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ABSTRACT 

We have developed a general-purpose block-structured interpretive programming lan

guage. The syntax and semantics of this language called (Hare similar to C. (H retains 

most features of C from the scientific computing point of view. In this paper, the exten

sion of C to (H for numerical computation of real numbers will be described. Metanum

bers of -0.0, 0.0, lnf, -lnf, and NaN are introduced in (H. Through these metanumbers, 

the power of the IEEE 754 arithmetic standard is easily available to the programmer. 

These metanumbers are extended to commonly used mathematical functions in the spirit 

of the IEEE 754 standard and ANSI C. The definitions for manipulation of these meta

numbers in 1/0; arithmetic, relational, and logic operations; and built-in polymorphic 

mathematical functions are defined. The capabilities of bitwise, assignment, address 

and indirection, increment and decrement, as well as type conversion operations in 

ANSI C are extended in (H. In this paper, mainly new linguistic features of (H in 

comparison to C will be described. Example programs programmed in (H with meta

numbers and polymorphic mathematical functions will demonstrate capabilities of (H in 

scientific computing. © 1994 John Wiley & Sons, Inc. 

1 INTRODUCTION 

We have developed a general-purpose block

structured interpretive programming language. 

Due to our research interests, this language called 

CH has been developed to be especially suitable 

for research and applications in scientific and sys

tem programming. CH is expressive with modern 

programming constructs and rich sets of data 

types and operators. At its current implementa

tion, CH supports most features of the C program

ming language except data structures. Some 
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rough edges incompatible with the ANSI C [1] will 

be smoothed out in the future. By then, one may 

consider CH as a C language with High-level ex

tensions. CH extends the capabilities of C in many 

aspects. CH not only supports C's basic data types 

such as int and float, but also provides many ad

ditional data types such as complex and others. 

The handling of complex and dual numbers in CH 

are described by Cheng [2, 3]. The constants, 

variables, and operators of new data types in CH 

follow the same syntax rules of basic data types 

such as int and float. C, a modern language origi

nally invented for the Unix system programming 

[4, 5], is commonly regarded as a mid-level com

puter language. CH retains low-level features of C 

with respect to interface to hardware. However, 

CH is a high-level language, designed for both 

novice users and experienced programmers. If one 
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makes mistakes in a CH program, the system will 

prompt informative warning or error messages for 

the debugging of the program. 

CH is a language designed for both scientific 

and system programming. Currently, Fortran [6, 
7] and C are the two predominant computer lan

guages for scientific computing. CH has been de

signed to make the porting of both Fortran and C 

code to CH as easy as possible. However, as the 

name of the language implies, whenever there is a 

syntax conflict between C and other languages, 

the interpretation will follow that of C. As a result, 

the syntax and semantics of CH are similar to 

those of C in many aspects. Therefore, unless in

dicated otherwise, all code fragments included in 

this paper will have the same implications as those 

in the ANSI C. The detailed explanations for each 

single line of code presented in this paper will not 

be given. 

In this paper, the scientific computing aspect of 

the CH language will be addressed. CH retains 

most features of C from the scientific computing 

point of view. The ANSI/IEEE 754 standard for 

binary floating-point arithmetic [8, 9] is a signifi

cant milestone on the road to consistent floating

point arithmetic with respect to real numbers. 

This standard has significantly influenced the de

sign of CH. The IEEE 754 standard distinguishes 

+0.0 from -0.0, which introduces an extra com

plexity for programming. The rationale for this ex

tra complexity is not well understood and ac

cepted by all computer scientists and C experts 

[ 10 ]. Many have challenged the necessity for the 

sign of zeros. Apparently, how to handle best "the 

sign of nothing" is still a topic to be further inves

tigated. Another important feature of the IEEE 

754 standard is the internal representation for 

mathematical infinity and invalid value. The 

mathematical infinity oo is represented by the sym

bol of lnf. A mathematically indeterminate or an 

undefined value such as division of zero by zero is 

represented by NaN, which stands for Not-a

Number. Many computer hardware have signed 

zeros, infinity, and NaN [11, 12]. Information 

about low-level and limited high-level instruction 

sets provided by hardware vendors may not be 

relevant to the application programmer and most 

features of a final system depend on the software 

implementation. Even for IEEE machines, if there 

is no provision for propagating the sign of zeros, 

infinity, and NaN in a consistent and useful man

ner through the software support, they will have to 

be programmed as if zeros are unsigned without 

infinity and NaN. For example, the proposed Ada 

standard does not distinguish -0.0 from 0.0 and 

has no provision for consistent handling of infinity 

and NaN [13-18]. As another example, the stan

dard mathematical C library implemented by 

Plauger [10] has provisions for signed infinities 

and NaN, but zeros are unsigned. Based on IEEE 

machines, some vendors provide software support 

for the IEEE 754 standard through libraries [ 19-

21]. However, these special values in libraries are 

not transparent to the programmer. Due to differ

ent design considerations, they have defined dif

ferent values for many operations and functions 

discussed in this paper. For example, the SCN's 

mathematical library will deliver the following 

results: oo0 = 1; NaN° = 1; 0° = 1; (-oo)x = oo; 

(-oot"' = 0; (-oo)0 = 1; (-x)"' = oo; (-xt"' = 0; 

(-ootf = 0, which differ from CH. Although the 

application of symbols such as lnf and N al\' 

can be found in some software packages, their 

handling of these special numbers are often 

time full of flaws. For example, one can find 

Complexlnfinity in the software package Mathe

matica [22], and lnf and NaN in MATLAB [23]. 

In Mathematica, there is no distinction between 

complex infinity and real infinities, nor between 

-0.0 and 0.0; therefore, many operations defined 

in this paper cannot be achieved in this package. 

In MATLAB, there is no complex infinity, and one 

will be surprised by some of its results. At one 

point, the sign of a zero is honored; but at other 

point, it may not. For example, according to the 

IEEE 754 standard, sqrt(-0.0) should be -0.0, 

but, sqrt(-0.0) = 0.0 in MATLAB (version 4.0, 

1992). As another example, acosh(lnf) equals 

NaN whereas acos(lnf) is a complex NaN. Results 

of mathematical functions in many cases are not 

consistent with mathematical conventions. It is in 

these grey areas that the standard is not supported 

in many implementations of hardware and soft

ware systems. 

To make the power of the IEEE 754 standard 

easily available to the programmer, the floating

point numbers of -0.0, 0.0, lnf, -lnf, and 1\'al\', 

referred to as metanumbers, are introduced in CH. 

These metanumbers are transparent to the pro

grammer. Signed zeros +0.0 and -0.0 inCH be

have like correctly signed infinitesimal quantities 

0+ and 0-; whereas symbols lnf and -lnf corre

spond to mathematical infinities oo and -oo, re

spectively. The manipulation capabilities of lnf 

and NaN in CH go way beyond the scope use in 

mathematical software packages such as Mathe

matica and MATLAB. The integration of the me

tanumbers in the C programming language will be 



SCIE:\TIFIC COYIPLTI:\G I:\ C 11 PROGRAY1Y11:'>1G L\1\"GLAGE 51 

described in this article. The IEEE ?54 standard 

only addresses the arithmetic involving these me

tanumbers. In this article. these metanumbers are 

extended consistently to commonly used mathe

matical functions in the spirit of the IEEE ?54 

standard. The linguistic features of CH. as it is 

currently implemented, in dealing with metanum

bers will be presented in this article. The emphasis 

is placed on the handling of metanumbers in 110: 

arithmetic, relationaL and logic operations: and 

polymorphic mathematical functions. The con

cepts presented in this article have been extended 

to complex numbers in [2]. 

It should be mentioned that related to the work 

described in this article is the current effort pur

sued by 1'\umerical C Extension Group (.'\CEG ), 

the subcommittee X3J11.1 of the Al'\SI C X3J11 

committee. The 1'\CEG is working on floating

point C extension standard: to make features of 

the IEEE 754 standard available for use by pro

grammers is one of its efforts. Reviewing its pre

liminary draft [24 J for the proposed floating-point 

C extension standard reveals that some features 

presented in this article are in conformance with 

the proposed standard. However, there are many 

differences between CHand the proposaL For ex

ample, recognizing that operations like isnan (X) 

can be problematic in dealing with Nal'\, the pro

posal introduces eight additional relational opera

tors of ! <>=, <>, <>=, ! <=, ! <, ! >=, 
! >, ! <> on top of the existing operators <, >, 
< = , > = , = = , ! =. But, to preserve the clarity 

and succinctness of C, no additional relational 

operator has been introduced in C11
. The handling 

of NaN in C11 will be described in detail in this 

paper. There is no -NaN inCH whereas the sign 

of NaN is honored in the proposaL The proposal 

suggests function overloading for elementary 

mathematical functions in C. However, unlike 

c++ [25]' there is no provision for function over

loading in ANSI C. Consequently, mechanisms for 

function overloading are to be introduced, which 

will likely complicate the syntax of C. All mathe

matical functions are built polymorphically with 

optional auxiliary arguments into CH itself [2]. 

Therefore, unlike the proposal, there is no need in 

CH for distinction of functions log(x) and 

loglp(x), which is expected to be more accurate 

than log() for small magnitude of x because these 

two functions can be easily reconciled inside CH. 

The proposal introduces several new functions, 

most of which can be easily implemented as exter

nal functions in CH. Due to different consider

ations, the design of C11 is different from the pro-

posal in some other aspects. For example, CH is 

definitive; results of all operations and functions 

involving metanumbers are properly defined in CH 

whereas the proposal still leaves room for unspeci

fied values. The proposed floating-point C exten

sion is still at its preliminary stage. The final speci

fication and actual language implementation of 

the proposed standard remain to be seen. 

The rest of the paper is arranged as follows. 

Section 2 presents the number system in CH. The 

different data types and their internal memory 

representations are described. Section 3 describes 

the external representations of numerical con

stants inCH. Section 4 discusses the 1/0 extension 

of C to CH for numerical data and metanumbers. 

Section 5 defines arithmetic, relationaL and logic 

operations involving metanumbers. In addition, 

the CH extensions of bitwise. assignment, address 

and indirection. increment and decrement opera

tions, as well as explicit type conversions will be 

highlighted. Section 6 defines polymorphic math

ematical functions with metanumbers as input ar

guments or as returned results. Example pro

grams in Section 7 with metanumbers and 

polymorphic mathematical functions will demon

strate CH's capabilities in scientific computing. 

Some conclusions will be made in section 8. 

2 REAL NUMBERS IN CH 

CHis a loosely typed language. The CH program

ming language has a rich set of data types. Cnlike 

languages such as Pascal [26], which prohibits 

automatic type conversion, one data type in CH 

can be automatically converted to another data 

type if it makes sense in context. As it is currently 

implemented, CH encapsulates Fortran's four nu

meric data types of integer, real, double precision, 

and complex. Programming with complex num

bers in C11 will be described [2]. In this paper, we 

discuss only the real numbers directly related to 

scientific computing. The formats of these data 

stored in a computer memory depend on the ma

chine architecture in use. How these numbers are 

internally represented in a computer system for 

manipulation inside CH will be illustrated in this 

section. The discussion is based on the architec

ture of the RISC processor for SUN SPARCSta

tions [20]. But, ideas are applicable to all IEEE 

machines. Data types of short, unsigned, long 

double, double complex, and long double com

plex are not available in CH at its current imple

mentation, mainly because our applications of CH 
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can bypass these data types. As users' base of CH 

increases, they will be supported in the future if 

necessary. 

2.1 Integers 

Integer is a basic data type for any computer lan

guage. An integer inCH can be represented in data 

types of char or int. Numerical manipulations of 

char and int data in CH follow the rules defined in 

ANSI C. 

