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Abstract 
 The proliferation of commercial cloud computing 

providers has generated significant interest in the 

scientific computing community. Much recent research 

has attempted to determine the benefits and drawbacks 

of cloud computing for scientific applications. Although 

clouds have many attractive features, such as 

virtualization, on-demand provisioning, and “pay as 

you go” usage-based pricing, it is not clear whether 

they are able to deliver the performance required for 

scientific applications at a reasonable price. In this 

paper we examine the performance and cost of clouds 

from the perspective of scientific workflow applications. 

We use three characteristic workflows to compare the 

performance of a commercial cloud with that of a 

typical HPC system, and we analyze the various costs 

associated with running those workflows in the cloud. 

We find that the performance of clouds is not 

unreasonable given the hardware resources provided, 

and that performance comparable to HPC systems can 

be achieved given similar resources. We also find that 

the cost of running workflows on a commercial cloud 

can be reduced by storing data in the cloud rather than 

transferring it from outside. 

1. Introduction 

 The developers of scientific applications have 
many options when it comes to choosing a platform to 

run their applications. In the past these options 

included: local workstations, clusters, supercomputers 

and grids. Each of these choices offers various tradeoffs 

in terms of usability, performance, and cost. Recently, 

cloud computing has emerged as another promising 

solution for scientific applications and is rapidly 

gaining interest in the scientific community. 

 Many definitions of cloud computing have been 

proposed [4,34] [13]. These definitions vary in the 

scope of what constitutes a cloud and what features a 
cloud provides. For the purposes of this paper we 

consider a cloud to be a cluster that offers virtualized 

computational resources, service-oriented provisioning, 

and a “pay as you go” usage-based pricing model. 

Currently there are several commercial clouds that offer 

these features, such as Amazon EC2 [2], GoGrid [17], 

and FlexiScale [12]. In addition, it is now possible to 

build private clouds using open-source cloud 

computing middleware such as Eucalyptus [27], 

OpenNebula [28], and Nimbus [26]. 

 Clouds offer many technical and economic 

advantages over other platforms that are just 

beginning to be identified. They combine the 

customization of virtual machines, the scalability and 
resource sharing of grids, and the stability and 

economy of software as a service (SaaS). The use of 

virtualization in particular has been shown to provide 

many useful benefits for scientific applications, 

including: user-customization of system software and 

services, performance isolation, check-pointing and 

migration, better reproducibility of scientific 

analyses, and enhanced support for legacy 

applications [11][19]. 

 Recently, many studies have investigated the use 

of clouds and virtualization for scientific applications  
[33] [36] [24] [32] [35] [10] [16]. These studies have 

primarily focused on tightly-coupled applications and 

common HPC benchmarks. 

 In this paper we study the use of cloud 

computing for scientific workflows. Workflows are 

loosely-coupled parallel applications that consist of a 

series of computational tasks connected by data- and 

control-flow dependencies. Many scientific analyses 

are easily expressed as workflows and they are 

commonly used to solve problems in many 

disciplines [37].  

 Clouds provide several benefits for workflow 
applications. These benefits include: 

• Illusion of infinite resources—Unlike 

grids, clouds give the illusion that the 

available computing resources are unlimited. 

This means that users can request, and are 

likely to obtain, sufficient resources at any 

given time. Existing commercial clouds 

have a different workload than grids, 

however, and the illusion may break down 

for very large workflows, or if clouds 

become popular for scientific computing. 
• Leases—In grids and clusters the user 

specifies the amount of time required for a 

computation and delegates responsibility for 

allocating resources to a batch scheduler. In 
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clouds, the user directly allocates resources as 

required to schedule their computations. This 

model is ideal for workflows and other 

loosely-coupled applications because it 

decreases the scheduling overheads that can 

significantly reduce their performance. 
• Elasticity—Clouds allow users to acquire and 

release resources on-demand. This enables 

workflow systems to easily grow and shrink 

the available resource pool as the needs of the 

workflow change over time. 

