

Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta

USC Information Sciences Institute

{gideon,deelman,vahi,gmehta}@isi.edu

Bruce Berriman

NASA Exoplanet Science Institute, Infrared

Processing and Analysis Center, Caltech

gbb@ipac.caltech.edu

Benjamin P. Berman

USC Epigenome Center

bberman@usc.edu

Phil Maechling

Southern California Earthquake Center

maechlin@usc.edu

Abstract
 The proliferation of commercial cloud computing

providers has generated significant interest in the

scientific computing community. Much recent research

has attempted to determine the benefits and drawbacks

of cloud computing for scientific applications. Although

clouds have many attractive features, such as

virtualization, on-demand provisioning, and “pay as

you go” usage-based pricing, it is not clear whether

they are able to deliver the performance required for

scientific applications at a reasonable price. In this

paper we examine the performance and cost of clouds

from the perspective of scientific workflow applications.

We use three characteristic workflows to compare the

performance of a commercial cloud with that of a

typical HPC system, and we analyze the various costs

associated with running those workflows in the cloud.

We find that the performance of clouds is not

unreasonable given the hardware resources provided,

and that performance comparable to HPC systems can

be achieved given similar resources. We also find that

the cost of running workflows on a commercial cloud

can be reduced by storing data in the cloud rather than

transferring it from outside.

1. Introduction

 The developers of scientific applications have
many options when it comes to choosing a platform to

run their applications. In the past these options

included: local workstations, clusters, supercomputers

and grids. Each of these choices offers various tradeoffs

in terms of usability, performance, and cost. Recently,

cloud computing has emerged as another promising

solution for scientific applications and is rapidly

gaining interest in the scientific community.

 Many definitions of cloud computing have been

proposed [4,34] [13]. These definitions vary in the

scope of what constitutes a cloud and what features a
cloud provides. For the purposes of this paper we

consider a cloud to be a cluster that offers virtualized

computational resources, service-oriented provisioning,

and a “pay as you go” usage-based pricing model.

Currently there are several commercial clouds that offer

these features, such as Amazon EC2 [2], GoGrid [17],

and FlexiScale [12]. In addition, it is now possible to

build private clouds using open-source cloud

computing middleware such as Eucalyptus [27],

OpenNebula [28], and Nimbus [26].

 Clouds offer many technical and economic

advantages over other platforms that are just

beginning to be identified. They combine the

customization of virtual machines, the scalability and
resource sharing of grids, and the stability and

economy of software as a service (SaaS). The use of

virtualization in particular has been shown to provide

many useful benefits for scientific applications,

including: user-customization of system software and

services, performance isolation, check-pointing and

migration, better reproducibility of scientific

analyses, and enhanced support for legacy

applications [11][19].

 Recently, many studies have investigated the use

of clouds and virtualization for scientific applications
[33] [36] [24] [32] [35] [10] [16]. These studies have

primarily focused on tightly-coupled applications and

common HPC benchmarks.

 In this paper we study the use of cloud

computing for scientific workflows. Workflows are

loosely-coupled parallel applications that consist of a

series of computational tasks connected by data- and

control-flow dependencies. Many scientific analyses

are easily expressed as workflows and they are

commonly used to solve problems in many

disciplines [37].

 Clouds provide several benefits for workflow
applications. These benefits include:

• Illusion of infinite resources—Unlike

grids, clouds give the illusion that the

available computing resources are unlimited.

This means that users can request, and are

likely to obtain, sufficient resources at any

given time. Existing commercial clouds

have a different workload than grids,

however, and the illusion may break down

for very large workflows, or if clouds

become popular for scientific computing.
• Leases—In grids and clusters the user

specifies the amount of time required for a

computation and delegates responsibility for

allocating resources to a batch scheduler. In

Scientific Workflow Applications on Amazon EC2

978-1-4244-5945-2/09/$26.00  2009 IEEE e-Science 2009 Workshops59

clouds, the user directly allocates resources as

required to schedule their computations. This

model is ideal for workflows and other

loosely-coupled applications because it

decreases the scheduling overheads that can

significantly reduce their performance.
• Elasticity—Clouds allow users to acquire and

release resources on-demand. This enables

workflow systems to easily grow and shrink

the available resource pool as the needs of the

workflow change over time.

