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Abstract

The ever growing size of data sets resulting from indus-

trial and scientific simulations and measurements have cre-

ated an enormous need for analysis tools allowing inter-

active visualization. A promising hierarchical approach in

the area of numerical simulation is called sparse grids. We

present two major visualization algorithms working directly

on the sparse grid representation of the data set. One of

them is interactive particle tracing, which continues to be

an important utility for evaluating CFD simulations. The

other one is volume ray casting, which is of interest in many

areas dealing with three-dimensional scalar data. Addition-

ally we have been able to employ texture hardware sup-

port for the necessary function interpolation. Hence, we

are able to perform volume visualization methods on com-

pressed data sets at interactive frame rates, which is not

possible with other methods like wavelets or fractal com-

pression. In particular, we are able to handle sparse grids

of level 13, which correspond to regular volumes of 81933

voxels.

1. Introduction

The sparse grid idea was developed in the 1960s by

Babenko [1] and Smolyak [23]. They showed that a spe-

cial tensor product technique of constructing higher di-

mensional quadrature formulas and approximation opera-

tors from corresponding one-dimensional objects leads to

almost optimal error rates. In 1990 sparse grids were intro-

duced to the field of numerical computation by Zenger [31].

By means of sparse grids, it is possible to reduce the total

amount of data points or the number of unknowns in dis-

crete partial differential equations. Due to these benefits,

sparse grids are more and more used in numerical simula-

tions [2, 3, 10, 11].

On the other hand, it is rather difficult to visualize the

results of the simulation process directly on sparse grids,

since evaluation and interpolation of function values is quite

complicated. Because of this, the results of numerical sim-

ulations on sparse grids are usually interpolated to the as-

sociated full grid. Thereafter, all well known visualization

algorithms working on regular grids can be used, e.g. par-

ticle tracing, iso-surface extraction, and volume rendering.

However, a major drawback of this procedure is the fact that

the advantage of low memory consumption of sparse grids

comes to nothing using the associated full grid for the visu-

alization step.

Therefore, visualization tools working directly on sparse

grids are an important topic of research. Heußer and Rumpf

presented an algorithm for iso-surface extraction on sparse

grids [14]. In a previous work, we introduced particle trac-

ing [26] and volume visualization [27] on uniform sparse

grids.

The goal of this paper is to give insight into both the

difficulties and chances of the sparse grid technique and to

present an overview over an important facet of the wide field

of hierarchical methods for visualization purposes.

2. Mathematical Foundations

In this section a brief summary of the basic ideas of

sparse grids is given. For a detailed survey of sparse grids

we refer to [2, 31]. In order to make this overview easier

to understand and to reduce the number of indices, we de-

scribe only three-dimensional grids, whereas the sketches

always reveal the two-dimensional situation.

2.1. Sparse Grids

Let f : ✂ 0 ✄ 1 ☎ 3 ✆✞✝ R be a smooth function defined on the

unit cube in R3 with values in R. Furthermore, f should

vanish on the boundary of the cube. This condition is
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Figure 1. Examples of basis functions, b ✟ 1 ✠1 and b ✟ 2 ✠1 on

the left and b ✟ 1 ✡ 2 ✠1 ✡ 1 and b ✟ 1 ✡ 2 ✠1 ✡ 2 on the right hand side.

not a strong restriction but it is just helpful for an elegant

description. Of course, the algorithms can handle three-

dimensional functions and even vector fields without zero

boundary conditions. If such a function f is used in a nu-

merical computation it has to be discretized, which means

that only function values at certain positions of a spatial grid

are stored. The simplest of these grid structures is a uniform

mesh, which can be represented as a three-dimensional ar-

ray.

Now let Gi1 ✡ i2 ✡ i3 be a uniform grid with respective mesh

widths hi j ☛ 2 ☞ i j , j ☛ 1 ✄ 2 ✄ 3 and L̂n be the function space

of the piecewise tri-linear functions defined on Gn ✡ n ✡ n and

vanishing on the boundary. Additionally, consider the sub-

spaces Si1 ✡ i2 ✡ i3 of L̂n with 1 ✌ i j ✌ n, j ☛ 1 ✄ 2 ✄ 3, which con-

sist of the piecewise tri-linear functions defined on Gi1 ✡ i2 ✡ i3
and vanishing on the grid points of all coarser grids, with

L̂n ☛ n✍
i1 ✎ 1

n✍
i2 ✎ 1

n✍
i3 ✎ 1

Si1 ✡ i2 ✡ i3 ✏ (1)

Hence, we have found a hierarchical basis decomposi-

tion of the function space L̂n where piecewise tri-linear fi-

nite elements are used as basis functions in each subspace

Si1 ✡ i2 ✡ i3 . These basis functions are defined as follows (com-

pare Fig. 1):

b ✟ i1 ✑ ✑ ✑ 3 ✠k1 ✑ ✑ ✑ 3 ✒ x1 ✓ ✓ ✓ 3 ✔ : ☛ 3

∏
j ✎ 1

wi j ✕ x j
✆ ✒ 2k j

✆ 1 ✔✞✖ hi j ✗
with wi ✒ x ✔ : ☛

✘✙✚ ✙✛ hi ✜ x
hi

: ✆ hi ✌ x ✌ 0
hi ☞ x

hi
: 0 ✌ x ✌ hi

0 : else .

