
Scientific Computing in the cH
Programming Language

HARRY H. CHENG

Department of Mechanical and Aeronautical Engineering, University of California, Davis, CA 95616

ABSTRACT

We have developed a general-purpose block-structured interpretive programming lan

guage. The syntax and semantics of this language called (Hare similar to C. (H retains

most features of C from the scientific computing point of view. In this paper, the exten

sion of C to (H for numerical computation of real numbers will be described. Metanum

bers of -0.0, 0.0, lnf, -lnf, and NaN are introduced in (H. Through these metanumbers,

the power of the IEEE 754 arithmetic standard is easily available to the programmer.

These metanumbers are extended to commonly used mathematical functions in the spirit

of the IEEE 754 standard and ANSI C. The definitions for manipulation of these meta

numbers in 1/0; arithmetic, relational, and logic operations; and built-in polymorphic

mathematical functions are defined. The capabilities of bitwise, assignment, address

and indirection, increment and decrement, as well as type conversion operations in

ANSI C are extended in (H. In this paper, mainly new linguistic features of (H in

comparison to C will be described. Example programs programmed in (H with meta

numbers and polymorphic mathematical functions will demonstrate capabilities of (H in

scientific computing. © 1994 John Wiley & Sons, Inc.

1 INTRODUCTION

We have developed a general-purpose block

structured interpretive programming language.

Due to our research interests, this language called

CH has been developed to be especially suitable

for research and applications in scientific and sys

tem programming. CH is expressive with modern

programming constructs and rich sets of data

types and operators. At its current implementa

tion, CH supports most features of the C program

ming language except data structures. Some

Received October 1992
Revised May 1993

© 1994 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 2, pp. 49-75 (1993)

CCC 1058-9244/94/030049-27

rough edges incompatible with the ANSI C [1] will

be smoothed out in the future. By then, one may

consider CH as a C language with High-level ex

tensions. CH extends the capabilities of C in many

aspects. CH not only supports C's basic data types

such as int and float, but also provides many ad

ditional data types such as complex and others.

The handling of complex and dual numbers in CH

are described by Cheng [2, 3]. The constants,

variables, and operators of new data types in CH

follow the same syntax rules of basic data types

such as int and float. C, a modern language origi

nally invented for the Unix system programming

[4, 5], is commonly regarded as a mid-level com

puter language. CH retains low-level features of C

with respect to interface to hardware. However,

CH is a high-level language, designed for both

novice users and experienced programmers. If one

49

50 CHENG

makes mistakes in a CH program, the system will

prompt informative warning or error messages for

the debugging of the program.

CH is a language designed for both scientific

and system programming. Currently, Fortran [6,
7] and C are the two predominant computer lan

guages for scientific computing. CH has been de

signed to make the porting of both Fortran and C

code to CH as easy as possible. However, as the

name of the language implies, whenever there is a

syntax conflict between C and other languages,

the interpretation will follow that of C. As a result,

the syntax and semantics of CH are similar to

those of C in many aspects. Therefore, unless in

dicated otherwise, all code fragments included in

this paper will have the same implications as those

in the ANSI C. The detailed explanations for each

single line of code presented in this paper will not

be given.

In this paper, the scientific computing aspect of

the CH language will be addressed. CH retains

most features of C from the scientific computing

point of view. The ANSI/IEEE 754 standard for

binary floating-point arithmetic [8, 9] is a signifi

cant milestone on the road to consistent floating

point arithmetic with respect to real numbers.

This standard has significantly influenced the de

sign of CH. The IEEE 754 standard distinguishes

+0.0 from -0.0, which introduces an extra com

plexity for programming. The rationale for this ex

tra complexity is not well understood and ac

cepted by all computer scientists and C experts

[10]. Many have challenged the necessity for the

sign of zeros. Apparently, how to handle best "the

sign of nothing" is still a topic to be further inves

tigated. Another important feature of the IEEE

754 standard is the internal representation for

mathematical infinity and invalid value. The

mathematical infinity oo is represented by the sym

bol of lnf. A mathematically indeterminate or an

undefined value such as division of zero by zero is

represented by NaN, which stands for Not-a

Number. Many computer hardware have signed

zeros, infinity, and NaN [11, 12]. Information

about low-level and limited high-level instruction

sets provided by hardware vendors may not be

relevant to the application programmer and most

features of a final system depend on the software

implementation. Even for IEEE machines, if there

is no provision for propagating the sign of zeros,

infinity, and NaN in a consistent and useful man

ner through the software support, they will have to

be programmed as if zeros are unsigned without

infinity and NaN. For example, the proposed Ada

standard does not distinguish -0.0 from 0.0 and

has no provision for consistent handling of infinity

and NaN [13-18]. As another example, the stan

dard mathematical C library implemented by

Plauger [10] has provisions for signed infinities

and NaN, but zeros are unsigned. Based on IEEE

machines, some vendors provide software support

for the IEEE 754 standard through libraries [19-

21]. However, these special values in libraries are

not transparent to the programmer. Due to differ

ent design considerations, they have defined dif

ferent values for many operations and functions

discussed in this paper. For example, the SCN's

mathematical library will deliver the following

results: oo0 = 1; NaN° = 1; 0° = 1; (-oo)x = oo;

(-oot"' = 0; (-oo)0 = 1; (-x)"' = oo; (-xt"' = 0;

(-ootf = 0, which differ from CH. Although the

application of symbols such as lnf and N al\'

can be found in some software packages, their

handling of these special numbers are often

time full of flaws. For example, one can find

Complexlnfinity in the software package Mathe

matica [22], and lnf and NaN in MATLAB [23].

In Mathematica, there is no distinction between

complex infinity and real infinities, nor between

-0.0 and 0.0; therefore, many operations defined

in this paper cannot be achieved in this package.

In MATLAB, there is no complex infinity, and one

will be surprised by some of its results. At one

point, the sign of a zero is honored; but at other

point, it may not. For example, according to the

IEEE 754 standard, sqrt(-0.0) should be -0.0,

but, sqrt(-0.0) = 0.0 in MATLAB (version 4.0,

1992). As another example, acosh(lnf) equals

NaN whereas acos(lnf) is a complex NaN. Results

of mathematical functions in many cases are not

consistent with mathematical conventions. It is in

these grey areas that the standard is not supported

in many implementations of hardware and soft

ware systems.

To make the power of the IEEE 754 standard

easily available to the programmer, the floating

point numbers of -0.0, 0.0, lnf, -lnf, and 1\'al\',

referred to as metanumbers, are introduced in CH.

These metanumbers are transparent to the pro

grammer. Signed zeros +0.0 and -0.0 inCH be

have like correctly signed infinitesimal quantities

0+ and 0-; whereas symbols lnf and -lnf corre

spond to mathematical infinities oo and -oo, re

spectively. The manipulation capabilities of lnf

and NaN in CH go way beyond the scope use in

mathematical software packages such as Mathe

matica and MATLAB. The integration of the me

tanumbers in the C programming language will be

SCIE:\TIFIC COYIPLTI:\G I:\ C 11 PROGRAY1Y11:'>1G L\1\"GLAGE 51

described in this article. The IEEE ?54 standard

only addresses the arithmetic involving these me

tanumbers. In this article. these metanumbers are

extended consistently to commonly used mathe

matical functions in the spirit of the IEEE ?54

standard. The linguistic features of CH. as it is

currently implemented, in dealing with metanum

bers will be presented in this article. The emphasis

is placed on the handling of metanumbers in 110:

arithmetic, relationaL and logic operations: and

polymorphic mathematical functions. The con

cepts presented in this article have been extended

to complex numbers in [2].

It should be mentioned that related to the work

described in this article is the current effort pur

sued by 1'\umerical C Extension Group (.'\CEG),

the subcommittee X3J11.1 of the Al'\SI C X3J11

committee. The 1'\CEG is working on floating

point C extension standard: to make features of

the IEEE 754 standard available for use by pro

grammers is one of its efforts. Reviewing its pre

liminary draft [24 J for the proposed floating-point

C extension standard reveals that some features

presented in this article are in conformance with

the proposed standard. However, there are many

differences between CHand the proposaL For ex

ample, recognizing that operations like isnan (X)

can be problematic in dealing with Nal'\, the pro

posal introduces eight additional relational opera

tors of ! <>=, <>, <>=, ! <=, ! <, ! >=,
! >, ! <> on top of the existing operators <, >,
< = , > = , = = , ! =. But, to preserve the clarity

and succinctness of C, no additional relational

operator has been introduced in C11
. The handling

of NaN in C11 will be described in detail in this

paper. There is no -NaN inCH whereas the sign

of NaN is honored in the proposaL The proposal

suggests function overloading for elementary

mathematical functions in C. However, unlike

c++ [25]' there is no provision for function over

loading in ANSI C. Consequently, mechanisms for

function overloading are to be introduced, which

will likely complicate the syntax of C. All mathe

matical functions are built polymorphically with

optional auxiliary arguments into CH itself [2].

Therefore, unlike the proposal, there is no need in

CH for distinction of functions log(x) and

loglp(x), which is expected to be more accurate

than log() for small magnitude of x because these

two functions can be easily reconciled inside CH.

The proposal introduces several new functions,

most of which can be easily implemented as exter

nal functions in CH. Due to different consider

ations, the design of C11 is different from the pro-

posal in some other aspects. For example, CH is

definitive; results of all operations and functions

involving metanumbers are properly defined in CH

whereas the proposal still leaves room for unspeci

fied values. The proposed floating-point C exten

sion is still at its preliminary stage. The final speci

fication and actual language implementation of

the proposed standard remain to be seen.

The rest of the paper is arranged as follows.

Section 2 presents the number system in CH. The

different data types and their internal memory

representations are described. Section 3 describes

the external representations of numerical con

stants inCH. Section 4 discusses the 1/0 extension

of C to CH for numerical data and metanumbers.

Section 5 defines arithmetic, relationaL and logic

operations involving metanumbers. In addition,

the CH extensions of bitwise. assignment, address

and indirection. increment and decrement opera

tions, as well as explicit type conversions will be

highlighted. Section 6 defines polymorphic math

ematical functions with metanumbers as input ar

guments or as returned results. Example pro

grams in Section 7 with metanumbers and

polymorphic mathematical functions will demon

strate CH's capabilities in scientific computing.

Some conclusions will be made in section 8.

2 REAL NUMBERS IN CH

CHis a loosely typed language. The CH program

ming language has a rich set of data types. Cnlike

languages such as Pascal [26], which prohibits

automatic type conversion, one data type in CH

can be automatically converted to another data

type if it makes sense in context. As it is currently

implemented, CH encapsulates Fortran's four nu

meric data types of integer, real, double precision,

and complex. Programming with complex num

bers in C11 will be described [2]. In this paper, we

discuss only the real numbers directly related to

scientific computing. The formats of these data

stored in a computer memory depend on the ma

chine architecture in use. How these numbers are

internally represented in a computer system for

manipulation inside CH will be illustrated in this

section. The discussion is based on the architec

ture of the RISC processor for SUN SPARCSta

tions [20]. But, ideas are applicable to all IEEE

machines. Data types of short, unsigned, long

double, double complex, and long double com

plex are not available in CH at its current imple

mentation, mainly because our applications of CH

52 CHENG

can bypass these data types. As users' base of CH

increases, they will be supported in the future if

necessary.

2.1 Integers

Integer is a basic data type for any computer lan

guage. An integer inCH can be represented in data

types of char or int. Numerical manipulations of

char and int data in CH follow the rules defined in

ANSI C.