 Previous work on the use of cloud computing for

workflows has studied the cost and performance of

clouds via simulation [8] and using an experimental

cloud [18]. In this paper we extend that work using

several workflows that represent different domains and

different resource requirements. We use an existing

commercial cloud, Amazon’s EC2 [2], in order to
assess the potential of currently deployed clouds. We

analyze the cost of running the experiments on EC2,

and compare the EC2 performance to a typical HPC

system, NCSA’s Abe cluster [25].

 The contributions of this paper are:

• an experimental study of the performance of

three workflows with different I/O, memory

and CPU requirements on a commercial cloud

• a comparison of the performance of cloud

resources and typical HPC resources, and

• an analysis of the various costs associated with
running workflows on a commercial cloud.

In this paper we focus on single, multi-core node

performance, which provides adequate capabilities for

the applications we are evaluating in this paper.

2. Applications

 In order to evaluate the usefulness of cloud

computing for scientific workflows we ran three

different workflow applications: an astronomy

application (Montage), a seismology application

(Broadband), and a bioinformatics application

(Epigenomics). These three applications were chosen

because they cover a wide range of application domains
and a wide range of resource requirements. Table 1

shows the relative resource usage of these applications

in three different categories: I/O, memory, and CPU. In

general, applications with high I/O usage are I/O-

bound, applications with high memory usage are

memory-limited, and applications with high CPU usage

are CPU-bound.

 Montage [21] creates science-grade astronomical

image mosaics using data collected from telescopes.

The size of a Montage workflow depends upon the area

of the sky (in square degrees) covered by the output

mosaic. In our experiments we configured Montage
workflows to generate an 8-degree mosaic. The

resulting workflow contains 10,429 tasks, reads 4.2 GB

of input data, and produces 7.9 GB of output data.

Montage is considered to be I/O-bound because it

spends more than 95% of its time waiting on I/O

operations.

 Broadband [30] generates and compares

seismograms from several high- and low-frequency
earthquake simulation codes. Each workflow

generates seismograms for several sources (scenario

earthquakes) and sites (geographic locations). For

each (source, site) combination the workflow runs

several high- and low-frequency earthquake

simulations and computes intensity measures of the

resulting seismograms. In our experiments we used 4

sources and 5 sites to generate a workflow containing

320 tasks that reads 6 GB of input data and writes

160 MB of output data. Broadband is considered to

be memory-limited because more than 75% of its

runtime is consumed by tasks requiring more than 1
GB of physical memory.

 Epigenome [31] maps short DNA segments

collected using high-throughput gene sequencing

machines to a previously constructed reference

genome using the MAQ software [22]. The workflow

splits several input segment files into small chunks,

reformats and converts the chunks, maps the chunks

to a reference genome, merges the mapped sequences

into a single output map, and computes the sequence

density for each location of interest in the reference

genome. The workflow used in our experiments maps
human DNA sequences to a reference chromosome

21. The workflow contains 81 tasks, reads 1.8 GB of

input data, and produces 300 MB of output data.

Epigenomics is considered to be CPU-bound because

it spends 99% of its runtime in the CPU and only 1%

on I/O and other activities.

Table 1: Application resource usage comparison

Application I/O Memory CPU

Montage High Low Low

Broadband Medium High Medium

Epigenomics Low Medium High

3. Execution Environment

 In this section we describe the experimental

setup that was used to run workflows. We ran

experiments on Amazon EC2 and NCSA’s Abe

cluster. EC2 was chosen because it is currently the
most popular, feature-rich, and stable commercial

cloud. Abe was chosen because it is typical of the

existing HPC systems a scientist could choose to run

their workflow application and is therefore a logical

alternative to EC2.

 Workflows are loosely-coupled parallel

applications that consist of a set of computational

tasks linked via data- and control-flow dependencies.

Unlike tightly-coupled applications in which tasks

60

communicate directly via the network, workflow tasks

typically communicate using the file system. Each task
produces one or more output files that become input

files to other tasks. In HPC systems these files are

typically stored on a network file system, which allows

the workflow to run in parallel on several nodes.