2. J. J Char Data Representation 

The char data are used to store characters such as 

letters and punctuations. An array of char can be 

used to store a string. A character is actually 

stored in integer according to a certain numerical 

code such as the ASCII code. Under this code, 

certain integers represent certain characters. The 

standard ASCII code ranges from 0 to 127, which 

2. J .2 lnt Data Representation 

An int data is a signed integer inCH. An int num

ber is a whole number that can be negative, 

positive, or zero. The int ranges from INT _MIN to 

INT _MAX. The parameters INT _MIN and 

INT _MAX, defined in the ANSI C standard 

header limits. h, are precalculated system con

stants inCH. Unlike some of C's implementations, 

in which an int data may occupy only 2 bytes, an 

int data uses 4 bytes (32 bits) for storage with 1 bit 

for sign in CH. Negative numbers are stored in 

4-byte two's complement minus 1. The values 

of INT _MIN and INT _MAX then become 

-2147483648 (231
) and 2147483647, respec

tively. The int type of CH is the same as the int 

data type defined in the ANSI C. Operations such 

as addition, subtraction, multiplication, and divi

sion in CH are fully compatible with those defined 

in the ANSI C. For example, the following state

ments are valid in CH. 

char c [2] [3], *cptr; 

int i, *iptr; I* I# comment *I 
C [0] [1] = I a I; I# c(O] [1] becomes 'a' *I 
i = c [0] [ 1]; I# I* i becomes 97, ASCII number for 'a' *I 
c[1,2] = i+1 

i += c [1 ' 2]; 

iptr = &i; 

*iptr I= 2; 

I* c[1,2] becomes 'b', ASCII number for 'b' is 98 *I 
I# i becomes 194 = 97 +97 

I* iptr points to address of i *I 
I* i becomes 97 = 19412 *I 

needs only 7 bits to represent. In CH, the char 

variable is a signed integer ranging from CHAR_ 

MIN to CHAR_MAX. The parameters CHAR_ 

MIN and CHAR_MAX, defined in the ANSI C 

standard header 1 imi ts. h, are system constants 

inCH. Typically, a char constant or variable occu

pies 1 byte of unit memory. Bit 8 is a sign bit. The 

maximum positive integer for a signed 1-byte rep

resentation is 127 or 01111111 in the binary 

form. A negative number is stored as the binary 

complement of its absolute value minus 1. For 

example, the decimal value of -2 is determined 

by the binary value of 11111110 in an 1-byte 

two's complement value as 

com(11111110)2 = (00000001 + 1)2 = (10)2 

where the subscript of 2 indicates the base of the 

integer number. The minimum integer values for a 

signed char is -128 or 10000000 in binary form. 

The range of integers for a char is then from -128 

to +127. 

Like C, comments of a CH program can be en

closed within a pair of delimiters I* and *I. 
These two comment delimiters cannot be nested. 

In addition, the symbol I# inCH will comment out 

a subsequent text terminated at the end of a line. 

A I# can be used to comment out I* or *I and 

I* *I can be used to comment out I#. These two 

companion methods provide a convenient mecha

nism to comment out a section of CH code that 

contains comments. When a comment does not 

start at the beginning of a line, the use of I# is 

recommended for CH programs. It should be men

tioned that, in ANSI C, a combined use of prepro

cessor directives #if, #el if, #else, and 

#endi f can also comment out a section of C 

code. Note that arrays inCH can be declared and 

accessed by c [ i] [j ] or c [ i , j ] . The former is 

in Al"SI C style whereas the latter has a Fortran 

flavor. All white space and tab characters will be 

ignored in the CH program, except when they are 

characters within a string. A program using invisi

ble characters such as a tab character as delimit-
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ers and control sequences is very difficult to de

bug. Such design examples are not difficult to find 

in computer systems. 

2.2 Real Numbers 

The integer data type serves well for some software 

development projects, especially for system pro

gramming. However, for scientific computing, the 

floating-point numbers are used extensively. The 

floating-point numbers correspond to real num

bers that include the numbers between integers. 

These numbers are defined in CH as float or dou

ble, which are equivalent to real and double preci

sion in Fortran, respectively. Floating-point num

bers are analogous to the representations of 

numbers in scientific notion. Floating-point arith

metic is complicated as compared with the integer 

arithmetic. This paper mainly addresses issues re

lated to the floating-point operations and built-in 

functions in CH. 

The most common implementation of floating

point arithmetic is based upon the IEEE 754 
standard. In this standard, a float or double is 

represented in the form of 

( -1 )sign 2exponent-bias 1./ (1) 

where 1.f is the significand and f is the bit in the 

significand fraction. This normalized float or dou

ble number contains a "hidden" bit because it 

has one more bit of precision than would other

wise be the case. 

2.2. J Float Data Representation 

The float data type uses 32 bits for its storage. The 

result of a float data is formulated as 

( -1 )sign 2exponent-12"71.j (2) 

Bit 31 is a sign bit; it is 1 if the number is negative. 

Eight-bit exponent of bits 23 to 30 is biased by 

127; values of all zeros and all ones are reserved 

for metanumbers. Bits 0 to 22 are the fraction 

component of a normalized significand. The lead

ing integer value 1 of the normalized significand is 

hidden. The hexadecimal representations of some 

typical float numbers are given in Table 1. For 

example, according to Equation (2), float num

bers 1. 0 and -2.0 can be obtained by 
(-1)02127-1271.0 = 1.0 and (-1)12128-1271.0 = 
2.0, respectively. Remember that the fraction of 

the normalized significand is stored in a binary 

fraction. The float number 3.0 can be calculated 

by (-1)02128-12"7(1.1)2 = 2 * (1.1)2 = 2 * (1.5)10 = 
(3.0)10 where subscripts indicate the base of the 

floating-point number. Note that the IEEE 754 

standard distinguishes +0.0 from -0.0 for float

ing-point numbers. For user's convenience, these 

two constants are predefined as system constants 

Zero and NZero inCH. NZero stands for negative

zero. 

Table 1. Hexadecimal Representation of Selected 

Real Numbers 

Value Float Double 

0.0 00000000 0000000000000000 

-0.0 80000000 8000000000000000 

1.0 3F800000 3FFOOOOOOOOOOOOO 

-1.0 BF800000 BFFOOOOOOOOOOOOO 

2.0 40000000 4000000000000000 

-2.0 cooooooo cooooooooooooooo 
3.0 40400000 4080000000000000 

-3.0 C0400000 C080000000000000 

Inf 7F800000 7FFOOOOOOOOOOOOO 

-Inf FF800000 FFFOOOOOOOOOOOOO 

Nal'\ 7FFFFFFF 7FFFFFFFFFFFFFFF 

FLT_MAX 7F7FFFFF 

DBL_MAX 7FEFFFFFFFFFFFFF 

FLT_MII'\ 007FFFFF 

DBLMll'\ OOOFFFFFFFFFFFFF 

FL T _MINIMUM 00000001 

DBL_MINIMUM 0000000000000001 
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The parameter FL T _MAX, defined as the 

maximum representable finite floating-point 

number in the float data type in the ANSI C stan

dard header float. h, is a precalculated system 

constant in CH. As mentioned before, that 8-bit 

exponent of bits 23 to 30 is biased by 127; values 

of all ones for 8-bit exponent of bits 23 to 30 are 

reserved for metanumbers. If a number is larger 

than FL T _MAX, which is called an overflow, it 

will be represented by the symbol of Inf, which 

corresponds to the mathematical infinity oo. This is 

the result of many operations such as division of 

a finite number by zero although an inexact ex

ception may be raised in an IEEE machine. 

In the same manner, if a number is less than 

- FL T _MAX, it will be represented by - lnf, which 

is equivalent to the negative infinity -oo. 

The value of the parameter FL T_MIN is de

fined in the ANSI C standard library header 

float. h as a minimum normalized positive float

ing-point float number. If a number is less than 

FL T _MIN, it is called an underflow. The IEEE 

754 standard provides a gradual underflow. 

When a number is too small for a normalized rep

resentation, leading zeros are placed in the signifi

cand to produce a denormalized representation. A 

denormalized number is a nonzero number that is 

not normalized and whose exponent is the mini

mum exponent for the storage type. The maxi

mum representable positive denormalized float is 

defined as FL T _MINIMUM in CH as shown in Ta

ble 1. There is only one unit in the last place for 

FL T _MINIMUM so that it is commonly referred to 

as ulp. Almost all floating-point implementa

tions substitute the value zero for a value that is 

smaller than FL T _MINIMUM for IEEE machines, 

FLT _MIN for non-IEEE machines. However, in 

the arithmetic operations and mathematical func

tions defined in CH, there is a qualitative differ

ence between FL T _MINIMUM which is smaller 

than FLT _MIN and zero. In this paper, by the 

value of 0.0 means that it is a zero, not a small 

number. The CH expressions of 0., 0.00, and .0 

are the same as 0.0. In the same token, the follow

ing CH floating-point constant expressions -0.0, 

-0., -0.00, and- .0 are equivalent. Mathemati

cally, divisions of zero by zero of 0.0/0.0 and in

finity by infinity of oofoo are indeterminate. The 

results of these operations are represented by the 

symbol of NaN, which stands for Not-a-Number. 

It should be mentioned that the IEEE 754 stan

dard distinguishes quiet NaN from signaling NaN. 

The signaling NaN should generate a signal or 

raise an exception. InCH, all NaNs are treated as 

quiet NaNs. Furthermore, the IEEE 754 standard 

does not interpret the sign of NaK. However, 

many floating-point arithmetic implementations 

such as in the SCK's AKSI C, Apple's Standard 

Apple ~umeric Environment, and preliminary 

proposed floating-point C extensions distinguish 

NaK from - NaK. But, from the user's point of 

view, what is the difference between a negative 

1'\ot-a-Kumber and a positive Not-a-Number? Af

ter all, Not-a-Number is not a number. Therefore, 

no -NaK will be produced as a result of arith

metic and functions in C 11 although it can be cre

ated by manipulating the bit pattern of the mem

ory location of a float variable. The expression 

-KaNis interpreted as NaK inCH. The metanum

bers are treated just as regular floating-point 

numbers. The internal hexadecimal representa

tions of the metanumbers for the float type are 

also given in Table 1. 

2.2.2 Double Data Representation 

For a large range of representable floating-point 

numbers, a double data can be used in CH. The 

double data type uses 64 bits as its storage. The 

result of the double data is formulated as 

(3) 

Bit 63 is a sign bit; it is 1 if the number is nega

tive. Eleven-bit exponent of bits 52 to 62 is biased 

by 1023; values of all zeros and all ones are re

served for metanumbers. Bits 0 to 51 are frac

tional components of normalized significands. 

Like float, the integral value 1 of the normalized 

significand is hidden. The hexadecimal represen

tation of some typical double numbers are also 

given in Table 1. Note that the width and bias 

value of the exponent of double is different from 

those of float. Therefore, a float cannot be con

verted into a double just by padding zeros in its 

fraction. On the other hand, when a double data is 

cast into a float, the result cannot be obtained just 

by ignoring the values in bits 0 to 31. Note that 

there is no external distinction between float Inf 

and double Inf although their internal representa

tions differ. This is also true for metanumbers 

-Inf and NaN. Similar to float, parameters 

DBL_MAX, DBL_MIN, and DBL_MINIMUM are 

precalculated constants inCH. The internal mem

ory representations of these special finite double 

floating-point numbers are also given in Table 1. 

Note that due to the finite precision of the floating

point number representation, the exact values of 

irrational numbers such as 1r are not represent

able in a computer system whether they are repre

sented in float or double. 
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3 CONSTANTS OF REAL NUMBERS 

In this section, we will describe the external repre

sentations of data types discussed in the previous 

section. Besides declared variables and svstem 

defined parameters, all different data types .in CH 

can have their corresponding constants at the pro

grammer's disposal. 

Char and int constants inCH are in full compli

ance with the ANSI C standard. A character con

stant, stored as an integer, can be written as one 

character within a pair of single quotes like 1 x 1 
• 

Character constants enclosed in a pair of single 

quotes cannot contain the 1 character. In order 

to represent the 1 character and certain other 

characters such as a newline character, the escape 

sequence may be used. For example, 

c = 1 
\ 

1 1 will assign the 1 character to c whereas 

c = 1 \n 1 will give c a newline character. 

A decimal integer constant like 12345 is an int. 

An integer can also be specified in octal or hex

adecimal instead of decimal. A leading 0 (zero) on 

an integer constant indicates an octal integer 

whereas a leading Ox or OX means hexadecimal. 