2. J. J Char Data Representation

The char data are used to store characters such as

letters and punctuations. An array of char can be

used to store a string. A character is actually

stored in integer according to a certain numerical

code such as the ASCII code. Under this code,

certain integers represent certain characters. The

standard ASCII code ranges from 0 to 127, which

2. J .2 lnt Data Representation

An int data is a signed integer inCH. An int num

ber is a whole number that can be negative,

positive, or zero. The int ranges from INT _MIN to

INT _MAX. The parameters INT _MIN and

INT _MAX, defined in the ANSI C standard

header limits. h, are precalculated system con

stants inCH. Unlike some of C's implementations,

in which an int data may occupy only 2 bytes, an

int data uses 4 bytes (32 bits) for storage with 1 bit

for sign in CH. Negative numbers are stored in

4-byte two's complement minus 1. The values

of INT _MIN and INT _MAX then become

-2147483648 (231
) and 2147483647, respec

tively. The int type of CH is the same as the int

data type defined in the ANSI C. Operations such

as addition, subtraction, multiplication, and divi

sion in CH are fully compatible with those defined

in the ANSI C. For example, the following state

ments are valid in CH.

char c [2] [3], *cptr;

int i, *iptr; I* I# comment *I
C [0] [1] = I a I; I# c(O] [1] becomes 'a' *I
i = c [0] [1]; I# I* i becomes 97, ASCII number for 'a' *I
c[1,2] = i+1

i += c [1 ' 2];

iptr = &i;

*iptr I= 2;

I* c[1,2] becomes 'b', ASCII number for 'b' is 98 *I
I# i becomes 194 = 97 +97

I* iptr points to address of i *I
I* i becomes 97 = 19412 *I

needs only 7 bits to represent. In CH, the char

variable is a signed integer ranging from CHAR_

MIN to CHAR_MAX. The parameters CHAR_

MIN and CHAR_MAX, defined in the ANSI C

standard header 1 imi ts. h, are system constants

inCH. Typically, a char constant or variable occu

pies 1 byte of unit memory. Bit 8 is a sign bit. The

maximum positive integer for a signed 1-byte rep

resentation is 127 or 01111111 in the binary

form. A negative number is stored as the binary

complement of its absolute value minus 1. For

example, the decimal value of -2 is determined

by the binary value of 11111110 in an 1-byte

two's complement value as

com(11111110)2 = (00000001 + 1)2 = (10)2

where the subscript of 2 indicates the base of the

integer number. The minimum integer values for a

signed char is -128 or 10000000 in binary form.

The range of integers for a char is then from -128

to +127.

Like C, comments of a CH program can be en

closed within a pair of delimiters I* and *I.
These two comment delimiters cannot be nested.

In addition, the symbol I# inCH will comment out

a subsequent text terminated at the end of a line.

A I# can be used to comment out I* or *I and

I* *I can be used to comment out I#. These two

companion methods provide a convenient mecha

nism to comment out a section of CH code that

contains comments. When a comment does not

start at the beginning of a line, the use of I# is

recommended for CH programs. It should be men

tioned that, in ANSI C, a combined use of prepro

cessor directives #if, #el if, #else, and

#endi f can also comment out a section of C

code. Note that arrays inCH can be declared and

accessed by c [i] [j] or c [i , j] . The former is

in Al"SI C style whereas the latter has a Fortran

flavor. All white space and tab characters will be

ignored in the CH program, except when they are

characters within a string. A program using invisi

ble characters such as a tab character as delimit-

SCIENTIFIC COMPUTING IN CH PROGRAMMING LANGUAGE 53

ers and control sequences is very difficult to de

bug. Such design examples are not difficult to find

in computer systems.

2.2 Real Numbers

The integer data type serves well for some software

development projects, especially for system pro

gramming. However, for scientific computing, the

floating-point numbers are used extensively. The

floating-point numbers correspond to real num

bers that include the numbers between integers.

These numbers are defined in CH as float or dou

ble, which are equivalent to real and double preci

sion in Fortran, respectively. Floating-point num

bers are analogous to the representations of

numbers in scientific notion. Floating-point arith

metic is complicated as compared with the integer

arithmetic. This paper mainly addresses issues re

lated to the floating-point operations and built-in

functions in CH.

The most common implementation of floating

point arithmetic is based upon the IEEE 754
standard. In this standard, a float or double is

represented in the form of

(-1)sign 2exponent-bias 1./ (1)

where 1.f is the significand and f is the bit in the

significand fraction. This normalized float or dou

ble number contains a "hidden" bit because it

has one more bit of precision than would other

wise be the case.

2.2. J Float Data Representation

The float data type uses 32 bits for its storage. The

result of a float data is formulated as

(-1)sign 2exponent-12"71.j (2)

Bit 31 is a sign bit; it is 1 if the number is negative.

Eight-bit exponent of bits 23 to 30 is biased by

127; values of all zeros and all ones are reserved

for metanumbers. Bits 0 to 22 are the fraction

component of a normalized significand. The lead

ing integer value 1 of the normalized significand is

hidden. The hexadecimal representations of some

typical float numbers are given in Table 1. For

example, according to Equation (2), float num

bers 1. 0 and -2.0 can be obtained by
(-1)02127-1271.0 = 1.0 and (-1)12128-1271.0 =
2.0, respectively. Remember that the fraction of

the normalized significand is stored in a binary

fraction. The float number 3.0 can be calculated

by (-1)02128-12"7(1.1)2 = 2 * (1.1)2 = 2 * (1.5)10 =
(3.0)10 where subscripts indicate the base of the

floating-point number. Note that the IEEE 754

standard distinguishes +0.0 from -0.0 for float

ing-point numbers. For user's convenience, these

two constants are predefined as system constants

Zero and NZero inCH. NZero stands for negative

zero.

Table 1. Hexadecimal Representation of Selected

Real Numbers

Value Float Double

0.0 00000000 0000000000000000

-0.0 80000000 8000000000000000

1.0 3F800000 3FFOOOOOOOOOOOOO

-1.0 BF800000 BFFOOOOOOOOOOOOO

2.0 40000000 4000000000000000

-2.0 cooooooo cooooooooooooooo
3.0 40400000 4080000000000000

-3.0 C0400000 C080000000000000

Inf 7F800000 7FFOOOOOOOOOOOOO

-Inf FF800000 FFFOOOOOOOOOOOOO

Nal'\ 7FFFFFFF 7FFFFFFFFFFFFFFF

FLT_MAX 7F7FFFFF

DBL_MAX 7FEFFFFFFFFFFFFF

FLT_MII'\ 007FFFFF

DBLMll'\ OOOFFFFFFFFFFFFF

FL T _MINIMUM 00000001

DBL_MINIMUM 0000000000000001

54 CHE~G

The parameter FL T _MAX, defined as the

maximum representable finite floating-point

number in the float data type in the ANSI C stan

dard header float. h, is a precalculated system

constant in CH. As mentioned before, that 8-bit

exponent of bits 23 to 30 is biased by 127; values

of all ones for 8-bit exponent of bits 23 to 30 are

reserved for metanumbers. If a number is larger

than FL T _MAX, which is called an overflow, it

will be represented by the symbol of Inf, which

corresponds to the mathematical infinity oo. This is

the result of many operations such as division of

a finite number by zero although an inexact ex

ception may be raised in an IEEE machine.

In the same manner, if a number is less than

- FL T _MAX, it will be represented by - lnf, which

is equivalent to the negative infinity -oo.

The value of the parameter FL T_MIN is de

fined in the ANSI C standard library header

float. h as a minimum normalized positive float

ing-point float number. If a number is less than

FL T _MIN, it is called an underflow. The IEEE

754 standard provides a gradual underflow.

When a number is too small for a normalized rep

resentation, leading zeros are placed in the signifi

cand to produce a denormalized representation. A

denormalized number is a nonzero number that is

not normalized and whose exponent is the mini

mum exponent for the storage type. The maxi

mum representable positive denormalized float is

defined as FL T _MINIMUM in CH as shown in Ta

ble 1. There is only one unit in the last place for

FL T _MINIMUM so that it is commonly referred to

as ulp. Almost all floating-point implementa

tions substitute the value zero for a value that is

smaller than FL T _MINIMUM for IEEE machines,

FLT _MIN for non-IEEE machines. However, in

the arithmetic operations and mathematical func

tions defined in CH, there is a qualitative differ

ence between FL T _MINIMUM which is smaller

than FLT _MIN and zero. In this paper, by the

value of 0.0 means that it is a zero, not a small

number. The CH expressions of 0., 0.00, and .0

are the same as 0.0. In the same token, the follow

ing CH floating-point constant expressions -0.0,

-0., -0.00, and- .0 are equivalent. Mathemati

cally, divisions of zero by zero of 0.0/0.0 and in

finity by infinity of oofoo are indeterminate. The

results of these operations are represented by the

symbol of NaN, which stands for Not-a-Number.

It should be mentioned that the IEEE 754 stan

dard distinguishes quiet NaN from signaling NaN.

The signaling NaN should generate a signal or

raise an exception. InCH, all NaNs are treated as

quiet NaNs. Furthermore, the IEEE 754 standard

does not interpret the sign of NaK. However,

many floating-point arithmetic implementations

such as in the SCK's AKSI C, Apple's Standard

Apple ~umeric Environment, and preliminary

proposed floating-point C extensions distinguish

NaK from - NaK. But, from the user's point of

view, what is the difference between a negative

1'\ot-a-Kumber and a positive Not-a-Number? Af

ter all, Not-a-Number is not a number. Therefore,

no -NaK will be produced as a result of arith

metic and functions in C 11 although it can be cre

ated by manipulating the bit pattern of the mem

ory location of a float variable. The expression

-KaNis interpreted as NaK inCH. The metanum

bers are treated just as regular floating-point

numbers. The internal hexadecimal representa

tions of the metanumbers for the float type are

also given in Table 1.

2.2.2 Double Data Representation

For a large range of representable floating-point

numbers, a double data can be used in CH. The

double data type uses 64 bits as its storage. The

result of the double data is formulated as

(3)

Bit 63 is a sign bit; it is 1 if the number is nega

tive. Eleven-bit exponent of bits 52 to 62 is biased

by 1023; values of all zeros and all ones are re

served for metanumbers. Bits 0 to 51 are frac

tional components of normalized significands.

Like float, the integral value 1 of the normalized

significand is hidden. The hexadecimal represen

tation of some typical double numbers are also

given in Table 1. Note that the width and bias

value of the exponent of double is different from

those of float. Therefore, a float cannot be con

verted into a double just by padding zeros in its

fraction. On the other hand, when a double data is

cast into a float, the result cannot be obtained just

by ignoring the values in bits 0 to 31. Note that

there is no external distinction between float Inf

and double Inf although their internal representa

tions differ. This is also true for metanumbers

-Inf and NaN. Similar to float, parameters

DBL_MAX, DBL_MIN, and DBL_MINIMUM are

precalculated constants inCH. The internal mem

ory representations of these special finite double

floating-point numbers are also given in Table 1.

Note that due to the finite precision of the floating

point number representation, the exact values of

irrational numbers such as 1r are not represent

able in a computer system whether they are repre

sented in float or double.

SCIE:\TIFIC COMPLTI:\G 11'\ C11 PROGRAYIYII!'\G LA!\"GUAGE 55

3 CONSTANTS OF REAL NUMBERS

In this section, we will describe the external repre

sentations of data types discussed in the previous

section. Besides declared variables and svstem

defined parameters, all different data types .in CH

can have their corresponding constants at the pro

grammer's disposal.

Char and int constants inCH are in full compli

ance with the ANSI C standard. A character con

stant, stored as an integer, can be written as one

character within a pair of single quotes like 1 x 1
•

Character constants enclosed in a pair of single

quotes cannot contain the 1 character. In order

to represent the 1 character and certain other

characters such as a newline character, the escape

sequence may be used. For example,

c = 1
\

1 1 will assign the 1 character to c whereas

c = 1 \n 1 will give c a newline character.

A decimal integer constant like 12345 is an int.

An integer can also be specified in octal or hex

adecimal instead of decimal. A leading 0 (zero) on

an integer constant indicates an octal integer

whereas a leading Ox or OX means hexadecimal.

Besides these integral values defined in Al\"SI C,

CH introduces a binary constant with leading Ob or

OB. For example, decimal 30 can be written as

036 in octal, OX1e or Ox1E in hexadecimal, and

Ob11110 or OB11110 in binary. Note that expres

sions like 029 and Ob211 are illegal, which can be

detected by CH.

The value of 0 in CH means that it is an integer

zero. Unlike real numbers, there is no 0_ in int.

Therefore, the integer value of -0 equals 0 inCH.

The domain [-FL T _MAX, FL T _MAX] of real

numbers is larger than the domain [- INT _MIN,

INT _MAX] of integer numbers. When a real num

ber smaller than INT _MIN, including - lnf, is

converted to an integer, the result is INT _MIN.

For a real number larger than INT_MAX, includ

ing lnf, the converted integral value is INT _MAX.

When NaN is assigned to an integral variable, the

system will print a warning message, and the re

sultant integral value becomes 11\'T _MAX whose

memory map is the same as that of NaN.