 One of the advantages of HPC systems over

currently deployed commercial clouds is the availability

of high-performance I/O devices. HPC systems

commonly provide high-speed networks and parallel

file systems, while most commercial clouds use

commodity networking and storage devices. These

high-performance devices increase workflow
performance by making inter-task communication more

efficient. In order to have an unbiased comparison of

the performance of workflows on EC2 and Abe, the

experiments presented in this paper attempt to account

for these differences by a) running all experiments on

single nodes and b) running experiments using the local

disk on both EC2 and Abe, and the parallel file system

on Abe.

 The use of single nodes minimizes the advantage

that Abe has as a result of having a high-speed

interconnect. Although single-node experiments do not

enable us to measure the scalability of cloud services
they do provide an application-oriented understanding

of the capabilities of the underlying resources that can

help in making provisioning decisions. Testing the

scalability of cloud services when running workflows

on multiple nodes is left for future work.

 Running experiments using both the parallel file

system and the local disk on Abe allows us to determine

what performance advantage, if any, Abe nodes have as

a result of parallel I/O. It is expected that the use of a

parallel file system will significantly improve the

runtime of I/O-intensive applications like Montage, but
will be less of an advantage for CPU-intensive

applications like Epigenome.

3.1 Resources

 Table 2 compares the resource types used for the

experiments. It lists 5 resource types from EC2 (m1.*

and c1.*) and 2 resource types from Abe (abe.local and

abe.lustre). There are several noteworthy details about

the resources shown. First, although there is actually

only one type of Abe node, there are two types listed in
the table: abe.local and abe.lustre. The actual hardware

used for these types is equivalent, the difference is in

how I/O is handled. The abe.local type uses a local
partition for I/O, and the abe.lustre type uses a Lustre

partition for I/O. Using two different names is simply

a notational convenience.

 Second, in terms of computational capacity, the

c1.xlarge resource type is roughly equivalent to the

abe.local resource type with the exception that

abe.local has slightly more memory. We use this fact

to estimate the virtualization overhead for our test

applications on EC2.

 Third, in rare cases EC2 assigns Xeon processors

for m1.* instances, but for all of the experiments
reported here the m1.* instances used were equipped

with Opteron processors. The only significance is

that Xeon processors have better floating-point

performance than Opteron processors (4 FLOP/cycle

vs. 2 FLOP/cycle).

 Finally, the m1.small instance type is shown

having ½ core. This is possible because of

virtualization. EC2 nodes are configured to give

m1.small instances access to the processor only 50%

of the time. This allows a single processor core to be

shared equally between two separate m1.small

instances.

3.2 Software

 All workflows were planned and executed using

the Pegasus Workflow Management System [9] with

DAGMan [6] and Condor [23]. Pegasus is used to

transform abstract workflow descriptions into

concrete plans, which are then executed using

DAGMan to manage task dependencies, and Condor

to manage task execution.

 The software was deployed on EC2 as shown in
Figure 1. A submit host running outside the cloud

was used to coordinate the workflow, and worker

nodes were started inside the cloud to execute

workflow tasks. Two virtual machine images were

used to start worker nodes: one for 32-bit instance

types and one for 64-bit instance types. Both images

were based on the standard Fedora Core 8 images

provided by Amazon. To the base images we added

Condor, Pegasus and other miscellaneous packages

required to compile and run the selected applications.

Compressed, the 32-bit image was 773 MB and the
64-bit image was 729 MB. Uncompressed, the 32-bit

Table 2: Resource types used
Type Arch. CPU Cores Memory Network Storage Price

m1.small 32-bit 2.0-2.6 GHz Opteron 1/2 1.7 GB 1-Gbps Ethernet Local disk $0.10/hr

m1.large 64-bit 2.0-2.6 GHz Opteron 2 7.5 GB 1-Gbps Ethernet Local disk $0.40/hr

m1.xlarge 64-bit 2.0-2.6 GHz Opteron 4 15 GB 1-Gbps Ethernet Local disk $0.80/hr

c1.medium 32-bit 2.33-2.66 GHz Xeon 2 1.7 GB 1-Gbps Ethernet Local disk $0.20/hr

c1.xlarge 64-bit 2.33-2.66 GHz Xeon 8 7.5 GB 1-Gbps Ethernet Local disk $0.80/hr

abe.local 64-bit 2.33 GHz Xeon 8 8 GB 10-Gbps InfiniBand Local disk N/A

abe.lustre 64-bit 2.33 GHz Xeon 8 8 GB 10-Gbps InfiniBand Lustre N/A

61

image was 2.1 GB and the 64-bit image was 2.2 GB.

