
Scientific Workflow:
A Survey and Research Directions

Adam Barker and Jano van Hemert

{a.d.barker,j.vanhemert}@ed.ac.uk
National e-Science Centre, University of Edinburgh, United Kingdom

Abstract. Workflow technologies are emerging as the dominant ap-
proach to coordinate groups of distributed services. However with a space
filled with competing specifications, standards and frameworks from mul-
tiple domains, choosing the right tool for the job is not always a straight-
forward task. Researchers are often unaware of the range of technology
that already exists and focus on implementing yet another proprietary
workflow system. As an antidote to this common problem, this paper
presents a concise survey of existing workflow technology from the busi-
ness and scientific domain and makes a number of key suggestions to-
wards the future development of scientific workflow systems.

1 Introduction

Service-oriented architectures are a popular architectural paradigm for building
software applications from a number of loosely coupled, distributed services. By
loosely coupled we mean that the client of a service is essentially independent
from the service itself. When a client (which can be another service) makes an
invocation on a remote service, it does not need to concern itself with the inner
workings (for example, what language it is written in) to take advantage of its
functionality. Loosely coupled services are often more flexible than traditional
tightly coupled applications; in a tightly coupled architecture, the different com-
ponents are bound to one another, sharing semantics, libraries and often state;
making it difficult to evolve the application. As services are independent from
one another they offer a greater degree of flexility and scalability for evolving
applications. Although the concept of service-oriented architectures is not a new
one, this paradigm has seen wide spread adoption through the Web services ap-
proach, which makes use of a suite of standards such as XML, WSDL and SOAP,
to facilitate service interoperability.

Web services in their vanilla form provide a simple solution to a simple prob-
lem, things become more complex when a group of services need to coordinate
together to achieve a shared task or goal. This coordination is often achieved
through the use of workflow technologies. As defined by the Workflow Manage-
ment Coalition [1], a workflow is the automation of a business process, in whole
or part, during which documents, information or tasks are passed from one par-
ticipant (a resource; human or machine) to another for action, according to a
set of procedural rules.



Workflow provides the glue for distributed services, which are owned and
maintained by multiple organisations. Although originally a concept applied to
automate repetitive tasks in business, there is currently much interest in the
scientific domain to automate distributed experiments. The plethora of compet-
ing workflow specifications, standards, frameworks and toolkits from both the
business and scientific community cause researchers and engineers to decide it
is safer to reinvent the wheel by implementing yet another proprietary work-
flow language rather than investing time in existing workflow technologies. As
a response to this re-occuring problem, this paper provides a concise survey of
existing workflow technology from the business and scientific domain, and uses
this to make a number of key suggestions.

2 Business workflow technology

As workflow technology was first adopted by the business community, this has
led to a space crowded with competing specifications, from opposing compa-
nies, some of which have risen to the top, superseding others. Before discussing
the standards it is important to note that there are two main architectural
approaches to implementing workflow; service orchestration and service chore-
ography.

Service orchestration refers to an executable business process that may in-
teract with both internal and external services. Orchestration describes how ser-
vices can interact at the message level, with an explicit definition of the control
and data flow. Orchestrations can span multiple applications and/or organisa-
tions and result in long-lived, transactional processes. A central process always
acts as a controller to the involved services and the services themselves have no
knowledge of their involvement in a higher level application.

The Business Process Execution Language (BPEL) [2] is an executable busi-
ness process modelling language and currently the current de-facto standard
way of orchestrating Web services. It has broad industrial support from com-
panies such as IBM, Microsoft and Oracle. Industrial support brings concrete
implementations, tools and training. Recent efforts from the Open Middleware
Infrastructure Institute UK (OMII-UK) have resulted in an open-source graph-
ical editor, called BPEL Designer [3].

Other languages have been developed but have not been as widely adopted
by the community. Yet Another Workflow Language (YAWL) [4] is based on
the rigourous analysis of workflow patterns, a particular type of design pattern.
YAWL aims to support all (or most) of the workflow patterns and has a formal
underpinning based on Petri-nets. The language is supported by an an Open
Source implementation [5] and has some industrial support. XML Process Defi-
nition Language (XPDL) is a format standardised by the Workflow Management
Coalition (WfMC) to interchange Business Process definitions between different
workflow products like modelling tools and workflow engines. WfMOpen [6] is
an open-source J2EE based implementation of a workflow engine as proposed
by the Workflow Management Coalition (WfMC) and the Object Management
Group (OMG), WfMOpen uses XPDL as input.



