by normalized root-mean-square errors of snow water equivalent and sur-

face temperature. The site names are shortened as follows: CDP = Col de Porte, SAP = Sapporo, 

RME = Reynolds Mountain East, SNB = Senator Beck, SOD = Sodankylä, SWA = Swamp Angel, 

and WFJ = Weissfluhjoch.
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Fig. 2. Model ranking by biases from negative to positive. Following the prevalent convention, 

negative biases denote model underestimates. SWE biases are normalized by measured mean 

yearly maxima. JSBACH soil temperature cold biases (ranging from −6° to −12°C and averaging 
−9°C) are outside the range of the plot. The site names are shortened as in Fig. 1.
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Snow water equivalent and surface temperature. Mean SWE and surface temperature 

NRMSEs in Fig. 1 are generally low: below 0.6 for half of the models and 1 or greater for only 

four models. Biases are also relatively low: less than 2°C in surface temperature and less than 

0.2 in normalized SWE for four out of five sites in Fig. 2. The sign of the biases in surface 

temperature are the same for at least four out of five sites for all except four models (JULES-I, 

ORCHIDEE-E, ORCHIDEE-MICT, and SWAP). The six models with the largest negative biases 

in SWE are among the seven models that do not represent liquid water in snow. The seventh 

model, RUC, has its largest negative bias at Sapporo, where rain-on-snow events are common. 

Wind-induced snow redistribution, which no model simulates at a point, is partly responsible 

for Senator Beck being one of the two sites with largest SWE NRMSE in more than half of the 

models.

Four of the best models for SWE NRMSE are among the worst for surface temperature 

NRMSE (SPONSOR, Crocus, CLASS, and HTESSEL-ML). Decoupling of the snow surface from 

the atmosphere under stable conditions is a long-standing issue, which Slater et al. (2001) 

investigated in PILPS 2(d). Underestimating snow surface temperature leads to a colder 

snowpack that takes longer to melt and remains on the ground for longer. In 2001, most 

models used Richardson numbers to calculate surface exchange; in 2019, most use Monin–

Obukhov similarity theory (MOST). However, assumptions of flat and horizontally homo-

geneous surfaces and steady-state conditions in MOST make it inappropriate for describing 

conditions not only over snow surfaces, but also over forest clearings and mountains: in 

other words, at all sites in this study. Exchange coefficient are commonly used to tune 

near-surface temperature in numerical weather prediction models even if to the detriment 

of the representation of stable boundary layers (Sandu et al. 2013). Conway et al. (2018) 

showed that such tuning in snowpack modeling improved surface temperature simula-

tions but at the expense of overestimating melt. It is beyond the scope of this paper (and 

in view of the discussion on sources of errors in the “Discussion” section, possibly beyond 

individual modeling teams) to assess how individual models have developed and evaluated 

their surface exchange and snowpack evolution schemes. However, differences in model 

ranking between SWE and surface temperature suggest that this issue is widespread and 

warrants further attention.

Albedo. Errors in modeled winter albedo (Li et al. 2016) and implications for snow albedo 

feedback on air temperature (Randall et al. 2007; Flato et al. 2013) have been linked to 

errors in snow-cover fraction (SCF) (e.g., Roesch 2006) and vegetation characteristics in the 

boreal regions, rather than to the choice or complexity of snow albedo schemes (Essery 2013; 

Wang et al. 2016). These should not affect ESM-SnowMIP because vegetation characteristics 

were provided to participants (all sites discussed here are in clearings or open landscapes) 

and snow cover during accumulation is expected to be complete. However, 11 models did 

not impose complete snow cover (Fig. 3) such that, again, differences in surface albedo are 

inextricably linked to differences in snow-cover fraction; implications are discussed in the 

“Motivation behind participation” section.

As in previous studies (e.g., Etchevers et al. 2004; Essery 2013), the specific albedo scheme 

or its complexity does not determine model performance in ESM-SnowMIP. Neither of the two 

models with the smallest range of biases, CLASS and EC-Earth, imposed SCF = 1 and both use 

simple albedo schemes in which snow albedo decreases depending on time and temperature. 