The images did not include any application-specific

configurations, so we were able to use the same set of

images for all experiments. All images are stored in

Amazon S3 [3]. S3 is an object-based, replicated

storage service that supports simple PUT and GET
operations on file-like binary objects.

 For the Abe experiments Globus [14] and Corral

[7] were used to deploy Condor glideins [15] as shown

in Figure 2. The glideins started Condor daemons on

the Abe worker nodes, which contacted the submit host

and were used to execute workflow tasks. This

approach creates an execution environment on Abe that

is equivalent to the EC2 environment.

Figure 1: Execution environment on EC2

Figure 2: Execution environment on Abe

3.3 Storage

 To run workflows we need to allocate storage for

1) application executables, 2) input data, and 3)
intermediate and output data. In a typical workflow

application executables are pre-installed on the

execution site, input data is copied from an archive to

the execution site, and output data is copied from the

execution site to an archive. For these experiments,

executables and input data were pre-staged to the

execution site, and output data were not transferred

from the execution site.

 For EC2, executables were installed in the VM

images, intermediate and output data was written to a

local partition, and input data was stored on EBS

volumes.
 The Elastic Block Store (EBS) [1] is a SAN-like,

replicated, block-based storage service that can be used

with EC2 instances. EBS volumes can be created in any

size between 1 GB and 1 TB and appear as standard,

unformatted block devices when attached to an EC2

instance. As such, EBS volumes can be formatted

with standard UNIX file systems and used like an

ordinary disk, but they cannot be shared between

multiple instances.

 EBS was chosen to store input data for a number

of reasons. First, storing inputs in the cloud obviates
the need to transfer input data repeatedly. This saves

both time and money because transfers cost more

than storage. Second, using EBS avoids the 10 GB

limit on VM images, which is too small to include the

input data for all the applications tested. We can

access the data as if it were on a local disk without

packaging it in the VM image. A simple experiment

using the disk copy utility ‘dd’ showed similar

performance reading from EBS volumes and the local

disk (74.6 MB/s for local, and 74.2 MB/s for EBS).

Finally, using EBS simplifies our setup by allowing

us to reuse the same volume for multiple
experiments. When we need to change instances we

just detach the volume from one instance and re-

attach it to another.

 For Abe, all application executables and input

files were stored in the Lustre file system. For

abe.local experiments the input data was copied to a

local partition (/tmp) before running the workflow,

and all intermediate and output data was written to

the same local partition. For abe.lustre, all

intermediate and output data was written to the

Lustre file system.

4. Performance Comparison

 In this section we compare the performance of

the selected workflow applications by executing them

on Abe and EC2. The critical performance metric we

are concerned with is the runtime of the workflow

(also known as the makespan), which is the total

amount of wall clock time from the moment the first

workflow task is submitted until the last task

completes. The runtimes reported for EC2 do not

include the time required to install and boot the VM,

which typically averages between 70 and 90 seconds

[20], and the runtimes reported for Abe do not
include the time glidein jobs spend waiting in the

queue, which is highly dependent on the current

system load. Also, the runtimes do not include the

time required to transfer input and output data (see

Table 4). We assume that this time will be variable

depending on WAN conditions. A study of

bandwidth to/from Amazon services is presented in

[29]. In our experiments we typically observed

bandwidth on the order of 500-1000KB/s between

EC2 and our submit host in Marina del Rey, CA.

 We estimate the virtualization overhead for each

application by comparing the runtime on c1.xlarge
with the runtime on abe.local. Measuring the

difference in runtime between these two resource

62

types should provide a good estimate of the cost of

virtualization.

 Figure 3 shows the runtime of the selected

applications using the resource types shown in Table 2.

In all cases the m1.small resource type had the worst

runtime by a large margin. This is not surprising given
its relatively low capabilities.

Figure 3: Runtime comparison

4.1 Montage

 For Montage the best EC2 performance was

achieved on the m1.xlarge type. This is likely due to the

fact that m1.xlarge has twice as much memory as the

next best resource type. The extra memory is used by

the Linux kernel for the file system buffer cache to

reduce the amount of time the application spends

waiting for I/O. This is particularly beneficial for

Montage, which is very I/O-intensive.