 Previous work on the use of cloud computing for 

workflows has studied the cost and performance  of 

clouds via simulation [8] and using an experimental 

cloud [18]. In this paper we extend that work using 

several workflows that represent different domains and 

different resource requirements. We use an existing 

commercial cloud, Amazon’s EC2 [2], in order to 
assess the potential of currently deployed clouds. We 

analyze the cost of running the experiments on EC2, 

and compare the EC2 performance to a typical HPC 

system, NCSA’s Abe cluster [25]. 

 The contributions of this paper are: 

• an experimental study of the performance of 

three workflows with different I/O, memory 

and CPU requirements on a commercial cloud  

• a comparison of the performance of cloud 

resources and typical HPC resources, and 

• an analysis of the various costs associated with 
running workflows on a commercial cloud. 

In this paper we focus on single, multi-core node 

performance, which provides adequate capabilities for 

the applications we are evaluating in this paper. 

2. Applications 

 In order to evaluate the usefulness of cloud 

computing for scientific workflows we ran three 

different workflow applications: an astronomy 

application (Montage), a seismology application 

(Broadband), and a bioinformatics application 

(Epigenomics). These three applications were chosen 

because they cover a wide range of application domains 
and a wide range of resource requirements. Table 1 

shows the relative resource usage of these applications 

in three different categories: I/O, memory, and CPU. In 

general, applications with high I/O usage are I/O-

bound, applications with high memory usage are 

memory-limited, and applications with high CPU usage 

are CPU-bound. 

 Montage [21] creates science-grade astronomical 

image mosaics using data collected from telescopes. 

The size of a Montage workflow depends upon the area 

of the sky (in square degrees) covered by the output 

mosaic. In our experiments we configured Montage 
workflows to generate an 8-degree mosaic. The 

resulting workflow contains 10,429 tasks, reads 4.2 GB 

of input data, and produces 7.9 GB of output data. 

Montage is considered to be I/O-bound because it 

spends more than 95% of its time waiting on I/O 

operations. 

 Broadband [30] generates and compares 

seismograms from several high- and low-frequency 
earthquake simulation codes. Each workflow 

generates seismograms for several sources (scenario 

earthquakes) and sites (geographic locations). For 

each (source, site) combination the workflow runs 

several high- and low-frequency earthquake 

simulations and computes intensity measures of the 

resulting seismograms. In our experiments we used 4 

sources and 5 sites to generate a workflow containing 

320 tasks that reads 6 GB of input data and writes 

160 MB of output data. Broadband is considered to 

be memory-limited because more than 75% of its 

runtime is consumed by tasks requiring more than 1 
GB of physical memory. 

 Epigenome [31] maps short DNA segments 

collected using high-throughput gene sequencing 

machines to a previously constructed reference 

genome using the MAQ software [22]. The workflow 

splits several input segment files into small chunks, 

reformats and converts the chunks, maps the chunks 

to a reference genome, merges the mapped sequences 

into a single output map, and computes the sequence 

density for each location of interest in the reference 

genome. The workflow used in our experiments maps 
human DNA sequences to a reference chromosome 

21. The workflow contains 81 tasks, reads 1.8 GB of 

input data, and produces 300 MB of output data. 

Epigenomics is considered to be CPU-bound because 

it spends 99% of its runtime in the CPU and only 1% 

on I/O and other activities. 

 

Table 1: Application resource usage comparison 

Application I/O Memory CPU 

Montage High Low Low 

Broadband Medium High Medium 

Epigenomics Low Medium High 

3. Execution Environment 

 In this section we describe the experimental 

setup that was used to run workflows. We ran 

experiments on Amazon EC2 and NCSA’s Abe 

cluster. EC2 was chosen because it is currently the 
most popular, feature-rich, and stable commercial 

cloud. Abe was chosen because it is typical of the 

existing HPC systems a scientist could choose to run 

their workflow application and is therefore a logical 

alternative to EC2. 

 Workflows are loosely-coupled parallel 

applications that consist of a set of computational 

tasks linked via data- and control-flow dependencies. 

Unlike tightly-coupled applications in which tasks 
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communicate directly via the network, workflow tasks 

typically communicate using the file system. Each task 
produces one or more output files that become input 

files to other tasks. In HPC systems these files are 

typically stored on a network file system, which allows 

the workflow to run in parallel on several nodes. 