Snow albedo parameterizations (Table 1) determine rates at which albedo varies, but ranges 

within which the schemes operate are still determined by user-defined minimum and maxi-

mum snow albedos to which models are very sensitive. For most models these parameters 

are the same at all sites, but measurements suggest that they differ; it is unclear whether 

some of these variations are due to site-specific measurement errors (e.g., instruments or 
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vegetation in the radiometer field of view). This issue should be investigated further as this 

is not the first time that model results have been inconclusive because of such uncertainties 

(e.g., Essery et al. 2013).

Soil temperature. Five models systematically underestimate soil temperatures under snow 

(JSBACH, MATSIRO, ORCHIDEE-I, RUC, and SURFEX-ISBA) and four systematically overes-

timate them (CLM5, CoLM, JULES-GL7, and ORCHIDEE-MICT), although negative biases are 

often larger than positive ones. Soil temperatures are not consistently over- or underestimated 

by all models at any particular site. Three of the models (JSBACH, JULES-I, and ORCHIDEE-I) 

still include a thermally composite snow–soil layer, and the lack of a soil moisture freezing 

Fig. 3. Fractional snow cover (SCF) as a function of SWE at Col de Porte for models that did not 

switch off their subgrid parameterizations or impose complete snow cover. HTESSEL is not shown 

as it is the same as HTESSEL-ML. ORCHIDEE-MICT did not force SCF = 1, but values were missing 

from the file provided for evaluation.
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representation in JSBACH causes soil temperatures to be underestimated. Although newer 

versions of these models (ORCHIDEE-E, ORCHIDEE-MICT, JSBACH-PF, JULES-GL7, and JULES-

UKESM) include more realistic snow–soil process representations, cold biases of the implicit 

versions have, with the exception of ORCHIDEE-E, been replaced by warm biases, and of 

similar magnitude between JULES-I and JULES-GL7.

Discussion

Motivation behind participation. One of the motivations behind the design of ESM-SnowMIP 

was to run a stand-alone MIP dedicated to snow processes parallel to other MIPs, most notably 

CMIP6 and LS3MIP: “Combining the evaluation of these global-scale simulations with the 

detailed process-based assessment at the site scale provides an opportunity for substantial 

progress in the representation of snow, particularly in Earth system models that have not 

been evaluated in detail with respect to their snow parameterizations” (Krinner et al. 2018). 

Identifying errors in ESM-SnowMIP site simulations could be linked to model processes that 

also operate in LS3MIP global simulations, separately from meteorological and ancillary data 

errors. However, LS3MIP and ESM-SnowMIP results are not directly comparable because land 

surface schemes (LSSs) include parameterizations that describe subgrid heterogeneity and 

some LSSs allow them to be switched off or modified for point simulations. Tables 1 and 2 

show whether models participated in both MIPs and whether they used point simulation-

specific snow-cover parameterizations, which is critical for albedo and the most common 

parameterization to simulate subgrid heterogeneity. Of the 11 models that did not adjust 

their subgrid parameterizations or impose complete snow cover (Fig. 3), only one (CLASS) is 

not participating in LS3MIP. Of those that are participating, three switched off their subgrid 

parameterizations (MATSIRO, RUC, and SURFEX-ISBA). Had it been anticipated at the design 

stage that some models would have considered ESM-SnowMIP to be a means to evaluate 

their LS3MIP setup against in situ data, ESM-SnowMIP instructions would have advised to 

switch off all subgrid processes; treating a point simulation like a spatial simulation makes 

evaluating some variables against point measurements futile. This is best illustrated with 

ORCHIDEE, the three versions of which have the highest negative albedo biases; not only 

was complete snow cover not imposed, but also the maximum albedo for deep snow on grass 

(i.e., 0.65 at all sites except Weissfluhjoch) accounts implicitly for subgrid heterogeneity in 

large-scale simulations.