Since we are interested in estimations of the interpolation

error, we look at f̂n ✢ L̂n, the interpolated function on the

grid Gn ✡ ✓ ✓ ✓ ✡ n, which is given by

f̂n ☛ n

∑
i1 ✎ 1

n

∑
i2 ✎ 1

n

∑
i3 ✎ 1

fi1 ✡ i2 ✡ i3 ✄ where (2)

fi1 ✡ i2 ✡ i3 ☛ 2i1 ✣ 1

∑
k1 ✎ 1

2i2 ✣ 1

∑
k2 ✎ 1

2i3 ✣ 1

∑
k3 ✎ 1

c ✟ i1 ✡ i2 ✡ i3 ✠k1 ✡ k2 ✡ k3
✖ b ✟ i1 ✡ i2 ✡ i3 ✠k1 ✡ k2 ✡ k3 ✏ (3)

The values c ✟ i1 ✡ i2 ✡ i3 ✠k1 ✡ k2 ✡ k3
are called contribution coefficients and

fi1 ✡ i2 ✡ i3 ✢ Si1 ✡ i2 ✡ i3 is a linear combination of the basis func-

tions of the appropriate subspace. It can be shown that
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Figure 2. A twodimensional hierarchical subspace de

composition is shown on the left hand side, the respec

tive sparse grid is sketched on the right hand side.

the following estimations hold with regard to the L2 or

L∞ norms (compare [2, pp. 13]):✤
fi1 ✡ i2 ✡ i3 ✤ ✌ C ✖✦✥✥✥✥

∂6 f

∂x2
1∂x2

2∂x2
3

✥✥✥✥ ✖ h2
i1

h2
i2

h2
i3
✄ (4)

✥✥ f ✆ f̂n ✥✥ ✌ O ✕ h2
n ✗ ✏ (5)

So far we have just dealt with regular uniform meshes,

which are named full grids. Now let us turn to sparse grids.

Equation (4) shows that
✤

fi1 ✡ i2 ✡ i3 ✤ has a contribution of the

same order of magnitude, namely O ✒ 2 ☞ 2 ✓ const ✔ for all sub-

spaces with i1 ✧ i2 ✧ i3 ☛ const. Additionally, these sub-

spaces have the same number of basis functions, namely

2const ☞ 3. Since the number of basis functions is equivalent

to the number of stored grid points and because of the con-

tribution argument as well, it seems to be a good idea to de-

fine a sparse grid space L̃n as follows (compare also Fig. 2):

L̃n : ☛ ✍
i1 ✜ i2 ✜ i3 ★ n ✜ 2

Si1 ✡ i2 ✡ i3 ✏ (6)

Now the interpolated function f̃n ✢ L̃n is given by

f̃n ☛ ∑
i1 ✜ i2 ✜ i3 ★ n ✜ 2

fi1 ✡ i2 ✡ i3 (7)

and the interpolation error with regard to the L2 or L∞ norm

is given by (compare [2, pp. 23])

✥✥ f ✆ f̃n ✥✥ ✌ O ✩ h2
n ✕ log2 ✕ h ☞ 1

n ✗✪✗ 2 ✫ ✏ (8)

This estimation shows that the sparse grid interpolated func-

tion f̃n is nearly as good as the full grid interpolated function

f̂n (compare Eq. (5) with Eq. (8)).

Now we consider the dimensions of the function spaces

L̂n and L̃n, which correspond to the number of nodes of the

underlying grids. Obviously, the dimension of the full grid

space is given by

dim ✒ L̂n ✔ ☛ O ✕ 23n ✗ ☛ O ✕ h ☞ 3
n ✗ ✏ (9)

For the sparse grid the following relation holds:

dim ✒ L̃n ✔ ☛ O ✕ 2nn2 ✗ ☛ O ✩ h ☞ 1
n ✕ log2 ✕ h ☞ 1

n ✗✪✗ 2 ✫ ✏ (10)
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level 6 7 8 9 10 11

full grid size 653 1293 2573 5133 10253 20493

full grid 1 MB 8 MB 64 MB 512 MB 4 GB 32 GB

sparse grid 15 kB 35 kB 83 kB 200 kB 450 kB 1 MB

Table 1. Memory consumption of sparse grids

Therefore, a tremendous amount of memory can be saved if

sparse grids are used instead of full grids. Table 1 demon-

strates this benefit listing the memory consumption for vari-

ous grid levels on the assumption that scalar single precision

floating point values are given at each grid node. Obviously,

sparse grids are also very suitable for compressing huge reg-

ular data sets. This opens up the potential to visualize them

even on workstations with a limited amount of main mem-

ory.

Finally, recalling that the sparse grid space L̃n is the di-

rect sum of all subspaces Si ✡ j ✡ k with i ✧ j ✧ k ✌ n ✧ 2, we de-

fine the level of a subspace as the number n ☛ i ✧ j ✧ k ✆ 2

and the level of the sparse grid space as the direct sum of

all subspaces of the same level of subspaces. Hence, L̃n is

the direct sum of its first n levels and is called a sparse grid

of level n.

2.2. Adaptive Evaluation of Sparse Grids

In order to improve on the rather time consuming stan-

dard sparse grid interpolation as described above, an adap-

tive approach for the function evaluation is presented in this

subsection.

First of all, it is important to distinguish between actual

adaptive sparse grids and an adaptive way of function eval-

uation, i.e. an adaptive traversal of ordinary sparse grids.

Adaptive sparse grids were introduced to the field of numer-

ical simulations by Bungartz [2] in 1992. Roughly spoken,

the idea of adaptive sparse grids is to store contribution val-

ues only if their norm is greater than a given error criterion.

The resulting memory savings are invested in calculating a

further level of the numerical sparse grid simulation. In [2]

it was shown that adaptive sparse grids lead to slightly better

numerical results than plain sparse grids.

However, in our situation an upper bound of the accuracy

is given by the input data. Thus, we do not need adaptive

sparse grids to improve accuracy. On the other hand, us-

ing sparse grids instead of full grids results in such a great

advantage of memory saving that the benefit of employing

adaptive sparse grids instead of plain sparse grids is negli-

gible.

Since our goal is to decrease the computing time of the

sparse grid interpolation, we introduce an adaptive traversal

of the standard sparse grid in order to compute function val-

ues. Again the idea is to omit contribution coefficients with

a norm below a given error criterion during the interpola-

tion process. Here, we have to distinguish between adaptiv-

ity with regard to the L2 and the L∞ norm. Although they

generate the same sparse grid, these norms lead to slightly

different adaptive approaches.