 One of the advantages of HPC systems over 

currently deployed commercial clouds is the availability 

of high-performance I/O devices. HPC systems 

commonly provide high-speed networks and parallel 

file systems, while most commercial clouds use 

commodity networking and storage devices. These 

high-performance devices increase workflow 
performance by making inter-task communication more 

efficient. In order to have an unbiased comparison of 

the performance of workflows on EC2 and Abe, the 

experiments presented in this paper attempt to account 

for these differences by a) running all experiments on 

single nodes and b) running experiments using the local 

disk on both EC2 and Abe, and the parallel file system 

on Abe. 

 The use of single nodes minimizes the advantage 

that Abe has as a result of having a high-speed 

interconnect. Although single-node experiments do not 

enable us to measure the scalability of cloud services 
they do provide an application-oriented understanding 

of the capabilities of the underlying resources that can 

help in making provisioning decisions. Testing the 

scalability of cloud services when running workflows 

on multiple nodes is left for future work. 

 Running experiments using both the parallel file 

system and the local disk on Abe allows us to determine 

what performance advantage, if any, Abe nodes have as 

a result of parallel I/O. It is expected that the use of a 

parallel file system will significantly improve the 

runtime of I/O-intensive applications like Montage, but 
will be less of an advantage for CPU-intensive 

applications like Epigenome. 

3.1 Resources 

 Table 2 compares the resource types used for the 

experiments. It lists 5 resource types from EC2 (m1.* 

and c1.*) and 2 resource types from Abe (abe.local and 

abe.lustre). There are several noteworthy details about 

the resources shown. First, although there is actually 

only one type of Abe node, there are two types listed in 
the table: abe.local and abe.lustre. The actual hardware 

used for these types is equivalent, the difference is in 

how I/O is handled. The abe.local type uses a local 
partition for I/O, and the abe.lustre type uses a Lustre 

partition for I/O. Using two different names is simply 

a notational convenience. 

 Second, in terms of computational capacity, the 

c1.xlarge resource type is roughly equivalent to the 

abe.local resource type with the exception that 

abe.local has slightly more memory. We use this fact 

to estimate the virtualization overhead for our test 

applications on EC2. 

 Third, in rare cases EC2 assigns Xeon processors 

for m1.* instances, but for all of the experiments 
reported here the m1.* instances used were equipped 

with Opteron processors. The only significance is 

that Xeon processors have better floating-point 

performance than Opteron processors (4 FLOP/cycle 

vs. 2 FLOP/cycle). 

 Finally, the m1.small instance type is shown 

having ½ core. This is possible because of 

virtualization. EC2 nodes are configured to give 

m1.small instances access to the processor only 50% 

of the time. This allows a single processor core to be 

shared equally between two separate m1.small 

instances. 

3.2 Software 

 All workflows were planned and executed using 

the Pegasus Workflow Management System [9] with 

DAGMan [6] and Condor [23]. Pegasus is used to 

transform abstract workflow descriptions into 

concrete plans, which are then executed using 

DAGMan to manage task dependencies, and Condor 

to manage task execution. 

 The software was deployed on EC2 as shown in 
Figure 1. A submit host running outside the cloud 

was used to coordinate the workflow, and worker 

nodes were started inside the cloud to execute 

workflow tasks. Two virtual machine images were 

used to start worker nodes: one for 32-bit instance 

types and one for 64-bit instance types. Both images 

were based on the standard Fedora Core 8 images 

provided by Amazon. To the base images we added 

Condor, Pegasus and other miscellaneous packages 

required to compile and run the selected applications. 

Compressed, the 32-bit image was 773 MB and the 
64-bit image was 729 MB. Uncompressed, the 32-bit 

Table 2: Resource types used 
Type Arch. CPU Cores Memory Network Storage Price 

m1.small 32-bit 2.0-2.6 GHz Opteron 1/2 1.7 GB 1-Gbps Ethernet Local disk $0.10/hr 

m1.large 64-bit 2.0-2.6 GHz Opteron 2 7.5 GB 1-Gbps Ethernet Local disk $0.40/hr 

m1.xlarge 64-bit 2.0-2.6 GHz Opteron 4 15 GB 1-Gbps Ethernet Local disk $0.80/hr 

c1.medium 32-bit 2.33-2.66 GHz Xeon 2 1.7 GB 1-Gbps Ethernet Local disk $0.20/hr 

c1.xlarge 64-bit 2.33-2.66 GHz Xeon 8 7.5 GB 1-Gbps Ethernet Local disk $0.80/hr 

abe.local 64-bit 2.33 GHz Xeon 8 8 GB 10-Gbps InfiniBand Local disk N/A 

abe.lustre 64-bit 2.33 GHz Xeon 8 8 GB 10-Gbps InfiniBand Lustre N/A 
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image was 2.1 GB and the 64-bit image was 2.2 GB. 