 The best overall performance for Montage was

achieved using the abe.lustre configuration, which was

more than twice as fast as abe.local. This large gap

suggests that having a parallel file system is a
significant advantage for I/O-bound applications like

Montage.

 The difference in runtime between the c1.xlarge

and abe.local experiments suggests that the

virtualization overhead for Montage is less than 8%.

4.2 Broadband

 The best overall runtime for Broadband was

achieved by using the abe.lustre resource type, and the

best EC2 runtime was achieved using the c1.xlarge
resource type. This is despite the fact that only 6 of the

8 cores on c1.xlarge and abe.lustre could be used due to

memory limitations.

 Unlike Montage the difference between running

Broadband on a relatively slow local disk (abe.local)

and running on the parallel file system (abe.lustre) is

not as significant. This is attributed to the lower I/O

requirements of Broadband.

 Broadband performs the worst on m1.small and

c1.medium, which also have the lowest amount

memory (1.7 GB). This is because m1.small has only

half a core, and c1.medium can only use one of its

two cores because of memory limitations.

 The difference between the runtime using

c1.xlarge and the runtime using abe.local was only

about 1%. This small difference suggests a relatively

low virtualization penalty for Broadband.

4.3 Epigenomics

 For Epigenomics the best EC2 runtime was

achieved using c1.xlarge and the best overall runtime

was achieved using abe.lustre. The primary factor

affecting the performance of Epigenome was the

availability of processor cores, with more cores

resulting in a lower runtime. This is expected given

that Epigenome is almost entirely CPU-bound.

 The difference between the abe.lustre and
abe.local runtimes was only about 2%, which is

consistent with the fact that Epigenome has relatively

low I/O and is therefore less affected by the parallel

file system.

 The difference between the abe.local and the

c1.xlarge runtimes suggest that the virtualization

overhead for this application is around 10%, which is

higher than both Montage and Broadband. This may

suggest that virtualization has a larger impact on

CPU-bound applications.

5. Cost Analysis

 In this section we analyze the cost of running

workflow applications in the cloud. We consider
three different cost categories: resource cost, storage

cost, and transfer cost. Resource cost includes

charges for the use of VM instances in EC2; storage

cost includes charges for keeping VM images in S3

and input data in EBS; and transfer cost includes

charges for moving input data, output data and log

files between the submit host and EC2.

5.1 Resource Cost

 Each of the five resource types Amazon offers is
charged at a different hourly rate: $0.10/hr for

m1.small, $0.40/hr for m1.large, $0.80/hr for

m1.xlarge, $0.20/hr for c1.medium, and $0.80/hr for

c1.xlarge. Usage is rounded up to the nearest hour, so

any partial hours are charged as full hours.

 Figure 4 shows the per-workflow resource cost

for the applications tested. Although it did not

perform the best in any of our experiments, the most

cost-effective instance type was c1.medium, which

had the lowest execution cost for all three

applications.

63

Figure 4: Resource cost comparison

5.2 Storage Cost

 Storage cost consists of a) the cost to store VM

images in S3, and b) the cost of storing input data in

EBS. Both S3 and EBS use fixed monthly charges for

the storage of data, and variable usage charges for

accessing the data. The fixed charges are $0.15 per GB-

month for S3, and $0.10 per GB-month for EBS. The

variable charges are $0.01 per 1,000 PUT operations

and $0.01 per 10,000 GET operations for S3, and $0.10

per million I/O operations for EBS. We report the fixed

cost per month, and the total variable cost for all
experiments performed.

 We used a 32-bit and a 64-bit VM image for all of

the experiments in this paper. The 32-bit image was 773

MB and the 64-bit image was 729 MB for a total fixed

cost of $0.22 per month. In addition, there were 4616

GET operations and 2560 PUT operations for a total

variable cost of approximately $0.03.

 The fixed monthly cost of storing input data for the

three applications is shown in Table 3. In addition,

there were 3.18 million I/O operations for a total

variable cost of $0.30.