Analyzing the situation with respect to the L∞ norm, we

find that the contribution of one basis element of subspace

Si1 ✡ i2 ✡ i3 to the function value is given by (compare Eq. (3))

✥✥✥ c ✟ i1 ✑ ✑ ✑ 3 ✠k1 ✑ ✑ ✑ 3 b ✟ i1 ✑ ✑ ✑ 3 ✠k1 ✑ ✑ ✑ 3 ✥✥✥ ∞ ☛✭✬✬✬ c ✟ i1 ✑ ✑ ✑ 3 ✠k1 ✑ ✑ ✑ 3 ✬✬✬ ✖ ✥✥✥ b ✟ i1 ✑ ✑ ✑ 3 ✠k1 ✑ ✑ ✑ 3 ✥✥✥ ∞ ☛✮✬✬✬ c ✟ i1 ✑ ✑ ✑ 3 ✠k1 ✑ ✑ ✑ 3 ✬✬✬
and the maximum contribution of subspace Si1 ✡ i2 ✡ i3 is

max
k1 ✑ ✑ ✑ 3 ✬✬✬ c ✟ i1 ✑ ✑ ✑ 3 ✠k1 ✑ ✑ ✑ 3 ✬✬✬ with 1 ✌ k j ✌ 2i j ☞ 1 ✏ (11)

For vector fields the absolute value ✯ ✖ ✯ has to be replaced by

an appropriate norm of the Euclidean space Rm and we ap-

ply the maximum norm of Rm in order to ensure maximum

accuracy for all components of the vector field.

The actual concept of the adaptive grid traversal is that

basis functions, which have contribution coefficients with

an absolute value below a given error bound, are left out

during the interpolation process. This results in a function

evaluation that considers the local structure of the data set.

As a second modification of the plain sparse grid algo-

rithm, we have integrated a preprocessing step, which com-

putes and stores the maximum contribution of each sub-

space (see Eq. (11)). This kind of adaptive grid traversal

leads to a function evaluation with direction dependent ac-

curacy, because different subspaces of the same level ex-

hibit different resolutions in the three coordinate directions

(reconsider the hierarchical subspace decomposition on the

left hand side of Fig. 2).

Now let us discuss the adaptive approach based on the L2

norm. A straightforward calculation shows that the contri-

bution of one basis element of subspace Si1 ✡ i2 ✡ i3 to the func-

tion value is given by

✥✥✥ c ✟ i1 ✡ i2 ✡ i3 ✠k1 ✡ k2 ✡ k3
✖ b ✟ i1 ✡ i2 ✡ i3 ✠k1 ✡ k2 ✡ k3 ✥✥✥ 2 ☛ ✬✬✬ c ✟ i1 ✡ i2 ✡ i3 ✠k1 ✡ k2 ✡ k3 ✬✬✬ ✖ ✥✥✥ b ✟ i1 ✡ i2 ✡ i3 ✠k1 ✡ k2 ✡ k3 ✥✥✥ 2☛ ✬✬✬ c ✟ i1 ✡ i2 ✡ i3 ✠k1 ✡ k2 ✡ k3 ✬✬✬ ✖✱✰ ✒ 3 ✖ 2i1 ✜ i2 ✜ i3 ☞ 1 ✔ ☞ 3 ✏

Since i1 ✧ i2 ✧ i3
✆ 1 ☛ n ✧ 1 with n denoting the current

level, the square-root term only depends on the level and

is, therefore, constant for all subspaces of the same level.

Hence, this term is also a factor of the maximum contribu-

tion of the corresponding subspaces.

In contrast to the L∞ norm, the L2 norm generates an

adaption strategy that considers not only the absolute value

but also the level of a contribution coefficient. Contribution

coefficients of higher levels are more likely to be omitted

than coefficients of lower levels.
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Figure 3. A twodimensional sparse grid of level 3 can

be reconstructed by linear combination of five full grids

of low resolution.

2.3. The Combination Technique

Since both the standard and the adaptive sparse grid in-

terpolation of function values are quite complicated and

rather time consuming, we have also implemented the so-

called combination technique, which was introduced by

Griebel, Schneider, and Zenger in 1992 [11]. Actually,

the combination method has been used in numerical sim-

ulations in order to combine partial solutions computed on

smaller, suitable full grids to the desired sparse grid solu-

tion. However, we start with a data set given on a sparse

grid and decompose the grid such that the data set is repre-

sented on certain uniform full grids of low resolution. Now

the fast and simple tri-linear interpolation can be performed

on each of these full grids. The resulting value is computed

by linear combination of the tri-linear interpolated full grid

results.

Specifically, it can be proven that the three-dimensional

interpolated function f̃n ✢ L̃n is given by

f̃n ☛ ∑
i1 ✜ i2 ✜ i3 ✎ n ✜ 2

f c
i1 ✡ i2 ✡ i3 ✆ 2 ✖ ∑

i1 ✜ i2 ✜ i3 ✎ n ✜ 1

f c
i1 ✡ i2 ✡ i3

✧ ∑
i1 ✜ i2 ✜ i3 ✎ n

f c
i1 ✡ i2 ✡ i3 (12)

where f c
i1 ✡ i2 ✡ i3 denotes the tri-linear interpolation of function

values on the respective full grid. Figure 3 reveals the two-

dimensional situation, which also shows that the used full

grids consist of the same nodes as the corresponding sparse

grid.

Investigating the benefits of the combination technique,

we find that the total number of summands of the standard

sparse grid interpolation on a three-dimensional sparse grid

of level n is given by

n

∑
i ✎ 1

i ✒ i ✧ 1 ✔
2 ☛ 1

6
n ✒ n ✧ 1 ✔ ✒ n ✧ 2 ✔ (13)

(compare Eq. (7)), whereas the total number of tri-linear

interpolations of the combination method adds up to

n

∑
i ✎ n ☞ 2

i ✒ i ✧ 1 ✔
2 ☛ 3

2
n ✒ n ✆ 1 ✔✲✧ 1 (14)

in the three-dimensional case (see Eq. (12)). That is,

the number of tri-linear interpolations of the combination

method is one order of magnitude lower than the number of

summands of the standard interpolation.