The images did not include any application-specific 

configurations, so we were able to use the same set of 

images for all experiments. All images are stored in 

Amazon S3 [3]. S3 is an object-based, replicated 

storage service that supports simple PUT and GET 
operations on file-like binary objects. 

 For the Abe experiments Globus [14] and Corral 

[7] were used to deploy Condor glideins [15] as shown 

in Figure 2. The glideins started Condor daemons on 

the Abe worker nodes, which contacted the submit host 

and were used to execute workflow tasks. This 

approach creates an execution environment on Abe that 

is equivalent to the EC2 environment. 

 

 
Figure 1: Execution environment on EC2 

 

 
Figure 2: Execution environment on Abe 

3.3 Storage 

 To run workflows we need to allocate storage for 

1) application executables, 2) input data, and 3) 
intermediate and output data. In a typical workflow 

application executables are pre-installed on the 

execution site, input data is copied from an archive to 

the execution site, and output data is copied from the 

execution site to an archive. For these experiments, 

executables and input data were pre-staged to the 

execution site, and output data were not transferred 

from the execution site. 

 For EC2, executables were installed in the VM 

images, intermediate and output data was written to a 

local partition, and input data was stored on EBS 

volumes.  
 The Elastic Block Store (EBS) [1] is a SAN-like, 

replicated, block-based storage service that can be used 

with EC2 instances. EBS volumes can be created in any 

size between 1 GB and 1 TB and appear as standard, 

unformatted block devices when attached to an EC2 

instance. As such, EBS volumes can be formatted 

with standard UNIX file systems and used like an 

ordinary disk, but they cannot be shared between 

multiple instances. 

 EBS was chosen to store input data for a number 

of reasons. First, storing inputs in the cloud obviates 
the need to transfer input data repeatedly. This saves 

both time and money because transfers cost more 

than storage. Second, using EBS avoids the 10 GB 

limit on VM images, which is too small to include the 

input data for all the applications tested. We can 

access the data as if it were on a local disk without 

packaging it in the VM image. A simple experiment 

using the disk copy utility ‘dd’ showed similar 

performance reading from EBS volumes and the local 

disk (74.6 MB/s for local, and 74.2 MB/s for EBS). 

Finally, using EBS simplifies our setup by allowing 

us to reuse the same volume for multiple 
experiments. When we need to change instances we 

just detach the volume from one instance and re-

attach it to another. 

 For Abe, all application executables and input 

files were stored in the Lustre file system. For 

abe.local experiments the input data was copied to a 

local partition (/tmp) before running the workflow, 

and all intermediate and output data was written to 

the same local partition. For abe.lustre, all 

intermediate and output data was written to the 

Lustre file system. 

4. Performance Comparison 

 In this section we compare the performance of 

the selected workflow applications by executing them 

on Abe and EC2. The critical performance metric we 

are concerned with is the runtime of the workflow 

(also known as the makespan), which is the total 

amount of wall clock time from the moment the first 

workflow task is submitted until the last task 

completes. The runtimes reported for EC2 do not 

include the time required to install and boot the VM, 

which typically averages between 70 and 90 seconds 

[20], and the runtimes reported for Abe do not 
include the time glidein jobs spend waiting in the 

queue, which is highly dependent on the current 

system load. Also, the runtimes do not include the 

time required to transfer input and output data (see 

Table 4). We assume that this time will be variable 

depending on WAN conditions. A study of 

bandwidth to/from Amazon services is presented in 

[29]. In our experiments we typically observed 

bandwidth on the order of  500-1000KB/s between 

EC2 and our submit host in Marina del Rey, CA. 