Besides these integral values defined in Al\"SI C, 

CH introduces a binary constant with leading Ob or 

OB. For example, decimal 30 can be written as 

036 in octal, OX1e or Ox1E in hexadecimal, and 

Ob11110 or OB11110 in binary. Note that expres

sions like 029 and Ob211 are illegal, which can be 

detected by CH. 

The value of 0 in CH means that it is an integer 

zero. Unlike real numbers, there is no 0_ in int. 

Therefore, the integer value of -0 equals 0 inCH. 

The domain [-FL T _MAX, FL T _MAX] of real 

numbers is larger than the domain [- INT _MIN, 

INT _MAX] of integer numbers. When a real num

ber smaller than INT _MIN, including - lnf, is 

converted to an integer, the result is INT _MIN. 

For a real number larger than INT_MAX, includ

ing lnf, the converted integral value is INT _MAX. 

When NaN is assigned to an integral variable, the 

system will print a warning message, and the re

sultant integral value becomes 11\'T _MAX whose 

memory map is the same as that of NaN. 

In K&R C [27, 28] all floats in expressions are 

converted into doubles before evaluation. As a 

result, any operations involving floating-point op

erands, even with two float operands, will produce 

a double result. This is not applicable to many 

scientific computations in which speed and mem

ory of a program are critical. The inconvenient 

floating-point operation modes for 32- and 64-bit 

operands of the original hardware platform, a 

PDP -11/45 FPP, for running C programs was a 

major factor in the design of this implicit data con

version of K&R C [10, 29]. Although this indis

criminate conversion is sometimes complemented 

with a positive tone for its generosity, it is harshly 

criticized by the numerically oriented scientific 

programmers as a language design fault [30]. Be

cause of the indiscriminate conversion rules in the 

early design of C, every floating-point constant 

like 3.5 and 3e7 is taken as double. This default 

double mode for floating-point constants has 

been carried over to the ANSI C standard. How

ever, the ANSI C has provided a mechanism to 

specify a float constant. The suffixes F or f indi

cate a float constant. 

In regards to the default data type of floating

type constants, CH follows the lead of Fortran, but 

with an ANSI C modern syntax style. Floating

point numbers are represented in scientific nota

tion. All floating-point constants such as 2.4, 

2e + 3, -2.£- 3, and +2.1e3 are float constants 

by default because, in most applications, a float

ing-point constant with a small number of digits 

after a decimal point is intended to be float. This 

default mode, however, can be switched by the 

function floatconst(onoff). After execution of 

command floatconst(FALSE), the aforemen

tioned floating-point constants will be taken as 

double. However, the default mode can always be 

overruled by the suffixes F or f for float, D or d for 

double. For example, constants 3.4e3F, 3£- 3/, 

and 3e + 3F are floats whereas constants 3.4e3D, 

3£ - 3d, and 3e + 3D are doubles regardless of 

the default mode for floating-point constants. 

However, the constant metanumbers Zero, 

NZero, ±lnf, and NaN are always taken as floats 

unless they are values of double variables. Ac

cording to this design, the range of representable 

floating-point numbers can be expanded auto

matically. For example, the values of FL T _MAX 

and DBL_MAX for SuN SPARCStations are 

3.4e38 and 1.8e308, respectively. The following 

CH program 

printf("pow(10.0, 39) < Inf is %d /n", pow(10.0, 39) < Inf); 

floatconst(FALSE); 

printf ("pow (10. 0, 39) < Inf is %d /n", pow (10. 0, 39) < Inf); 
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will print out 

pow(lO. 0, 39) < Inf is 0 

pow(lO. 0, 39) < Inf is 1 

In the first statement of the program, the value of 

1039 calculated by pow(10.0, 39) has overflowed 

as lnf because it is larger than FL T _MAX. By 

switching the default mode of floating-point con

stants to double through the function floatconst

(FALSE), the value of 1039 calculated by 

pow(10.0, 39) in double data is still within the 

representable range of -DBL_MAX < pow(10.0, 

39) < DBL_MAX. In the second case, the me

tanumber lnf is expanded as a double infinity 

larger than DBL_MAX. The float mode for float

ing-point constants can be switched back by the 

command floatconst(TRUE). With this mode 

switching function, both Fortran and C codes can 

be ported to CH conveniently. Details about rela

tional operator < and polymorphic function pow() 

will be discussed in Sections 5 and 6, respectively. 

In the remaining presentation of this paper, we 

assume that the default mode for floating-point 

constants is float. 

4 1/0 FOR REAL NUMBERS 

In ANSI C, the input of integers and floating-point 

numbers is obtained through the standard II 0 
functions scanf(), fscanf(1 ), and etc.; the output 

is accomplished using the function print£(), 

fprintf(), and etc. These functions are also avail

able in CH and will be in full compliance with the 

ANSI C standard. However, implementation of 

these functions in CH is different from C. In this 

section, the differences of these functions between 

CHand C, and enhancements of these functions in 

CH will be discussed. 

The major difference of these functions between 

CHand C is that these functions are built-in inter

nal functions in CH whereas they are external 

functions in C. Therefore, they can be reconciled 

inside CH so that they are more flexible and pow-

erful. The standard input/ output/ error devices 

stdin/stdout/stderr defined in the ANSI C 

headers tdi o. hare provided as system constants 

inCH. The inclusion of header stdio. h in a pro

gram is, therefore, unnecessary in CH. Other than 

this difference, a C programmer will not notice any 

difference in these functions between CH and C. 

But, these 1/0 functions in CH are enhanced. 

Here, we only briefly discuss the enhancements 

related to real numbers for the function printf(). 

The underlying principle can be applied to other 

1/0 functions as well. The format of function 

print£() in CH is as follows 

int printf(char *format, argl, arg2, ... ) 

The function print£() prints output to the stan

dard output device under the control of the string 

pointed to by format and returns the number of 

characters printed. If the format string contains 

two types of objects: ordinary characters and con

version specifications beginning with a character 

of % and ending with a conversion character, the 

ANSI C rules for printf() will be used. Besides the 

control characters specified by the ANSI C stan

dard, CH has one more conversion character 'b' 

that is used to print real numbers in binary for

mat. An integer number between the symbol % 

and the character 'b' specifies how many bits 

starting with bit 0 will be printed. If without an 

integer number between the symbol % and the 

character 'b', the default format will print int data 

without leading zeros, float data in 32 bits, and 

double data in 64 bits. This binary format is very 

convenient to examine the bit patterns of me

tanumbers. If the format string in printf() contains 

only ordinary characters, the subsequent numeri

cal constants or variables will be printed accord

ing to preset default formats. The default format 

forint, float, and double are %d, %.3f, and %If, 

respectively. The metanumbers lnf and NaN are 

treated as regular numbers in 110 functions. The 

default data types for these numbers are float. 

The following CH program illustrates how b

format and metanumbers are handled by the 110 
functions print£() and scanf(). 

float finf, fNaN; 

double dinf, dNaN; 

printf("Please type 

scanf(&finf, &fNaN, 

printf("The float 

printf("The float 

printf("The float 

'Inf NaN Inf NaN' \n 11
); 

&dinf, &dNaN) ; 

Inf %f\n 11
, finf); 

-Inf 

NaN 

11
, -f Inf, "\n 11

) ; 

%f\n 11
, fNaN); 
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printf ("The float Inf %b \n"' finf); 

printf ("The float -Inf %b \n"' flnf); 

printf ("The float NaN %b \n"' fNaN); 

printf ("The double Inf %lf\n", dinf); 

printf ("The double -Inf II -dinf, "\n"); 
' 

printf ("The double NaN %lf\n", dNaN); 

printf ("The double Inf %b \n"' dinf); 

printf ("The double -Inf %b \n"' -dinf); 

printf ("The double NaN %b \n", dNaN); 

printf ("The int 2 %b \n"' 2); 

printf ("The int 2 %32b \n"' 2); 

printf ("The int -2 %b \n"' -2); 

printf ("The float 0.0 %b \n"' 0. 0); 

printf ("The float -0.0 %b \n"' -0. 0); 

printf ("The float 1.0 %b \n"' 1. 0); 

printf ("The float -1.0 %b \n"' -1. 0); 

printf ("The float 2.0 %b \n"' 2. 0); 

printf ("The float -2.0 %b \n", -2.0); 

The first two lines of the program declare two float 

variables flnf and fNaN, and two double variables 

dlnf and dNaN. The function scanf() will get lnf 

and NaN for the declared variables from the stan

dard input device, which is the terminal keyboard 

in this example. These metanumbers will be 

printed in default formats %.3f for float and %1£ 

for double. These numbers are also printed using 

the binary format %b. For comparison, the mem

ory storage for integers of ±2, and floats of ±0.0, 

± 1.0, ±2.0 are printed. The result of the interac

tive execution of the above program is shown as 

follows 

Please type 'Inf NaN Inf NaN' 

Inf Nan Inf Nan 

The float Inf Inf 

The float -Inf -Inf 

The float NaN NaN 

The float Inf 01111111100000000000000000000000 

The float -Inf 11111111100000000000000000000000 

The float NaN 01111111111111111111111111111111 

The double Inf Inf 

The double -Inf -Inf 

The double NaN NaN 

The double Inf 

0111111111110000000000000000000000000000000000000000000000000000 

The double -Inf = 
1111111111110000000000000000000000000000000000000000000000000000 

The double NaN = 

0111111111111111111111111111111111111111111111111111111111111111 

The int 2 10 

The int 2 00000000000000000000000000000010 

The int -2 11111111111111111111111111111110 

The float 0.0 00000000000000000000000000000000 

The float -0.0 10000000000000000000000000000000 

The float 1.0 00111111100000000000000000000000 

The float -1.0 10111111100000000000000000000000 

The float 2.0 01000000000000000000000000000000 

The float -2.0 11000000000000000000000000000000 
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where the second line in italic is the input and the 

rest are the output of the program. For metanum

bers lnf, - lnf, and I\ al'\, there is no difference 

between float and double types from the user's 

point of view. It can be easily verified that the bit

mappings of all these numbers in memory match 

with data representations discussed in the pre

vious sections. 

5 REAL OPERATIONS 

In this section, the arithmetic, relational, logic, 

bitwise, assignment, address and indirection, in

crement and decrement operations, as well as ex

plicit type conversions of real numbers in CH will 

be discussed. The operation precedence for dif

ferent operators in CH is in full compliance with 

the ANSI C standard, except the new operator A A 

introduced in Section 5.2. Following the ANSI C 

standard, the algorithms and resultant data types 

of operations for floating-point numbers will de

pend on the data types of operands in CH. The 

conversion rules for char, int, float, and double in 

CH follow the type conversion rules defined in the 

ANSI C standard. A data type that occupies less 

memory can be converted to a data type that oc

cupies more memory space without loss of any 

information. For example, a char integer can be 

cast into int or float without problem. However, a 

reverse conversion may result in loss of informa

tion. The order of real numbers in CH ranges from 

char, int, float, to double. The char data type is 

the lowest and double the highest. Like the ANSI 

C, the algorithms and resultant data types of the 

operations depend on the data types of operands 

in CH. For binary operations, such as addition, 

subtraction, multiplication, and division, the re

sultant data type will take the higher order data 

type of two operands. For example, addition of 

two float numbers will result in a float number 

whereas addition of a float number and a double 

number will become a double number. 

The operation rules for regular real numbers 

and metanumbers in CH are presented in Tables 2 

to 12. In Tables 2 to 12, x, x1, and x2 are regular 

Table 2. Negation Results 

Operand -lnf -xl -0.0 

Result lnf xl 0.0 

positive normalized floating-point numbers in 

float or double; metanumbers 0.0, -0.0. Inf. 

-lnf, and NaN are constants or the values of float 

or double variables. By default, the constant 

metanumbers are float constants. 

5.1 Arithmetic Operations 

For the negation operation shown in Table 2, the 

data type of the result is the same as the data type 

of the operand, a real number will change its sign 

by negation operation. There is no -1'\aN in CH. 

The leading plus sign '+ ', a unary plus operator, 

in an expression such as +57864 - x will be ig

nored. It should be pointed out that the negation 

of a positive integer zero is still a positive zero. 

Based on two's complement representation of 

negative integer numbers discussed before, we 

cannot represent Inf and Nal'\ in the int data type. 

