
Perspectives

Scientific Software Development Is Not

an Oxymoron
Susan M. Baxter*, Steven W. Day, Jacquelyn S. Fetrow, Stephanie J. Reisinger

‘‘Many scientists and engineers spend much of their lives writing,

debugging, and maintaining software, but only a handful have ever

been taught how to do this effectively: after a couple of introductory

courses, they are left to rediscover (or reinvent) the rest of programming

on their own. The result? Most spend far too much time wrestling with

software, instead of doing research, but have no idea how reliable or

efficient their programs are.’’ —Greg Wilson [1]

A
s Greg Wilson’s American Scientist article [2] circulated

on the ‘‘bio-IT’’ e-mail lists and blogosphere this past

winter, many of us sighed, groaned, and smiled in

recognition. The field of computational biology crosses the

span between engineering and science—a surprisingly (to

some) large gulf that typically is uncovered in the process of

developing scientific software.

Why opine on best practices for scientific software projects

now? Computational biologists are taking on increasingly

important roles in this Internet-enabled, information-rich,

high-throughput era of biology [3]. Analytics and algorithms

must operate on disparate and relatively large datasets.

Curation and peer review is essential to critical analysis of

computational conclusions. Software applications are needed

to aggregate, integrate, and manage data, tools, results, and

discoveries. Computational biologists are involved as advisors

to technical teams developing and maintaining long-lived

data resources, as product owners for software development,

as coding and algorithm experts, and as reviewers of

proposals and manuscripts. Whether code is developed for

use in a single laboratory or as part of a larger, multi-

institutional project, there are best practices worth knowing

and following.

We are starting with the premise that scientific software

development brings together different cultures. A ‘‘certified

technology stack’’ might mean a robust n-tiered architecture

to some and an expensive waste of resources to others. We

want to avoid fanning controversy over interdisciplinary

science [4,5] and misunderstandings inherent at the interface

between engineering and science [6,7]. We hope to provide a

common understanding so that we all—specialists and

generalists—can work effectively on scientific software

projects, increasing project efficiency, software longevity,

user community acceptance, and translational impact.

We see important similarities between the way scientists

and software engineers approach and attack problems which

may provide a general framework for successful scientific

software development. Scientists are taught the scientific

method from the time they perform their first experiments.

Similarly, software engineers are taught about the software

development life cycle before they write their first ‘‘if’’

statement. By understanding similarities between these

approaches, we can layer some practical methods from the

software development life cycle onto computational biology

projects to build a solid foundation for success.

Two of us are card-carrying software engineers; two of us

are formally trained as scientists. We are all battle-scarred

veterans of large scientific software development projects,

while working in business, nonprofit, government, and

academic settings. Many of those projects were successful;

some were not. We think that the best practices learned and

employed on large scientific software projects can also

instruct smaller development projects carried out by single-

investigator laboratories or small teams. (In addition to the

references cited, see Box 1 for a suggested library and for

resources to improve scientific software development

processes.)

We define success as delivering a code base that produces

consistent, reproducible results, is usable and useful, can be

easily maintained and updated, and has a reasonable shelf

life. We will also add that successful scientific software

projects are usually fun—realizing this might expose how

truly geeky we are.

Suggested Best Practices

To achieve success in scientific software projects, we

propose a minimal set of guidelines for pragmatic

practitioners, peer reviewers, and project leaders of small-

(single-lab) to medium- (collaborative, noncommercial

projects) sized projects. We debated, solicited advice, reread

some of our favorite books [8,9], and took guidance from our

editors, to boil down our experiences and this enormous topic

to five recommended, stripped-down practices for successful

scientific software development: 1) design the project up-

front; 2) document programs and key processes; 3) apply

quality control; 4) use data standards where possible; and 5)

incorporate project management. We can trace project

Editor: Johanna McEntyre, National Center for Biotechnology Information, United
States of America

Citation: Baxter SM, Day SW, Fetrow JS, Reisinger SJ (2006) Scientific software
development is not an oxymoron. PLoS Comput Biol 2(9): e87. DOI: 10.1371/
journal.pcbi.0020087

DOI: 10.1371/journal.pcbi.0020087

Copyright: � 2006 Baxter et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Susan M. Baxter and Steven W. Day are at the National Center for Genome
Resources, Santa Fe, New Mexico, United States of America. Jacquelyn S. Fetrow is
in the Departments of Computer Science and Physics at Wake Forest University,
Winston-Salem, North Carolina, United States of America. Stephanie J. Reisinger is
at the Prosanos Corporation, San Diego, California, United States of America.

* To whom correspondence should be addressed. E-mail: smb@ncgr.org

PLoS Computational Biology | www.ploscompbiol.org September 2006 | Volume 2 | Issue 9 | e870975

failures back to breakdowns in any one or more of these
practices. We will next explain what we mean by each practice.