 We estimate the virtualization overhead for each 

application by comparing the runtime on c1.xlarge 
with the runtime on abe.local. Measuring the 

difference in runtime between these two resource 
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types should provide a good estimate of the cost of 

virtualization.  

 Figure 3 shows the runtime of the selected 

applications using the resource types shown in Table 2. 

In all cases the m1.small resource type had the worst 

runtime by a large margin. This is not surprising given 
its relatively low capabilities. 
 

 
Figure 3: Runtime comparison 

4.1 Montage 

 For Montage the best EC2 performance was 

achieved on the m1.xlarge type. This is likely due to the 

fact that m1.xlarge has twice as much memory as the 

next best resource type. The extra memory is used by 

the Linux kernel for the file system buffer cache to 

reduce the amount of time the application spends 

waiting for I/O. This is particularly beneficial for 

Montage, which is very I/O-intensive. 

 The best overall performance for Montage was 

achieved using the abe.lustre configuration, which was 

more than twice as fast as abe.local. This large gap 

suggests that having a parallel file system is a 
significant advantage for I/O-bound applications like 

Montage. 

 The difference in runtime between the c1.xlarge 

and abe.local experiments suggests that the 

virtualization overhead for Montage is less than 8%. 

4.2 Broadband 

 The best overall runtime for Broadband was 

achieved by using the abe.lustre resource type, and the 

best EC2 runtime was achieved using the c1.xlarge 
resource type. This is despite the fact that only 6 of the 

8 cores on c1.xlarge and abe.lustre could be used due to 

memory limitations. 

 Unlike Montage the difference between running 

Broadband on a relatively slow local disk (abe.local) 

and running on the parallel file system (abe.lustre) is 

not as significant. This is attributed to the lower I/O 

requirements of Broadband. 

 Broadband performs the worst on m1.small and 

c1.medium, which also have the lowest amount 

memory (1.7 GB). This is because m1.small has only 

half a core, and c1.medium can only use one of its 

two cores because of memory limitations. 

 The difference between the runtime using 

c1.xlarge and the runtime using abe.local was only 

about 1%. This small difference suggests a relatively 

low virtualization penalty for Broadband. 

4.3 Epigenomics 

 For Epigenomics the best EC2 runtime was 

achieved using c1.xlarge and the best overall runtime 

was achieved using abe.lustre. The primary factor 

affecting the performance of Epigenome was the 

availability of processor cores, with more cores 

resulting in a lower runtime. This is expected given 

that Epigenome is almost entirely CPU-bound. 

 The difference between the abe.lustre and 
abe.local runtimes was only about 2%, which is 

consistent with the fact that Epigenome has relatively 

low I/O and is therefore less affected by the parallel 

file system. 

 The difference between the abe.local and the 

c1.xlarge runtimes suggest that the virtualization 

overhead for this application is around 10%, which is 

higher than both Montage and Broadband. This may 

suggest that virtualization has a larger impact on 

CPU-bound applications. 

5. Cost Analysis 

 In this section we analyze the cost of running 

workflow applications in the cloud. We consider 
three different cost categories: resource cost, storage 

cost, and transfer cost. Resource cost includes 

charges for the use of VM instances in EC2; storage 

cost includes charges for keeping VM images in S3 

and input data in EBS; and transfer cost includes 

charges for moving input data, output data and log 

files between the submit host and EC2. 

5.1 Resource Cost 

 Each of the five resource types Amazon offers is 
charged at a different hourly rate: $0.10/hr for 

m1.small, $0.40/hr for m1.large, $0.80/hr for 

m1.xlarge, $0.20/hr for c1.medium, and $0.80/hr for 

c1.xlarge. Usage is rounded up to the nearest hour, so 

any partial hours are charged as full hours. 

 Figure 4 shows the per-workflow resource cost 

for the applications tested. Although it did not 

perform the best in any of our experiments, the most 

cost-effective instance type was c1.medium, which 

had the lowest execution cost for all three 

applications. 
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Figure 4: Resource cost comparison 

5.2 Storage Cost 

 Storage cost consists of a) the cost to store VM 

images in S3, and b) the cost of storing input data in 

EBS. Both S3 and EBS use fixed monthly charges for 

the storage of data, and variable usage charges for 

accessing the data. The fixed charges are $0.15 per GB-

month for S3, and $0.10 per GB-month for EBS. The 

variable charges are $0.01 per 1,000 PUT operations 

and $0.01 per 10,000 GET operations for S3, and $0.10 

per million I/O operations for EBS. We report the fixed 

cost per month, and the total variable cost for all 
experiments performed.  