However, the combination method outperforms the stan-

dard method in terms of basic arithmetical operations only

for levels above 50, for which computers will not have

enough main memory presumably for the next few decades.

Despite this, the main advantage of the combination tech-

nique is the fact that uniform full grids are used. Thus, it is

possible to implement the interpolation routine in terms of

tight for-loops, which makes the combination technique

an order of magnitude faster than the standard approach

even for the lower levels. Additionally, it is possible to ex-

ploit the texture hardware support of graphics workstations

for the interpolation of function values (see Sect. 4.2).

Finally, we have to comment on memory consumption

of the combination method. Since here some points of

the actual sparse grid are stored several times, the mem-

ory consumption of the combination method is about four

to five times higher than the one of the standard sparse grid

method. However, compared to full grids the required stor-

age is still negligible.

3. Particle Tracing

Flow visualization tools based upon particle methods

continue to be an important topic of research. Lagrange

visualization techniques of vector fields are based upon the

numerical solution of an initial value problem for the fol-

lowing ordinary differential equation:

dx

dt ☛ v ✒ x ✄ t ✔ ✄ x ✒ t0 ✔ ☛ x0 ✄ (15)

where v denotes the velocity vector field, x the position, t

the time variable and x0 the start value at the initial time t0.

Usually, a numerical integration method is used to obtain

a solution. All such methods have in common that they

have to evaluate the vector field v at certain positions, which

are in general not at grid points. Therefore, the value of v

at such a position has to be interpolated. As mentioned in

Subsect. 2.1, the interpolation on sparse grids is different

from the one on full grids, whereas most other parts of the

particle tracing algorithm can remain unchanged. Further

exceptions are the routines required for handling curvilinear

grids (see Subsect. 3.4).

Our particle tracing module implements the same fea-

tures, e.g. colored streak lines, ribbons, tubes, balls, and
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tetrahedra (see Figs. 5 to 7), as our previous full grid par-

ticle tracing tool, which is partially described in [12] and

[13]. For comparison, we have implemented several inter-

polation techniques using sparse grids, which are described

below.

3.1. Uniform Sparse Grids

In contrast to tri-linear full grid interpolation, sparse grid

interpolation does not operate locally, because one basis

function in each subspace contributes to the function value.

Since the tri-linear interpolation is one of the most time con-

suming operations during the particle tracing process on full

grids [15], the complicated sparse grid interpolation is even

more time consuming. Therefore, it is important to perform

the interpolation as fast as possible.

The contribution coefficients of the sparse grid are usu-

ally stored in a binary tree [2, 3, 14]. In this case, a rather

slow recursive tree traversal is necessary for the interpola-

tion of function values. Although caching strategies can

increase the efficiency of the traversal [14], the computa-

tion remains rather time consuming. In order to avoid the

tree traversal and to accelerate the access to the contribu-

tion coefficients, we have developed a new, very efficient

data structure based upon arrays, which can be accessed di-

rectly.

These data structures and the associated access methods

are implemented by means of a particular C++ class hier-

archy. The base class contains a stack of n levels. Further-

more, each level comprises the respective number of sub-

spaces ( ✒ n ✧ 1 ✔ n ✳ 2). The subspaces themself contain an ar-

ray of the size 2n ☞ 1 times the data dimension each, holding

the contribution coefficients.

The function value at an arbitrary position is computed

according to Eq. (7) by invoking an interpolation method.

This method sends a method call to each level to accumu-

late the contributions to the resulting value. Here it per-

forms a loop over all subspaces of the current level. In this

loop, the required basis function is determined from the co-

ordinates of the working position. Recalling that only one

basis function per subspace is unequal to zero at a certain

position because all basis functions are hat-functions with

disjunct supports, we can easily determine the required con-

tribution value. Now the ‘height’ over the current position

in the tri-linear hat-function is computed and multiplied by

the contribution value. Thus, we obtain the total contribu-

tion of this subspace to the function value. Additionally, we

compute the Jacobian in this loop by looking up the correct

‘height’ of the derivative of the hat-function, which is a sim-

ple box-function. The Jacobian is needed to determine the

local rotation of the flow for displaying stream bands and

stream tetrahedra.

3.2. Adaptive Grid Traversal

In order to perform an adaptive grid traversal as de-

scribed in Subsect. 2.2, the loop had to be enhanced in such

a way that contribution values smaller than a given error

bound are omitted in the function value interpolation pro-

cess. In addition, the initialization method had to be mod-

ified, which is called in the preprocessing step when the

actual sparse grid is created. During this process the contri-

bution coefficients are computed from an analytic function

or a full grid data set, or they are read directly from a sparse

grid data set. Since we often deal with vector fields, each

basis function does not only contain a single contribution

coefficient but an array of coefficients. For the purpose of

adaptive function evaluation, the mentioned array has been

extended by one component in order to store the maximum

absolute value of the contribution coefficients. Moreover, a

variable has been added to each subspace for storing the

maximum contribution coefficient of the entire subspace.

Of course, all these additional variables storing maximum

contribution coefficients are initialized during the creation

of the sparse grid. Keeping in mind that the maximum con-

tribution coefficients are the ones according to the L∞ norm,

the error criterion has to be modified, if the L2 norm is used

(compare Subsect. 2.2).

3.3. Combination Technique

Equation (12) determines the interpolation process for

the combination technique, which combines full grids of

low resolution to a resulting sparse grid. Since these full

grids are uniform grids, the function values can be stored in

three-dimensional arrays and derived by tri-linear interpo-

lation. Thus, the interpolation method of the appropriately

derived class can address the necessary function values in

a tight loop. This fact makes the combination technique

an order of magnitude faster than the previously described

sparse grid interpolation even for low levels.

The combination technique can be accelerated by using

the texture hardware of modern graphics subsystems. How-

ever, this method can only be used efficiently for volume

visualization and not for particle tracing. The reason is, that

for particle tracing only a single function value has to be

interpolated at a given time step, whereas an entire plane

of values is required for volume rendering. Subsection 4.2

gives a detailed description of employing texture hardware.