In K&R C [27, 28] all floats in expressions are

converted into doubles before evaluation. As a

result, any operations involving floating-point op

erands, even with two float operands, will produce

a double result. This is not applicable to many

scientific computations in which speed and mem

ory of a program are critical. The inconvenient

floating-point operation modes for 32- and 64-bit

operands of the original hardware platform, a

PDP -11/45 FPP, for running C programs was a

major factor in the design of this implicit data con

version of K&R C [10, 29]. Although this indis

criminate conversion is sometimes complemented

with a positive tone for its generosity, it is harshly

criticized by the numerically oriented scientific

programmers as a language design fault [30]. Be

cause of the indiscriminate conversion rules in the

early design of C, every floating-point constant

like 3.5 and 3e7 is taken as double. This default

double mode for floating-point constants has

been carried over to the ANSI C standard. How

ever, the ANSI C has provided a mechanism to

specify a float constant. The suffixes F or f indi

cate a float constant.

In regards to the default data type of floating

type constants, CH follows the lead of Fortran, but

with an ANSI C modern syntax style. Floating

point numbers are represented in scientific nota

tion. All floating-point constants such as 2.4,

2e + 3, -2.£- 3, and +2.1e3 are float constants

by default because, in most applications, a float

ing-point constant with a small number of digits

after a decimal point is intended to be float. This

default mode, however, can be switched by the

function floatconst(onoff). After execution of

command floatconst(FALSE), the aforemen

tioned floating-point constants will be taken as

double. However, the default mode can always be

overruled by the suffixes F or f for float, D or d for

double. For example, constants 3.4e3F, 3£- 3/,

and 3e + 3F are floats whereas constants 3.4e3D,

3£ - 3d, and 3e + 3D are doubles regardless of

the default mode for floating-point constants.

However, the constant metanumbers Zero,

NZero, ±lnf, and NaN are always taken as floats

unless they are values of double variables. Ac

cording to this design, the range of representable

floating-point numbers can be expanded auto

matically. For example, the values of FL T _MAX

and DBL_MAX for SuN SPARCStations are

3.4e38 and 1.8e308, respectively. The following

CH program

printf("pow(10.0, 39) < Inf is %d /n", pow(10.0, 39) < Inf);

floatconst(FALSE);

printf ("pow (10. 0, 39) < Inf is %d /n", pow (10. 0, 39) < Inf);

56 CHENG

will print out

pow(lO. 0, 39) < Inf is 0

pow(lO. 0, 39) < Inf is 1

In the first statement of the program, the value of

1039 calculated by pow(10.0, 39) has overflowed

as lnf because it is larger than FL T _MAX. By

switching the default mode of floating-point con

stants to double through the function floatconst

(FALSE), the value of 1039 calculated by

pow(10.0, 39) in double data is still within the

representable range of -DBL_MAX < pow(10.0,

39) < DBL_MAX. In the second case, the me

tanumber lnf is expanded as a double infinity

larger than DBL_MAX. The float mode for float

ing-point constants can be switched back by the

command floatconst(TRUE). With this mode

switching function, both Fortran and C codes can

be ported to CH conveniently. Details about rela

tional operator < and polymorphic function pow()

will be discussed in Sections 5 and 6, respectively.

In the remaining presentation of this paper, we

assume that the default mode for floating-point

constants is float.

4 1/0 FOR REAL NUMBERS

In ANSI C, the input of integers and floating-point

numbers is obtained through the standard II 0
functions scanf(), fscanf(1), and etc.; the output

is accomplished using the function print£(),

fprintf(), and etc. These functions are also avail

able in CH and will be in full compliance with the

ANSI C standard. However, implementation of

these functions in CH is different from C. In this

section, the differences of these functions between

CHand C, and enhancements of these functions in

CH will be discussed.

The major difference of these functions between

CHand C is that these functions are built-in inter

nal functions in CH whereas they are external

functions in C. Therefore, they can be reconciled

inside CH so that they are more flexible and pow-

erful. The standard input/ output/ error devices

stdin/stdout/stderr defined in the ANSI C

headers tdi o. hare provided as system constants

inCH. The inclusion of header stdio. h in a pro

gram is, therefore, unnecessary in CH. Other than

this difference, a C programmer will not notice any

difference in these functions between CH and C.

But, these 1/0 functions in CH are enhanced.

Here, we only briefly discuss the enhancements

related to real numbers for the function printf().

The underlying principle can be applied to other

1/0 functions as well. The format of function

print£() in CH is as follows

int printf(char *format, argl, arg2, ...)

The function print£() prints output to the stan

dard output device under the control of the string

pointed to by format and returns the number of

characters printed. If the format string contains

two types of objects: ordinary characters and con

version specifications beginning with a character

of % and ending with a conversion character, the

ANSI C rules for printf() will be used. Besides the

control characters specified by the ANSI C stan

dard, CH has one more conversion character 'b'

that is used to print real numbers in binary for

mat. An integer number between the symbol %

and the character 'b' specifies how many bits

starting with bit 0 will be printed. If without an

integer number between the symbol % and the

character 'b', the default format will print int data

without leading zeros, float data in 32 bits, and

double data in 64 bits. This binary format is very

convenient to examine the bit patterns of me

tanumbers. If the format string in printf() contains

only ordinary characters, the subsequent numeri

cal constants or variables will be printed accord

ing to preset default formats. The default format

forint, float, and double are %d, %.3f, and %If,

respectively. The metanumbers lnf and NaN are

treated as regular numbers in 110 functions. The

default data types for these numbers are float.

The following CH program illustrates how b

format and metanumbers are handled by the 110
functions print£() and scanf().

float finf, fNaN;

double dinf, dNaN;

printf("Please type

scanf(&finf, &fNaN,

printf("The float

printf("The float

printf("The float

'Inf NaN Inf NaN' \n 11
);

&dinf, &dNaN) ;

Inf %f\n 11
, finf);

-Inf

NaN

11
, -f Inf, "\n 11

) ;

%f\n 11
, fNaN);

SCIENTIFIC COMPUTING IN CH PROGRAMMING LANGUAGE 57

printf ("The float Inf %b \n"' finf);

printf ("The float -Inf %b \n"' flnf);

printf ("The float NaN %b \n"' fNaN);

printf ("The double Inf %lf\n", dinf);

printf ("The double -Inf II -dinf, "\n");
'

printf ("The double NaN %lf\n", dNaN);

printf ("The double Inf %b \n"' dinf);

printf ("The double -Inf %b \n"' -dinf);

printf ("The double NaN %b \n", dNaN);

printf ("The int 2 %b \n"' 2);

printf ("The int 2 %32b \n"' 2);

printf ("The int -2 %b \n"' -2);

printf ("The float 0.0 %b \n"' 0. 0);

printf ("The float -0.0 %b \n"' -0. 0);

printf ("The float 1.0 %b \n"' 1. 0);

printf ("The float -1.0 %b \n"' -1. 0);

printf ("The float 2.0 %b \n"' 2. 0);

printf ("The float -2.0 %b \n", -2.0);

The first two lines of the program declare two float

variables flnf and fNaN, and two double variables

dlnf and dNaN. The function scanf() will get lnf

and NaN for the declared variables from the stan

dard input device, which is the terminal keyboard

in this example. These metanumbers will be

printed in default formats %.3f for float and %1£

for double. These numbers are also printed using

the binary format %b. For comparison, the mem

ory storage for integers of ±2, and floats of ±0.0,

± 1.0, ±2.0 are printed. The result of the interac

tive execution of the above program is shown as

follows

Please type 'Inf NaN Inf NaN'

Inf Nan Inf Nan

The float Inf Inf

The float -Inf -Inf

The float NaN NaN

The float Inf 01111111100000000000000000000000

The float -Inf 11111111100000000000000000000000

The float NaN 01111111111111111111111111111111

The double Inf Inf

The double -Inf -Inf

The double NaN NaN

The double Inf

01111111111100

The double -Inf =
11111111111100

The double NaN =

0111

The int 2 10

The int 2 00000000000000000000000000000010

The int -2 11111111111111111111111111111110

The float 0.0 00000000000000000000000000000000

The float -0.0 10000000000000000000000000000000

The float 1.0 00111111100000000000000000000000

The float -1.0 10111111100000000000000000000000

The float 2.0 01000000000000000000000000000000

The float -2.0 11000000000000000000000000000000

58 CHENG

where the second line in italic is the input and the

rest are the output of the program. For metanum

bers lnf, - lnf, and I\ al'\, there is no difference

between float and double types from the user's

point of view. It can be easily verified that the bit

mappings of all these numbers in memory match

with data representations discussed in the pre

vious sections.

5 REAL OPERATIONS

In this section, the arithmetic, relational, logic,

bitwise, assignment, address and indirection, in

crement and decrement operations, as well as ex

plicit type conversions of real numbers in CH will

be discussed. The operation precedence for dif

ferent operators in CH is in full compliance with

the ANSI C standard, except the new operator A A

introduced in Section 5.2. Following the ANSI C

standard, the algorithms and resultant data types

of operations for floating-point numbers will de

pend on the data types of operands in CH. The

conversion rules for char, int, float, and double in

CH follow the type conversion rules defined in the

ANSI C standard. A data type that occupies less

memory can be converted to a data type that oc

cupies more memory space without loss of any

information. For example, a char integer can be

cast into int or float without problem. However, a

reverse conversion may result in loss of informa

tion. The order of real numbers in CH ranges from

char, int, float, to double. The char data type is

the lowest and double the highest. Like the ANSI

C, the algorithms and resultant data types of the

operations depend on the data types of operands

in CH. For binary operations, such as addition,

subtraction, multiplication, and division, the re

sultant data type will take the higher order data

type of two operands. For example, addition of

two float numbers will result in a float number

whereas addition of a float number and a double

number will become a double number.

The operation rules for regular real numbers

and metanumbers in CH are presented in Tables 2

to 12. In Tables 2 to 12, x, x1, and x2 are regular

Table 2. Negation Results

Operand -lnf -xl -0.0

Result lnf xl 0.0

positive normalized floating-point numbers in

float or double; metanumbers 0.0, -0.0. Inf.

-lnf, and NaN are constants or the values of float

or double variables. By default, the constant

metanumbers are float constants.

5.1 Arithmetic Operations

For the negation operation shown in Table 2, the

data type of the result is the same as the data type

of the operand, a real number will change its sign

by negation operation. There is no -1'\aN in CH.

The leading plus sign '+ ', a unary plus operator,

in an expression such as +57864 - x will be ig

nored. It should be pointed out that the negation

of a positive integer zero is still a positive zero.

Based on two's complement representation of

negative integer numbers discussed before, we

cannot represent Inf and Nal'\ in the int data type.

According to the IEEE 754 standard, some op

erations depend on the rounding mode. For ex

ample, in case of rounding toward zero, overflow

will deliver FL T _MAX rather than Inf with the ap

propriate sign. This rounding mode is necessary

for Fortran implementation and for machines that

lack infinity. If the rounding mode is round toward

-oo, both -0.0 + 0.0 and 0.0 - 0.0 deliver -0.0

rather than 0.0. For scientific programming, con

sistency and determinancy are essential. CH is

currently implemented using the default rounding

mode of round to nearest so that overflow will

result in Inf, and both -0.0 + 0.0 and 0.0 - 0.0

deliver 0.0 as shown in Tables 3 and 4. Note that

the modulus operator% inCH is ANSI C compati

ble.

For addition, subtraction, multiplication, and

division operations shown in Tables 3 to 6, the

resultant data type will be double if any one of two

operands is double; otherwise, the result is a float.

The mathematically indeterminate expressions

such as oo - oo, oo * 0.0, oo/oo, and 0.0/0.0 will

result in NaNs. The values of ±0.0 play important

roles in the multiplication and division operations.

For example, a finite positive value of x2 divided

by 0.0 results in a positive infinity +oo whereas

division by -0.0 will create a negative infinity -oo.