Although called ESM-SnowMIP, the site simulations were always intended to include 

physically based snow models that are not part of an ESM but have other applications 

(Krinner et al. 2018). Table 3 lists what motivated different groups to participate in ESM-

SnowMIP. Although not explicit in Table 3 because of the anonymity of the comments, for 

developers of snow physics models, the motivation to participate in a MIP dedicated to 

scrutinizing the processes they investigate is self-evident. On the other hand, most land 

surface schemes were first developed to provide the lower boundary conditions to atmo-

spheric models. Because of the dramatic differences in the energy budget of snow-free 

and snow-covered land, the main requirement for snow models in some LSSs is still just 

to inform atmospheric models of whether there is snow on the ground or not. The size of 

the modeling group also matters; more models supported by a single individual or small 

teams listed exposure as one of their motivations. This discussion revealed that many par-

ticipants suffered from the “false consensus effect” (Lee et al. 1977), also observed among 

geoscientists but not explicitly named by Baartman et al. (2020), i.e., they assumed their 

motivations were universal, or at the very least, widespread. Ultimately, the prestige of 

MIPs means that, regardless of workload, personal motivation or model performance, they 

have become compulsory promotional exercises that we cannot afford not to participate 

in, for better or worse.
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Table 2. Participating models and modeling teams. ESM-SnowMIP provided vegetation height, soil type, and snow-free  
albedo to the participants; where relevant, these may differ from LS3MIP configurations.

Model
ESM-SnowMIP  

contact Model type Model version Model configuration

Differences between  
LS3MIP and ESM-SnowMIP  

configurations

CABLE-SLI Matthias Cuntz,  
Vanessa Haverd

LSS in Access CABLE revision 4252 CABLE including SLI as  
described in Haverd et al.  
(2016). Snow and ice extensions  
as in Cuntz and Haverd (2018).

Did not participate in LS3MIP.

12 soil layers

CLASS Paul Bartlett LSS in CanESM CLASS 3.6.2 CLASS-CTEM offline code with  
CTEM turned off, and using the  
two-band snow albedo and  
associated snow-aging scheme.  
Initialization files are available  
on demand. Other than  
adjustments to match the  
site properties (e.g., soil type,  
vegetation, snow-free albedo)  
all parameters are the model  
default values.

Did not participate in LS3MIP.

CLM5 Sean Swenson LSS in CESM CLM5.0 Standard No difference.

CoLM Yongjiu Dai,  
Hua Yuan

LSS in  
BNU-ESM and  
CAS-ESM

CoLM Version 2014 Default CoLM Version 2005

Many differences including  
pedotransfer functions of  
soil hydraulic and thermal  
parameters, numerical  
solution of Richards equation  
of soil water content.

CRHM Xing Fang,  
John Pomeroy

Hydrological  
model

CRHM 17 Jan 2018 Adapted from CRHM plot-scale  
simulation project for coniferous  
forest and forest clearing sites  
in Canadian Rocky Mountains  
detailed in Pomeroy et al. (2012)  
with modified configuration for  
soil module allowing simulations  
for permafrost and seasonal  
frost.

Did not participate in LS3MIP.

Crocus Matthieu  
Lafaysse

Snow physics  
model

Git tag ESM-SnowMIP-Crocus- 
ESCROC (=commit b57f02d6  
4/12/2017)

Crocus: default configuration  
as defined in Lafaysse et al.  
(2017, Fig. 2).

Did not participate in LS3MIP.

Drift module allowing change  
of physical properties of near  
surface snow activated for  
SNB and WFJ.

EC-EARTH Emanuel Dutra LSS in  
EC-EARTH

EC-EARTH v3.2.2 revision r4381 Offline “OSM” configuration  
with prescribed surface albedo  
and vegetation.

LS3MIP simulation will be  
done with the latest “frozen”  
model version for CMIP6,  
including interactive  
vegetation and variable  
surface albedo.

ESCIMO Thomas Marke,  
Ulrich Strasser

Snow surface  
energy balance  
model

ESCIMO v5 based on ESCIMO  
v4 with additional functionality  
described in Marke et al. (2016).

Albedo parameterization as in  
Cox et al. (1999).

Did not participate in LS3MIP.

Sensible heat equation as in  
Weber (2008).

Empirical density function as  
in Essery et al. (2013).