3.4. Curvilinear Sparse Grids

The underlying concept of curvilinear sparse grids is the

same as for curvilinear full grids. In the case of uniform

full grids, only the function values are stored in an array,

whereas in case of curvilinear grids, the function values and
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Figure 4. Relationship between computational and

physical space.

the coordinates of the grid points as well are saved. If a

curvilinear sparse grid is considered, the contribution coef-

ficients of the coordinates of the grid points are stored as

additional components of the basis functions. For the com-

bination technique, the coordinates of the grid points are

stored in the arrays of the small full grids accordingly.

The coordinates given on grid points of the sparse grid

can be interpreted as a discrete version of the coordinate

function ϕ, which relates points of the computational space

(C-space) to points in the physical space (P-space) (see

Fig. 4).

Particle tracing in arbitrary non-uniform grids requires

the so-called point location to be performed for each inte-

gration step, in order to find the cell containing the actual

particle position. Only then the velocity at that position can

be accurately interpolated from the values at the cell ver-

tices.

For the case of curvilinear grids, particle tracing algo-

rithms can be divided into P-space and C-space methods. A

C-space algorithm calculates the particle path in computa-

tional space where point location is as simple as for uniform

grids. However, tri-interpolation in C-space requires the P-

velocities at the vertices to be transformed into C-space by

means of the Jacobian and the back-transformation of the

path positions into P-space for visualization. In contrast,

a P-space method computes the particle trace directly in

the physical domain, which saves the transformations but

leads to a more complex point location and interpolation.

Sadarjoen et al. [21] showed that P-space algorithms are

in general preferable to C-space methods. Hence, we have

implemented a P-space algorithm appropriately adapted for

sparse grids. Working directly in P-space, the stencil walk

algorithm introduced by Buning [4] is usually used for the

point location.

First of all, we initialize the desired C-space position rc

by starting in the center of our volume in C-space. In order

to improve this guess, the C-space position is transformed

into P-space. This is done by a sparse grid interpolation us-

ing either plain sparse grids, adaptive sparse grids, or the

combination technique. If the difference of the transformed

guess and the current position in P-space is small enough,

we accept the C-space position. Otherwise the difference

is transformed back into C-space via the inverse Jacobian

and then added to the previous guess. Thereafter, the pro-

cedure is iterated until the appropriate position in C-space

is located. On full grids, the stencil walk algorithm usually

needs less than five iterations to find the correct C-space

position.

As yet, the modifications of the stencil walk algorithm

seem to be very moderate. But the main question is how to

calculate the inverse Jacobian. On full grids, this is done on

the fly by tri-linear interpolation of the eight Jacobians at

the vertices of the current cell and subsequent matrix inver-

sion. The Jacobians at the vertices are computed by finite

differences. However, tri-linear interpolation is not possible

on sparse grids. Thus, we have to use sparse grid interpo-

lation and we have to store the inverse Jacobian, i.e. the re-

spective contribution coefficients, at each sparse grid point.

This memory overhead can only be justified with the fact

that sparse grids themselves are very storage efficient.

As the data sets usually do not contain the Jacobians

explicitly, the Jacobians and their inverse matrices have to

be calculated as well as their contribution coefficients dur-

ing initialization. We have modified the methods in such a

way that in a first pass the contribution coefficients of the

function values and the inverse Jacobians are computed and

stored in the sparse grid structure. In a second pass, the con-

tribution coefficients of the inverse Jacobians are computed

and stored over the original components of the inverse Jaco-

bians. The second pass traverses the levels beginning with

the highest level and ending with level 1, because the con-

tribution coefficients only depend on the current function

value and on the function values of lower levels. This fact

can be deduced from Eqs. (2) and (3). Hence, it is possi-

ble to overwrite the original components of the inverse Ja-

cobians successively. Notice that level 0 is not part of the

mentioned second pass because in level 0 contribution val-

ues and function values coincide.

3.5. Examples and Results

In order to compare our sparse grid particle tracing mod-

ule with full grid particle tracers, two data sets have been

used. The first one is a cavity flow data set (see Fig. 5)

on a full grid of 1293 nodes, which corresponds to level

7 in sparse grid terminology. The data set contains veloc-

ity, pressure, and temperature data at each vertex requiring

more than 40 MB. The same data set with a resolution of

2573 (level 8) would need more than 320 MB, which is

probably too much for most workstations. On the other
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Figure 5. Streak tubes in

a cavity flow computed

on a full grid and sparse

grids of level 3, 5, and 7.

Figure 6. Colored

streak balls and

tetrahedra in a vortex

flow.

Figure 7. Streak bands in a vortex flow computed on

a full grid and sparse grids of level 0 (left), 1 (middle),

and 4 (right).

hand, this data set stored on a sparse grid consumes only

175 kB for level 7 and 415 kB for level 8.

The second data set is a vortex flow (compare Figs. 6

and 7) given analytically. Therefore, we are able to create

sparse and full grids in any resolution only limited by the

main memory of the used machine.

For each experiment nine streak ribbons consisting of

about 500 particles were integrated using an adaptive

RK3(2) scheme (see Fig. 7). Time measurements have

shown that interactive particle tracing is possible even on

sparse grids of level 8. However, the drawback of sparse

grid interpolation is that the computing time rises at least

quadratically if the grid level is increased. In contrast to

this, the computing time of the full grid module is only

growing slowly, since in theory the time for particle trac-

ing on full grids is independent of the grid size. Investi-

gating the accuracy of sparse grid particle tracing, theory

(see Eqs.(5) and (8)) tells us that the difference should be

rather small. Moreover, the integration error of RK3(2) is

on the order of O ✒ τ3 ✔ where τ denotes the current time step

(see the discussion in [25]). In fact, the results of particle

tracing on the analytic data set confirm these estimations,

since the ribbons computed on full and sparse grids coin-

cide on screen for levels greater than 3 (compare Fig. 7).