Service choreography on the other hand is more collaborative in nature. A
choreography model describes a collaboration between a collection of services
in order to achieve a common goal. Choreography describes interactions from a
global perspective, meaning that all participating services are treated equally,
in a peer-to-peer fashion. Each party involved in the process describes the part
they play in the interaction. Choreography focuses on message exchange, all
involved services are aware of their partners and when to invoke operations. Or-
chestration differs from choreography in that it describes a process flow between
services from the perspective of one participant (centralised control), choreog-
raphy on the other hand tracks the sequence of messages involving multiple
parties (decentralised control, no central server), where no one party truly owns
the conversation.

The Web Services Choreography Description Language (WS-CDL) [7] is an
XML-based language that can be used to describe the common and collaborative
observable behavior of multiple services that need to interact in order to achieve
a shared goal. WS-CDL describes this behavior from a global or neutral per-
spective rather than from the perspective of any one party. WS-CDL is designed
to sit on top of the Web services interface language, WSDL. WSDL focuses on
capturing message types, while WS-CDL is about capturing behaviour. A user
models a choreography from a global perspective, then each service will have to
be programmed by a developer in such a way that they talk to one another, and
in doing so, enforce the constraints of the choreography. WS-CDL supersedes the
Web Service Choreography Interface (WSCI), although the language is defined
by a W3C specification, at the time of writing no implementations exist and
interest in the specification has dwindled.

3 Scientific workflow technology

The concepts of workflow have recently been applied to automating large-scale
science (or e-Science), coining the term scientific workflow [8]. Business work-
flow tools look more like traditional programming languages, and are in general
pitched at the wrong level of abstraction for scientists to take advantage of. In-
stead, scientists require higher level tools, which enable them to plug together
problem solving components to prove a scientific hypothesis. A scientific work-
flow attempts to capture a series of analytical steps, which describe the design
process of computational experiments. Scientific workflow systems provide an
environment to aid the scientific discovery process through the combination of
scientific data management, analysis, simulation, and visualisation.

Scientific and business workflows began from the same common ground. Both
communities have overlapping requirements, however they each have their own
domain specific requirements, and therefore need separate consideration. Scien-
tific work is centred around conducting experiments, therefore a scientific work-
flow system should mirror a scientist’s conventional work patterns by allowing
them to apply their methodology over distributed resources. The workflow sys-
tem should allow the same information to be shown at various levels of abstrac-
tion, depending on who is using the system. A high level of abstraction should



be presented to the scientist, who we assume knows nothing, about the under-
pinnings of service composition. The elements of the workflow should be in the
context of the appropriate scientific domain and allow the scientist to validate
a hypothesis. The process of constructing a workflow that achieves this valida-
tion will generally be built in an incremental manner as opposed to the business
oriented approach where a workflow will be designed and then implemented.
It is therefore essential that the workflow language and scientific workflow sys-
tem can support this kind of user-driven, incremental, prototypical approach
to workflow composition. As the validation of scientific hypotheses depend on
experimental data, scientific workflow tends to have an execution model that is
dataflow-oriented, where as business workflow places an emphasis on control-flow
patterns and events.

Workflows in the scientific community involve the transportation and analysis
of large quantities of data between distributed repositories. Scientists will have
to schedule and fund the use of expensive resources and cannot afford for a
workflow to fail half way through the execution cycle. It is therefore desirable
that the systems that support them are robust and dependable. In addition,
they should support incremental workflow construction and must be able to run
detached from the user console.

As a consequence of the lengthy, iterative design process, workflows become
a valued commodity and a source of intellectual capital. The output of work-
flows or workflows themselves may be used as a basis for future research, either
by the scientists who generated the data, or colleagues in a related field. This
methodology is consistent with the usual practise of non-computational labs.
These workflows should be reused, refined over time, and shared with other sci-
entists in the field. Scientific workflows must be fully reproducible. In order for a
workflow to be reproduced, provenance information must be recorded that indi-
cates where the data originated, how it was altered, and which components and
what parameter settings were used. This will allow other scientists to re-conduct
the experiment, confirming the results.