Design the project up-front. Good scientists do not perform
experiments before developing a hypothesis, then describing
materials and methods to test that hypothesis. Similarly,
before the first line of code is written, software projects
should be proactively and thoughtfully designed. This does
not necessarily require a voluminous tome, but it should
answer two key questions: ‘‘What will the program(s) do?’’ and

‘‘How will the results produced by the program be verified?’’
The most simple design documents describe inputs, how those
inputs will be transformed by the program(s), and outputs.

Based on the purpose of the software, identifying the
appropriate technologies or programming languages is a vital
decision during the design phase. While typically driven,
often mistakenly, by the current in-house expertise of the
software developers, there should be careful analysis in

addressing the problem with the most practical selection of
technologies. For example, if ease of distribution is
considered important, the platform-independent nature of
Java may make the most sense; if the software deals with a
great deal of text manipulation, Perl may be best suited; if
speed of execution is essential, C or Cþþmay be the way to
go. In addition to considering the built-in strengths of a

particular language, most offer a vast array of canned
libraries (whether included in the distribution or preexisting
as an open source project) developed to handle all but the
most arcane technological issues. It is at this design juncture
that much time can be saved in building software components
that could be acquired for almost nothing through relatively
minimal research. Additionally, plugging in trusted, reusable

code bases lends credibility to the overall quality of the
software and streamlines the testing phase.

The team should develop test plans and create data to test
their code. In the development of test plans, it is also good
practice to consider independent variables, such as how long
the program might take to run on a certain platform, how it
will work with a real-world-sized input file, or how well it will

interface or interoperate with other programs that are not a
part of your project.
The design phase should also address software usability

requirements. If the software under development will be used
only by the programmer, usability might not be a large
concern. However, as funding agencies emphasize
dissemination, collaborative teams aim to share tools; and to
use statistics to help justify renewal of funding, usability
should be a higher priority in scientific software
development. Designing facile user interfaces, interactive
feedback cycles, maintenance and release plans, or easy reuse
of code or tools requires careful thought, due diligence, and
resourcing up-front.
Typically, the proposal writing or management approval

process provides a mechanism to force project design. Before
coding begins, projects can discover existing tools and data
standards and articulate the planned functionality and testing
of the software. No matter the scale of the software project, it
is important to incorporate feedback from key stakeholders
(thesis advisor, external advisory committee, etc.) in this
process to ensure that the design meets expectations.
Document programs and key processes. One of the

foundations of scientific research is the lab notebook, where
materials, methods, and results are recorded so that
experiments can be repeated. Similarly, all computer
programs and code bases should be well-documented,
modular, and easy to read and follow even by users who did
not write the program. Modularity can be a complex issue,
but at a basic level it refers to coding in a way so that the
overall task being performed is divided into small, discrete
units of work. This design paradigm promotes reusability and
flexibility [10]. A modest level of documentation might
provide help through a user-guide, information on how to
compile and execute a program, and in-line comments
describing program functions and modules.
Use a quality control process. One cornerstone of good

science is reproducibility of results. Similarly, being able to
consistently reproduce the results of a computer program is
the yardstick used to measure the validity of that program.
Reproducibility requires three things: ensuring a program
works the way it should (testing), knowing exactly what was
used to produce the results (version control), and recognizing
and tracking program bugs.
Programs should be thoroughly tested according to the test

plans developed in the design phase. Well-designed unit tests
may be used to address whether a particular module of code
is working properly and allows testing to proceed piecemeal
and iteratively throughout the development process. This
enables bugs to be identified and handled early so as to avoid
major problems during integration and final testing.
Undeniably, computational biology projects are fluid: there

are always newer, better data files and standards available,
requiring continual updates to the code base. Consequently,
it is critical to track exactly which version of software and
which set of input files and parameters were used to produce
a specific set of results. This is especially important six
months later, when the original programmer has moved on to
another project. Developers should use version control for
both data and source code, tying results to specific versions.
Subversion [11] and CVS [12,13] are open source version
control systems freely available. Finally, confessing to and
tracking known bugs should be encouraged since bugs are to

Box 1. Suggested Resources and Beginning Library for

Maturing Scientific Software Developers and

Project Managers

Broad scope: Basic software development practices: Software carpentry.
http://www.scipy.org. Website and coursework written with scientific
software development in mind.

Design: Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns:
Elements of reusable object-oriented software. Boston: Addison-Wesley.
395 p. Seminal book on object-oriented design patterns for developers
aiming to reuse code bases.

Quality Control: Lewis WE (2004) Software testing and continuous
quality improvement. 2nd edition. New York: Auerbach. 560 p. Squarely
addresses testing and quality in a maintenance environment; of particular
use to developers supporting long-lived code bases.