According to the IEEE 754 standard, some op

erations depend on the rounding mode. For ex

ample, in case of rounding toward zero, overflow 

will deliver FL T _MAX rather than Inf with the ap

propriate sign. This rounding mode is necessary 

for Fortran implementation and for machines that 

lack infinity. If the rounding mode is round toward 

-oo, both -0.0 + 0.0 and 0.0 - 0.0 deliver -0.0 

rather than 0.0. For scientific programming, con

sistency and determinancy are essential. CH is 

currently implemented using the default rounding 

mode of round to nearest so that overflow will 

result in Inf, and both -0.0 + 0.0 and 0.0 - 0.0 

deliver 0.0 as shown in Tables 3 and 4. Note that 

the modulus operator% inCH is ANSI C compati

ble. 

For addition, subtraction, multiplication, and 

division operations shown in Tables 3 to 6, the 

resultant data type will be double if any one of two 

operands is double; otherwise, the result is a float. 

The mathematically indeterminate expressions 

such as oo - oo, oo * 0.0, oo/oo, and 0.0/0.0 will 

result in NaNs. The values of ±0.0 play important 

roles in the multiplication and division operations. 

For example, a finite positive value of x2 divided 

by 0.0 results in a positive infinity +oo whereas 

division by -0.0 will create a negative infinity -oo. 

Negation-

0.0 x2 lnf NaN 

-0.0 -x2 -lnf NaN 
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Table 3. Addition Results 

Addition+ 

Right Operand 

Left Operand -lnf -x1 -0.0 0.0 x2 lnf l'\a."\J 

lnf :\a:\ Inf lnf lnf Inf lnf Na'i 
y2 -lnf v2- x1 y2 v2 y2 + x2 Inf Nal'\ 

0.0 -lnf -x1 0.0 0.0 x2 Inf Nal\' 
-0.0 -lnf -x1 -0.0 0.0 x2 lnf Nal\' 
-v1 -lnf -v1 - x1 -y1 -v1 -Y1 + x2 lnf l\"a'i 
-Inf -lnf -lnf -lnf -lnf -lnf :\a:\ l\"a'i 
Na.r-.i 'ial\' :\a:\' :\a:\ 'ia'\J :\a:\ l\'a:\ l\'a:\ 

Table 4. Subtraction Results 

Subtraction -

Right Operand 

Left Operand -lnf -x1 -0.0 0.0 x2 Inf :'\a:\ 

Inf Inf Inf lnf lnf lnf :\iaN Na:\1 
v2 lnf v2 + x1 y2 y2 y2- x2 -lnf Nal\' 

0.0 lnf x1 0.0 0.0 -x2 -lnf Nal\' 
-0.0 Inf x1 0.0 -0.0 -x2 -lnf :\iaN 
-y1 lnf -y1 + x1 -y1 -v1 -v1 - x2 -Inf l\'a:\1 
-lnf l\'al\' -Inf -Inf -lnf -lnf -lnf Na~ 

NaN !'\a!\~ '\Jal'\ 'ia:"\J 'ia:"\J !'\a:\ l\'al\' Nal\' 

Table 5. Multiplication Results 

Multiplication * 

Right Operand 

Left Operand -lnf -x1 -0.0 0.0 x2 lnf NaN 

lnf -lnf -lnf :'1/a'\J :'1/aN lnf lnf NaN 

y2 -Inf -y2 * x1 -0.0 0.0 y2 * x2 lnf Na:\1 

0.0 "!aN -0.0 -0.0 0.0 0.0 !\<aN !'\aN 
-0.0 Na'\J 0.0 0.0 -0.0 -0.0 NaN NaN 

-y1 Inf y1 * x1 0.0 -0.0 -y1 * x2 -lnf NaN 
-lnf lnf Inf Na'\J :"\Ja:\1 -Inf -Inf NaN 
NaN NaN NaN '\JaN Nal\" :\lal\' Nal\' NaN 

Table 6. Division Results 

Division -7-

Right Operand 

Left Operand -lnf -xl -0.0 0.0 x2 lnf NaN 

lnf NaN -Inf NaN NaN lnf NaN NaN 
y2 -0.0 -y2/x1 -lnf Inf y2/x2 0.0 NaN 

0.0 -0.0 -0.0 NaN NaN 0.0 0.0 NaN 
-0.0 0.0 0.0 NaN NaN -0.0 -0.0 NaN 
-yl 0.0 y1/x1 lnf -lnf -y1/x2 -0.0 NaN 
-lnf NaN lnf Inf -lnf -lnf NaN NaN 
NaN NaN NaN NaN NaN NaN NaN NaN 
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Table 7. Less Than Comparison Results 

Less Than Comparison < 

Left Operand -lnf -x1 

lnf 0 0 

y2 0 0 

0.0 0 0 

-0.0 0 0 

-y1 0 -y1 < -x1 

-lnf 0 1 

NaN 0 0 

If any one of operands of binary arithmetic opera

tions is NaN, the result is NaN. 

5.2 Relational Operations 

For relational operations given in Tables 7-12, the 

result is always an integer with a logic value of 1 or 

0 corresponding to TRUE or FALSE, which are 

predefined system constants. According to the 

IEEE 754 standard, there is a distinction between 

+0.0 and -0.0 for floating-point numbers. InCH, 

the value of 0.0 means that the value approaches 

zero from positive numbers along the real line and 

it is a zero; the value of -0.0 means that the value 

approaches zero from negative numbers along the 

real line and it is infinitely smaller than 0. 0 in 

many cases. Signed zeros +0.0 and -0.0 in a CH 

program behave like correctly signed infinitesimal 

quantities 0+ and 0_, respectively. Although there 

is a distinction between -0.0 and 0.0 for floating

point numbers in many operations, according to 

the IEEE 754 standard, the comparison shall ig

nore the sign of zeros so that -0.0 equals 0.0 in 

relational operations. For the convenience of the 

programmer, two polymorphic logic operations 

Table 8. Less Than or Equal Comparison Results 

Right Operand 

-0.0 0.0 x2 Inf NaN 

0 

0 

0 

0 

1 

1 

0 

0 0 0 0 

0 y2 < x2 1 0 

0 1 1 0 

0 1 1 0 

1 1 1 0 

1 1 1 0 

0 0 0 0 

isposzero (x) and isnegzero (X) are intro

duced in CH, which can test if the argument x is 

0.0 or -0.0. The argument x can be char, int, 

float, or double. If xis 0.0, isposzero (X) and 

isnegzero (X) return 1 and 0, respectively. If x 

is -0.0, isposzero (x) and isnegzero (x) re

turn 0 and 1, respectively. If xis a complex or dual 

number, only its real part will be used in these 

operations. More elaborative, but less frequently 

used, functions such as signbi t (X) and copy

sign (x, y) can be easily implemented as exter

nal functions in CH. The value of -0.0 could be 

regarded different from 0.0 for comparison opera

tions inCH. For the convenience of porting C code 

to CH, zero is unsigned in comparison operations. 

The equality for metanumbers has different impli

cations in CH. Two identical metanumbers are 

considered to be equal to each other. As a result, 

comparing two Infs or two NaNs will get logic 

TRUE. This is just for the convenience of pro

gramming because, mathematically, the infinity of 

oo and not-a-number of NaN are undefined values 

that cannot be compared with each other. Me

tanumbers of Inf, - Inf, and Nal\' inCH are treated 

as regular floating-point numbers consistently in 

Less or Equal Comparison<= 

Right Operand 

Left Operand -lnf -x1 -0.0 0.0 x2 lnf Na~ 

lnf 0 0 0 0 0 1 0 
y2 0 0 0 0 y2 <= x2 1 0 

0.0 0 0 1 1 1 1 0 
-0.0 0 0 1 1 1 1 0 
-y1 0 -y1 <= -x1 1 1 1 1 0 
-Inf 1 1 1 1 1 1 0 
NaN 0 0 0 0 0 0 1 
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Table 9. Equal Comparison Results 

Equal Comparison = = 

Right Operand 

Left Operand -Inf -x1 -0.0 0.0 x2 Inf NaN 

Inf 0 0 0 0 0 1 0 

y2 0 0 0 0 y2 == x2 0 0 

0.0 0 0 1 1 0 0 0 

-0.0 0 0 1 1 0 0 0 

-y1 0 -y1 == -x1 0 0 0 0 0 

-Inf 1 0 0 0 0 0 0 

NaN 0 0 0 0 0 0 1 

Table 10. Greater Than or Equal Comparison Results 

Greater or Equal Comparison > = 

Right Operand 

Left Operand -lnf -x1 -0.0 0.0 x2 Inf NaN 

lnf 1 1 1 1 1 0 

y2 1 1 1 1 y2 >= x2 0 0 

0.0 1 1 1 1 0 0 0 

-0.0 1 1 1 1 0 0 0 

-y1 1 -y1 >= -x1 0 0 0 0 0 

-Inf 1 0 0 0 0 0 0 

NaN 0 0 0 0 0 0 1 

Table 11. Greater Than Comparison Results 

Greater Than Comparison > 

Right Operand 

Left Operand -lnf -x1 -0.0 0.0 x2 Inf !\'aN 

lnf 1 1 1 1 1 0 0 

y2 1 1 1 1 y2 > x2 0 0 

0.0 1 1 0 0 0 0 0 

-0.0 1 1 0 0 0 0 0 

-y1 1 -v1 >= -x1 0 0 0 0 0 

-lnf 0 0 0 0 0 0 0 

I\' a!\' 0 0 0 0 0 0 0 

Table 12. Not Equal Comparison Results 

~ot Equal Comparison ! = 

Right Operand 

Left Operand -Inf -x1 -0.0 0.0 x2 Inf NaN 

Inf 1 1 1 1 1 0 1 

v2 1 1 1 1 y2 != x2 1 1 

0.0 1 1 0 0 1 1 1 

-0.0 1 1 0 0 1 1 1 

-y1 1 -y1 != -x1 1 1 1 1 1 

-Inf 0 1 1 1 1 1 1 

!\'aN 1 1 1 1 1 1 0 
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arithmetic, relational, and logic operations. There 

is no need to use functions such as isnan (x), 

isinf (x), etc. as is introduced in some software 

packages and mathematical libraries according to 

the recommendation of the IEEE 754 standard. 

Note that NaN is unordered and does not compare 

equal to itself in the IEEE 754 standard. How

ever, for the convenience of the programmer, Nal'\ 

is handled in the same manner as lnf inCH. NaN 

is still unordered, but it equals itself, which is the 

only place in which CH is not in compliance with 

the IEEE 754 standard. The difference from the 

standard is likely to cause arguments and resis

tances. However, with this slight change, pro

gramming with metanumbers is much cleaner 

than would otherwise be the case. 

5.3 Logic Operations 

InCH, there are four logic operators ! , &&, II, and 

A A corresponding to logic operations not, and, 

inc 1 us i ve or, and exc 1 us i ve or, respectively. 

The operations of!, I I, && inCH comply with the 

ANSI C standard. The operator A A is introduced in 

CH due to the consideration of programming con

venience and orthogonality between logic opera

tors and bitwise operators. Note that, like ANSI C, 

both the && and I I operations in CH permit the 

right operand to be evaluated only if the left oper

and evaluates to TRUE and FALSE, respectively. 

This "short circuit" behavior for the A A operator 

does not exist because, for either TRUE or FALSE 

of the first operand, an exclusive-or operation can 

retum TRUE, depending on the second operand. 

The precedence of operator A A is higher than oper

ator II, but lower than&&. This operation prece

dence is similar to that for bitwise operators &, I , 

and A, which will be discussed in the next section. 

Because there are only two values of either TRUE 

or FALSE for logic operations, the values of ±0.0 

are treated as logic FALSE whereas the metanum

hers - lnf, lnf, and NaN are considered as logic 

TRUE. For example, evaluations of !(-0.0) and 

!NaN will get the values of 1 and 0, respectively. 

5.4 Bitwise Operations 

In CH, there are six bitwise operators &, I , A, <<, 

>>, and -, corresponding to bitwise and, in

clusive or, exclusive or, left shift, 

right shift, and one's complement, respec

tively. These operators in CH are in full compli

ance with the ANSI C standard. They can only be 

applied to integral data that are char and int at its 

current implementation of CH. The returned data 

type depends on the data types of operands. The 

result of the unary operator - keeps the data type 

of its operand. Results of binary operators &, I , 

and A will have the higher data type of two oper

ands. The binary operators<< and>> retum the 

data type of the left operand. 