Table 3: Monthly storage cost
Application Volume Size Monthly Cost

Montage 5GB $0.66

Broadband 5GB $0.60

Epigenome 2GB $0.26

5.3 Transfer Cost

 In addition to resource and storage charges,

Amazon charges $0.10 per GB for transfer into, and

$0.17 per GB for transfer out of, the EC2 cloud. Tables

4 and 5 show the per-workflow transfer sizes and costs

for the three applications studied. Input is the amount of

input data to the workflow, output is the amount of

output data, and logs is the amount of logging data that

is recorded for workflow tasks and transferred back to

the submit host. The cost of the protocol used by

Condor to communicate between the submit host and
the workers is not included, but it is estimated to be less

than $0.01 per workflow.

Table 4: Per-workflow transfer sizes

Application Input Output Logs

Montage 4291 MB 7970 MB 40 MB

Broadband 4109 MB 159 MB 5.5 MB

Epigenome 1843 MB 299 MB 3.3 MB

Table 5: Per-workflow transfer costs

Application Input Output Logs Total

Montage $0.42 $1.32 < $0.01 $1.75

Broadband $0.40 $0.03 < $0.01 $0.43

Epigenome $0.18 $0.05 < $0.01 $0.23

6. Discussion

6.1 Performance

 Based on these experiments we believe the

performance of workflows on EC2 is reasonable

given the resources that can be provisioned. Although

the EC2 performance was not as good as the

performance on Abe, most of the resources provided

by EC2 are also less powerful. In the cases where the

resources are similar, the performance was found to

comparable. The EC2 c1.xlarge type, which is nearly
equivalent to abe.local, delivered performance that

was nearly the same as abe.local in our experiments.

 For I/O-intensive workflows like Montage, EC2

is at a significant disadvantage because of the lack of

high-performance parallel file systems. While such a

file system could conceivably be constructed from

the raw components available in EC2, the cost of

deploying such a system would be prohibitive. In

addition, because EC2 uses commodity networking

equipment it is unlikely that there would be a

significant advantage in shifting I/O from a local
partition to a parallel file system across the network,

because the bottleneck would simply shift from the

disk to the network interface. In order to compete

performance-wise with Abe for I/O-intensive

applications, Amazon would need to deploy both a

parallel file system and a high-speed interconnect.

 For memory-intensive applications like

Broadband, EC2 can achieve nearly the same

performance as Abe as long as there is more than 1

GB of memory per core. If there is less, then some

cores must sit idle to prevent the system from running

out of memory or swapping. This is not strictly an
EC2 problem, the same issue affects Abe as well.

 For CPU-intensive applications like Epigenome,

EC2 can deliver comparable performance given

equivalent resources. The virtualization overhead

does not seem to be a significant barrier to

performance for such applications. In fact, the

virtualization overhead measured for all application

less than 10%. This is consistent with previous

studies that show similar virtualization overheads

[5,16,36]. As such, virtualization does not seem, by

itself, to be a significant performance problem for

64

clouds. As virtualization technologies improve it is

likely that what little overhead there is will be further

reduced or eliminated.

6.2 Cost

 The first thing to consider when provisioning

resources on EC2 is the tradeoff between performance

and cost. In general, EC2 resources obey the aphorism

“you get what you pay for”—resources that cost more

perform better than resources that cost less. For the

applications tested, c1.medium was the most cost-

effective resource type even though it did not have the

lowest hourly rate, because the type with the lowest rate

(m1.small) performed so badly.

 Another important thing to consider when using

EC2 is the tradeoff between storage cost and transfer
cost. Users have the option of either a) transferring

input data for each workflow separately, or b)

transferring input data once, storing it in the cloud, and

using the stored data for multiple workflow runs. The

choice of which approach to employ will depend on

how many times the data will be used, how long the

data will be stored, and how frequently the data will be

accessed. In general, storage is more cost-effective for

input data that is reused often and accessed frequently,

and transfer is more cost-effective if data will be used

only once. For the applications tested in this paper, the

monthly cost to store input data is only slightly more
than the cost to transfer it once. Therefore, for these

applications, it is usually more cost-effective to store

the input data rather than transfer the data for each

workflow.