Negation-

0.0 x2 lnf NaN

-0.0 -x2 -lnf NaN

SCIE'\JTIFIC CmiPCTI'\JG I:\ Cll PROGRA.VI.VII!'\G LA'\JGCAGE 59

Table 3. Addition Results

Addition+

Right Operand

Left Operand -lnf -x1 -0.0 0.0 x2 lnf l'\a."\J

lnf :\a:\ Inf lnf lnf Inf lnf Na'i
y2 -lnf v2- x1 y2 v2 y2 + x2 Inf Nal'\

0.0 -lnf -x1 0.0 0.0 x2 Inf Nal\'
-0.0 -lnf -x1 -0.0 0.0 x2 lnf Nal\'
-v1 -lnf -v1 - x1 -y1 -v1 -Y1 + x2 lnf l\"a'i
-Inf -lnf -lnf -lnf -lnf -lnf :\a:\ l\"a'i
Na.r-.i 'ial\' :\a:\' :\a:\ 'ia'\J :\a:\ l\'a:\ l\'a:\

Table 4. Subtraction Results

Subtraction -

Right Operand

Left Operand -lnf -x1 -0.0 0.0 x2 Inf :'\a:\

Inf Inf Inf lnf lnf lnf :\iaN Na:\1
v2 lnf v2 + x1 y2 y2 y2- x2 -lnf Nal\'

0.0 lnf x1 0.0 0.0 -x2 -lnf Nal\'
-0.0 Inf x1 0.0 -0.0 -x2 -lnf :\iaN
-y1 lnf -y1 + x1 -y1 -v1 -v1 - x2 -Inf l\'a:\1
-lnf l\'al\' -Inf -Inf -lnf -lnf -lnf Na~

NaN !'\a!\~ '\Jal'\ 'ia:"\J 'ia:"\J !'\a:\ l\'al\' Nal\'

Table 5. Multiplication Results

Multiplication *

Right Operand

Left Operand -lnf -x1 -0.0 0.0 x2 lnf NaN

lnf -lnf -lnf :'1/a'\J :'1/aN lnf lnf NaN

y2 -Inf -y2 * x1 -0.0 0.0 y2 * x2 lnf Na:\1

0.0 "!aN -0.0 -0.0 0.0 0.0 !\<aN !'\aN
-0.0 Na'\J 0.0 0.0 -0.0 -0.0 NaN NaN

-y1 Inf y1 * x1 0.0 -0.0 -y1 * x2 -lnf NaN
-lnf lnf Inf Na'\J :"\Ja:\1 -Inf -Inf NaN
NaN NaN NaN '\JaN Nal\" :\lal\' Nal\' NaN

Table 6. Division Results

Division -7-

Right Operand

Left Operand -lnf -xl -0.0 0.0 x2 lnf NaN

lnf NaN -Inf NaN NaN lnf NaN NaN
y2 -0.0 -y2/x1 -lnf Inf y2/x2 0.0 NaN

0.0 -0.0 -0.0 NaN NaN 0.0 0.0 NaN
-0.0 0.0 0.0 NaN NaN -0.0 -0.0 NaN
-yl 0.0 y1/x1 lnf -lnf -y1/x2 -0.0 NaN
-lnf NaN lnf Inf -lnf -lnf NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

60 CHENG

Table 7. Less Than Comparison Results

Less Than Comparison <

Left Operand -lnf -x1

lnf 0 0

y2 0 0

0.0 0 0

-0.0 0 0

-y1 0 -y1 < -x1

-lnf 0 1

NaN 0 0

If any one of operands of binary arithmetic opera

tions is NaN, the result is NaN.

5.2 Relational Operations

For relational operations given in Tables 7-12, the

result is always an integer with a logic value of 1 or

0 corresponding to TRUE or FALSE, which are

predefined system constants. According to the

IEEE 754 standard, there is a distinction between

+0.0 and -0.0 for floating-point numbers. InCH,

the value of 0.0 means that the value approaches

zero from positive numbers along the real line and

it is a zero; the value of -0.0 means that the value

approaches zero from negative numbers along the

real line and it is infinitely smaller than 0. 0 in

many cases. Signed zeros +0.0 and -0.0 in a CH

program behave like correctly signed infinitesimal

quantities 0+ and 0_, respectively. Although there

is a distinction between -0.0 and 0.0 for floating

point numbers in many operations, according to

the IEEE 754 standard, the comparison shall ig

nore the sign of zeros so that -0.0 equals 0.0 in

relational operations. For the convenience of the

programmer, two polymorphic logic operations

Table 8. Less Than or Equal Comparison Results

Right Operand

-0.0 0.0 x2 Inf NaN

0

0

0

0

1

1

0

0 0 0 0

0 y2 < x2 1 0

0 1 1 0

0 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0

isposzero (x) and isnegzero (X) are intro

duced in CH, which can test if the argument x is

0.0 or -0.0. The argument x can be char, int,

float, or double. If xis 0.0, isposzero (X) and

isnegzero (X) return 1 and 0, respectively. If x

is -0.0, isposzero (x) and isnegzero (x) re

turn 0 and 1, respectively. If xis a complex or dual

number, only its real part will be used in these

operations. More elaborative, but less frequently

used, functions such as signbi t (X) and copy

sign (x, y) can be easily implemented as exter

nal functions in CH. The value of -0.0 could be

regarded different from 0.0 for comparison opera

tions inCH. For the convenience of porting C code

to CH, zero is unsigned in comparison operations.

The equality for metanumbers has different impli

cations in CH. Two identical metanumbers are

considered to be equal to each other. As a result,

comparing two Infs or two NaNs will get logic

TRUE. This is just for the convenience of pro

gramming because, mathematically, the infinity of

oo and not-a-number of NaN are undefined values

that cannot be compared with each other. Me

tanumbers of Inf, - Inf, and Nal\' inCH are treated

as regular floating-point numbers consistently in

Less or Equal Comparison<=

Right Operand

Left Operand -lnf -x1 -0.0 0.0 x2 lnf Na~

lnf 0 0 0 0 0 1 0
y2 0 0 0 0 y2 <= x2 1 0

0.0 0 0 1 1 1 1 0
-0.0 0 0 1 1 1 1 0
-y1 0 -y1 <= -x1 1 1 1 1 0
-Inf 1 1 1 1 1 1 0
NaN 0 0 0 0 0 0 1

SCIENTIFIC COMPUTING IN CH PROGRAMMING LANGUAGE 61

Table 9. Equal Comparison Results

Equal Comparison = =

Right Operand

Left Operand -Inf -x1 -0.0 0.0 x2 Inf NaN

Inf 0 0 0 0 0 1 0

y2 0 0 0 0 y2 == x2 0 0

0.0 0 0 1 1 0 0 0

-0.0 0 0 1 1 0 0 0

-y1 0 -y1 == -x1 0 0 0 0 0

-Inf 1 0 0 0 0 0 0

NaN 0 0 0 0 0 0 1

Table 10. Greater Than or Equal Comparison Results

Greater or Equal Comparison > =

Right Operand

Left Operand -lnf -x1 -0.0 0.0 x2 Inf NaN

lnf 1 1 1 1 1 0

y2 1 1 1 1 y2 >= x2 0 0

0.0 1 1 1 1 0 0 0

-0.0 1 1 1 1 0 0 0

-y1 1 -y1 >= -x1 0 0 0 0 0

-Inf 1 0 0 0 0 0 0

NaN 0 0 0 0 0 0 1

Table 11. Greater Than Comparison Results

Greater Than Comparison >

Right Operand

Left Operand -lnf -x1 -0.0 0.0 x2 Inf !\'aN

lnf 1 1 1 1 1 0 0

y2 1 1 1 1 y2 > x2 0 0

0.0 1 1 0 0 0 0 0

-0.0 1 1 0 0 0 0 0

-y1 1 -v1 >= -x1 0 0 0 0 0

-lnf 0 0 0 0 0 0 0

I\' a!\' 0 0 0 0 0 0 0

Table 12. Not Equal Comparison Results

~ot Equal Comparison ! =

Right Operand

Left Operand -Inf -x1 -0.0 0.0 x2 Inf NaN

Inf 1 1 1 1 1 0 1

v2 1 1 1 1 y2 != x2 1 1

0.0 1 1 0 0 1 1 1

-0.0 1 1 0 0 1 1 1

-y1 1 -y1 != -x1 1 1 1 1 1

-Inf 0 1 1 1 1 1 1

!\'aN 1 1 1 1 1 1 0

62 CHE~G

arithmetic, relational, and logic operations. There

is no need to use functions such as isnan (x),

isinf (x), etc. as is introduced in some software

packages and mathematical libraries according to

the recommendation of the IEEE 754 standard.

Note that NaN is unordered and does not compare

equal to itself in the IEEE 754 standard. How

ever, for the convenience of the programmer, Nal'\

is handled in the same manner as lnf inCH. NaN

is still unordered, but it equals itself, which is the

only place in which CH is not in compliance with

the IEEE 754 standard. The difference from the

standard is likely to cause arguments and resis

tances. However, with this slight change, pro

gramming with metanumbers is much cleaner

than would otherwise be the case.

5.3 Logic Operations

InCH, there are four logic operators ! , &&, II, and

A A corresponding to logic operations not, and,

inc 1 us i ve or, and exc 1 us i ve or, respectively.

The operations of!, I I, && inCH comply with the

ANSI C standard. The operator A A is introduced in

CH due to the consideration of programming con

venience and orthogonality between logic opera

tors and bitwise operators. Note that, like ANSI C,

both the && and I I operations in CH permit the

right operand to be evaluated only if the left oper

and evaluates to TRUE and FALSE, respectively.

This "short circuit" behavior for the A A operator

does not exist because, for either TRUE or FALSE

of the first operand, an exclusive-or operation can

retum TRUE, depending on the second operand.

The precedence of operator A A is higher than oper

ator II, but lower than&&. This operation prece

dence is similar to that for bitwise operators &, I ,

and A, which will be discussed in the next section.

Because there are only two values of either TRUE

or FALSE for logic operations, the values of ±0.0

are treated as logic FALSE whereas the metanum

hers - lnf, lnf, and NaN are considered as logic

TRUE. For example, evaluations of !(-0.0) and

!NaN will get the values of 1 and 0, respectively.

5.4 Bitwise Operations

In CH, there are six bitwise operators &, I , A, <<,

>>, and -, corresponding to bitwise and, in

clusive or, exclusive or, left shift,

right shift, and one's complement, respec

tively. These operators in CH are in full compli

ance with the ANSI C standard. They can only be

applied to integral data that are char and int at its

current implementation of CH. The returned data

type depends on the data types of operands. The

result of the unary operator - keeps the data type

of its operand. Results of binary operators &, I ,

and A will have the higher data type of two oper

ands. The binary operators<< and>> retum the

data type of the left operand.

However, some undefined behaviors in ANSI C

are defined in CH. For operators << and >>, the

right operand can be any data type so long as it

can be converted into int internally whereas the

right operand must be a positive integral value in

ANSI C. In CH, if the right operand is a negative

integral value that may be converted from a float

ing-point data, the shifting direction will be re

versed. For example, the expression of 7 << -2.0

is equivalent to 7 >> 2.0 in CH. Therefore, only

one of these two shift operators is needed in CH.

The use of operator << is recommended for CH

programming. A program with dual shift direc

tions for one operator can be cleaner as compared

with unidirectional shifts of two operators.

5.5 Assignment Operations

Besides the regular assignment statement, there

are nine assignment operators of +=, -=, *=,

/=,&=,I=, A=, <<=,and>>=. These assignment

operators are ANSI C compatible. An [value is any

object that occurs on the left-hand side of an as

signment statement. The lvalue refers to a mem

ory such as a variable or pointer, not a function or

constant. The CH expression of 1 value op=

rval ue is defined as 1 value = 1 value op

rval ue where 1 value is any valid lvalue includ

ing complex numbers discussed by Cheng [2] and

it is only evaluated once. For example, i += 3 is

equivalent to i = i+3, and real (c) *= 2 is the

same as real (c) = real (c) * 2. But, statement

*ptr++ += 2 is different from statement *ptr++

= *ptr++ +2 because lvalue *ptr++ contains an

increment operation. The operation rules for op

erators of+,-,*, I,&, I, A,<<, and>> have been

discussed in the previous sections.

5.6 Address and Indirection Operations

The unary operator & gives the address of an ob

ject. The operator&, which is ANSI C compatible,

can only be applied to a valid lvalue.

When a unary indirection operator * is applied

to a pointer, it accesses the object to which the

pointer points. A pointer and an integer can be

added or subtracted. The expression ptr+n gives

the address of the nth object beyond the one ptr

currently points to. The memory locations of

SCIE:'IITIFIC C0~1PLTI'.JG I'\ C11 PROGRA~1~1I'.JG LA'.JGUAGE 63

pointers ptr+n and ptr are n*sizeof (*ptr)

bytes apart, that is, n is scaled to n*sizeof

(*ptr) bytes according to declaration of pointer

variable ptr. Pointer subtraction for pointers with

the same data type is permitted. If ptrl > ptr2,

ptrl - ptr2i gives the number of objects be

tween ptr2 and ptrl. Array of pointers can also

be declared. When a pointer is declared, it is ini

tialized to zero. The symbolic constant NULL, in

stead of zero, can be used in the program. Ifptr is

NULL, the operand *ptr in an expression is eval

uated as zero when *ptr is used as an lvalue, and

a memory of sizeof(*ptr) will be allocated auto

matically for pointer ptr. In both cases, the sys

tem will print out warning messages. The auto

matical memory allocation for a pointer that does

not point to a valid location can avoid a system

crash.