 We used a 32-bit and a 64-bit VM image for all of 

the experiments in this paper. The 32-bit image was 773 

MB and the 64-bit image was 729 MB for a total fixed 

cost of $0.22 per month. In addition, there were 4616 

GET operations and 2560 PUT operations for a total 

variable cost of approximately $0.03. 

 The fixed monthly cost of storing input data for the 

three applications is shown in Table 3. In addition, 

there were 3.18 million I/O operations for a total 

variable cost of $0.30. 
 

Table 3: Monthly storage cost 
Application Volume Size Monthly Cost 

Montage 5GB $0.66 

Broadband 5GB $0.60 

Epigenome 2GB $0.26 

5.3 Transfer Cost 

 In addition to resource and storage charges, 

Amazon charges $0.10 per GB for transfer into, and 

$0.17 per GB for transfer out of, the EC2 cloud. Tables 

4 and 5 show the per-workflow transfer sizes and costs 

for the three applications studied. Input is the amount of 

input data to the workflow, output is the amount of 

output data, and logs is the amount of logging data that 

is recorded for workflow tasks and transferred back to 

the submit host. The cost of the protocol used by 

Condor to communicate between the submit host and 
the workers is not included, but it is estimated to be less 

than $0.01 per workflow. 

 

 

Table 4: Per-workflow transfer sizes 

Application Input  Output Logs 

Montage 4291 MB  7970 MB  40 MB  

Broadband 4109 MB  159 MB  5.5 MB 

Epigenome 1843 MB  299 MB  3.3 MB  
 

Table 5: Per-workflow transfer costs 

Application Input  Output Logs Total 

Montage $0.42  $1.32  < $0.01  $1.75 

Broadband $0.40  $0.03  < $0.01 $0.43 

Epigenome $0.18  $0.05  < $0.01  $0.23 

6. Discussion 

6.1 Performance 

 Based on these experiments we believe the 

performance of workflows on EC2 is reasonable 

given the resources that can be provisioned. Although 

the EC2 performance was not as good as the 

performance on Abe, most of the resources provided 

by EC2 are also less powerful. In the cases where the 

resources are similar, the performance was found to 

comparable. The EC2 c1.xlarge type, which is nearly 
equivalent to abe.local, delivered performance that 

was nearly the same as abe.local in our experiments. 

 For I/O-intensive workflows like Montage, EC2 

is at a significant disadvantage because of the lack of 

high-performance parallel file systems. While such a 

file system could conceivably be constructed from 

the raw components available in EC2, the cost of 

deploying such a system would be prohibitive. In 

addition, because EC2 uses commodity networking 

equipment it is unlikely that there would be a 

significant advantage in shifting I/O from a local 
partition to a parallel file system across the network, 

because the bottleneck would simply shift from the 

disk to the network interface. In order to compete 

performance-wise with Abe for I/O-intensive 

applications, Amazon would need to deploy both a 

parallel file system and a high-speed interconnect. 

 For memory-intensive applications like 

Broadband, EC2 can achieve nearly the same 

performance as Abe as long as there is more than 1 

GB of memory per core. If there is less, then some 

cores must sit idle to prevent the system from running 

out of memory or swapping. This is not strictly an 
EC2 problem, the same issue affects Abe as well. 

 For CPU-intensive applications like Epigenome, 

EC2 can deliver comparable performance given 

equivalent resources. The virtualization overhead 

does not seem to be a significant barrier to 

performance for such applications. In fact, the 

virtualization overhead measured for all application 

less than 10%. This is consistent with previous 

studies that show similar virtualization overheads 

[5,16,36]. As such, virtualization does not seem, by 

itself, to be a significant performance problem for 
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clouds. As virtualization technologies improve it is 

likely that what little overhead there is will be further 

reduced or eliminated. 