However, some undefined behaviors in ANSI C 

are defined in CH. For operators << and >>, the 

right operand can be any data type so long as it 

can be converted into int internally whereas the 

right operand must be a positive integral value in 

ANSI C. In CH, if the right operand is a negative 

integral value that may be converted from a float

ing-point data, the shifting direction will be re

versed. For example, the expression of 7 << -2.0 

is equivalent to 7 >> 2.0 in CH. Therefore, only 

one of these two shift operators is needed in CH. 

The use of operator << is recommended for CH 

programming. A program with dual shift direc

tions for one operator can be cleaner as compared 

with unidirectional shifts of two operators. 

5.5 Assignment Operations 

Besides the regular assignment statement, there 

are nine assignment operators of +=, -=, *=, 

/=,&=,I=, A=, <<=,and>>=. These assignment 

operators are ANSI C compatible. An [value is any 

object that occurs on the left-hand side of an as

signment statement. The lvalue refers to a mem

ory such as a variable or pointer, not a function or 

constant. The CH expression of 1 value op= 

rval ue is defined as 1 value = 1 value op 

rval ue where 1 value is any valid lvalue includ

ing complex numbers discussed by Cheng [2] and 

it is only evaluated once. For example, i += 3 is 

equivalent to i = i+3, and real (c) *= 2 is the 

same as real (c) = real (c) * 2. But, statement 

*ptr++ += 2 is different from statement *ptr++ 

= *ptr++ +2 because lvalue *ptr++ contains an 

increment operation. The operation rules for op

erators of+,-,*, I,&, I, A,<<, and>> have been 

discussed in the previous sections. 

5.6 Address and Indirection Operations 

The unary operator & gives the address of an ob

ject. The operator&, which is ANSI C compatible, 

can only be applied to a valid lvalue. 

When a unary indirection operator * is applied 

to a pointer, it accesses the object to which the 

pointer points. A pointer and an integer can be 

added or subtracted. The expression ptr+n gives 

the address of the nth object beyond the one ptr 

currently points to. The memory locations of 



SCIE:'IITIFIC C0~1PLTI'.JG I'\ C11 PROGRA~1~1I'.JG LA'.JGUAGE 63 

pointers ptr+n and ptr are n*sizeof (*ptr) 

bytes apart, that is, n is scaled to n*sizeof 

( *ptr) bytes according to declaration of pointer 

variable ptr. Pointer subtraction for pointers with 

the same data type is permitted. If ptrl > ptr2, 

ptrl - ptr2i gives the number of objects be

tween ptr2 and ptrl. Array of pointers can also 

be declared. When a pointer is declared, it is ini

tialized to zero. The symbolic constant NULL, in

stead of zero, can be used in the program. Ifptr is 

NULL, the operand *ptr in an expression is eval

uated as zero when *ptr is used as an lvalue, and 

a memory of sizeof(*ptr) will be allocated auto

matically for pointer ptr. In both cases, the sys

tem will print out warning messages. The auto

matical memory allocation for a pointer that does 

not point to a valid location can avoid a system 

crash. 

Two pointers and constant J\'ULL can be used 

in the relational operations<,<=,==,>=,>, and 

! =. In assignment and relational operations, 

pointers with different data types can work to

gether without explicit type conversions. For ex

ample, following is a valid CH program. 

int *iptr; 

float *fptr; 

iptr = (int *)malloc(90); 

fptr = malloc(80); 

!# fptr =(float *)malloc(80) 

if(iptr !=NULL && iptr != fptr) 

free(iptr); 

iptr = fptr; 

Unlike ANSI C, not only all variables are initial

ized to zero when they are declared, but also the 

memory allocated by either function malloc() or 

calloc() is initialized to zero in CH. The casting 

operation for three memory allocation functions 

malloc(), calloc(), and realloc() is unnecessary. 

If no memory is available, these functions will re

turn NULL and the system will print out error 

messages. The function free(ptr) will deallocate 

the memory allocated by these three functions and 

set pointer ptr to NULL. In C, ptr is not set to 

NULL when the memory to which it points is deal

located. This dangling memory makes the debug

ging of the C program very difficult because the 

problem will not surface until this deallocated 

i = + (-9); !# unary plus 

i++++; !# i i+2 

j ++i--; !# i i+l; j 

j = ++++++i; !# i 3· 
' 

j 

memory is claimed again by other parts of the pro

gram. The other related functions such as 

memcpy() in CH for memory manipulations are 

ANSI C compatible. 

As described before, there are several system 

defined parameters such as KaN, lnf, FL T -~AX, 

INT _Mil\', FLT_EPSILON, etc. These parame

ters cannot be used as lvalues so that an acciden

tal change of values of these parameters can be 

avoided. However, if really necessary, the values 

of these parameters can be modified by accessing 

their memory locations through pointers. For ex

ample, a numerical algorithm may depend on the 

parameters FL T _EPSILON and lnf. One can 

change the values of FL T _EPSILOl'\ to 10-4 and 

lnf to FL T _MAX by the following CH code 

float *fptr; 

fptr & FLT_EPSILON; *fptr = le-4; 

fptr = &Inf; *fptr = FLT_MAX; 

which may, in effect, change the underlying nu

merical algorithm. 

5.7 Increment and Decrement 
Operations 

C is well known for the succinctness of its syntax. 

The increment operator ++and decrement opera

tor -- are unique to C. These two operators in CH 

are compatible with ANSI C. The increment oper

ator ++ adds 1 to its operand whereas the decre

ment operator-- substracts 1. If++ or-- is used 

as a prefix operator, the expression increments or 

decrements operand before its value is used, re

spectively. If it is used as a postfix operator, the 

operation will be performed after its value has 

been used. 

However, additional functions are added to 

these two operators in CH. The repeated use of 

operator ++ means successive increment whereas 

repeated use of operator -- indicates successive 

decrement. These two operators can be combined 

in any combinations. A single + is treated as an 

addition or unary plus operator depending on the 

context. Likewise, a single - can be a subtraction 

or unary negation operator. For example, follow

ing is the valid CH code. 

and negation operators 

= i· i = i-1; 
' 

i· 
' 
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j = +++++++i--; !# i i +3; 

j = i----· !# j i; i = 
' 

i (*ptr++++) ++; !# ptr = ptr 

By definition, ++ l value means l value = 

lvalue + 1 and expression lvalue + 1, and 

l value-- is equivalent to expression l value - 1 

and l value = l value - 1. The ++ and -- opera

tors can be applied to any valid !values, not just 

integral variables, so long as the !value can add or 

subtract an integer value of 1 according to internal 

data conversion rules. Following is the valid CH 

code. 

inti, a[4], *aptr[5]; 

j 

+ 

i· 
' 

i i 1; 

i-2; 

2· 
' 

i *ptr; *ptr = *ptr + 1· 
' 

*)iptr are valid CH expressions. There is an addi

tional functional type casting operation in CH in 

the form of type ( expr) for data types of single 

object or type (expr1, expr2, ... ) for data 

types of aggregate such as complex and dual [2, 

3]. In this functional type casting operation, type 

shall not be a pointer data type. For example, 

int(9.3), complex(float(3), 2), dual(2, float(3)) 

complex z, *zptr; /# declare complex variable and complex pointer 

z = z++; !# z = z + 1; z is a complex variable 

zptr = (complex *)malloc(sizeof(complex)*90); 

aptr [3] = malloc (90); !# aptr [3] = (int *) malloc (90); 

I* imaginary(z)=complex(O.O, 4.0); zptr=zptr+1; *aptr[3]=1; i=i-1 */ 

imaginary(z) = ++++real(+++++*(zptr+++2*(int)real(++*aptr[3+i--]))); 

real(z)++; !# real(z) = real(z) + 1; 

----imaginary(*zptr); !# imaginary(*zptr) = imaginary(*zptr) - 2; 

a[--i] = a[2]++; !# i = i - 1; a[i] = a[2]; a[2] = a[2] + 1; 

Details about complex numbers and functions 

real() and imaginary() in CH are described by 

Cheng [2]. Note that the memory allocated by 

function malloc() is initialized to zero. 

5.8 Type Conversions 

In CH, the explicit type conversion is not necessary 

in many cases when C needs it as is shown in the 

previous section for aptr [3] = malloc (90). 

However, sometimes it is necessary to convert a 

value of one type explicitly to a value of another 

type. This can be achieved by the traditional C 

cast operation (type) expr where expr is a CH 

expression and type is a data type of a single 

object such as char, int, float, double, or any 

pointer declaration identifiers such as char *, 

double*, complex*, etc. For example, (int)9.3, 

(float)ptr, (double)9, (float*)&i, and (complex-

char *cptr; 

inti, *iptr, j; 

are valid CH expressions. Operation float() is the 

same as real() if they are used as operands. How

ever, function real() can be used as an !value as 

described in Cheng [2] whereas float() cannot. 

The sizeof() function can also use a type 

identifier. For example, ptr malloc 

(5+sizeof (int*) +sizeof ( (int) 2. 3) + 

sizeof ( (int) float (90) +7)) is a valid CH 

statement. 

One important feature of C is its capability for 

hardware interface by accessing a specific mem

ory location in a computer. This is achieved by 

pointing a pointer to a specific memory location or 

register. This hardware interface capability is re

tained in CH. For example, the following state

ments will assign the integer value at the memory 

location (68FFE)1 6 to variable i and set the byte at 

the memory address (FF000)1 6 to (01101001)2: 

iptr = (int *)OX68FFE; 

i = *iptr; 

!# iptr points to the memory location at OX68FFE 

!# i equals the value at OX68FFE; 

cptr =(char *)OXFFOOO; 

*cptr = 0801101001; 

cptr = (float *)cptr + 

j = int (cptr); 

!# cptr points to the memory location at OXFFOOO 

!# 0801101001 is assigned to OXFFOOO 

1; /# cptr points to OXFF004, not OXFF001. 

!# note: (float *) cptr++ is (float *) (cptr++) 

!# j becomes OXFF004 
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Note that an integral value cannot be assigned to a 

pointer variable without an explicit type cast, and 

vice versa. The lower segment of the memory in a 

computer is usually reserved for the operating sys

tem and system programs. An application pro

gram will be terminated with exception handling if 

these protected segments of memory are messed 

up by pointers. 

6 REAL FUNCTIONS 

A computer language with no mathematical func

tions is not suitable for scientific computing and 

many other applications. The C language is a 

small language; it does not provide mathematical 

functions internally. The mathematical functions 

are provided in a standard library of mathematical 

functions. Writing good mathematical functions is 

not easy as pointed out by Plauger [10]. The 

mathematical functions implemented by Plauger 

[10] have provisions for handling -lnf, lnf, and 

~aN; but they do not distinguish -0.0 from +0.0, 

which is the case for most implementations of 

mathematical functions in C. Because C does not 

provide mathematical functions internally, like 

arithmetic operations in K&R C, the returned 

value from a standard mathematical function is a 

double floating-point number regardless of the 

data types of the input arguments. In some of C 

implementations, if the input arguments are not 

doubles the mathematical functions mav return 

erroneous results without warning. 1\"umerically 

oriented programmers have little tolerance with 

respect to the implicit conversion of the data type 

from float to double for arithmetic operations of a 

computer language as discussed in Section 3. 

However, they generally accept the strongly typed 

implementation of mathematical functions. 1\"ote 

that the Al\"SI C mathematical standard librarv 

does not provide any float functions. If a different 

return data type is desired for a mathematical 

function, a new function with a different name will 

be needed. For example, the operation sin(1) ap

pears right in C. Indeed, most C programs will 

execute this operation calmly, but, maybe with an 

erroneous result because the input data type of 

integer is not what sin() function expected. As an

other example, the function abs() in C returns an 

absolute int number whereas fabs() will result in a 

double number. To get a float absolute value, a 

new function has to be created. As a result, one 

has to remember many arcane names for different 

functions. 