Project management: Berkun S (2005) The art of project management.
Sebastopol (California): O’Reilly Media. 488 p. Easy-to-read book filled with
many ‘‘lessons learned,’’ to read rather than to have to experience.
Schwaber K (2004) Agile project management with Scrum. Redmond
(Washington): Microsoft Press. 192 p. Iterative methodology aimed at
keeping plans in sync with what is really going on in software development
projects.

PLoS Computational Biology | www.ploscompbiol.org September 2006 | Volume 2 | Issue 9 | e870976

be expected in software products. Jira [14] and Bugzilla [15]
are widely used issue-tracking tools.

Beyond application of functional testing, quality can be
addressed further through performance optimization using
bounds checkers (e.g., Valgrind provides basic debugging
capabilities plus detailed profiling of memory use). These
issues are typically overlooked during software development
as problems with memory leaks and poor memory
management hide behind software functionality and may
long go unnoticed.

Apply data standards where possible. Disseminating to and
sharing results with the broader research community is
critical and often provides the basis for new scientific
progress. The same is true for computer programs. The
inputs, outputs, and ‘‘results’’ of computer programs are often
data files. Whether included as supplementary materials for a
manuscript or as subtables in an enterprise level relational
database, scientific data should be supplied in accepted,
standard formats wherever possible. Admittedly, biology is a
fast-moving target. However, the increasing need to share,
compare, and integrate data and tools is driving
communitywide initiatives to standardize biological data
formats [16,17]. As one example, the MGED Society has
defined minimal sets of parameters to describe gene
expression array datasets (MIAME), along with a data standard
(MAGE) [18]. As a result of their lead and other work, shared
repositories for microarray results are now available and
evolving [19,20], and journals are increasingly requiring
supplemental data deposition at them [21]. Software
developers should research the availability of community-
accepted data standards as inputs and outputs for their
programs. Even if suitable data standards are not available, it
is important to include documentation (metadata) describing
the data. Metadata should explain the format (syntax) of the
data as well as definitions and assumptions that allow the data
to be interpreted or used in the proper context (semantics).
Data standards ensure the ability to scale and integrate code
bases, enable accurate and efficient code development, and
reduce user and peer reviewer frustration.

Incorporate project management. In scientific research,
principal investigators ensure that experiments are
performed according to defined procedures, while making
progress in the context of a schedule and a budget. For
software development projects, a project manager performs a
similar function. Principal investigators who are not
themselves software engineers may find themselves filling a
project manager role because they supervise people in their
labs who write software. Project management for a modest
algorithm-development project involving one or two
programmers might involve informal design and code reviews,
regular meetings to track progress against an established
timeline, and review (and sign-off) of testing results.

Larger, collaborative projects, however, can become
hopelessly chaotic without more disciplined project
management. A commonly used approach to managing larger
projects is to break them into manageable subprojects, with a
series of release cycles interleaved with user or stakeholder
feedback. A simple project website, wiki, or more
sophisticated solutions such as Xplanner [22] and Basecamp
[23], can be used to facilitate team communication, share
project plans and documentation, and transparently manage
development projects. In our opinion, the Scrum software

development methodology [24] offers a practical way to
iteratively manage medium-sized software projects.

Examples of Successful Projects That Employ Best
Practices

Outside our own anecdotal experiences, we think there is
growing evidence that software best practices can effectively
meet real-life, scientific needs. We can point to heavyweight
projects, such as the cancer Biomedical Informatics Grid
(caBIG) [25], and to more modest, lightweight activities such
as the Bioconductor project [26].
Specifically, the Bioconductor project has adopted practical

techniques that are instructive for small software projects [26].
The Bioconductor project develops statistical software
packages ubiquitously employed in biomedical research. This
group recognized that reproducing computational research
reported in the literature is usually hampered by poorly
documented software packages. While scientific manuscripts
now typically point to supplementary materials (usually data
and computer programs) on the Internet, access to them is not
always enough to replicate the research reported. This open-
source project adopted the concept of a ‘‘vignette,’’ which is a
detailed and interactive document providing a textual
description of software functionality [27]. This form of
documentation, long regarded as a software best practice, has
engendered quite a cult following in the scientific community.
In this case, the ultimate goal of reproducible research has
exposed software best practices as an enabler and not as a
burdensome side effect.

Reading back over this article, we recognize that there are
many ‘‘shoulds’’ in our guidelines. In our defense, we write
from our collective, heartbreaking experiences watching
wheels reinvented, finding dead or unusable programs, and,
worse, inheriting rancid and labyrinthine code bases. We are
of the opinion that community adherence to the guidelines
described here will increase the impact and usability of
computational biology work, without placing undue burden
on the creators of rapidly evolving, scientific code bases. “

Acknowledgments

Author contributions. SMB and SJR conceived and designed the
experiments. SWD and JSF analyzed the data. SWD and JSF
contributed reagents/materials/analysis tools. SMB, SWD, JSF, and SJR
wrote the paper.