6.2 Cost 

 The first thing to consider when provisioning 

resources on EC2 is the tradeoff between performance 

and cost. In general, EC2 resources obey the aphorism 

“you get what you pay for”—resources that cost more 

perform better than resources that cost less. For the 

applications tested, c1.medium was the most cost-

effective resource type even though it did not have the 

lowest hourly rate, because the type with the lowest rate 

(m1.small) performed so badly. 

 Another important thing to consider when using 

EC2 is the tradeoff between storage cost and transfer 
cost. Users have the option of either a) transferring 

input data for each workflow separately, or b) 

transferring input data once, storing it in the cloud, and 

using the stored data for multiple workflow runs. The 

choice of which approach to employ will depend on 

how many times the data will be used, how long the 

data will be stored, and how frequently the data will be 

accessed. In general, storage is more cost-effective for 

input data that is reused often and accessed frequently, 

and transfer is more cost-effective if data will be used 

only once. For the applications tested in this paper, the 

monthly cost to store input data is only slightly more 
than the cost to transfer it once. Therefore, for these 

applications, it is usually more cost-effective to store 

the input data rather than transfer the data for each 

workflow. 

 Although the cost of transferring input data can be 

easily amortized by storing it in the cloud, the cost of 

transferring output data may be more difficult to 

reduce. For many applications the output data is much 

smaller than the input data, so the cost of transferring it 

out may not be significant. This is the case for 

Broadband and Epigenome, for example. For other 
applications the large size of output data may be cost-

prohibitive. In Montage, for example, the output is 

actually larger than the input and costs nearly as much 

to transfer as it does to compute. For these applications 

it may be possible to leave the output in the cloud and 

perform additional analyses there rather than to transfer 

it back to the submit host. 

 In [8] the cost of running 1-, 2-, and 4-degree 

Montage workflows on EC2 was studied via simulation. 

That paper found the lowest total cost of a 1-degree 

workflow to be $0.60, a 2-degree to be $2.25, and a 4-

degree to be $9.00. In comparison, we found the total 
cost of an 8-degree workflow, which is 4 times larger 

than a 4-degree workflow, to be approximately $1.25 if 

data is stored for an entire month, and $2.35 if data is 

transferred. This difference is primarily due to an 

underestimate of the performance of EC2 that was used 

in the simulation, which produced much longer 

simulated runtimes. 

 Finally, the total cost of all the experiments 

presented in this paper was $149.55. That includes all 

charges related to learning to use EC2, creating VM 

images, and running test and experimental 
workflows. 

7. Conclusion 

 In this paper we examined the performance and 

cost of running scientific workflow applications in 

the cloud using Amazon’s EC2 as a model. We ran 

several workflow applications representing diverse 

application domains and resource requirements on 

EC2 and compared the performance to NCSA’s Abe 

cluster. We found that although the performance of 

EC2 was not equivalent to Abe in most cases, it was 

reasonable given the resources available. The primary 

advantages of Abe were found to be the availability 

of a high-speed interconnect, and a parallel file 
system, which significantly improved the 

performance of the I/O-intensive application. 

Factoring out these advantages by running additional 

Abe tests using the local disk shows that, given 

equivalent resources, EC2 is capable of performance 

close to that of Abe. All other things being equal the 

only difference was a small virtualization overhead in 

EC2, which was measured to be between 1% and 

10% for the applications tested. 

 We also analyzed the cost of running workflows 

on EC2. We found that the primary cost was in 
acquiring resources to execute workflow tasks, and 

that storage costs were relatively small in 

comparison. The cost of data transfers, although 

relatively high, can be effectively reduced by storing 

data in the cloud rather than transferring it for each 

workflow. In addition, we found the cost of running 

workflows in the cloud to be much less, and the 

performance to be much better, than suggested by 

previous research. 

 These results indicate that clouds are a viable 

alternative for running scientific workflow 
applications, but unless cloud providers begin 

offering high-speed networks and parallel file 

systems they are unlikely to compete with existing 

HPC systems in terms of performance. 

 In this paper we focused on the case where only 

a single node is used to run a workflow. In the future 

we plan to extend this work to study the performance 

and cost of clouds when multiple nodes are used. 

That study will include an analysis of the various 

ways in which data can be communicated between 

workflow tasks in a cloud. 
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