Unauthenticated | Downloaded 08/28/22 03:48 AM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y J A N UA RY  2 0 2 1 E71

Model
ESM-SnowMIP  

contact Model type Model version Model configuration

Differences between  
LS3MIP and ESM-SnowMIP  

configurations

HTESSEL Gabriele Arduini LSS of ECMWF  
operational  
forecasting  
system

HTESSEL cycle 43r3 Operational HTESSEL  
configuration uses the single  
layer snow scheme from  
Dutra et al. (2010). The  
experimental HTESSEL  
configuration (HTESSEL-ML)  
uses a multilayer snow  
scheme documented in Arduini  
et al. (2019). Note that the  
configuration of the multilayer  
snow scheme and model cycle  
used for ESM-SnowMIP runs  
differ from Arduini et al. (2019).

Did not participate in LS3MIP.

HTESSEL-ML

SURFEX-ISBA Bertrand  
Decharme,  
Aaron Boone

LSS in  
CNRM-CM

SURFEX version 8.0 (ISBA and  
all related schemes including  
snow are embedded in the  
SURFEX numerical platform)

As in Decharme et al. (2016)  
denoted as the “NEW”  
experiment.

Snow gridcell fraction does  
not account for vegetation  
in the one-dimensional  
ESM-SnowMIP runs.

JSBACH3 Stefan Hagemann LSS in  
MPI-ESM

JSBACH3 (Revision 9168,  
state of 31 Jul 2017) and  
JSBACH3-PF (same revision  
but with improved snow  
parameterizations inherited  
from JSBACH4)

Time step: 450 s, With YASSO  
soil model, no dynamic  
vegetation, no nitrogen, no  
disturbances and no land use  
transitions. Orography and  
LAI do not affect surface  
roughness. Soil states were  
initialized from previous global  
offline simulation using  
GWSP3 forcing. JSBACH3-PF  
uses the “permafrost”  
configuration with enabled  
soil freezing and thawing, and  
with related processes based  
on Ekici et al. (2014).

JSBACH-PF did not  
participate in LS3MIP.

JSBACH3-PF JSBACH3: No difference

JULES-I Cecile Menard,  
Richard Essery

LSS in  
HadCM3

JULES 4.8 (Revision 7629) Zero-layer snow model as  
described in Best et al. (2011).

Did not participate in LS3MIP.

JULES-GL7 Eleanor Burke LSS in  
HadGEM3-GC3  
and UKESM

JULES 5.3 GL7 and UKESM configurations  
with site-specific characteristics.

Different fractional snow-cover 
parameterization for plot-scale 
and distributed simulations.

JULES-UKESM

MATSIRO Tomoko Nitta,  
Hyungjun Kim

LSS in  
MIROC

MATSIRO 6 MATSIRO for offline land  
simulations. The configuration  
is the same as the GSWP3  
simulations except for subgrid- 
scale parameterizations (tile  
scheme, SSNOWD snow-cover  
parameterization and arctic  
wetland scheme), which are  
turned off for plot-scale  
simulations.

All subgrid-scale  
parameterizations are tuned  
off for plot-scale simulations.

ORCHIDEE-E Claire  
Brutel-Vuilmet,  
Gerhard Krinner

LSS in  
IPSL-CM

ORCHIDEE E and I TRUNK  
revision 4695; ORCHIDEE  
MICT 8.7.1 revision 5308

TRUNK is the version of  
ORCHIDEE that is used in the  
first CMIP6 runs. We have the  
implicit snow version (TRUNK-I)  
which is the older snow that was  
used in CMIP5 and the explicit  
snow version (TRUNK-E) that is  
used in CMIP6 (based on Wang  
et al. 2013). MICT is the high-
latitude version of ORCHIDEE 
(Guimberteau et al. 2018).

No difference.

ORCHIDEE-I

ORCHIDEE-MICT

Table 2. (Continued).
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Errare humanum est. The increasing physical complexity of models makes them harder for 

users to understand. Many LSSs are “community” models (e.g., CLM, CoLM, JULES, SURFEX-

ISBA), meaning that they are being developed and used by a broad range of scientists 

whose research interests, other than all being related to some aspect of the land surface, 

do not necessarily overlap. In many cases, new parameterizations are added faster than 

old ones are deprecated, causing ever-growing user interfaces or configuration files to be-

come incomprehensible. Benchmarking should help scientists verify that newer versions 

of a model can reproduce the same results as older versions, but the lag between scientific 

improvements (hard code) and those at the user interface (soft code) can cause model errors 

to be introduced by simple avoidable mistakes. The JULES configuration files, for example, 

contain approximately 800 switches and parameters. Although GL7 and UKESM are the 

official JULES configurations implemented in the CMIP6 Physical Model and Earth System 

setups, respectively, the ESM-SnowMIP results had to be resubmitted multiple times because 

large errors were eventually traced to a poorly documented but highly sensitive parameter. 