Similar to the business domain, the space of scientific workflow systems has
become crowded with different languages and frameworks allowing scientists to
automate tasks through a workflow. Below we provide a survey of the most
popular workflow systems.

Taverna is an open-source, Grid-aware workflow management system; it pro-
vides a set of transparent, loosely-coupled, semantically-enabled middle-ware to
support scientists that perform data-intensive in-silico [9] experiments on dis-
tributed resources. Taverna is implemented as a service-oriented architecture,
based on Web service standards. Provenance [10] plays an integral part in Tav-
erna, allowing users to capture and inspect details such as who conducted the
experiment, what services were used, and what the results of services provided.
Taverna uses a proprietary language, the Simple Conceptual Unified Flow Lan-
guage or SCUFL [11] for short. The SCUFL language is a high level XML-based
conceptual language allowing a user to define a workflow through groups of local
or remote services which are connected with data links (providing data flow)



and control links (allowing coordination of services not connected through data
flow). The Taverna workbench depends on the FreeFluo engine [9].

Kepler [12] is an open-source scientific workflow engine with contributors
from a range of application-oriented research projects. Kepler is built upon the
Ptolemy II system [13] based at the University of California at Berkeley, which
is a mature dataflow-oriented workflow architecture. In Kepler, the focus is on
actor-oriented design. Actors are re-usable independent blocks of computation,
such as: Web services, database calls etc. They consume data from a set of
inports and write data to a set of outports. A group of actors can then be wired
together by introducing a mapping from outports to inports. A novel feature
in Kepler allows the actor communication (dataflow) concerns to be separated
from the overall workflow coordination, which is defined in a separate component
called a director. This separation allows a workflow model to be run with different
execution semantics, such as synchronous dataflow and process networks. Kepler
provides a large variety of computational models inherited from the Ptolemy II
system and uses the proprietary Modelling Markup Language.

Triana [14] is an open-source problem solving environment and a test ap-
plication for the GridLab project [15]. It is designed to define, process, analyse,
manage, execute and monitor workflows. The toolkit allows users to compose
workflows graphically by dragging programming components called units or tools
onto a workspace; connectivity is achieved by wiring components together using
data and control links. Triana can distribute sections of a workflow to remote
machines through a connected peer-to-peer network. Triana supports multiple
languages by allowing different workflow readers/writers to be plugged in, in-
cluding: Web Services Flow Language (WSFL), Directed Acyclic Graph (DAG),
Business Process Execution Language (BPEL) and Petrinet formats.

Planning for Execution in Grids or Pegasus [16] is a framework which maps
scientific workflows onto distributed resources such as a Grid. Abstract workflows
designed by a domain scientist are independent of any resources they will be
executed on, this allows a scientist to focus on workflow design rather than
having to decide which physical resources to use. Pegasus then attempts to
find a mapping of the tasks to the available resources for execution at runtime
through the use of Artificial Intelligence planning techniques. Pegasus uses the
proprietary language, DAX at the abstract level which is an XML representation
of DAG.

GridNexus [17] is a graphical system for creating and executing scientific
workflows in a Grid environment. GridNexus allows the user to assemble com-
plex processes involving data retrieval, analysis and visualisation by building a
directed acyclic graph (DAG) in a visual environment. The graphical user inter-
face (GUI) of GridNexus, like Kepler is based on Ptolemy II from UC Berkeley.
Once a scientist has designed a workflow using the GUI editor it is translated
into the proprietary XML-based language, JXPL. Importantly GridNexus sep-
arates the GUI from the execution of the workflow, hence once constructed a
workflow (described using JXPL) can be executed locally or remotely.

DiscoveryNet [18] is an EPSRC funded project to build a platform for sci-
entific knowledge discovery from the data generated by a wide variety of high



throughput devices at Imperial College, London. DiscoveryNet takes a service-
oriented view and provides a concrete implementation firstly for scientists to
plan, manage and share knowledge discovery and secondly for service providers
to publish data mining and data analysis software components. The Discovery
Process Markup Language (DPML) is a proprietary XML-based language which
describes process as dataflow graphs, a user can compose a workflow by wiring
together nodes (which represent datasets and functions) as a directed acyclic
graph.