 Although the cost of transferring input data can be

easily amortized by storing it in the cloud, the cost of

transferring output data may be more difficult to

reduce. For many applications the output data is much

smaller than the input data, so the cost of transferring it

out may not be significant. This is the case for

Broadband and Epigenome, for example. For other
applications the large size of output data may be cost-

prohibitive. In Montage, for example, the output is

actually larger than the input and costs nearly as much

to transfer as it does to compute. For these applications

it may be possible to leave the output in the cloud and

perform additional analyses there rather than to transfer

it back to the submit host.

 In [8] the cost of running 1-, 2-, and 4-degree

Montage workflows on EC2 was studied via simulation.

That paper found the lowest total cost of a 1-degree

workflow to be $0.60, a 2-degree to be $2.25, and a 4-

degree to be $9.00. In comparison, we found the total
cost of an 8-degree workflow, which is 4 times larger

than a 4-degree workflow, to be approximately $1.25 if

data is stored for an entire month, and $2.35 if data is

transferred. This difference is primarily due to an

underestimate of the performance of EC2 that was used

in the simulation, which produced much longer

simulated runtimes.

 Finally, the total cost of all the experiments

presented in this paper was $149.55. That includes all

charges related to learning to use EC2, creating VM

images, and running test and experimental
workflows.

7. Conclusion

 In this paper we examined the performance and

cost of running scientific workflow applications in

the cloud using Amazon’s EC2 as a model. We ran

several workflow applications representing diverse

application domains and resource requirements on

EC2 and compared the performance to NCSA’s Abe

cluster. We found that although the performance of

EC2 was not equivalent to Abe in most cases, it was

reasonable given the resources available. The primary

advantages of Abe were found to be the availability

of a high-speed interconnect, and a parallel file
system, which significantly improved the

performance of the I/O-intensive application.

Factoring out these advantages by running additional

Abe tests using the local disk shows that, given

equivalent resources, EC2 is capable of performance

close to that of Abe. All other things being equal the

only difference was a small virtualization overhead in

EC2, which was measured to be between 1% and

10% for the applications tested.

 We also analyzed the cost of running workflows

on EC2. We found that the primary cost was in
acquiring resources to execute workflow tasks, and

that storage costs were relatively small in

comparison. The cost of data transfers, although

relatively high, can be effectively reduced by storing

data in the cloud rather than transferring it for each

workflow. In addition, we found the cost of running

workflows in the cloud to be much less, and the

performance to be much better, than suggested by

previous research.

 These results indicate that clouds are a viable

alternative for running scientific workflow
applications, but unless cloud providers begin

offering high-speed networks and parallel file

systems they are unlikely to compete with existing

HPC systems in terms of performance.

 In this paper we focused on the case where only

a single node is used to run a workflow. In the future

we plan to extend this work to study the performance

and cost of clouds when multiple nodes are used.

That study will include an analysis of the various

ways in which data can be communicated between

workflow tasks in a cloud.

65

Acknowledgements

 This work was supported by the National Science

Foundation under the SciFlow (CCF-0725332) grant.

This research made use of Montage, funded by the

National Aeronautics and Space Administration's Earth

Science Technology Office, Computation Technologies

Project, under Cooperative Agreement Number NCC5-
626 between NASA and the California Institute of

Technology.

References

[1] Amazon.com, “Elastic Block Store (EBS)”;
http://aws.amazon.com/ebs.

[2] Amazon.com, “Elastic Compute Cloud (EC2)”;
http://aws.amazon.com/ec2.

[3] Amazon.com, “Simple Storage Service (S3)”;
http://aws.amazon.com/s3.

[4] M. Armbrust et al., Above the Clouds: A Berkeley View

of Cloud Computing, white paper, UC Berkeley, 2009.
[5] P. Barham et al., “Xen and the Art of Virtualization,”

19th ACM Symposium on Operating Systems

Principles (SOSP'03), 2003.
[6] CondorTeam, “DAGMan”;

http://cs.wisc.edu/condor/dagman.
[7] “Corral”; http://pegasus.isi.edu/glidein/latest.
[8] E. Deelman et al., “The Cost of Doing Science on the

Cloud: The Montage Example,” ACM/IEEE

conference on Supercomputing (SC'08), 2008.
[9] E. Deelman et al., “Pegasus: A framework for mapping

complex scientific workflows onto distributed

systems,” Scientific Programming, vol. 13, 2005, pp.
219-237.