Two pointers and constant J\'ULL can be used

in the relational operations<,<=,==,>=,>, and

! =. In assignment and relational operations,

pointers with different data types can work to

gether without explicit type conversions. For ex

ample, following is a valid CH program.

int *iptr;

float *fptr;

iptr = (int *)malloc(90);

fptr = malloc(80);

!# fptr =(float *)malloc(80)

if(iptr !=NULL && iptr != fptr)

free(iptr);

iptr = fptr;

Unlike ANSI C, not only all variables are initial

ized to zero when they are declared, but also the

memory allocated by either function malloc() or

calloc() is initialized to zero in CH. The casting

operation for three memory allocation functions

malloc(), calloc(), and realloc() is unnecessary.

If no memory is available, these functions will re

turn NULL and the system will print out error

messages. The function free(ptr) will deallocate

the memory allocated by these three functions and

set pointer ptr to NULL. In C, ptr is not set to

NULL when the memory to which it points is deal

located. This dangling memory makes the debug

ging of the C program very difficult because the

problem will not surface until this deallocated

i = + (-9); !# unary plus

i++++; !# i i+2

j ++i--; !# i i+l; j

j = ++++++i; !# i 3·
'

j

memory is claimed again by other parts of the pro

gram. The other related functions such as

memcpy() in CH for memory manipulations are

ANSI C compatible.

As described before, there are several system

defined parameters such as KaN, lnf, FL T -~AX,

INT _Mil\', FLT_EPSILON, etc. These parame

ters cannot be used as lvalues so that an acciden

tal change of values of these parameters can be

avoided. However, if really necessary, the values

of these parameters can be modified by accessing

their memory locations through pointers. For ex

ample, a numerical algorithm may depend on the

parameters FL T _EPSILON and lnf. One can

change the values of FL T _EPSILOl'\ to 10-4 and

lnf to FL T _MAX by the following CH code

float *fptr;

fptr & FLT_EPSILON; *fptr = le-4;

fptr = &Inf; *fptr = FLT_MAX;

which may, in effect, change the underlying nu

merical algorithm.

5.7 Increment and Decrement
Operations

C is well known for the succinctness of its syntax.

The increment operator ++and decrement opera

tor -- are unique to C. These two operators in CH

are compatible with ANSI C. The increment oper

ator ++ adds 1 to its operand whereas the decre

ment operator-- substracts 1. If++ or-- is used

as a prefix operator, the expression increments or

decrements operand before its value is used, re

spectively. If it is used as a postfix operator, the

operation will be performed after its value has

been used.

However, additional functions are added to

these two operators in CH. The repeated use of

operator ++ means successive increment whereas

repeated use of operator -- indicates successive

decrement. These two operators can be combined

in any combinations. A single + is treated as an

addition or unary plus operator depending on the

context. Likewise, a single - can be a subtraction

or unary negation operator. For example, follow

ing is the valid CH code.

and negation operators

= i· i = i-1;
'

i·
'

64 CHENG

j = +++++++i--; !# i i +3;

j = i----· !# j i; i =
'

i (*ptr++++) ++; !# ptr = ptr

By definition, ++ l value means l value =

lvalue + 1 and expression lvalue + 1, and

l value-- is equivalent to expression l value - 1

and l value = l value - 1. The ++ and -- opera

tors can be applied to any valid !values, not just

integral variables, so long as the !value can add or

subtract an integer value of 1 according to internal

data conversion rules. Following is the valid CH

code.

inti, a[4], *aptr[5];

j

+

i·
'

i i 1;

i-2;

2·
'

i *ptr; *ptr = *ptr + 1·
'

*)iptr are valid CH expressions. There is an addi

tional functional type casting operation in CH in

the form of type (expr) for data types of single

object or type (expr1, expr2, ...) for data

types of aggregate such as complex and dual [2,

3]. In this functional type casting operation, type

shall not be a pointer data type. For example,

int(9.3), complex(float(3), 2), dual(2, float(3))

complex z, *zptr; /# declare complex variable and complex pointer

z = z++; !# z = z + 1; z is a complex variable

zptr = (complex *)malloc(sizeof(complex)*90);

aptr [3] = malloc (90); !# aptr [3] = (int *) malloc (90);

I* imaginary(z)=complex(O.O, 4.0); zptr=zptr+1; *aptr[3]=1; i=i-1 */

imaginary(z) = ++++real(+++++*(zptr+++2*(int)real(++*aptr[3+i--])));

real(z)++; !# real(z) = real(z) + 1;

----imaginary(*zptr); !# imaginary(*zptr) = imaginary(*zptr) - 2;

a[--i] = a[2]++; !# i = i - 1; a[i] = a[2]; a[2] = a[2] + 1;

Details about complex numbers and functions

real() and imaginary() in CH are described by

Cheng [2]. Note that the memory allocated by

function malloc() is initialized to zero.

5.8 Type Conversions

In CH, the explicit type conversion is not necessary

in many cases when C needs it as is shown in the

previous section for aptr [3] = malloc (90).

However, sometimes it is necessary to convert a

value of one type explicitly to a value of another

type. This can be achieved by the traditional C

cast operation (type) expr where expr is a CH

expression and type is a data type of a single

object such as char, int, float, double, or any

pointer declaration identifiers such as char *,

double*, complex*, etc. For example, (int)9.3,

(float)ptr, (double)9, (float*)&i, and (complex-

char *cptr;

inti, *iptr, j;

are valid CH expressions. Operation float() is the

same as real() if they are used as operands. How

ever, function real() can be used as an !value as

described in Cheng [2] whereas float() cannot.

The sizeof() function can also use a type

identifier. For example, ptr malloc

(5+sizeof (int*) +sizeof ((int) 2. 3) +

sizeof ((int) float (90) +7)) is a valid CH

statement.

One important feature of C is its capability for

hardware interface by accessing a specific mem

ory location in a computer. This is achieved by

pointing a pointer to a specific memory location or

register. This hardware interface capability is re

tained in CH. For example, the following state

ments will assign the integer value at the memory

location (68FFE)1 6 to variable i and set the byte at

the memory address (FF000)1 6 to (01101001)2:

iptr = (int *)OX68FFE;

i = *iptr;

!# iptr points to the memory location at OX68FFE

!# i equals the value at OX68FFE;

cptr =(char *)OXFFOOO;

*cptr = 0801101001;

cptr = (float *)cptr +

j = int (cptr);

!# cptr points to the memory location at OXFFOOO

!# 0801101001 is assigned to OXFFOOO

1; /# cptr points to OXFF004, not OXFF001.

!# note: (float *) cptr++ is (float *) (cptr++)

!# j becomes OXFF004

SCIENTIFIC COMPCTING IN CH PROGRAMMING LA:'IIGUAGE 65

Note that an integral value cannot be assigned to a

pointer variable without an explicit type cast, and

vice versa. The lower segment of the memory in a

computer is usually reserved for the operating sys

tem and system programs. An application pro

gram will be terminated with exception handling if

these protected segments of memory are messed

up by pointers.

6 REAL FUNCTIONS

A computer language with no mathematical func

tions is not suitable for scientific computing and

many other applications. The C language is a

small language; it does not provide mathematical

functions internally. The mathematical functions

are provided in a standard library of mathematical

functions. Writing good mathematical functions is

not easy as pointed out by Plauger [10]. The

mathematical functions implemented by Plauger

[10] have provisions for handling -lnf, lnf, and

~aN; but they do not distinguish -0.0 from +0.0,

which is the case for most implementations of

mathematical functions in C. Because C does not

provide mathematical functions internally, like

arithmetic operations in K&R C, the returned

value from a standard mathematical function is a

double floating-point number regardless of the

data types of the input arguments. In some of C

implementations, if the input arguments are not

doubles the mathematical functions mav return

erroneous results without warning. 1\"umerically

oriented programmers have little tolerance with

respect to the implicit conversion of the data type

from float to double for arithmetic operations of a

computer language as discussed in Section 3.

However, they generally accept the strongly typed

implementation of mathematical functions. 1\"ote

that the Al\"SI C mathematical standard librarv

does not provide any float functions. If a different

return data type is desired for a mathematical

function, a new function with a different name will

be needed. For example, the operation sin(1) ap

pears right in C. Indeed, most C programs will

execute this operation calmly, but, maybe with an

erroneous result because the input data type of

integer is not what sin() function expected. As an

other example, the function abs() in C returns an

absolute int number whereas fabs() will result in a

double number. To get a float absolute value, a

new function has to be created. As a result, one

has to remember many arcane names for different

functions.

The external functions of CH can be created in

the same manner as in C. Unlike C, however, the

commonly used mathematical functions are built

internally into CH. The mathematical functions in

CH can handle different data types of the argu

ments gracefully. The output data type of a func

tion depends on the data types of the input argu

ments, which is called polymorphism. Like

arithmetic operators, the built-in commonly used

mathematical functions in CH are polymorphic.

For example, for the polymorphic function abs(),

if the data type of the input argument is int, it will

return an int as the absolute value. If the input

argument of abs() is a float or double, the output

will return the same data type of float or double,

respectively. For a complex number input, the

result of abs() is a float with the value of the mod

ulus of the input complex number. Similarly, if the

argument data type is lower than or equal to float,

sin() will return a float result correctly. Function

sin() can also return double and complex results

for double and complex input arguments, respec

tively. Because 1/0 functions are also built into CH

itself, different data types are reconciled inside

CH. For example, printf ("%f ", x) in C can

print x if xis a float. However, if xis changed to int

in a program, the printing statement must also be

changed accordingly as printf ("%d", X).

Therefore, the change of data type declaration of

a variable will have to accompany the change of

many other parts of the program. Unlike C, the

commands printf(x) and printf(sin(x)) in CH can

handle different data types of x; x can be char,

int, float, double, or complex.

For portability, all mathematical functions in

cluded in the ANSI C header math. h have been

implemented polymorphically in CH. The names

of built-in mathematical functions of CH pre

sented in this paper are based upon the ANSI C

header math. h. However, one can change, add,

or remove these functions and operators in CH at

his/her discretion. These mathematical functions

are ANSI C compatible. If the arguments of these

functions have the data types of the corresponding

ANSI C mathematical functions, there is no differ

ence between the ANSI C and Cll functions from a

user's point of view. Besides the aforementioned

polymorphic nature, the mathematical function in

CH is more powerful due to its abilities to handle

metanumbers.

The ANSI C standard is descriptive, and many

special cases are implementation dependent.

Most mathematical operations related to the me

tanumbers have not been spelled out in the Al\"SI

C standard. Therefore, loosely speaking, the

built-in polymorphic mathematical functions of

66 CHE:'-IG

CH are ANSI C compatible. Cnlike ANSI C, poly

morphic mathematical function names in this sec

tion, by default, are keywords. In the same token,

lnf and 1\'aK are keywords in CH. The metanum

bers lnf and KaN are handled as svstem constants

in a similar manner as constants such as 2.0.

Therefore, a declaration statement like

int Inf, NaN, sin;

is not valid in CH by default. However, keywords

and symbols in CH can be added, changed,

and removed by the built-in functions

addkey(char *old_resword_or_symbol,

*new_resword_or_symbol), chkey(char

*old_resword_or_symbol, *new_resword_

or_symbol), and remkey(char *resword_

or_ symbo 1) , respectively. For example, the

command addkey ("f abs", "abs") will make

function fabs () the same as function abs(). The

following CH program is valid.

chkey("sin", "SIN");

addkey("printf", "write");

addkey ("double", "double_precision");

addkey ("=", "equals");

addkey ("+", "plus") ;

begin

!# real code begins here {

double_precision sin;

!# double sin;

sin equals SIN(30) plus 6;

!#sin= SIN(30)+6;

write

("The keyword changeability is");

write("unique to CH.\n");

end !# end }

where chkey ("sin", "SIN") changes the key

word sin to SIN. Once a default keyword sin is

changed, it then can be used as a regular variable.

However, using function names in a standard li

brary as variable names is considered a bad pro

gramming practice. Whether an object is a key

word can be tested by the built-in function

iskey (char *name). The case sensitivity for a

CH program can be switched off and on through a

boolean switch function casesen(onoff). There

fore, porting code written in other languages and

software packages to CH is not very difficult due to

the keyword changeability. The detailed explora

tion of this unique CH feature is beyond the scope

of this paper.