However, for the derivation of the mentioned upper bounds

for the interpolation errors, a certain smoothness of the data

was a prerequisite. Since discrete data sets are not smooth

Figure 8. Streak balls in the blunt fin data set, com

puted on curvilinear sparse grids of level 2, 3 and 4.

at all, these estimations do not hold in this case. Indeed,

for discrete data Fig. 5 reveals that the particle traces com-

puted on sparse grids converge rather slowly to the full grid

solution. Nevertheless, due to the great advantage of low

memory consumption, it is possible to use a sparse grid of

a sufficiently high level to overcome this problem.

For the adaptive grid traversal, several experiments have

shown that it is important whether the L2 norm is used for

the adaptive traversal or the L∞ norm. Employing the L∞

norm leads to a marginal decrease in computing time but

to a significant loss in accuracy. However, by using the L2

norm, it is possible to decrease computing time by about 20

per cent and to achieve nearly the quality of the correspond-

ing plain sparse grid.

The next approach for accelerating particle tracing on

sparse grids is the combination technique. The first advan-

tage of this technique compared to adaptive grid traversal is

the fact that there is no loss in accuracy at all. Combination

technique and plain sparse grid interpolation create exactly

the same particle path. The second and more important ben-

efit is that the combination technique is almost by a factor

of four faster than plain sparse grid interpolation.

Now let us turn to curvilinear sparse grids. For a first test

we have used the well-known blunt fin data set (see Fig. 8).

Additionally, our module has been verified with several an-

alytic data sets. On the one hand side these tests have con-

firmed that smooth data sets are more appropriate for using

sparse grid methods than discontinuous data. On the other

hand these tests have revealed that particle traces calculated

on curvilinear sparse grids converge slower to the corre-

sponding full grid trace. The reason for this decline in ac-

curacy might be due to a less accurate point location caused

by an intensive use of sparse grid interpolation in the sten-

cil walk algorithm. Finally, time measurements have shown

that particle tracing on curvilinear sparse grids is about five

times slower than tracing on uniform grids. This is roughly

the same deceleration as on full grids. Nevertheless, inter-

active particle tracing is possible on curvilinear sparse grids

of level 7 by using the combination technique.
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4. Volume Rendering

Three-dimensional scalar data sets resulting from mea-

surement or numerical simulation can be visualized very

well by volume rendering techniques. Direct volume ren-

dering tries to convey a visual impression of the complete

data set by assigning different color and opacity values to

different objects or value ranges within the volume. The re-

sulting image is then computed by taking into account the so

defined emission and absorption effects as seen by an out-

side viewer. The underlying theory of the physics of light

transport is simplified to the well known volume rendering

integral in the case of neglecting scattering and frequency

effects [16]. Given the emission q and the absorption κ the

intensity I along the ray s can be computed from:

I ✒ s ✔ ☛✶✵ s

s0

q ✒ s ✷ ✔ e ☞✹✸ s ✺
s κ ✟ s ✺ ✺ ✠ ds ✺ ✺ ds ✷

The discretization of this integral together with the assump-

tion that the mapping from scalars to RGBA values can be

described by transfer functions results in the compositing

formulas for computing the intensity contribution along one

ray of sight:

I ☛ n

∑
k ✎ 1

Ck

k ☞ 1

∏
i ✎ 0
✒ 1 ✆ αi ✔

The emission of the voxel Ck and its opacity αk are derived

from the transfer functions after interpolation of the scalar

value from the discrete sample points.

The basic ray tracing idea [18] is to shoot a ray of

sight through every pixel into the volume, reconstructing the

function value at appropriately chosen sample points along

the ray and blending the mapped color and opacity values.

Various variants of this technique exist. X-ray like images

are generated by neglecting the opacity and just summing

up all values. The so-called maximum intensity projection

method (MIP) determines the intensity of a pixel to be the

maximum function value occurring along the correspond-

ing ray. Even iso-surfaces can be rendered if an illuminated

pixel is displayed if the difference of the current function

value and the iso-value changes sign. In this case, the sur-

face normal needed for the lighting computation coincides

with the direction of the function gradient.

Acceleration of this expensive technique is achieved by

adaptive sampling [9, 7], by exploiting coherence [17], by

parallelizing in image and object space, and by exploiting

hardware in graphics workstations [5] or in special pur-

pose architectures [20]. Related to our work are approaches

where volume rendering is performed on compressed data

sets. Wavelet based techniques [28, 19] reconstruct the

function value from a wavelet decomposition instead from

tri-linear interpolation, leaving the basic volume rendering

algorithm unmodified.

4.1. Software Based Interpolation

So far the only possibility to visualize data given on a

sparse grid was to expand the sparse grid to a full grid and

then to use the traditional techniques on the full grid. For

larger sparse grids this approach is prohibitive, because the

full grid does no longer fit into the main memory of stan-

dard workstations. Additionally, the process of expanding a

sparse grid is extremely slow.

Therefore, we follow the idea of other compression do-

main volume rendering techniques and use a traditional

ray casting algorithm with the tri-linear interpolation sub-

stituted by sparse grid interpolation. Of course we em-

ploy the different interpolation techniques presented in the

Sect. 3. Specifically, we reuse the methods encapsulated

in the C++ classes for the standard method and the combi-

nation technique. Currently, curvilinear grids are not sup-

ported, though. These grids would require a stencil walk

inside the innermost loop of the ray caster, which would

slow down the interpolation process significantly.

Due to the nature of volume visualization, a huge num-

ber of sampling points is needed in the ray casting process.

Even with the combination technique, rendering times are

far away from interactivity. However, in contrast to particle

tracing, the volume rendering process addresses sampling

points in equidistant planar slices of the volume. This or-

der can be utilized to accelerate the interpolation process

by using graphics hardware, which is described in the fol-

lowing section. We are going to see that hardware based

interpolation can only be performed in fix point arithmetic.