It should be noted that JULES and many other models were not intended for point simula-

tions, increasing the possibility of errors in reconfiguring them for ESM-SnowMIP.

A different philosophy from some other MIPs has been followed here such that resub-

mission of simulations was encouraged if initial results did not appear to be representa-

tive of the intended model behavior. Table 4 provides details of the hard- and soft-coded 

errors identified as a result of discussions that led to 16 of the 26 models re-submitting 

their results, some more than once. One model was excluded at a late stage because the 

modeling team did not identify the source of some very large errors that caused the model 

Model
ESM-SnowMIP  

contact Model type Model version Model configuration

Differences between  
LS3MIP and ESM-SnowMIP  

configurations

RUC Tatiana Smirnova LSS in  
NOAA/NCEP  
operational  
forecasting  
systems

RUC model – WRF 4.0 official  
release

Standard RUC configuration  
for offline simulations: nine  
levels in soil, two-layer snow  
model with separate treatment  
of snow-covered and snow- 
free areas for patchy snow.

Subgrid-scale parameteriza-
tions for fractional snow cover 
and surface parameters are 
turned off for ESM-SnowMIP.

SMAP Masashi Niwano Snow physics  
model

SMAP v4.23rc1 SMAP v4.23rc1 Did not participate in LS3MIP.

SNOWPACK Nander Wever,  
Charles Fierz

Snow physics  
model

MeteoIO preprocessing library:  
revision 2011 from https:// 
models.slf.ch/svn/meteoio/trunk

The standard version of  
SNOWPACK was used, in  
default configuration.

Did not participate in LS3MIP.

SNOWPACK model: revision  
1480 from https://models.slf.ch/ 
svn/snowpack/branches/dev

SPONSOR Dmitry Turkov,  
Vladimir Semenov

Hydrological  
model

SPONSOR, ver.2.0 The model was adapted for  
calculations of spatially  
distributed landscape  
characteristics with observed  
meteorological forcing. The  
latest version of the snow  
model is described in Turkov  
and Sokratov (2016).

No difference.

SWAP Olga Nasonova,  
Yeugeny Gusev

LSS As described in 
Gusev and Nasonova (2003)

As described in Gusev and  
Nasonova (2003).

Did not participate in LS3MIP.

VEG3D Gerd Schädler Soil and  
vegetation  
model

As described in 
Braun and Schädler (2005)

Standard configuration: eight  
soil layers, time step: 300 s.

Did not participate in LS3MIP.

Table 2. (Continued).
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Table 3. Summary of discussions with ESM-SnowMIP participants about 1) what motivated them to participate and 2) their 
suggestions about the design of the next snow MIP.

Motivation behind participation Future of snow MIPs

To identify key missing processes. Allow resubmission of simulations if errors are identified.

To cut out the noise from ensemble simulations in order to extract  
the signal.

Provide model code and initialization files as well as model results for  
transparency.

To compare how models implement snow processes and, if possible,  
what are the implications.

Move toward a more process-based diagnostic in order to improve  
parameterizations and not just to tune parameters.

To have a detailed analysis of one’s own model; doing the model  
simulations is easier than analyzing the results.

Need new evaluation metrics.

To provide new insights into modeling. Evaluate against internal snowpack properties (e.g., snow layer thermal  
conductivity, temperature, density).

To document the current state of the models. Move toward fewer models with multiple hypotheses (e.g., FSM, 
Essery 2015; SUMMA, Clark et al. 2015; or Noah-MP, Niu et al. 2011).

To help modelers understand their and other models better. Cluster models depending on their complexity.

To determine the skill of an operational model in offline simulations  
before starting coupled simulations for weather predictions.

Not all models should be accepted. There could be minimum requirements in 
terms of parameterizations (e.g., stability dependent exchange coefficients); 
outliers from the previous experiment would not be allowed to participate in 
the next stages; new models should present a proof of energy and moisture 
conservation in their models.