The external functions of CH can be created in 

the same manner as in C. Unlike C, however, the 

commonly used mathematical functions are built 

internally into CH. The mathematical functions in 

CH can handle different data types of the argu

ments gracefully. The output data type of a func

tion depends on the data types of the input argu

ments, which is called polymorphism. Like 

arithmetic operators, the built-in commonly used 

mathematical functions in CH are polymorphic. 

For example, for the polymorphic function abs(), 

if the data type of the input argument is int, it will 

return an int as the absolute value. If the input 

argument of abs() is a float or double, the output 

will return the same data type of float or double, 

respectively. For a complex number input, the 

result of abs() is a float with the value of the mod

ulus of the input complex number. Similarly, if the 

argument data type is lower than or equal to float, 

sin() will return a float result correctly. Function 

sin() can also return double and complex results 

for double and complex input arguments, respec

tively. Because 1/0 functions are also built into CH 

itself, different data types are reconciled inside 

CH. For example, printf ( "%f ", x) in C can 

print x if xis a float. However, if xis changed to int 

in a program, the printing statement must also be 

changed accordingly as printf ("%d", X). 

Therefore, the change of data type declaration of 

a variable will have to accompany the change of 

many other parts of the program. Unlike C, the 

commands printf(x) and printf(sin(x)) in CH can 

handle different data types of x; x can be char, 

int, float, double, or complex. 

For portability, all mathematical functions in

cluded in the ANSI C header math. h have been 

implemented polymorphically in CH. The names 

of built-in mathematical functions of CH pre

sented in this paper are based upon the ANSI C 

header math. h. However, one can change, add, 

or remove these functions and operators in CH at 

his/her discretion. These mathematical functions 

are ANSI C compatible. If the arguments of these 

functions have the data types of the corresponding 

ANSI C mathematical functions, there is no differ

ence between the ANSI C and Cll functions from a 

user's point of view. Besides the aforementioned 

polymorphic nature, the mathematical function in 

CH is more powerful due to its abilities to handle 

metanumbers. 

The ANSI C standard is descriptive, and many 

special cases are implementation dependent. 

Most mathematical operations related to the me

tanumbers have not been spelled out in the Al\"SI 

C standard. Therefore, loosely speaking, the 

built-in polymorphic mathematical functions of 
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CH are ANSI C compatible. Cnlike ANSI C, poly

morphic mathematical function names in this sec

tion, by default, are keywords. In the same token, 

lnf and 1\'aK are keywords in CH. The metanum

bers lnf and KaN are handled as svstem constants 

in a similar manner as constants such as 2.0. 

Therefore, a declaration statement like 

int Inf, NaN, sin; 

is not valid in CH by default. However, keywords 

and symbols in CH can be added, changed, 

and removed by the built-in functions 

addkey(char *old_resword_or_symbol, 

*new_resword_or_symbol), chkey(char 

*old_resword_or_symbol, *new_resword_ 

or_symbol), and remkey(char *resword_ 

or_ symbo 1) , respectively. For example, the 

command addkey ( "f abs", "abs") will make 

function fabs () the same as function abs(). The 

following CH program is valid. 

chkey("sin", "SIN"); 

addkey("printf", "write"); 

addkey ("double", "double_precision"); 

addkey ( "=", "equals"); 

addkey ( "+", "plus") ; 

begin 

!# real code begins here { 

double_precision sin; 

!# double sin; 

sin equals SIN(30) plus 6; 

!#sin= SIN(30)+6; 

write 

("The keyword changeability is"); 

write("unique to CH.\n"); 

end !# end } 

where chkey ("sin", "SIN" ) changes the key

word sin to SIN. Once a default keyword sin is 

changed, it then can be used as a regular variable. 

However, using function names in a standard li

brary as variable names is considered a bad pro

gramming practice. Whether an object is a key

word can be tested by the built-in function 

iskey (char *name). The case sensitivity for a 

CH program can be switched off and on through a 

boolean switch function casesen(onoff). There

fore, porting code written in other languages and 

software packages to CH is not very difficult due to 

the keyword changeability. The detailed explora

tion of this unique CH feature is beyond the scope 

of this paper. 

In this section, the built-in mathematical func

tions of CH will be discussed. The input and out-

put of the functions involving the metanumbers 

will be highlighted. The results of the mathemati

cal functions involving metanumbers are given in 

Tables 13 to 16. In Tables 13 to 16 .. unless indi

cated otherwise, x, x 1 , x 2 are real numbers with 0 

< x, x 1 , x 2 < oo; and k is an integral value. The 

value of pi is the finite representation of the irra

tional number 1T in floating-point numbers. The 

returned data of a function is float or double de

pending on the data type of the input arguments. 

In Table 13, if the order of the data type xis less 

than or equal to float, the returned data type is 

float. The returned data type is double if x is a 

double datum. If the argument X of a function in 

Table 13 is KaN, the function will return :\"aK. In 

Tables 14 to 16, the returned data type will be the 

same as the higher order data type of two input 

arguments if any of two arguments is float or dou

ble. Otherwise, the float is the default returned 

data type. 

Functions defined in this section will return 

float or double, except for functions abs() and 

pow(). If arguments of these two functions are in

tegral values, the returned data types are ints. For 

example, pow(2, 16) will return the integral value 

of 65536. In CH, if the exponent of the second 

argument of function pow() is an integral value, 

the computation will be more efficient than its real 

counterpart. For example, pow(x, 3) is more effi

cient than pow(x,3.0). Function pow() will opti

mize the performance for applications that involve 

a large amount of integer exponentiation. Func

tion pow() behaves like the exponentiation opera

tor** in Fortran. Note that ANSI C forces function 

pow() to deliver a double data, which not only 

inhibits the optimization for integer exponentia

tion, but also changes the data type of an integral 

expression into a floating-point expression due to 

the internal data type conversion. This is not ap

plicable for many applications. 

The absolute function abs(x) will compute the 

absolute value of an integer or a floating-point 

number. The absolute value of a negative infinity 

-oo is a positive infinity oo. 

The sqrt(x) function computes the nonnegative 

square root ofx. Ifx is negative, the result is NaN, 

except that sqrt(-0.0) = -0.0 according to the 

IEEE 754 standard. The square root of infinity 

sqrt(oo) is infinity. 

The exp(x) function computes the exponential 

function of x. The following results hold: e-"' = 

0.0; e"' = oo; e±o.o = 1.0. 

The log(x) function computes the natural loga

rithm of x. If xis negative, the result is NaN. The 
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Table 13. Results of Real Functions for ±0.0, ± ao, and I\' a]\' 

x Value and Results 

Function -Inf -x1 -0.0 0.0 x2 lnf I\" a:"/ 

abs(x) lnf XJ 0.0 0.0 X2 Inf :\Ia!\" 

sqrt(x) i\al\" :"'a!\" -0.0 0.0 sqrt(x) lnf I\" a:"! 

exp(x) 0.0 e-.rj 1.0 1.0 ex2 lnf Na:\' 

log(x) ~a:\' ~a:\' -Inf -lnf log(x2) Inf :\la:\1 

log10(x) Na:\1 I\" a:"! -Inf -lnf log10(x2) lnf I\" a!\" 

sin(x) .'\'a:\1 -sin(x1) -0.0 0.0 sin(x2) I\" a:"/ Nal\" 

cos(x) I\" a:\' cos(xJ) 1.0 1.0 cos(xz) NaN :"'a"! 

tan(x) Na:\1 -tan(x1) -0.0 0.0 tan(x2) :"'a!\" Nal\" 

l'."ote: tan(±7T/2 + 2 * k * 1r) = ±Inf 

asin(x) Nal\" -asin(xJ) -0.0 0.0 asin(x2) Na:\' l\."a:'-1 

:\ote: asin(x) = :"'a!\", for lxl > 1.0 

acos(x) Na:\1 acos(xJ) pi/2 pi/2 acos(x2) Nal\" I\' a~ 

1\"ote: acos(x) = :\iaN, for lxl > 1.0 

atan(x) -pi/2 -atan(xJ) -0.0 0.0 atan(xz) pi/2 :\iaN 

sinh(x) -Inf -sinh(x1) -0.0 0.0 sinh(xz) lnf !\"aN 

cosh(x) Inf cosh(x1l 1.0 1.0 cosh(x2) lnf NaN 

tanh(x) -1.0 -tanh(xJ) -0.0 0.0 tanh(x2) 1.0 :\a:'-1 

asinh(x) -Inf -asinh(xt) -0.0 0.0 asinh(x2) lnf Nal\" 

acosh(x) NaN :\aN ~a~ NaN acosh(x2) lnf "'a:"! 
l'\ote: acosh(x) = Nal\", for x < 1.0: acosh(1.0) = 0.0 

atanh(x) 1\"al\' -atanh(xl) -0.0 0.0 atanh(x2) 1\"a:'\1 :'ola:'ol 

:\ote: atanh(x) = l\'a:'ol, for lxl > 1.0; atanh(±1.0) = ±Inf 

ceil(x) -Inf ceil(-xl) -0.0 0.0 ceil(x2) Inf :\la:\1' 

floor(x) -Inf floor( -xJ) -0.0 0.0 floor(x2) lnf Nal\' 

ldexp(x, k) -Inf ldexp(-xl, k) -0.0 0.0 ldexp(x2, k) lnf :\iaN 

modf(x, &y) -0.0 modf(-xl, &y) -0.0 0.0 modf(x2, &y) 0.0 Nal\" 

y -Inf y -0.0 0.0 y Inf :\iaN 

frexp(x, &k) -lnf frexp(-xh &k) -0.0 0.0 frexp(x2. &k) lnf NaN 

k 0 k 0 0 k 0 0 

value of -0.0 is considered equal to 0.0 in this 

case. The following results hold: log(±O.O) = -oo; 

log(oo) = oo. The loglO(x) function computes the 

base-ten logarithm of x. If X is negative, the result 

is a ~aN. Like the function log(), the value of 

-0.0 is considered equal to 0. 0. The following 

results hold: log10(±0.0) = -oo; log10(oo) = oo. 

The trigonometric functions sin(x), cos(x), and 

tan(x) compute sine, cosine, and tangent of x 

measured in radians, respectively. The sine and 

Table 14. Results of the Function pow(y, x) for ±0.0, ±ao, and NaN 

pow(y, x) 

x Value 

y Value -Inf -x1 -2k- 1 -2k -0.0 0.0 2k 2k + 1 x2 Inf NaN 

lnf 0.0 0.0 0.0 0.0 NaN NaN lnf lnf lnf lnf NaN 

y2 > 1 0.0 y2X1 -2k-1 
Y2 

-2k 
Y2 1.0 1.0 2k 

Y2 
2k+1 

Y2 y~2 lnf NaN 

1.0 NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 NaN NaN 

0 < y2 < 1 lnf y2X1 -2k-1 
Y2 

-2k 
Y2 1.0 1.0 2k 

Y2 
2k+1 

Y2 y~2 0.0 NaN 

0.0 lnf lnf Inf lnf NaN NaN 0.0 0.0 0.0 0.0 NaN 

-0.0 lnf lnf -Inf lnf NaN NaN 0.0 -0.0 0.0 0.0 NaN 

-y1 NaN NaN 
-2k-1 

-y1 
-2k 

Y1 NaN NaN 2k 
Y1 

2k+1 
-y1 NaN NaN NaN 

-lnf NaN NaN -0.0 0.0 NaN NaN lnf -Inf NaN NaN NaN 

NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 
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Table 15. Results of the Function atan(y, x) for ±0.0, ±<X>, and NaN 

atan2(y, x) 

x Value 

y Value -lnf -xl -0.0 0.0 x2 Inf NaN 

lnf 3 * pi/4 pi/2 pi/2 pi/2 pi/2 pi/4 NaN 

y2 pi atan2(Y2, -xl) pi/2 pi/2 atan2(Y2, x2) 0.0 NaN 

0.0 pi pi pi 0.0 0.0 0.0 NaN 

-0.0 -pi -pi -3 * pi/4 -pi/2 -0.0 -0.0 NaN 

-y1 -pi atan2(-y1, -x1) -pi/2 -pi/2 atan2(-y1, x2) -0.0 NaN 

-Inf -3 * pi/4 -pi/2 -pi/2 -pi/2 -pi/2 -pi/4 NaN 

NaN NaN NaN 

tangent are odd functions so that sin(±O.O) = 

±0.0 and tan(±O.O) = ±0.0. The cosine is an 

even function so that cos(±O.O) = 1.0. When the 

value of the argument is positive or negative infin

ity, all these functions return NaNs. Theoretically, 

it is true that tan(±7T/2 + 2 * k * 7T) = ±co. But, in 

practice, because the irrational number 7T cannot 

be represented exactly in float or double data, the 

tan(x) function will never return infinities of ±co. 