Funding. The authors received no specific funding for this article.
Competing interests. The authors have declared that no competing

interests exist.

References

1. Wilson GV (2006) Software carpentry. Available: http://www.scipy.org.
Accessed 10 July 2006.

2. Wilson GV (2005) Where’s the real bottleneck in scientific computing? Am
Sci 94: 5.

3. Morris RW, Bean CA, Farber GK, Gallahan D, Jakobsson E, et al. (2005)
Digital biology: An emerging and promising discipline. Trends Biotechnol
23: 113–117. DOI: 10.1016/j.tibtech.2005.01.005

4. Eddy S (2005) ‘‘Antedisciplinary’’ science. PLoS Comput Biol 1: DOI: 10.
1371/journal.pcbi.0010006

5. Huerta MF, Farber GK, Wilder EL, Dushanka V, Kleinman PA, et al. (2005)
NIH roadmap interdisciplinary research initiatives. PLoS Comput Biol 1:
DOI: 10.1371/journal.pcbi.0010059

6. Cassman M, Arkin A, Katagiri F, Lauffenburger D, Doyle FJ, et al. (2005)
Barriers to progress in systems biology. Nature 438: 1079.

7. Quackenbush J, Stoeckert C, Ball C, Brazma A, Gentleman R, et al. (2006)
Top-down standards will not serve systems biology. Nature 440: 24.

PLoS Computational Biology | www.ploscompbiol.org September 2006 | Volume 2 | Issue 9 | e870977

8. Hunt A, Thomas D (2000) The pragmatic programmer: From journeyman
to master. Boston: Addison Wesley. 321 p.

9. Berkun S (2005) The art of project management. Sebastopol (California):
O’Reilly Media. 488 p.

10. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: Elements
of reusable object-oriented software. Boston: Addison-Wesley.

11. Subversion. Available: http://subversion.tigris.org. Accessed 10 July 2006.
12. Thomas D, Hunt A (2003) Pragmatic version control using CVS. Boston:

The Pragmatic Programmers. 176 p.
13. Concurrent Versioning System (CVS). Available: http://www.nongnu.org/

cvs. Accessed 10 July 2006.
14. Jira: Bug tracking, issue tracking, and project management. Available:

http://www.atlassian.com/software/jira. Accessed 10 July 2006.
15. Bugzilla. Available: http://www.bugzilla.org. Accessed 10 July 2006.
16. Yang C, Benz RD, Cheeseman MA (2006) Landscape of current toxicity

databases and database standards. Curr Opin Drug Discov Devel 9: 124–
133.

17. Luciano JS (2005) PAX of mind for pathway researchers. Drug Discov
Today 10: 937–942.

18. Whetzel PL, Parkinson H, Causton HC, Fan L, Fostel J, et al. (2006) The
MGED ontology: A resource for semantics-based description of microarray
experiments. Bioinformatics 22: 866–873.

19. Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC, et al. (2005) NCBI

GEO: Mining millions of expression profiles—Database and tools. Nucleic
Acids Res 33: D562–D566.

20. Parkinson P, Sarkans U, Shojatalab M, Abeygunawardena N, Contrino S, et
al. (2005) ArrayExpress—A public repository for microarray gene
expression data at the EBI. Nucleic Acids Res 33: D553–D555. DOI: 10.1093/
nar/gki056.

21. (2002) Microarray standards at last. Nature 419: 323. DOI: 10.1038/419323a.
22. Xplanner. Available: http://www.xplanner.org. Accessed 10 July 2006.
23. BaseCamp. Available: http://www.basecamphq.com. Accessed 10 July 2006.
24. Schwaber K (2004) Agile project management with Scrum. Redmond

(Washington): Microsoft Press. 150 p.
25. Phillips J, Chilukuri R, Fragoso G, Warzel D, Covitz PA (2006) The caCORE

Software Development Kit: Streamlining construction of interoperable
biomedical information services. BMC Med Inform Decis Mak 6: 2.

26. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004)
Bioconductor: Open software development for computational biology and
bioinformatics. Genome Biol 5: R80.

27. Gentleman RC, Lang TD (2004) Statistical analyses and reproducible
research. In: Bioconductor project working papers. Working Paper 2. Available:
http://www.bepress.com/bioconductor/paper2. Accessed 10 July 2006.
Available: http://www.bioconductor.org/docs/vignettes.html. Accessed 10
July 2006.

PLoS Computational Biology | www.ploscompbiol.org September 2006 | Volume 2 | Issue 9 | e870978