In this section, the built-in mathematical func

tions of CH will be discussed. The input and out-

put of the functions involving the metanumbers

will be highlighted. The results of the mathemati

cal functions involving metanumbers are given in

Tables 13 to 16. In Tables 13 to 16 .. unless indi

cated otherwise, x, x 1 , x 2 are real numbers with 0

< x, x 1 , x 2 < oo; and k is an integral value. The

value of pi is the finite representation of the irra

tional number 1T in floating-point numbers. The

returned data of a function is float or double de

pending on the data type of the input arguments.

In Table 13, if the order of the data type xis less

than or equal to float, the returned data type is

float. The returned data type is double if x is a

double datum. If the argument X of a function in

Table 13 is KaN, the function will return :\"aK. In

Tables 14 to 16, the returned data type will be the

same as the higher order data type of two input

arguments if any of two arguments is float or dou

ble. Otherwise, the float is the default returned

data type.

Functions defined in this section will return

float or double, except for functions abs() and

pow(). If arguments of these two functions are in

tegral values, the returned data types are ints. For

example, pow(2, 16) will return the integral value

of 65536. In CH, if the exponent of the second

argument of function pow() is an integral value,

the computation will be more efficient than its real

counterpart. For example, pow(x, 3) is more effi

cient than pow(x,3.0). Function pow() will opti

mize the performance for applications that involve

a large amount of integer exponentiation. Func

tion pow() behaves like the exponentiation opera

tor** in Fortran. Note that ANSI C forces function

pow() to deliver a double data, which not only

inhibits the optimization for integer exponentia

tion, but also changes the data type of an integral

expression into a floating-point expression due to

the internal data type conversion. This is not ap

plicable for many applications.

The absolute function abs(x) will compute the

absolute value of an integer or a floating-point

number. The absolute value of a negative infinity

-oo is a positive infinity oo.

The sqrt(x) function computes the nonnegative

square root ofx. Ifx is negative, the result is NaN,

except that sqrt(-0.0) = -0.0 according to the

IEEE 754 standard. The square root of infinity

sqrt(oo) is infinity.

The exp(x) function computes the exponential

function of x. The following results hold: e-"' =

0.0; e"' = oo; e±o.o = 1.0.

The log(x) function computes the natural loga

rithm of x. If xis negative, the result is NaN. The

SCIDITlFIC cmtPCTl:"'G I:\ C11 PROGRA.\f\lll\"G LA:"'GCAGE 67

Table 13. Results of Real Functions for ±0.0, ± ao, and I\' a]\'

x Value and Results

Function -Inf -x1 -0.0 0.0 x2 lnf I\" a:"/

abs(x) lnf XJ 0.0 0.0 X2 Inf :\Ia!\"

sqrt(x) i\al\" :"'a!\" -0.0 0.0 sqrt(x) lnf I\" a:"!

exp(x) 0.0 e-.rj 1.0 1.0 ex2 lnf Na:\'

log(x) ~a:\' ~a:\' -Inf -lnf log(x2) Inf :\la:\1

log10(x) Na:\1 I\" a:"! -Inf -lnf log10(x2) lnf I\" a!\"

sin(x) .'\'a:\1 -sin(x1) -0.0 0.0 sin(x2) I\" a:"/ Nal\"

cos(x) I\" a:\' cos(xJ) 1.0 1.0 cos(xz) NaN :"'a"!

tan(x) Na:\1 -tan(x1) -0.0 0.0 tan(x2) :"'a!\" Nal\"

l'."ote: tan(±7T/2 + 2 * k * 1r) = ±Inf

asin(x) Nal\" -asin(xJ) -0.0 0.0 asin(x2) Na:\' l\."a:'-1

:\ote: asin(x) = :"'a!\", for lxl > 1.0

acos(x) Na:\1 acos(xJ) pi/2 pi/2 acos(x2) Nal\" I\' a~

1\"ote: acos(x) = :\iaN, for lxl > 1.0

atan(x) -pi/2 -atan(xJ) -0.0 0.0 atan(xz) pi/2 :\iaN

sinh(x) -Inf -sinh(x1) -0.0 0.0 sinh(xz) lnf !\"aN

cosh(x) Inf cosh(x1l 1.0 1.0 cosh(x2) lnf NaN

tanh(x) -1.0 -tanh(xJ) -0.0 0.0 tanh(x2) 1.0 :\a:'-1

asinh(x) -Inf -asinh(xt) -0.0 0.0 asinh(x2) lnf Nal\"

acosh(x) NaN :\aN ~a~ NaN acosh(x2) lnf "'a:"!
l'\ote: acosh(x) = Nal\", for x < 1.0: acosh(1.0) = 0.0

atanh(x) 1\"al\' -atanh(xl) -0.0 0.0 atanh(x2) 1\"a:'\1 :'ola:'ol

:\ote: atanh(x) = l\'a:'ol, for lxl > 1.0; atanh(±1.0) = ±Inf

ceil(x) -Inf ceil(-xl) -0.0 0.0 ceil(x2) Inf :\la:\1'

floor(x) -Inf floor(-xJ) -0.0 0.0 floor(x2) lnf Nal\'

ldexp(x, k) -Inf ldexp(-xl, k) -0.0 0.0 ldexp(x2, k) lnf :\iaN

modf(x, &y) -0.0 modf(-xl, &y) -0.0 0.0 modf(x2, &y) 0.0 Nal\"

y -Inf y -0.0 0.0 y Inf :\iaN

frexp(x, &k) -lnf frexp(-xh &k) -0.0 0.0 frexp(x2. &k) lnf NaN

k 0 k 0 0 k 0 0

value of -0.0 is considered equal to 0.0 in this

case. The following results hold: log(±O.O) = -oo;

log(oo) = oo. The loglO(x) function computes the

base-ten logarithm of x. If X is negative, the result

is a ~aN. Like the function log(), the value of

-0.0 is considered equal to 0. 0. The following

results hold: log10(±0.0) = -oo; log10(oo) = oo.

The trigonometric functions sin(x), cos(x), and

tan(x) compute sine, cosine, and tangent of x

measured in radians, respectively. The sine and

Table 14. Results of the Function pow(y, x) for ±0.0, ±ao, and NaN

pow(y, x)

x Value

y Value -Inf -x1 -2k- 1 -2k -0.0 0.0 2k 2k + 1 x2 Inf NaN

lnf 0.0 0.0 0.0 0.0 NaN NaN lnf lnf lnf lnf NaN

y2 > 1 0.0 y2X1 -2k-1
Y2

-2k
Y2 1.0 1.0 2k

Y2
2k+1

Y2 y~2 lnf NaN

1.0 NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 NaN NaN

0 < y2 < 1 lnf y2X1 -2k-1
Y2

-2k
Y2 1.0 1.0 2k

Y2
2k+1

Y2 y~2 0.0 NaN

0.0 lnf lnf Inf lnf NaN NaN 0.0 0.0 0.0 0.0 NaN

-0.0 lnf lnf -Inf lnf NaN NaN 0.0 -0.0 0.0 0.0 NaN

-y1 NaN NaN
-2k-1

-y1
-2k

Y1 NaN NaN 2k
Y1

2k+1
-y1 NaN NaN NaN

-lnf NaN NaN -0.0 0.0 NaN NaN lnf -Inf NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

68 CHENG

Table 15. Results of the Function atan(y, x) for ±0.0, ±<X>, and NaN

atan2(y, x)

x Value

y Value -lnf -xl -0.0 0.0 x2 Inf NaN

lnf 3 * pi/4 pi/2 pi/2 pi/2 pi/2 pi/4 NaN

y2 pi atan2(Y2, -xl) pi/2 pi/2 atan2(Y2, x2) 0.0 NaN

0.0 pi pi pi 0.0 0.0 0.0 NaN

-0.0 -pi -pi -3 * pi/4 -pi/2 -0.0 -0.0 NaN

-y1 -pi atan2(-y1, -x1) -pi/2 -pi/2 atan2(-y1, x2) -0.0 NaN

-Inf -3 * pi/4 -pi/2 -pi/2 -pi/2 -pi/2 -pi/4 NaN

NaN NaN NaN

tangent are odd functions so that sin(±O.O) =

±0.0 and tan(±O.O) = ±0.0. The cosine is an

even function so that cos(±O.O) = 1.0. When the

value of the argument is positive or negative infin

ity, all these functions return NaNs. Theoretically,

it is true that tan(±7T/2 + 2 * k * 7T) = ±co. But, in

practice, because the irrational number 7T cannot

be represented exactly in float or double data, the

tan(x) function will never return infinities of ±co.

The function tan() is not continuous at 7T/2,

tan(7T/2- e)= co, and tan(7T/2 +e)= -co, where

e is a very small number. Due to the finite preci

sion and round-off errors of floating-point num

bers, one may get a wrong result near the value of

7T/2.

The properties of odd functions of sine and

tangent are reflected in their inverse functions

asin(x) and atan(x). The asin(x) function com

putes the principal value of the arc sine of x.

When the value of x is in the range of [-1.0, 1. 0],

the asin(x) function returns the value in the range

of [-7T/2, 7T/2] radians. When x is outside the

range of [-1.0, 1. 0] , the arc sine is undefined and

asin(x) returns NaN. The range of the input value

for the even function acos(x) of arc cosine is the

same as that of asin(x). The acos(x) function

computes the principal value of the arc cosine of

Na;\1 NaN NaN NaN NaN

x. The range of the principal value of the arc co

sine is [0.0, 7T] radians. The atan(x) function

computes the principal value of the arc tangent of

x. The atan(x) function returns the value in the

range of [-7T/2, 7T/2] radians. The following

results hold: atan(±co) = ±7T/2.

Like trigonometric functions sin(x) and tan(x),

the hyperbolic functions sinh(x) and tanh(x) are

odd functions. The sinh(x) and tanh(x) functions

compute the hyperbolic sine and tangent of x, re

spectively. The even function cosh(x) computes

the hyperbolic cosine of X. The following results

hold: sinh(±O.O) = ±0.0; cosh(±O.O) = 1.0;

tanh(±O.O) = ±0.0; sinh(±co) = ±co; cosh(±co)

=co; tanh(±co) = ±1.0.

The inverse hyperbolic functions are not de

fined by the ANSI C standard. InCH, the inverse

hyperbolic sine, cosine, and tangent are defined

as asinh(x), acosh(x), and atanh(x), respec

tively. For the acosh(x) function, if the argument

is less than 1.0, it is undefined and acosh(x) re

turns NaN. acosh(l.O) returns a positive zero.

The valid domain for function atanh(x) is [-1.0,

1.0]. The following results hold: asinh(±O.O) =

±0.0; asinh(±co) ±oc; acosh(co) co;

atanh(±O.O) = ±0.0; atanh(±l.O) = ±co.

The ceil(x) function computes the smallest

Table 16. Results of the Function fmod(y, x) for ±0.0, ±<X>, and NaN

fmod(y, x)

x Value

y Value -Inf -xl -0.0 0.0 x2 lnf NaN

Inf NaN NaN ~aN Na~ I\' a!\' NaN Na~

y2 Y2 fmod(Y2, -x1) ~aN NaN fmod(y2, x2) Y2 NaN

0.0 0.0 0.0 NaN Na~ 0.0 0.0 ~aN

-0.0 -0.0 -0.0 :\TaN !\'aN -0.0 -0.0 NaN

-yl Y1 fmod(-yl, -xt) NaN !\'aN fmod(-y1, x2) -y1 NaN

-Inf !\'aN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN ;\iaN NaN NaN NaN

SCIENTIFIC COMPUTING IN CH PROGRAMMING LANGUAGE 69

integral value not less than the value of x. The

counterpart of ceil(x) is the function floor(x),

which computes the largest integral value not

greater than the value of x. The following results

hold: ceil(±O.O) = ±0.0; floor(±O.O) = ±0.0;

ceil(±oo) = ±oo; floor(±oo) = ±oo.

The ldexp(x, k) function multiplies the value of

the floating-point number x with the value of 2

raised to the power of k. The returned value of x *
2k keeps the sign of x.

The functions modf(x, xptr) and frexp(x, iptr)

have two arguments. The first argument is the in

put data and the second argument is a pointer

that will store the resulted integral part of the

function call. The modf(x, xptr) function breaks

the argument x into integral and fractional parts,

each of which has the same sign as the argument.

The modf() function returns the fractional part

and the integral part is stored to the memory

pointed to by the second argument. The basic

data types of two arguments must be the same.