The function tan() is not continuous at 7T/2, 

tan(7T/2- e)= co, and tan(7T/2 +e)= -co, where 

e is a very small number. Due to the finite preci

sion and round-off errors of floating-point num

bers, one may get a wrong result near the value of 

7T/2. 

The properties of odd functions of sine and 

tangent are reflected in their inverse functions 

asin(x) and atan(x). The asin(x) function com

putes the principal value of the arc sine of x. 

When the value of x is in the range of [ -1.0, 1. 0], 

the asin(x) function returns the value in the range 

of [ -7T/2, 7T/2] radians. When x is outside the 

range of [ -1.0, 1. 0] , the arc sine is undefined and 

asin(x) returns NaN. The range of the input value 

for the even function acos(x) of arc cosine is the 

same as that of asin(x). The acos(x) function 

computes the principal value of the arc cosine of 

Na;\1 NaN NaN NaN NaN 

x. The range of the principal value of the arc co

sine is [0.0, 7T] radians. The atan(x) function 

computes the principal value of the arc tangent of 

x. The atan(x) function returns the value in the 

range of [ -7T/2, 7T/2] radians. The following 

results hold: atan(±co) = ±7T/2. 

Like trigonometric functions sin(x) and tan(x), 

the hyperbolic functions sinh(x) and tanh(x) are 

odd functions. The sinh(x) and tanh(x) functions 

compute the hyperbolic sine and tangent of x, re

spectively. The even function cosh(x) computes 

the hyperbolic cosine of X. The following results 

hold: sinh(±O.O) = ±0.0; cosh(±O.O) = 1.0; 

tanh(±O.O) = ±0.0; sinh(±co) = ±co; cosh(±co) 

=co; tanh(±co) = ±1.0. 

The inverse hyperbolic functions are not de

fined by the ANSI C standard. InCH, the inverse 

hyperbolic sine, cosine, and tangent are defined 

as asinh(x), acosh(x), and atanh(x), respec

tively. For the acosh(x) function, if the argument 

is less than 1.0, it is undefined and acosh(x) re

turns NaN. acosh(l.O) returns a positive zero. 

The valid domain for function atanh(x) is [ -1.0, 

1.0]. The following results hold: asinh(±O.O) = 

±0.0; asinh(±co) ±oc; acosh(co) co; 

atanh(±O.O) = ±0.0; atanh(±l.O) = ±co. 

The ceil(x) function computes the smallest 

Table 16. Results of the Function fmod(y, x) for ±0.0, ±<X>, and NaN 

fmod(y, x) 

x Value 

y Value -Inf -xl -0.0 0.0 x2 lnf NaN 

Inf NaN NaN ~aN Na~ I\' a!\' NaN Na~ 

y2 Y2 fmod(Y2, -x1) ~aN NaN fmod(y2, x2) Y2 NaN 

0.0 0.0 0.0 NaN Na~ 0.0 0.0 ~aN 

-0.0 -0.0 -0.0 :\TaN !\'aN -0.0 -0.0 NaN 

-yl Y1 fmod(-yl, -xt) NaN !\'aN fmod( -y1, x2) -y1 NaN 

-Inf !\'aN NaN NaN NaN NaN NaN NaN 

NaN NaN NaN NaN ;\iaN NaN NaN NaN 
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integral value not less than the value of x. The 

counterpart of ceil(x) is the function floor(x), 

which computes the largest integral value not 

greater than the value of x. The following results 

hold: ceil(±O.O) = ±0.0; floor(±O.O) = ±0.0; 

ceil(±oo) = ±oo; floor(±oo) = ±oo. 

The ldexp(x, k) function multiplies the value of 

the floating-point number x with the value of 2 

raised to the power of k. The returned value of x * 
2k keeps the sign of x. 

The functions modf(x, xptr) and frexp(x, iptr) 

have two arguments. The first argument is the in

put data and the second argument is a pointer 

that will store the resulted integral part of the 

function call. The modf(x, xptr) function breaks 

the argument x into integral and fractional parts, 

each of which has the same sign as the argument. 

The modf() function returns the fractional part 

and the integral part is stored to the memory 

pointed to by the second argument. The basic 

data types of two arguments must be the same. 

For example, if the first argument x is float, the 

second argument xptr must be a pointer to float. 

If the first argument is a metanumber, the integral 

part will equal the metanumber whereas the frac

tional part becomes zero with the sign of the first 

argument except for NaN. The frexp(x, iptr) func

tion breaks a floating-point number into a nor

malized fraction and an integral power of 2 in the 

form of x * 2k. The frexp(x, iptr) function returns 

the normalized fraction and the integral part is 

stored to the memory pointed to by the second 

argument, which is a pointer to int. If the first 

argument is a metanumber, the fractional part will 

equal the metanumber whereas the integral part 

becomes zero. 

The mathematical functions pow(y, x), atan2 

(y, x), and fmod(y, x) have two input argu

ments. The results of these three functions are 

given in Tables 14 to 16. The pow(y, x) function 

computes y raised to the power of x, which is y" or 

e-' Iog(y). If x is negative, yr becomes 1 I ylxl with the 

defined division operation given in Table 6. If y is 

less than zero and x is not an integral value, the 

function is undefined. The value of -0.0 is con

sidered equal to 0. 0 in the evaluation of log(- 0. 0) 

when the value of x is not an integral number. 

When xis an odd integer number andy is nega

tive, the result is negative. If both y and x are 

zeros, 0° is indeterminate. For a positive value of 

y, the result depends on the value of y when xis 

infinity. If y is less than 1, yoc is 0. 0; 1. ooc is inde

terminate; if y is greater than 1, yoo is infinity. If y is 

infinity and X is zero, ( ±oo )±0 O is indeterminate. It 

has been suggested that x 0 0 = 1 for any x, includ-

ing 0.0, lnf, and NaN [24, 31], which has been 

implemented in many computer systems [ 19]. It is 

true that if f(x) and g(x) are analytic at a, and 

limx-->a J(x) = 0 and limx-->a g(x) = 0, then limx-->a 

f(x)g(x) = 0° = 1. For example, limx-->o xx = 1 and 

limx-->o xsin(x) = 1. It is not difficult to find examples 

that 0° =I= 1 such as in limx-+a xlog(x) = e and limx-->a 

(e- 11x)x = 11 e. To ensure the proper flow, a CH 

program shall not stop during the execution due to 

invalid operations. CH is designed to be determi

nistic; all operations and built-in functions either 

deliver correct numerical results, including lnf or 

NaN. It is a bad design for a computer language if 

at one point it can deliver a correct numerical 

result while at other point it returns a wrong nu

merical result. In general, whenever there is a 

problem in defining the value for a function or 

operation mathematically, the corresponding CH 

expression will return NaN. Because CH expres

sions such as 1 /log(O.O) and exp(l/-0.0) evalu

ate to 0.0, therefore, pow(O.O, 0.0) is defined as 

NaN in CH. For the same reason, pow(lnf, 0.0) 

and pow(NaN, 0.0) are also defined as Nal'\. Due 

to the similar considerations, our decision on x 0 

has concurred with the proposed standard for Ada 

[ 13, 14]. The definition given in Table 14 is much 

more inclusive than what is proposed for Ada. In 

general, all mathematically indeterminate expres

sions are defined as l\"aN inCH. For an interesting 

historical debate about whether 0° equal 1 or 0° is 

undefined, see Knuth [32]. 

The atan2(y, x) function computes the princi

pal value of the arc tangent of y /X using the signs 

of both arguments to determine the returned value 

in the range of [ -7r, 1r] radians. Given the (x, y) 

coordinates of a point in the X-Y plane, the 

atan2(y, x) function computes the angle of the 

radius from the origin to the point. Any positive 

number that overflows is represented by lnf. The 

negative overflow is - lnf. The following results 

hold: atan2(±1nf, -lnf) = ±37T/4; atan2(±1nf, 

lnf) = ±7T/4; atan2(±1nf, x) = ±1r/2: atan2(±y, 

lnf) = ±0.0; and atan2(±y, -lnf) = ±1r. When 

both values of y and x are zeros, the function 

atan2(y, x) will return the results consistent with 

the manipulation of metanumbers discussed so 

far. The value of -0.0 is considered as a negative 

number less than zero. Therefore, the following 

results are defined for these special operations: 

atan2(0.0, -0.0) = 1r; atan2(0.0, 0.0) = 0.0; 

atan2(-0.0, -0.0) =-37T/4; and atan2(-0.0, 

0) = -7T/2, which is consistent with the treatment 

of the metanumbers of ±lnf in atan2(- lnf, - lnf) 

= -3pi/4. In CH, atan2(0.0, 0.0) is a specially 

defined value. These results are different from 
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those by the SGN's ANSI C compiler, which is in 

conformance with 4.3 Berkeley Software Delivery 

[19]. According to 4.3BSD, the results for these 

special cases are atan2(±0.0, -0.0) = ±0.0 and 

atan2(±0.0, 0.0) = ±1r, which implies that the 

values of ±0.0 on the x-axis are different from 

those on they-axis. 

The fmod(y, x) function computes the floating

point remainder of y /X. The fmod(y, x) function 

returns the value of y - i * x for some integer i. 

The magnitude of the returned value with the 

same sign of x is less than the magnitude of x. If x 

is zero, the function is undefined and returns 

NaN. When y is infinity, the result is also unde

fined. If xis infinity andy is a finite number, the 

result is the same as y. 

7 PROGRAMMING EXAMPLES 

7.1 Computation of Extreme Values of 
Floating-Point Numbers 

Due to different machine architectures for repre

sentation of floating-point numbers, the extreme 

values such as the maximum representable float-

float f, *flt_minimum; 

int minimum, i· 
' 

minimum = 1; !# 
flt_minimum =&minimum; !# 
i = *flt_minimum > 0.0; !# 
i = FLT_MIN > *flt_minimum; !# 
i = fabs(*flt_minimum) > 0. 0; !# 

lnf and 1\"aN. The use of metanumbers such as lnf 

and NaN instead of parameters is recommended 

for CH programming. 

7. 7. 7 Minimum Floating-Point Numbers 
FLT_MIN and FLT_MINIMUM 

The parameter FLT _Mil\" is defined in the Al\SI C 

standard library header float. h as a minimum 

normalized positive floating-point float number. If 
a number is less than FLT _MIN, it is called an 

underflow. Because the IEEE 754 standard pro

vides a gradual underflow, the minimum denor

malized positive floating-point float number is de

fined as FL T _MINIMCM in CH. Because of 

gradual underflow, the CH expression x- y = 0 is 

TRUE iff x = y, which is not true for systems that 

lack gradual underflow. This parameter is very 

useful from a programming point of view. As an 

example, assume that values of FL T _MINIMUM 

and FLT_MIN are 1.401298e-45 and 

1.175494e-38, respectively. The following CH 

code will illustrate subtleties of these two parame

ters. 

memory location becomes 00000001 

*flt_minimum becomes FLT_MINIMUM 

i becomes 1 

i becomes 1 

i becomes 1 

f (*flt_minimum)/(*flt_minimum); !# f becomes 1. 0; note 0.0/0.0 =NaN 

f f/1. e-46 !# f 

ing-point value are different. For two machines 

with the same representation of floating-point val

ues, the same operations such as adding two val

ues on each machine may get different results, 

depending on the schemes for rounding a number 

that cannot be represented exactly. To aid serious 

numerically oriented programmers in writing their 

programs, the ANSI C standard added header 

float. has a companion to the existing header 

limits. h to deal with the machine-dependent 

integer values only. In this section, we will show 

how parameters defined in the ANSI C standard 

library float. h can be computed inCH without 

knowing the intricate architecture of the com

puter. A program can less depend on these pa

rameters if a language can support metanumbers 

becomes Inf: note 1.e-46 < FLT_MINIMUM 

Applications of these two numbers in handling of 

branch cuts of multiple-valued complex functions 

are described by Cheng [2]. 