Other projects worth referencing are the Bioinformatics Workflow Builder
Interface (BioWBI) [19], an IBM Web-based environment for constructing and
executing workflows in the Life Sciences community, GridBus [20], a Grid-aware
workflow execution environment, Imperial College e-Science Networked Infras-
tructure (ICENI) [21], and Magenta [22], an open-source, decentralised Web
services composition tool. The Workflow Enactment Engine Project (WEEP)
aims to implement an easy to use workflow enactment engine for WS-I/WSRF
services using WS-BPEL 2.0 (Web Services Business Process Execution Lan-
guage) as a formalism to process and execute workflows, which currently focus
on data mining tasks [23].

4 Discussion

Through our experience of evaluating workflow frameworks, this paper makes the
following observations for improvements and future research concerning usability,
sustainability and tool adoption:

Collaboration is key. With so many tools available, it is essential that re-
searchers from multiple domains form collaborative groups to meet and discuss
the common, overlapping requirements. Collaboration is necessary in order to
prevent implementing highly specific, hardly used features, as well as preventing
reinvention of any wheels.

Use a conventional scripting language instead. There is increased interest and
hype surrounding workflow technology and often it is oversold to domain scien-
tists. Existing scripting languages (Perl etc.) have received much investment,
both in the form of training and in the development of features such as debug-
ging, extensive add-on libraries and integrated editors. These features have yet
to be included in workflow systems. Workflow systems essentially have to start
from scratch, re-implementing each feature for a specific framework.

Do not implement another workflow language. As demonstrated by our survey
of workflow technology, implementing yet another workflow language is the last
thing that researchers should be doing. There are many well developed and well
supported frameworks, which researchers should first investigate.

Abstract is not abstract enough. “Research your domain” may seem like an
obvious statement, but it is a fact that the day-to-day tools that scientists use
differ vastly from one domain to the next. Experience with working alongside
domain scientists has taught us that wet laboratory biologists are uncomfortable
using even the most abstract workflow tools currently available. Problem solving
in terms of services is outside the normal pattern of thinking. On the other end of



the spectrum, physics researchers are comfortable with command-line tools and
are used to thinking about problems in terms of programming. Tools need to be
tailored to the domain instead of being built by computer scientists for computer
scientists. Research into intelligent, abstract editors should be a priority for the
scientific community, preliminary examples can be seen through the Taverna and
Pegasus frameworks.

Stick to standards. It is still unclear if the processes required of a scientific do-
main can be captured using business workflow technology such as BPEL. To this
end, does it make sense to create languages specifically for scientific workflow,
like SCUFL which is used in Taverna? BPEL has become the de-facto standard
workflow language, supported by industrial strength software implementations
by major vendors. With this level of support, from the perspective of the user
it makes sense to stick to standards instead of tying oneself to a proprietary
workflow language. If software development and tool support terminates on one
of the proprietary frameworks, workflows will need to be re-implemented from
scratch. Instead, standards need to be viewed in a different way, research needs
to be targeted at providing powerful abstraction mechanisms for languages such
as BPEL and providing integrated tool support. These mechanisms should allow
scientists to model workflows from higher levels of abstraction and automatically
translate them into BPEL processes that will run on any BPEL workflow engine.
BPEL designer, which is part of OMII-UK software stack, is an initial step at
providing these abstractions.

Portal-based access. Through our experience, even if workflow tools are made
available to domain scientists they often cannot and will not download and install
them. These tools need to be made available through portals, taking advantage
of thin client technology such as AJAX.

It is clear from our survey of existing workflow technology that the space is
starting to get crowded with competing alternatives. Business workflow specifi-
cations and standards are the result of rival companies negotiations. With these
concrete standards come industrial strength software. Scientific workflow on the
other hand is a relatively new area of interest, each project has its own unique
set of requirements and often develops yet another proprietary language and
workflow execution engine.

To encourage the adoption of existing tools, this paper has presented a concise
survey of business and scientific workflow technologies. Furthermore, we have
pointed out important research directions that make the existing technologies
more suitable within the context of scientific workflow.