For example, if the first argument x is float, the

second argument xptr must be a pointer to float.

If the first argument is a metanumber, the integral

part will equal the metanumber whereas the frac

tional part becomes zero with the sign of the first

argument except for NaN. The frexp(x, iptr) func

tion breaks a floating-point number into a nor

malized fraction and an integral power of 2 in the

form of x * 2k. The frexp(x, iptr) function returns

the normalized fraction and the integral part is

stored to the memory pointed to by the second

argument, which is a pointer to int. If the first

argument is a metanumber, the fractional part will

equal the metanumber whereas the integral part

becomes zero.

The mathematical functions pow(y, x), atan2

(y, x), and fmod(y, x) have two input argu

ments. The results of these three functions are

given in Tables 14 to 16. The pow(y, x) function

computes y raised to the power of x, which is y" or

e-' Iog(y). If x is negative, yr becomes 1 I ylxl with the

defined division operation given in Table 6. If y is

less than zero and x is not an integral value, the

function is undefined. The value of -0.0 is con

sidered equal to 0. 0 in the evaluation of log(- 0. 0)

when the value of x is not an integral number.

When xis an odd integer number andy is nega

tive, the result is negative. If both y and x are

zeros, 0° is indeterminate. For a positive value of

y, the result depends on the value of y when xis

infinity. If y is less than 1, yoc is 0. 0; 1. ooc is inde

terminate; if y is greater than 1, yoo is infinity. If y is

infinity and X is zero, (±oo)±0 O is indeterminate. It

has been suggested that x 0 0 = 1 for any x, includ-

ing 0.0, lnf, and NaN [24, 31], which has been

implemented in many computer systems [19]. It is

true that if f(x) and g(x) are analytic at a, and

limx-->a J(x) = 0 and limx-->a g(x) = 0, then limx-->a

f(x)g(x) = 0° = 1. For example, limx-->o xx = 1 and

limx-->o xsin(x) = 1. It is not difficult to find examples

that 0° =I= 1 such as in limx-+a xlog(x) = e and limx-->a

(e- 11x)x = 11 e. To ensure the proper flow, a CH

program shall not stop during the execution due to

invalid operations. CH is designed to be determi

nistic; all operations and built-in functions either

deliver correct numerical results, including lnf or

NaN. It is a bad design for a computer language if

at one point it can deliver a correct numerical

result while at other point it returns a wrong nu

merical result. In general, whenever there is a

problem in defining the value for a function or

operation mathematically, the corresponding CH

expression will return NaN. Because CH expres

sions such as 1 /log(O.O) and exp(l/-0.0) evalu

ate to 0.0, therefore, pow(O.O, 0.0) is defined as

NaN in CH. For the same reason, pow(lnf, 0.0)

and pow(NaN, 0.0) are also defined as Nal'\. Due

to the similar considerations, our decision on x 0

has concurred with the proposed standard for Ada

[13, 14]. The definition given in Table 14 is much

more inclusive than what is proposed for Ada. In

general, all mathematically indeterminate expres

sions are defined as l\"aN inCH. For an interesting

historical debate about whether 0° equal 1 or 0° is

undefined, see Knuth [32].

The atan2(y, x) function computes the princi

pal value of the arc tangent of y /X using the signs

of both arguments to determine the returned value

in the range of [-7r, 1r] radians. Given the (x, y)

coordinates of a point in the X-Y plane, the

atan2(y, x) function computes the angle of the

radius from the origin to the point. Any positive

number that overflows is represented by lnf. The

negative overflow is - lnf. The following results

hold: atan2(±1nf, -lnf) = ±37T/4; atan2(±1nf,

lnf) = ±7T/4; atan2(±1nf, x) = ±1r/2: atan2(±y,

lnf) = ±0.0; and atan2(±y, -lnf) = ±1r. When

both values of y and x are zeros, the function

atan2(y, x) will return the results consistent with

the manipulation of metanumbers discussed so

far. The value of -0.0 is considered as a negative

number less than zero. Therefore, the following

results are defined for these special operations:

atan2(0.0, -0.0) = 1r; atan2(0.0, 0.0) = 0.0;

atan2(-0.0, -0.0) =-37T/4; and atan2(-0.0,

0) = -7T/2, which is consistent with the treatment

of the metanumbers of ±lnf in atan2(- lnf, - lnf)

= -3pi/4. In CH, atan2(0.0, 0.0) is a specially

defined value. These results are different from

70 CHENG

those by the SGN's ANSI C compiler, which is in

conformance with 4.3 Berkeley Software Delivery

[19]. According to 4.3BSD, the results for these

special cases are atan2(±0.0, -0.0) = ±0.0 and

atan2(±0.0, 0.0) = ±1r, which implies that the

values of ±0.0 on the x-axis are different from

those on they-axis.

The fmod(y, x) function computes the floating

point remainder of y /X. The fmod(y, x) function

returns the value of y - i * x for some integer i.

The magnitude of the returned value with the

same sign of x is less than the magnitude of x. If x

is zero, the function is undefined and returns

NaN. When y is infinity, the result is also unde

fined. If xis infinity andy is a finite number, the

result is the same as y.

7 PROGRAMMING EXAMPLES

7.1 Computation of Extreme Values of
Floating-Point Numbers

Due to different machine architectures for repre

sentation of floating-point numbers, the extreme

values such as the maximum representable float-

float f, *flt_minimum;

int minimum, i·
'

minimum = 1; !#
flt_minimum =&minimum; !#
i = *flt_minimum > 0.0; !#
i = FLT_MIN > *flt_minimum; !#
i = fabs(*flt_minimum) > 0. 0; !#

lnf and 1\"aN. The use of metanumbers such as lnf

and NaN instead of parameters is recommended

for CH programming.

7. 7. 7 Minimum Floating-Point Numbers
FLT_MIN and FLT_MINIMUM

The parameter FLT _Mil\" is defined in the Al\SI C

standard library header float. h as a minimum

normalized positive floating-point float number. If
a number is less than FLT _MIN, it is called an

underflow. Because the IEEE 754 standard pro

vides a gradual underflow, the minimum denor

malized positive floating-point float number is de

fined as FL T _MINIMCM in CH. Because of

gradual underflow, the CH expression x- y = 0 is

TRUE iff x = y, which is not true for systems that

lack gradual underflow. This parameter is very

useful from a programming point of view. As an

example, assume that values of FL T _MINIMUM

and FLT_MIN are 1.401298e-45 and

1.175494e-38, respectively. The following CH

code will illustrate subtleties of these two parame

ters.

memory location becomes 00000001

*flt_minimum becomes FLT_MINIMUM

i becomes 1

i becomes 1

i becomes 1

f (*flt_minimum)/(*flt_minimum); !# f becomes 1. 0; note 0.0/0.0 =NaN

f f/1. e-46 !# f

ing-point value are different. For two machines

with the same representation of floating-point val

ues, the same operations such as adding two val

ues on each machine may get different results,

depending on the schemes for rounding a number

that cannot be represented exactly. To aid serious

numerically oriented programmers in writing their

programs, the ANSI C standard added header

float. has a companion to the existing header

limits. h to deal with the machine-dependent

integer values only. In this section, we will show

how parameters defined in the ANSI C standard

library float. h can be computed inCH without

knowing the intricate architecture of the com

puter. A program can less depend on these pa

rameters if a language can support metanumbers

becomes Inf: note 1.e-46 < FLT_MINIMUM

Applications of these two numbers in handling of

branch cuts of multiple-valued complex functions

are described by Cheng [2].

7.1.2 Machine Epsilon FLT_EPSILON

The machine epsilon FL T _EPSILON is the differ

ence between 1 and the least value greater than 1

that is representable in float. This parameter, de

fined in the ANSI C header float. h, is a system

constant in CH. This parameter is very useful for

scientific computing. For example, due to the fi

nite precision of the floating-point representation

and alignment of addition operation, when a

significantly small value and a large number

are added together, the small number may not

have contribution to the summation. Using

SClE~TIFIC CO~IPCTil'\G I~ C11 PROGRAMMil'\G LANGUAGE 71

FLT_EPSILON, adding a small positive number x

to a large positive number y can at least capture

three decimal digits of significance of y that can be

tested by

if(x < y * FLT_EPSILON * 1000)

The following C11 code can calculate and print out

the machine epsilon on the screen

float epsilon;

epsilon= 1.0;

while(epsilon+1 > 1)

epsilon 1= 2;

epsilon *= 2;

printf ("The machine epsilon") ;

printf ("FLT_EPSILON is %e", epsilon);

For SUN SPARCStations, the output from the ex

ecution of the above code is as follows:

The machine epsilon FLT_EPSILON is

1. 192093e-07,

which matches the value of the parameter

FLT_EPSILON defined in the ANSI C header

float. h. Although the above computation of the

parameter FLT_EPSILON is simple in CH, which

uses the default rounding mode of round toward

nearest, it may be vulnerable to other rounding

modes. A more robust method [10] to obtain this

parameter is to manipulate the bit pattern of the

float b, f, flt_max;

int e, i, flt_max_exp, flt_max_10_exp;

b = 10; e = 0; f = b;

memory of a float variable is as shown in Section

7.1.1.

7.1.3 Maximum Floating-Point
Number FLT_MAX

The parameter FLT_MAX defined in the ANSI C

header float. his the maximum representable

finite floating-point number. Any value that is

larger than FLT_MAX will be represented as Inf

and any value less than -FLT_MAX is represented

by - Inf. If the value of FLT_MAX is represented as

fltmax * 1 oe' then the following two equations will

be satisfied

(fltmax + FLT_EPSILON) * 10e = Inf

(fltmax + FLT_EPSILONI2) * 10e = FLT_MAX

where the machine epsilon FLT_EPSILONwas de

fined in Section 7. 1. 2 and the exponential value e

is to be calculated. The following CH program will

calculate FLT_MAX as well as FLT_MAX_10_EXP

and FLT_MAX_EXP of the machine and print them

on the screen. The value of FLT_MAX_10_EXP

is the maximum integer such that 10 raised to

its power is in the range of the represent

able finite floating-point numbers. The value of

FLT_MAX_EXP is the maximum integer such that

2 raised to its power minus 1 is a representable

finite floating-point number. For the illustrative

purpose, only the while-loop control structure is

used in this example.

I* calculate exponential number e, 38 in the example *I

while(f != Inf)

{
e++; f*=b;

}
flt_max_10_exp = e;

I* calculate leading non-zero number, 3 in the example *I

i = 0; f = 0. 0;

while(f != Inf)

f = ++i * pow(b, e);

I* calculate numbers after decimal point, 40282347 ... in the example *I

flLmax = i;

while (e ! = 0)

{
flt_max = --flt_max * b;

e-; i 0; f = 0. 0;

while(f != Inf && i < 10)

72 CHENG

{

}

}

f = ++flt_max * pow(b, e);

i++;

f = frexp(flt_max, &flt_max_exp); !#calculate FLT_MAX_EXP

printf("FLT_MAX = %.8e \n", flt_max);

printf ("FLT_MAX (in binary format) = %b \n", fl Lmax);

printf ("FLT_MAX_lO_EXP = %d \n", fl t_max_lO_exp);

printf ("FLT_MAX_EXP = %d \n", fl t_max_exp) ;

The output of the above code on SUN SPARCSta

tions is as follows:

FLT_MAX = 3. 40282347e+38

FLT_MAX (in binary format)

= 01111111011111111111111111111111

FLT_MAX_10_EXP = 38

FLT_MAX_EXP = 128

The above values for FLT_MAX, FLT_MAX_

lO_EXP, and FLT_MAX_EXP are the same as the

parameters defined in the ANSI C header

float. h. By just changing the declaration of the

first statement from float to double, the corre

sponding extreme values DBL_MAX, DBL_MAX_

lO_EXP, and DBL_MAX_EXP for double can be

obtained. In this case, the polymorphic arithmetic

operators and mathematical functions pow() and

frexp() will return double data. The default mode

for floating-point constants is float, which can be

switched to double by function floatconst

(FALSE).

In the above calculation of the extreme float

ing-point values, the user does not need to know

the intricate machine representation of floating

point numbers. If one knows the machine repre

sentation of a floating-point number, the calcula

tion of the extreme values can be much simpler.