Therefore, it is not as accurate as the software based inter-

polation, which can still be reasonable for generating high

quality images.

4.2. Texture Hardware Based Interpolation

When interpolating data using the combination tech-

nique the processor spends most of its time on the tri-linear

interpolation of the full grids. In order to significantly re-

duce the computation time, we decided to take advantage

of the texturing hardware of modern graphics workstations.

The graphics engines of these workstations have hardware

based support for MIP mapped texturing. This technique

reduces texture mapping artifacts during minification if pix-

els are covered by many texture elements. In this case tex-

ture filtering with large kernel sizes would be appropriate

which cannot be done in real time. Therefore, several down-

sampled versions of the texture are stored together with the

original resolution. Tri-linear interpolation in hardware is

used to interpolate between texture levels and within the

texture.

As a variant of this technique several vendors have im-

plemented real tri-linear interpolation for 3D textures map-
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ping [22]. While originally intended to be used for volu-

metric effects like fog or wood texture, 3D textures turned

out to be a key feature for interactive volume rendering of

regular grids [30]. The basic functionality provided by the

underlying OpenGL extension can be described as follows.

Given a flat polygon whose arbitrary position and orienta-

tion within the volume texture is defined by appropriate 3D

texture coordinates assigned to each vertex, a 2D texture is

reconstructed on the polygon by tri-linear interpolation.

In our case of the combination technique for sparse grids

we do not use the graphics hardware for the actual volume

rendering, that means for viewing and compositing, but we

employ 3D textures, tri-linear interpolation and blending

operations in order to implement Eq. (12). To exploit the

provided functionality we had to rewrite our algorithms in

such a way that they simultaneously reconstruct all values

in an entire plane, which of course is oriented perpendicular

to the viewing direction of the volume rendering. Our ray

caster then proceeds by compositing along rays through all

textured image slices.

In detail, after defining 3D textures with the values of the

full grids f c
i1 ✡ i2 ✡ i3 , our class draws the appropriate plane auto-

matically performing the tri-linear reconstruction. Then the

partial results have to be added and subtracted according

to Eq. (12). This is implemented by a blending step using

blending extensions of OpenGL.

In order to switch quickly between the different vol-

ume textures, they all have to fit into texture memory

at the same time. By using texture objects of OpenGL,

preloaded textures can be selected for rendering almost in-

stantly. The combination technique uses full grids of size✒ 2i ✧ 1 ✔✼✻ ✒ 2 j ✧ 1 ✔✽✻ ✒ 2k ✧ 1 ✔ . On the other hand, volume

textures have to be of size 2p ✻ 2q ✻ 2r. In order to fit the

full grids completely into volume textures, we have to allo-

cate textures of size 2i ✜ 1 ✻ 2 j ✜ 1 ✻ 2k ✜ 1. Hence, quite a lot of

texture memory is wasted, although it is a scarce resource.

In principle, OpenGL supports volume textures featuring a

so called border of size 2 in every direction such that the

mentioned full grids would fit almost seamlessly. Unfortu-

nately, these texture borders are not implemented in todays

hardware.

When using graphics hardware for mathematical compu-

tations, accuracy can be quite a problem. On Silicon Graph-

ics machines the blending operation can currently be per-

formed in the frame buffer with 16 bits at most. Since pixel

values are automatically clamped to values in the interval✂ 0 ✄ 1 ☎ , all texture elements have to be scaled down by the

number of functions contributing positive values to Eq. (12).

For a level 10 sparse grid, 91 of 136 functions contribute

positive data, which means a loss of almost 7 bits, resulting

in only 9 bits of accurate information. Since we have at best

16 bits of accurate information in the frame buffer, it is suf-

ficient to use only 2 bytes of texture memory per voxel. If

a Standard sparse grid. b Combination technique.

c Plain OpenGL. d Accumulation buffer.

Figure 9. Views of the cavitiy flow rendered with differ

ent interpolation methods.

future hardware will incorporate larger frame buffers with

higher pixel accuracy, this will automatically enhance the

image quality of our algorithm. Although visible artifacts

are remarkably small, some can be seen in Fig. 9c for an

example with an effective accuracy of 7 bits.

By using the accumulation buffer, these artifacts can be

reduced, so that they are barely visible (see Fig. 9d). Be-

cause the frame buffer has to be combined with the accu-

mulation buffer for every plane drawn, its usability strongly

depends on graphics pipes that provide hardware based ac-

cumulation buffers like SGI’s Infinite Reality system. Ad-

ditionally, off-screen rendering using SGI’s P-buffer exten-

sion is currently not possible with this approach.

4.3. Examples and Results

We tested our implementation with several data sets.

Two of them are cavity flow data sets, given on a full grid

of level 6, i.e. 653 nodes. These data sets are the result of

a numerical flow simulation and contain pressure and tem-

perature distributions of the flow. The third data set, given

on a full grid of level 8 (2573 nodes), contains a spherical

harmonic (Legendre’s function), which displays a solution

of the Schrödinger equation of a hydrogen atom. In addi-

tion, we used an analytic test function and a discontinuous

one for considering interpolation quality.
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a Combination technique. b Full grid.

Figure 10. Isosurface of temperature in a cavity flow.

Figures 9a to 9d show X-ray images of the pressure val-

ues in the mentioned cavity flow. These images have been

rendered in order to reveal differences between the four im-

plemented interpolation algorithms. In the OpenGL image

rendered without using the accumulation buffer, small flaws

can be detected, whereas the other sparse grid methods ren-

der nearly identical images.

In the other figures, sparse and full grid results are com-

pared using different lighting models and data sets. The two

images in Fig. 10 display iso-surfaces of the temperature in

the cavity flow data set. In Figs. 11a and 12a, the pressure

of the same data set is visualized by means of the maximum

intensity projection lighting model. In further maximum in-

tensity projection images (see Figs. 11b and 12b), the data

set of a spherical harmonic function is visualized. Then,

the temperature distribution in the cavity flow is depicted in

Figs. 11c and 12c by using an X-ray lighting model. Finally,

Figs. 13a to 14c show that the smoothness of extracted iso-

surfaces depends on the used grid level.