References

1. Hollingsworth, D.: The Workflow Reference Model. Workflow Management Coali-
tion. Document Number tc00-1003 edn. (1995)

2. The OASIS Committee: Web Services Business Process Execution Language (WS-
BPEL) Version 2.0 (2007)

3. Wassermann, B., et al.: Sedna: A BPEL-based environment for visual scientific
workflow modelling. Workflows for eScience - Scientific Workflows for Grids (2006)

4. van der Aalst, W., ter Hofstede, A.: Yet another workflow language. Information
Systems 30(4) (2005) 245–275



5. van der Aalst, W.M.P., et al.: Design and Implementation of the YAWL system. In:
Proceedings of the 16th International Conference on Advanced Information Sys-
tems Engineering (CAiSE’04). (2004) http://sourceforge.net/projects/yawl/.

6. Lipp, M.: The Danet Workflow Component V2.1. (2007) http://wfmopen.

sourceforge.net/.
7. Kavantzas, N., et al.: Web Services Choreography Description Language Version

1.0 (2005)
8. Deelman, E., Gil, Y.: Workshop on the Challenges of Scientific Workflows. Techni-

cal report, Information Sciences Institute, University of Southern California (2006)
9. Oinn, T., et al: Taverna: a tool for the composition and enactment of bioinformatics

workflows. Bioinformatics 20(17) (2004) 3045–3054
10. Zhao, J., et al: Annotating, linking and browsing provenance logs for e-Science.

In: 1st Workshop on Semantic Web Technologies for Searching and Retrieving
Scientific Data, Sanibel Island, Florida, USA. (2003)

11. Oinn, T., et al: Delivering Web Service Coordination Capability to Users. In:
WWW2004, New York. (2004) 438–439

12. Ludascher, B., et al.: Scientific workflow management and the kepler system.
Concurrency and Computation: Practice and Experience 18(10) (2005) 1039–1065

13. Buck, J.T., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: A framework for sim-
ulating and prototyping heterogeneous systems. Journal of Computer Simulation
4 (1994) 155–182

14. Taylor, I.J., et al.: Distributed P2P Computing within Triana: A Galaxy Visu-
alization Test Case. In: 17th International Parallel and Distributed Processing
Symposium (IPDPS 2003), IEEE Computer Society (2003) 16–27

15. Allen, G., et. al: Enabling Applications on the Grid: A GridLab Overview. Inter-
national Journal of High Performance Computing Applications: Special Issue on
Grid Computing: Infrastructure and Applications 17(4) (2003) 449–466

16. Deelman, E., et al.: Pegasus: A framework for Mapping Complex Scientific Work-
flows onto Distributed Systems. Scientific Programming Journal 13(3) (2005) 219–
237

17. Brown, J.L., et al.: GridNexus: A Grid Services Scientific Workflow System. In-
ternational Journal of Computer Information Science (IJCIS) 6(2) (2005) 72–82

18. Rowe, A., et al.: The Discovery Net System for High Throughput Bioinformatics.
Bioinformatics 19(1) (2003) 225–231

19. Siepel, A.C., et al.: An integration platform for heterogeneous bioinformatics soft-
ware components. IBM Systems Journal 40(2) (2001) 570–591

20. Buyya, R., Venugopal, S.: The Gridbus Toolkit for Service Oriented Grid and
Utility Computing: An Overview and Status Report. In: Proceedings of the First
IEEE International Workshop on Grid Economics and Business Model. (2004) 19–
36

21. Mayer, A., et al.: Meaning and Behaviour in Grid Oriented Components. In: Lec-
ture Notes in Computer Science. Volume 2536., Springer-Verlag Berlin Heidelberg
(2002) 100–111

22. Walton, C., Barker, A.D.: An Agent Based e-Science Experiment Builder. In:
Proceedings of The 1st International Workshop on Semantic Intelligent Middleware
for the Web and the Grid, European Conference on Artificial Intelligence (ECAI).
(2004)

23. Janciak, I., Kloner, C.: Workflow enactment engine project v1.0 (2007) http:

//weep.gridminer.org/.

http://sourceforge.net/projects/yawl/
http://wfmopen.sourceforge.net/
http://wfmopen.sourceforge.net/
http://weep.gridminer.org/
http://weep.gridminer.org/

	Adam Barker and Jano van Hemert