7.1.2 Machine Epsilon FLT_EPSILON 

The machine epsilon FL T _EPSILON is the differ

ence between 1 and the least value greater than 1 

that is representable in float. This parameter, de

fined in the ANSI C header float. h, is a system 

constant in CH. This parameter is very useful for 

scientific computing. For example, due to the fi

nite precision of the floating-point representation 

and alignment of addition operation, when a 

significantly small value and a large number 

are added together, the small number may not 

have contribution to the summation. Using 
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FLT_EPSILON, adding a small positive number x 

to a large positive number y can at least capture 

three decimal digits of significance of y that can be 

tested by 

if(x < y * FLT_EPSILON * 1000) 

The following C11 code can calculate and print out 

the machine epsilon on the screen 

float epsilon; 

epsilon= 1.0; 

while(epsilon+1 > 1) 

epsilon 1= 2; 

epsilon *= 2; 

printf ("The machine epsilon") ; 

printf ( "FLT_EPSILON is %e", epsilon); 

For SUN SPARCStations, the output from the ex

ecution of the above code is as follows: 

The machine epsilon FLT_EPSILON is 

1. 192093e-07, 

which matches the value of the parameter 

FLT_EPSILON defined in the ANSI C header 

float. h. Although the above computation of the 

parameter FLT_EPSILON is simple in CH, which 

uses the default rounding mode of round toward 

nearest, it may be vulnerable to other rounding 

modes. A more robust method [10] to obtain this 

parameter is to manipulate the bit pattern of the 

float b, f, flt_max; 

int e, i, flt_max_exp, flt_max_10_exp; 

b = 10; e = 0; f = b; 

memory of a float variable is as shown in Section 

7.1.1. 

7.1.3 Maximum Floating-Point 
Number FLT_MAX 

The parameter FLT_MAX defined in the ANSI C 

header float. his the maximum representable 

finite floating-point number. Any value that is 

larger than FLT_MAX will be represented as Inf 

and any value less than -FLT_MAX is represented 

by - Inf. If the value of FLT_MAX is represented as 

fltmax * 1 oe' then the following two equations will 

be satisfied 

(fltmax + FLT_EPSILON) * 10e = Inf 

(fltmax + FLT_EPSILONI2) * 10e = FLT_MAX 

where the machine epsilon FLT_EPSILONwas de

fined in Section 7. 1. 2 and the exponential value e 

is to be calculated. The following CH program will 

calculate FLT_MAX as well as FLT_MAX_10_EXP 

and FLT_MAX_EXP of the machine and print them 

on the screen. The value of FLT_MAX_10_EXP 

is the maximum integer such that 10 raised to 

its power is in the range of the represent

able finite floating-point numbers. The value of 

FLT_MAX_EXP is the maximum integer such that 

2 raised to its power minus 1 is a representable 

finite floating-point number. For the illustrative 

purpose, only the while-loop control structure is 

used in this example. 

I* calculate exponential number e, 38 in the example *I 

while(f != Inf) 

{ 
e++; f*=b; 

} 
flt_max_10_exp = e; 

I* calculate leading non-zero number, 3 in the example *I 

i = 0; f = 0. 0; 

while(f != Inf) 

f = ++i * pow(b, e); 

I* calculate numbers after decimal point, 40282347 ... in the example *I 

flLmax = i; 

while (e ! = 0) 

{ 
flt_max = --flt_max * b; 

e-; i 0; f = 0. 0; 

while( f != Inf && i < 10) 
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{ 

} 

} 

f = ++flt_max * pow(b, e); 

i++; 

f = frexp(flt_max, &flt_max_exp); !#calculate FLT_MAX_EXP 

printf("FLT_MAX = %.8e \n", flt_max); 

printf ( "FLT_MAX (in binary format) = %b \n", fl Lmax); 

printf ( "FLT_MAX_lO_EXP = %d \n", fl t_max_lO_exp); 

printf ( "FLT_MAX_EXP = %d \n", fl t_max_exp) ; 

The output of the above code on SUN SPARCSta

tions is as follows: 

FLT_MAX = 3. 40282347e+38 

FLT_MAX (in binary format) 

= 01111111011111111111111111111111 

FLT_MAX_10_EXP = 38 

FLT_MAX_EXP = 128 

The above values for FLT_MAX, FLT_MAX_ 

lO_EXP, and FLT_MAX_EXP are the same as the 

parameters defined in the ANSI C header 

float. h. By just changing the declaration of the 

first statement from float to double, the corre

sponding extreme values DBL_MAX, DBL_MAX_ 

lO_EXP, and DBL_MAX_EXP for double can be 

obtained. In this case, the polymorphic arithmetic 

operators and mathematical functions pow() and 

frexp() will return double data. The default mode 

for floating-point constants is float, which can be 

switched to double by function floatconst 

(FALSE). 

In the above calculation of the extreme float

ing-point values, the user does not need to know 

the intricate machine representation of floating

point numbers. If one knows the machine repre

sentation of a floating-point number, the calcula

tion of the extreme values can be much simpler. 

For example, according to Table 1, the value of 

FLT_MAX is represented in a hexadecimal form as 

(7F7FFFFF)1 6 . The following CH program can be 

used to calculate the maximum representable fi

nite floating-point number FLT_MAX. 

int i; float *flt_max; 

fl Lmax = &i; 

!# flt_max points to the memory 

!# location of i 

i OX7F7FFFFF; 

!# *flt_max becomes FLT_MAX 

The maximum float number FLT_MAX can also 

be readily obtained by the II 0 function scanf() 

with the binary input format "%32b". For inter

ested readers, can you think of any other method 

for computing the maximum representable finite 

floating-point number FLT_MAX by a Cor Fortran 

program without knowing the machine architec

ture? The major difficult is that, due to the inter

nal alignment for calculation of the floating-point 

numbers, the significantly small number will be 

ignored when it is added to or subtracted from a 

large number. For example, the execution of the 

command f = FLT_MAX + 3. Oe30 will give the 

variable f the value of FL T _MAX although 

the value of 3.0 * 1030 is not a small number, 

but it is significantly smaller than FLT_MAX 

and ignored in the above addition operation. 

The following two CH expressions will further 

demonstrate the difference between FL T _MAX 

and lnf, 1/lnf*FLT_MAX = 0.0, and 1/FLT_ 

MAX*FLT_MAX = 1.0. 

7.2 Programming With Metanumbers 

The CH language distinguishes -0.0 from 0.0 for 

real numbers. The metanumbers 0.0, -0.0, lnf, 

- lnf, and l\'aN are very useful for scientific com

puting. For example, the function f(x) = e 11
x is 

not continuous at the origin as is shown in Figure 

1. This discontinuity can be handled gracefully 

in CH. The evaluation of the CH expression 

exp(1/0.0) will return lnf and exp(1/(-0.0)) 

gives 0.0, which corresponds to mathematical ex

pressions e 110
• and e 110

- or limx-->0 • e 11
x and 

lim.r-->0_ e 11x, respectively. In addition, the evalua

tion of expressions exp(1.0/lnf) and exp(1.0/ 

(-lnf)) will get the value of 1. 0. As another exam

ple, the function finite (x) recommended by 

the IEEE 754 standard is equivalent to the CH 

expression - Inf <X && x < Inf, where x can be a 

float/ double variable or expression. If x is a float, 

-Inf < x && x < Inf is equivalent to -FLT_MAX 

<= X && X<= FLT _MAX; if x is a double, - Inf <X 
&& x < Inf is equivalent to -DBL_MAX <= x && x 
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<= DBL_MAX. The mathematical statement "if
oo <value<= oo, theny becomes oo" can be easily 

programmed in C11 as follows 

if(-Inf <value && value<= Inf) y = Inf; 

However, a computer can only evaluate an ex

pression step by step. Although the metanumbers 

are limits of the floating-point numbers, they can

not replace mathematical analysis. For example, 

the natural number e equal to 2.718281828. 

is defined as the limit value of the expression 

lim (1 + .!)x = e. 
_r-->x X 

However, the value of the expression pow(1.0 + 
1.0/lnf, lnf) in C11 is NaK. The evaluation of this 

expression is carried out as follows: 

( 
1 0)/nf 

1.0 + l~f = (1.0 + 0.0)
1
nf = 1.0

1
nf =NaN 

If the value FL T -~AX instead of lnf is used in the 

above expression, the result is obtained by 

( 

FLLMAX 
1.0 ) _ FLLMAX 1 ·0 + FLT_MAX - (1.0 + O.O) 

= 1.0FLLMAX = 1.0 

According to rules for negation, subtraction, 

and equal comparison operations given in Tables 

2, 4, and 9, the C11 expression x-y =- (y-x) will 

always return TRUE for any values of x and y 

with x equal toy, including NaN, ±0.0, and ±lnf. 

The outcome of this computation really matches 

our intuition regarding algebra. However, there is 

a subtle difference between two expressions x - y 

and -(x- y) in C11 • When x = y and NaN;/= x of= 

lnf, x- y will produce 0.0 whereas -(x- y) will 

return -0.0. If the IEEE 754 standard for han

dling NaN in relational operations was strictly fol

low, the implication of the above operation would 

be much more complicated. 

The application of NaN can be further demon

strated by numerically solving quadratic equation 

ax 2 + bx + c = 0 

The execution of the following C11 program 

float root [2] ; 
float a, b, c; 
a = 1; b = 2; c = 2; 

root[O] = (-b+sqrt(b*b-4*a*c))/(2*a); 
root[l] = (-b-sqrt(b*b-4*a*c))/(2*a); 
if(root[O] ==NaN) 

printf("Solutions are complex"); 
printf ("numbers. \n"); 

will produce the following output 

Solutions are complex numbers. 

because solutions to the equation of x 2 + 2x + 
2 = 0 are -1 ± i. This equation will be solved in 

complex numbers in [2]. 

Because metanumber NaK is unordered, a pro

gram involving relational operations should be 

handled cautiously. For example, the expression 

x > y is not equivalent to ! (X<= y) if either x or y 

is a NaK. As another example, the following C11 

code fragment 

if(x > 0.0) function!(); 
else function2(); 

is different from the code fragment 

if(x <= 0.0) function2(); 

else function!(); 

The second if -statement should be written as 

if (X <= 0. 0 I I x == NaN) in order to have the 

same functionality for these two code fragments. 
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8 CONCLUSIONS 

CH not only retains most features of C from the 

scientific computing point of view, but also ex

tends C's numerical computational capabilities. 

Metanumbers of -0.0, 0.0, Inf, -Inf, and 1\;al'\ 

introduced in CH are external, which makes the 

power of the IEEE 754 arithmetic standard easily 

available to the programmer. Furthermore, these 

metanumbers are extended to commonly used 

mathematical functions in the spirit of the IEEE 

754 standard. The rules for manipulation of these 

metanumbers in 110; arithmetic, relational, and 

logic operations; and commonly used mathemati

cal functions in CH are defined in this article. The 

CH extensions related to bitwise, assignment, ad

dress and indirection, increment and decrement, 

as well as type conversion operations to ANSI C 

have been highlighted. The gradual underflow 

feature of the IEEE 754 standard has been ex

plored through parameter FL T _Mil\T\1UM. Be

cause the ANSI C standard is descriptive, the rig

orous definitions defined in this article will not 

violate the standard. Like arithmetic operators, 

the built-in mathematical functions in CH are 

polymorphic, which means that the returned data 

type of a function depends on the data types of the 

input arguments. This will simplify the scientific 

programming significantly. 

All points delineated in this article have been 

implemented and tested in CH. Example programs 

with metanumbers and polymorphic mathemati

cal functions are given in this article. The function 

names can be added, removed, and changed; and 

the mathematical operators can be added and re

moved in CH. Therefore, porting code from other 

languages to CH is relatively simple. Most C pro

grams can be executed in the CH environment with 

minimum modification related to the interpretive 

nature of the current implementation of CH. The 

extension of scientific programming with real 

numbers to scientific programming with complex 

numbers has been addressed by Cheng [2]. 
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