To motivate model improvements. All models should be accepted, but different levels of involvement should  
be allowed so modeling groups can choose the experiments they want to  
participate in.

To participate in the beauty contest (the statistical performance of  
my not-so-sophisticated model is similar to complex process-based  
models).

Constrain model sensitivity with observations (e.g., SWE, snow albedo)  
or fixed variables.

To identify a range of “good enough” models reflecting the range  
of process uncertainty.

Provide evaluation data at the same time as the forcing data.

To make one’s model visible to the snow modeling community. Provide fewer sites as initialization of many sites can be a source of human  
errors.

To be part of the snow modeling community. Provide more challenging sites (e.g., tundra, wind-blown).

To evaluate one’s model at reference sites across different elevation  
gradients and climatic settings.

To avoid equifinality problems by evaluating models performance  
with multiple variables that contribute to and are relevant to snow  
processes.

To provide benchmarks against which to evaluate models.

to be an outlier in all analyses and, therefore, would not have added any scientific value 

to this paper.

Model errors can be statistically quantified; quantifying human errors is somewhat more 

challenging. A methodology widespread in high-risk disciplines (e.g., medicine, aviation 

and nuclear power), the Human Reliability Assessment, may be the closest analog, but it is a 

preventative measure. Concerns about reproducibility and traceability have motivated a push 

for analogous methodologies in the geosciences (Gil et al. 2016), but most remain retrospec-

tive steps to retrace at the paper writing stage.

Figure 4 quantifies the differences in the performance of the two variables (SWE and soil 

temperature) and models most affected by human errors before and after resubmission. For 

some models (JULES-GL7, JSBACH-PF, HTESSEL-ML), SWE NRMSE before resubmission are 

up to 5 times higher than after and soil temperature bias double that of corrected simula-

tions (ORCHIDEE-I). Human errors in models and, as discussed in Ménard et al. (2019) for 

the first 10 reference sites in ESM-SnowMIP, in data are inevitable, and this snow MIP shows 

that they are widespread. The language we use to describe numerical models has distanced 
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Table 4. Hard- and soft-coded errors identified by the results analysis team (AT) or modeling team (MT) in the course of this 
study.

Unusual model behavior Model

Soft-coded errors

 Did not change start time between SNB and SWA  
 (start at 0000) and other sites (start at 0100)

Mismatched timestamps (AT) All models

 Initial conditions taken from wrong date Mismatched timestamps (AT) CLM5

 Specified site-specific parameters not taken from  
 site descriptions

Unrealistically low albedo with consequences  
on snow mass and melt (AT)

JSBACH, JSBACH-PF, JULES-I

 Wrong forcing file used for one site Models results were identical at two sites (AT) RUC

 Simulations used UTC times instead of local times Unrealistically high albedo (AT) Crocus

 Many variations in output file formats; wrong variable  
 name; variations in the interpretation of the ESM-SnowMIP  
 definition of output variables; different sign conventions

— One or more in adjacent  
list for most, if not all, models

 Errors in converting to ESM-SnowMIP format because of  
 the above

— Some models; results analysis  
team

Hard-coded errors

 Bug in model use of site longitude Unrealistically low albedo with consequences  
on snow mass and melt (AT)

JULES-GL7, JULES-UKESM

 Bug in transmission of SW radiation through canopy Investigated slow melting behavior of model  
after evaluation data became available (MT)

SURFEX-ISBA

 Model SWE limited to a maximum of 1,000 mm SWE limited to 1,000 mm (AT) MATSIRO

 Unintentional decoupling of snow surface and atmosphere Snow did not melt at Weissfluhjoch in some  
summers (AT)

HTESSEL-ML

 Bug in partitioning of SW radiation into direct and diffuse Unrealistically high albedo values (AT) Crocus

 Bug in the output of liquid water content Found unrealistically small liquid water content  
values when compared ESM-SnowMIP results  
with other simulations (MT)

HTESSEL, EC-EARTH

 Inconsistent use of snow area fraction when calculating  
 snow depth and SWE

Snow density varied instead of being fixed (AT) MATSIRO

Fig. 4. SWE NRMSE and soil temperature (T
soil

) absolute bias before and after resubmission for 

selected models. The site names are shortened as in Fig. 1.
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them from the fact that they are not, in fact, pure descriptions of physics but rather equations 

and configuration files written by humans. Errare humanum est, perseverare diabolicum. 