For example, according to Table 1, the value of

FLT_MAX is represented in a hexadecimal form as

(7F7FFFFF)1 6 . The following CH program can be

used to calculate the maximum representable fi

nite floating-point number FLT_MAX.

int i; float *flt_max;

fl Lmax = &i;

!# flt_max points to the memory

!# location of i

i OX7F7FFFFF;

!# *flt_max becomes FLT_MAX

The maximum float number FLT_MAX can also

be readily obtained by the II 0 function scanf()

with the binary input format "%32b". For inter

ested readers, can you think of any other method

for computing the maximum representable finite

floating-point number FLT_MAX by a Cor Fortran

program without knowing the machine architec

ture? The major difficult is that, due to the inter

nal alignment for calculation of the floating-point

numbers, the significantly small number will be

ignored when it is added to or subtracted from a

large number. For example, the execution of the

command f = FLT_MAX + 3. Oe30 will give the

variable f the value of FL T _MAX although

the value of 3.0 * 1030 is not a small number,

but it is significantly smaller than FLT_MAX

and ignored in the above addition operation.

The following two CH expressions will further

demonstrate the difference between FL T _MAX

and lnf, 1/lnf*FLT_MAX = 0.0, and 1/FLT_

MAX*FLT_MAX = 1.0.

7.2 Programming With Metanumbers

The CH language distinguishes -0.0 from 0.0 for

real numbers. The metanumbers 0.0, -0.0, lnf,

- lnf, and l\'aN are very useful for scientific com

puting. For example, the function f(x) = e 11
x is

not continuous at the origin as is shown in Figure

1. This discontinuity can be handled gracefully

in CH. The evaluation of the CH expression

exp(1/0.0) will return lnf and exp(1/(-0.0))

gives 0.0, which corresponds to mathematical ex

pressions e 110
• and e 110

- or limx-->0 • e 11
x and

lim.r-->0_ e 11x, respectively. In addition, the evalua

tion of expressions exp(1.0/lnf) and exp(1.0/

(-lnf)) will get the value of 1. 0. As another exam

ple, the function finite (x) recommended by

the IEEE 754 standard is equivalent to the CH

expression - Inf <X && x < Inf, where x can be a

float/ double variable or expression. If x is a float,

-Inf < x && x < Inf is equivalent to -FLT_MAX

<= X && X<= FLT _MAX; if x is a double, - Inf <X
&& x < Inf is equivalent to -DBL_MAX <= x && x

SCIENTIFIC COMPUTII\'G IN C11 PROGRAMMING LANGUAGE 73

II)

'-"" a.
X
Ill

[

0

..... ,.,
0
[

J
..,_N

-10 -5 0

x value

FIGURE 1 Functionf(x) = e 11
x.

5 10

<= DBL_MAX. The mathematical statement "if
oo <value<= oo, theny becomes oo" can be easily

programmed in C11 as follows

if(-Inf <value && value<= Inf) y = Inf;

However, a computer can only evaluate an ex

pression step by step. Although the metanumbers

are limits of the floating-point numbers, they can

not replace mathematical analysis. For example,

the natural number e equal to 2.718281828.

is defined as the limit value of the expression

lim (1 + .!)x = e.
_r-->x X

However, the value of the expression pow(1.0 +
1.0/lnf, lnf) in C11 is NaK. The evaluation of this

expression is carried out as follows:

(
1 0)/nf

1.0 + l~f = (1.0 + 0.0)
1
nf = 1.0

1
nf =NaN

If the value FL T -~AX instead of lnf is used in the

above expression, the result is obtained by

(

FLLMAX
1.0) _ FLLMAX 1 ·0 + FLT_MAX - (1.0 + O.O)

= 1.0FLLMAX = 1.0

According to rules for negation, subtraction,

and equal comparison operations given in Tables

2, 4, and 9, the C11 expression x-y =- (y-x) will

always return TRUE for any values of x and y

with x equal toy, including NaN, ±0.0, and ±lnf.

The outcome of this computation really matches

our intuition regarding algebra. However, there is

a subtle difference between two expressions x - y

and -(x- y) in C11 • When x = y and NaN;/= x of=

lnf, x- y will produce 0.0 whereas -(x- y) will

return -0.0. If the IEEE 754 standard for han

dling NaN in relational operations was strictly fol

low, the implication of the above operation would

be much more complicated.

The application of NaN can be further demon

strated by numerically solving quadratic equation

ax 2 + bx + c = 0

The execution of the following C11 program

float root [2] ;
float a, b, c;
a = 1; b = 2; c = 2;

root[O] = (-b+sqrt(b*b-4*a*c))/(2*a);
root[l] = (-b-sqrt(b*b-4*a*c))/(2*a);
if(root[O] ==NaN)

printf("Solutions are complex");
printf ("numbers. \n");

will produce the following output

Solutions are complex numbers.

because solutions to the equation of x 2 + 2x +
2 = 0 are -1 ± i. This equation will be solved in

complex numbers in [2].

Because metanumber NaK is unordered, a pro

gram involving relational operations should be

handled cautiously. For example, the expression

x > y is not equivalent to ! (X<= y) if either x or y

is a NaK. As another example, the following C11

code fragment

if(x > 0.0) function!();
else function2();

is different from the code fragment

if(x <= 0.0) function2();

else function!();

The second if -statement should be written as

if (X <= 0. 0 I I x == NaN) in order to have the

same functionality for these two code fragments.

74 CHENG

8 CONCLUSIONS

CH not only retains most features of C from the

scientific computing point of view, but also ex

tends C's numerical computational capabilities.

Metanumbers of -0.0, 0.0, Inf, -Inf, and 1\;al'\

introduced in CH are external, which makes the

power of the IEEE 754 arithmetic standard easily

available to the programmer. Furthermore, these

metanumbers are extended to commonly used

mathematical functions in the spirit of the IEEE

754 standard. The rules for manipulation of these

metanumbers in 110; arithmetic, relational, and

logic operations; and commonly used mathemati

cal functions in CH are defined in this article. The

CH extensions related to bitwise, assignment, ad

dress and indirection, increment and decrement,

as well as type conversion operations to ANSI C

have been highlighted. The gradual underflow

feature of the IEEE 754 standard has been ex

plored through parameter FL T _Mil\T\1UM. Be

cause the ANSI C standard is descriptive, the rig

orous definitions defined in this article will not

violate the standard. Like arithmetic operators,

the built-in mathematical functions in CH are

polymorphic, which means that the returned data

type of a function depends on the data types of the

input arguments. This will simplify the scientific

programming significantly.

All points delineated in this article have been

implemented and tested in CH. Example programs

with metanumbers and polymorphic mathemati

cal functions are given in this article. The function

names can be added, removed, and changed; and

the mathematical operators can be added and re

moved in CH. Therefore, porting code from other

languages to CH is relatively simple. Most C pro

grams can be executed in the CH environment with

minimum modification related to the interpretive

nature of the current implementation of CH. The

extension of scientific programming with real

numbers to scientific programming with complex

numbers has been addressed by Cheng [2].

REFERENCES

[1] ANSI, ANSI Standard X3.159-1989, Program

ming Language C. New York: ANSI, Inc., 1989.

[2] H. H. Cheng, "Handling of complex numbers in

the CH programming language," Department of

Mechanical, Aeronautical and Materials Engi

neering, University of California, Davis, Techni

cal Report TR-MAME-93-102, February 18,

1993.

[3] H. H. Cheng, "Computations of dual numbers in

the extended finite dual plane, .. Proceedings of

the 1993 ASME Design Automation Conference.

Albuquerque and 1\ew York: AS~IE. 1993, pp.

73-80.

[4] K. Thompson, ·'Unix implementation,'' Bell S,ys

tem Tech.] .. vol. 57, pp. 1931-1946, 1978.

[5] D. M. Ritchie, and K. L. Thompson, "The Unix

Time-Sharing System." Commun. A C:H, vol. 17,

pp. 365-375, 1974.

[6] A!\SI, ANSI Standard X3. 9-1978, Programming

Language Fortran (revision of A:\SI X2. 9-1966).

~ew York: A~SI, 1978.

[7] H. H. Cheng, "Vector pipelining, chaining, and

speed on the IBYI 3090 and Cray X-~IP," IEE.E

Comp., vol. 22, pp. 31-46, 1989.

[8] IEEE, ANSI/ IEEE Standard 754-1985, IEEE

Standard for Binary Floating-Point Arithmetic.

Piscataway, ~J: IEEE, 1985.

[9] W. J. Cody et aL "A proposed radix- and word

length-independent standard for floating-point

arithmetic," JEEr.: Micro., vol. 4, pp. 86-100,

1984.

[10] P. J. Plauger, The Standard C Library. Engle

wood Cliffs, ~J: Prentice-Hall, Inc., 1992.

[11] Motorola, Inc., M68000 Family Programmer's

Reference ll1anual, 1989.

[12] Motorola, Inc., MC688811882 Floating-Point

Coprocessor User's Manual (2nd ed.). 1989.

[13] K. W. Dritz, "Proposed standard for a generic

package of elementary functions for ada,'' ACkl

Ada Lett., vol. XI, pp. 9-46, 1991.

[14] K. W. Dritz, "Rationale for the Proposed Stan

dard for a Generic Package of Elementary Func

tions for Ada." ACM Ada Lett., vol. XI, 1991, pp.

47-65.

[15] K. W. Dritz, "Proposed Standard for a Generic

Package of Primitive Functions for Ada." ACM

Ada Lett., vol. XI, 1991, pp. 66-82.

[16] K. W. Dritz, "Rationale for the Proposed Stan

dard for a Generic Package of Primitive Functions

for Ada." ACMAdaLett., vol. XI, 1991, pp. 83-

90.

[17] G. S. Hodgson, "Proposed Standard for Packages

of Real and Complex Type Declarations and Ba

sic Operations for Ada (including Vector and Ma

trix Types)." ACM Ada Lett., vol. XI, 1991, pp.

91-130.

[18] G. S. Hodgson, "Rationale for Proposed Stan

dard for Packages of Real and Complex Type

Declarations and Basic Operations for Ada (in

cluding Vector and Matrix Types)." ACM Ada

Lett., vol. XI, 1991, pp. 131-139.

[19] SUN, Mathematical Library, SunOS Reference

Manual, Vol. II. Location: SUN Microsystems,

Inc., 1990, pp. 1301-1327.

[20] SUN, Sun C Data Representation, Programmer's

Language Guides: C Programmer's Guide. SUN

Microsystems, Inc., 1990, pp. 77-89.

[21] Apple Computer, Inc., Apple Numerics Manual.

SCIEI\'TTFIC C0.\1PCT11\'C I:\ C 11 PROGRA~.\1L'\'G LA:\GCACE 75

Reading. :VIA: Addison-~~ esley. second edition

1988.

[22] S. ~~olfram, .Hathematica: A System fur Doing

Jifathematics b:v Computer. Redwood City, CA:

Addison-Weslev. 1988.

[231 MathWorks. Pro-JfATLAB Cser's Guide. South

:\atiek . .\lA: The :VlathWorb. Inc .. 1990.

[24] J. Thomas. Floating-Point C Extensions. :\CEG

X3J11.1 /9:3-001. .January 20, 1993.

[25] B. Stroustrup, The c++ Programming Language.

Reading, MA: Addison-Wesley. 1987.

[26] A"'SI, A:VSI/ IEEE Standard 770 XS. 97-1988.

iEEE Standard Pascal Programming Language.

Piscataway.]\]: IEEL Inc .. 1983.

[27] B. W. Kernighan. and D. :VL Ritchie. The C Pro

gramming Language. Englewood Cliffs, '\"j:

Prentice-HalL Inc .. first edition (K & R C), 1978:

second edition (A'.\'SI C). 1988.

[28] D. M. Ritchie. S.C. Johnson . .\1. E. Lesk. and B.

\V. Ken1ighan. "The C programming language,"

Bel System Tech.]., vol. 57. pp. 1991-2020,

19?8.

[29j L. Rosier, '·The evolution of C-past and fu

ture," Bell S.ystem Tech.]., vol. 63, pp. 1685-

1699. 1984.

[30] W. H. Press, B. P. Flannery, S. A. Teukolsky,

W~. T. Vetterling, Numerical Recipes inC: The Art

of Scientific Computing. Cambridge, MA: Cam

bridge Cniversity Press .. 1990.

[31] W. Kahan, "Branch cuts for complex elementary

functions or much ado about nothing's sign bit;·

In The State of the Art in .\'umerical Analysis.

Oxford: Clarendon Press, 198?, pp. 155-211.

[32] D. E. Knuth, "Two notes on notation,'' Am.

:Hath. J;Jonthly, vol. 99, pp. 403-422, 1992.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