Considering the performance of our volume visualiza-

tion program we find that the time consumption of the X-ray

and maximum intensity projection algorithms is data inde-

pendent and exactly the same, while iso-surface rendering

takes about two times as long as the other methods. More-

over, the total time of the iso-surface computation depends

on the size of the extracted surface.

We tested our implementation on several Silicon Graph-

ics workstations, ranging from the O2 to an Onyx with Re-

alityEngineII and a BaseReality pipes. Since the O2 sys-

tems do not have hardware based 3D texture support, only

the software based interpolation schemes can be used in a

sensible way on these machines. We realized that rendering

times of both software implementations approximately in-

crease by a factor of 1 ✏ 4 every time the used level rises by

one, whereas the measured times of the hardware based im-

plementation increase by a factor of 1 ✏ 2 . The speed of the

interpolation on full grids does not depend on the used level,

as anticipated. The combination technique is between seven

and ten times faster than the sparse grid algorithm. Further-

a MIP image of

pressure distri

bution.

b MIP image of a

hydrogen atom.

c Xray image of

temperature

distribution.

Figure 11. Images calculated on a sparse grid.

a MIP image of

pressure distri

bution.

b MIP image of a

hydrogen atom.

c Xray image of

temperature

distribution.

Figure 12. For comparison: Images calculated on a

full grid.

more, the OpenGL hardware method is between 25 and 60

times faster than the software combination technique. This

results in a speed up factor between 200 and 450 from the

sparse grid to the hardware based method. Hence, we are

able to perform volume visualization on sparse grids in-

teractively exploiting the texture hardware for acceleration

purposes.

The combination technique requires about four to five

times the memory of the actual sparse grid algorithm since

some of the needed nodes are stored several times. The

OpenGL version of the combination methods consumes

about two and a half times the memory of the software ver-

sion, because each of the used textures has to have dimen-

sions that can be written as two to the i-th power. Neverthe-

less, compared with the original full grid data set, both im-

plementations of the combination technique require a neg-

ligible amount of memory.

5. Conclusion

We have presented sparse grids as a competing approach

for the compact representation of three-dimensional data

sets by means of hierarchical basis functions. We have in-

troduced two important visualization methods, particle trac-

ing and volume ray casting, working on the sparse grid rep-

resentation. They allow to carry out flow and volume vi-

sualization directly on the results from a numerical sparse
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a Level 4. b Level 6. c Full grid.

Figure 13. Isosurface of a discontinuous test data set

given on a sparse grid and on a full grid for comparison.

a Level 4. b Level 6. c Full grid.

Figure 14. Isosurface of an analytical function given

on a sparse grid and on a full grid for comparison.

grid simulation without prior transformation to the associ-

ated full grids. This is an important step for the broader

application of the sparse grid method, since in real appli-

cations it is often impossible to load full grids of more than

5123 nodes into the main memory of a workstation for visu-

alization purposes. Furthermore, the sparse grid approach

can be used as a compression method in order to realize

volume rendering of huge regular data sets on workstations

with a small amount of main memory.

Technically, we have presented several methods to accel-

erate the sparse grid interpolation process. For particle trac-

ing, we have implemented adaptive sparse grids with error

monitoring and the combination technique. By using tex-

ture graphics hardware, we have been able to overcome the

tardiness of sparse grid interpolation in the case of volume

visualization. Therefore, it is possible to use flow and vol-

ume visualization on sparse grids interactively, in contrast

to other compression approaches.

Compared to the well-known wavelet compression [6,

8], we can state advantages and disadvantages. The main

benefit of the wavelet compression is the fact that the

wavelet decomposition is data dependent, which means that

the resulting compression is by itself adapted to the underly-

ing data set. Comparing the decomposition process we find

the wavelet decomposition being comparatively difficult,

whereas the sparse grid decomposition is conceptually sim-

ple. On the other hand, the wavelet reconstruction is quite

simple, whereas the sparse grid reconstruction, i.e. the in-

terpolation, is rather complicated and very time consuming.

However, the basis functions used in the case of sparse grids

are so simple (compact support and piecewise tri-linear) that

the texture hardware can perform the reconstruction in con-

nection with the combination method. Hence, in the end it

turns out that the hardware assisted sparse grid volume visu-

alization is much faster than visualization methods working

on other compressed data sets.

We conclude this section by describing two scenarios

where the visualization process can take advantage of sparse

grid methods. First, we assume that a sparse grid data set

resulting from a numerical simulation is given. Then, there

are two possibilities for the visualization. The traditional

approach is to interpolate the data set once into a huge full

grid data set (see Table 1). If the resulting full grid squeezes

into the main memory of the machine, fast full grid volume

visualization methods can be performed. In contrast to this,

our strategy is to use the OpenGL algorithm for getting the

first images of the data long before the traditional interpo-

lation process will be finished. If the full grid data set does

not fit into the main memory, a direct sparse grid visual-

ization method has to be performed anyway. As a second

scenario, we assume that a huge full grid data set should

be visualized, which results from a numerical simulation or

from extensive measurements. Now, the sparse grid method

can be used to compress the huge data set such that it will

fit into the main memory of a workstation. Then, it is pos-

sible to visualize the compressed data using the techniques

presented in this paper.

6. Future Work

There are several directions of future work. Concerning

volume visualization, the first goal is to implement more so-

phisticated transfer functions and lighting models into our

visualization program, for instance an emission-absorption

model. As a second goal, we intend to use OpenGL in order

to accelerate the surface and volume illumination as well.

This approach is already used in case of volume render-

ing on full grids as described in [24, 29, 30]. As far as

particle tracing is concerned, additional visualization tech-

niques could be implemented on sparse grids. Feasible di-

rections are texture based algorithms and iconic methods

combined with feature extraction. Finally, our sparse grid

particle tracer could be extended to multi-block data sets in

the same way as it has been done in our full grid particle

tracing module [13].
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