Ménard et al. (2015) showed that papers already published had used versions of JULES that 

included bugs affecting turbulent fluxes and causing early snowmelt. There is no requirement 

for authors to update papers after publication if retrospective enquiries identify some of the 

published results as erroneous. In view of the many errors identified here, further investiga-

tions are required to start understanding how widespread errors in publications are. Whether 

present in initialization files or in the source code, these errors impair or slow progress in our 

understanding of snow modeling because they misrepresent the ability of models to simulate 

snow mass and energy balances.

Model documentation. As with many other areas of science, calls for reproducibility of 

model results to become a requirement for publication are gaining ground (Gil et al. 2016). 

Table 1 was initially intended to list the parameterizations considered most important in snow 

modeling (Essery et al. 2013; Essery 2015), with, as is conventional (e.g., Rutter et al. 2009; 

Krinner et al. 2018), a single reference per model. Referencing the parameterizations in the 

27 models requires, in fact, 63 papers and technical reports; a more detailed version of the 

table and associated references are included in the supplemental material. The lead author 

first identified 51 references. Then the modeling teams were asked to  correct or to confirm 

them and to provide references whenever gaps remained. However, some suggested the 

wrong references, others revised their initial answers, and a few even discovered that some 

parameterizations are not described at all. Not only is it extremely rare to find complete docu-

mentation of a model in a single publication, it is also difficult to find all parameterizations 

described at all in the literature. When this happens, some parameterizations are described in 

publications for other models. Often, the most recent publication refers to previous ones, which 

may or may not be the first to have described the model, comprehensively or not. Incomplete 

documentation would be an annoying but unimportant issue if this exercise had not led to 

the identification of some of the errors discussed in the previous subsection.

Less than a decade ago, it was at best difficult and at worst impossible to publish scientific 

model descriptions. The open access culture, issues of reproducibility, and online platforms 

dedicated to publication of source code and data have reversed this trend such that it is now 

difficult to imagine research relying on a new model with proprietary code being published. 

Yet, it is a truth universally acknowledged that openly budgeting in a project proposal for the 

added time it takes to publish comprehensive data and model descriptions is unadvisable, 

despite many funding bodies enforcing open-access policies. The problem remains for models 

developed before the tide changed. Two examples illustrate this best. The first concerns the 

number of papers which refer to Anderson (1976) for snow density, liquid water retention, or 

thermal conductivity. Equations for these parameterizations do appear in the report, but often 

not in the form presented in subsequent papers [Essery et al. (2013) pointed out that most actu-

ally use the forms in Jordan (1991)], or they are themselves reproductions of equations from 

earlier studies (especially for snow thermal conductivity). The second example is a quote taken 

from the paper describing VEG3D (Braun and Schädler 2005): “The snow model is based on 

the Canadian Land Surface Scheme (CLASS) (Verseghy 1991) and ISBA (Douville et al. 1995) 

models, and accounts for changes of albedo and emissivity as well as processes like compac-

tion, destructive metamorphosis, the melting of snow, and the freezing of liquid water.” This 

sentence is the only description in English of the snow model in VEG3D; a more comprehensive 

description, not referenced in Braun and Schädler (2005), is available in German in a PhD 

thesis (Grabe 2002). The study in which the quote appears did not focus on snow processes, 

so a full description of the snow model may not have been necessary, but it is nonetheless 

a cause for concern that referees, at the very least, did not require clarifications as to which 
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processes were based on CLASS and which on ISBA. Changes in emissivity certainly were 

not based on either model as both did—and still do—have fixed emissivity. This is the most 

succinct description of a snow model, but not the only one to offer little or no information 

about process representations. At the other end of the spectrum, the CLM5 documentation is 

the most comprehensive and makes all the information available in a single technical report 

(Lawrence et al. 2020). A few models follow closely with most information being available in 

a single document that clearly references where to obtain additional information (e.g., CLASS, 

SURFEX-ISBA, HTESSEL, JULES, SNOWPACK). The “publish or perish” culture is estimated 

to foster a 9% yearly growth rate in scientific publications (Bornmann and Mutz 2015), which 

will be matched by a comparable rate of solicitations for peer reviewing. Whether it is because 

we do not take or have time to fact-check references, the current peer-review process is failing 

when poorly described models are published. The aim of LS3MIP and ESM-SnowMIP is to 

investigate systematic errors in models; errors can be quantified against evaluation data for 

any model, but poor documentation accentuates our poor understanding of model behavior 

and reduces MIPs to statistical exercises rather than to insightful studies.