[10] C. Evangelinos et al., “Cloud Computing for Parallel
Scientific HPC Applications: Feasibility of Running
Coupled Atmosphere-Ocean Climate Models on
Amazon's EC2,” Cloud Computing and Its

Applications (CCA 2008), 2008.
[11] R.J. Figueiredo et al., “A case for grid computing on

virtual machines,” 23rd International Conference on

Distributed Computing Systems, 2003, pp. 550-559.
[12] “FlexiScale”; http://www.flexiscale.com.
[13] I. Foster et al., “Cloud Computing and Grid Computing

360-Degree Compared,” Grid Computing

Environments Workshop (GCE '08), 2008.
[14] I. Foster, “Globus Toolkit Version 4: Software for

Service-Oriented Systems,” 2006.

[15] J. Frey et al., “Condor-G: A Computation Management
Agent for Multi-Institutional Grids,” Cluster

Computing, vol. 5, 2002, pp. 237-246.
[16] L. Gilbert et al., “Performance Implications of

Virtualization and Hyper-Threading on High Energy
Physics Applications in a Grid Environment,” 19th

IEEE International Parallel and Distributed

Processing Symposium (IPDPS'05), 2005.

[17] “GoGrid”; http://www.gogrid.com.
[18] C. Hoffa et al., “On the Use of Cloud Computing for

Scientific Workflows,” 3rd International Workshop on

Scientific Workflows and Business Workflow

Standards in e-Science (SWBES '08), 2008.
[19] W. Huang et al., “A Case for High Performance

Computing with Virtual Machines,” 20th

International Conference on Supercomputing, 2006.

[20] Hyperic, Inc., “CloudStatus”;
http://www.cloudstatus.com.

[21] D.S. Katz et al., “A comparison of two methods for
building astronomical image mosaics on a grid,”
International Conference on Parallel Processing

(ICPP'05), 2005, pp. 85-94.
[22] H. Li et al., “Mapping short DNA sequencing reads

and calling variants using mapping quality scores,”

Genome Research, vol. 18, 2008, pp. 1851-1858.
[23] M.J. Litzkow et al., “Condor: A Hunter of Idle

Workstations,” 8th International Conference on

Distributed Computing Systems, 1988, pp. 104-111.
[24] J. Napper et al., “Can Cloud Computing Reach the

Top500?,” Combined Workshops on

UnConventional high performance computing

workshop plus memory access, 2009.

[25] National Center for Supercomputing Applications
(NCSA), “Intel 64 Cluster Abe”;
http://www.ncsa.illinois.edu/UserInfo/Resources/Ha
rdware/Intel64Cluster.

[26] “Nimbus”; http://workspace.globus.org.
[27] D. Nurmi et al., “The Eucalyptus Open-source

Cloud-computing System,” IEEE International

Symposium on Cluster Computing and the Grid

(CCGrid '09), 2009.
[28] “OpenNebula”; http://www.opennebula.org.
[29] M.R. Palankar et al., “Amazon S3 for science grids:

a viable solution?,” International workshop on

Data-aware distributed computing, 2008.
[30] Southern California Earthquake Center,

“Community Modeling Environment (CME)”;
http://www.scec.org/cme.

[31] “USC Epigenome Center”;

http://epigenome.usc.edu.
[32] E. Walker, “Benchmarking Amazon EC2 for High-

Performance Scientific Computing,” Login, vol. 33,
pp. 18-23.

[33] P. Watson et al., “Cloud Computing for e-Science
with CARMEN,” IBERGRID 2008, 2008.

[34] L. Youseff et al., “Toward a Unified Ontology of
Cloud Computing,” Grid Computing Environments

Workshop (GCE '08), 2008.
[35] L. Youseff et al., “The impact of paravirtualized

memory hierarchy on linear algebra computational
kernels and software,” 17th international symposium

on High performance distributed computing, 2008.
[36] L. Youseff et al., “Paravirtualization for HPC

Systems,” Workshop on Xen in High-Performance

Cluster and Grid Computing, 2006.

[37] J. Yu et al., “A Taxonomy of Workflow
Management Systems for Grid Computing,” Journal

of Grid Computing, vol. 3, 2005.

66