What the future holds

Historically, PILPS (Henderson-Sellers et al. 1995) and other intercomparison projects have 

provided platforms to motivate model developments; they are now inextricably linked to suc-

cessive IPCC reports. In view of heavily mediatized errors such as the claim that Himalayan 

glaciers would melt by 2035—interestingly described as “human error” by the then IPCC chair-

man Rajendra Pachauri (IPCC 2010; Times of India 2010)—we must re�ect on how damaging 

potential errors are to the climate science community. Not only are the IPCC reports the most 

authoritative in international climate change policy-making, but they have become—for better 

or worse—proxies for the credibility of climate scientists to the general public. It is therefore 

time that we re�ect on our community and openly acknowledge that some model uncertain-

ties cannot be quanti�ed at present because they are due to human errors.

Other factors are also responsible for the modeling of snow processes not having progressed 

as fast as other areas relying on technology. Discussions on the future of snow MIPs involving 

organizers and participants of ESM-SnowMIP issued from this study. As in the discussion 

about motivation of participants, suggestions for the design of future MIPs were varied, and at 

times contradictory, but responses from participants reflected the purpose their models serve 

(Table 4). The IPCC Expert Meeting on Multi Model Evaluation Good Practice Guidance states 

that “there should be no minimum performance criteria for entry into the CMIP multimodel 

database. Researchers may select a subset of models for a particular analysis but should docu-

ment the reasons why” (Knutti et al. 2010). Nevertheless, many participants argued that the 

“one size fits all” approach should be reconsidered. ESM-SnowMIP evaluated models against 

the same bulk snowpack properties as previous snow MIPs. This suited LSSs that represent 

snow as a composite snow–soil layer or as a single layer, but there is a demand for more com-

plex models that simulate profiles of internal snowpack properties to be evaluated against 

data that match the scale of the processes they represent (e.g., snow layer temperatures, liquid 

water content, and microstructure). Models used at very high resolution for avalanche risk 

forecasting (such as Crocus and SNOWPACK; Morin et al. 2020) and by the tourism industry 

are constantly being tested during the snow season, and errors can cost lives and money. 

However, obtaining reliable data and designing appropriate evaluation methodologies to drive 

progress in complex snow models is challenging (Ménard et al. 2019). For example, solving 

the trade-off between SWE and surface temperature errors requires more measurements of 

surface mass and energy balance components: simple in theory but expensive and logisti-

cally difficult in practice. The scale at which even the more complex models operate is also 

impeding progress. Until every process can be described explicitly, the reliance of models 
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on parameterizations to describe very small scale processes (such as the surface exchanges 

upon which the above trade-off depends) are inevitable sources of uncertainty.

Despite expressing a need for change in the design of snow MIPs, many participants de-

scribed ESM-SnowMIP as a success because it allowed them to identify bugs or areas of their 

models in need of further improvements; some improvements were implemented in the course 

of this study, others are in development. Ultimately, ESM-SnowMIP’s main flaw is of not being 

greater than the sum of its parts. Its working hypothesis was not supported and, per se, has 

failed to advance our understanding of snow processes. However, the collaborative effort 

allowed us to report a false, but plausible hypothesis, to expose our misplaced assumptions 

and to reveal a disparity of opinions on the purpose, design and future of snow MIPs. In 

view of our findings, of the time investment required of participating modelers and of novel 

ways to utilize already available global-scale simulations (e.g., Mudryk et al. 2020), most 

planned ESM-SnowMIP experiments may not go ahead, but site simulations with evaluation 

data covering bulk and internal snowpack properties will be expanded. Learning from our 

mistakes to implement future MIPs may yet make it an unqualified success in the long term.
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