
Scientific Workflow Management and the Kepler System∗

Bertram Ludäscher†⋆ Ilkay Altintas† Chad Berkley‡ Dan Higgins‡

Efrat Jaeger† Matthew Jones‡ Edward A. Lee§ Jing Tao† Yang Zhao§

September 2004; revised March 2005

Abstract

Many scientific disciplines are now data and infor-
mation driven, and new scientific knowledge is often
gained by scientists putting together data analysis
and knowledge discovery “pipelines”. A related trend
is that more and more scientific communities real-
ize the benefits of sharing their data and computa-
tional services, and are thus contributing to a distrib-
uted data and computational community infrastruc-
ture (a.k.a. “the Grid”). However, this infrastructure
is only a means to an end and scientists ideally should
be bothered little with its existence. The goal is for
scientists to focus on development and use of what
we call scientific workflows. These are networks of
analytical steps that may involve, e.g., database ac-
cess and querying steps, data analysis and mining
steps, and many other steps including computation-
ally intensive jobs on high performance cluster com-
puters. In this paper we describe characteristics of
and requirements for scientific workflows as identified
in a number of our application projects. We then
elaborate on Kepler, a particular scientific work-
flow system, currently under development across a
number of scientific data management projects. We
describe some key features of Kepler and its under-
lying Ptolemy ii system, planned extensions, and
areas of future research. Kepler is a community-
driven, open source project, and we always welcome
related projects and new contributors to join.

∗Work supported by NSF/ITR 0225676 (SEEK), DOE Sci-
DAC DE-FC02-01ER25486 (SDM), NSF/ITR CCR-00225610
(Chess), NSF/ITR 0225673 (GEON), NIH/NCRR 1R24
RR019701-01 Biomedical Informatics Research Network Coor-
dinating Center (BIRN-CC), NSF/ITR 0325963 (ROADNet),
NSF/DBI-0078296 (Resurgence)

†San Diego Supercomputer Center, UC San Diego; ⋆Dept.
of Computer Science & Genome Center, UC Davis; ‡National
Center for Ecological Analysis and Synthesis, UC Santa Bar-
bara; and §Department of Electrical Engineering and Com-
puter Sciences, UC Berkeley

Contents

1 Introduction 2

2 Scientific Workflows 3
2.1 Example Workflows 3

2.1.1 Promoter Identification 3
2.1.2 Mineral Classification 4
2.1.3 Job Scheduling 5

2.2 Requirements and Desiderata 6
2.3 Differences to Business Workflows . . . 8

3 Highlights of Kepler 8
3.1 Web Service Extensions 8
3.2 Grid and other Extensions 9
3.3 Actor-Oriented Modeling 10

4 Research Issues 13
4.1 Higher-Order Constructs 13
4.2 Third Party Transfers 14
4.3 Other Research Issues 15
4.4 Related Work 15

5 Conclusions 16

1

eal
to appear in Concurrency & Computation: Practice & Experience

1 INTRODUCTION 2

“The diversity of the phenomena of nature is so
great, and the treasures hidden in the heavens
so rich, precisely in order that the human mind
shall never be lacking in fresh nourishment.”

— Johannes Kepler, My<erium Cosmographicum

1 Introduction

Information technology is revolutionizing the way
many sciences are conducted, as witnessed by new
techniques, results, and discoveries from quickly
evolving, multi-disciplinary fields such as bioin-
formatics, biomedical informatics, cheminformatics,
ecoinformatics, geoinformatics, etc. To further ad-
vance this new data- and information-driven sci-
ence through advanced IT infrastructure, large in-
vestments are made, e.g., in the UK e-Science pro-
gramme, or in the US through the NSF Cyberin-
frastructure initiative and other initiatives from NIH
(BIRN: Biomedical Informatics Research Network)
and DOE (SciDAC: Scientific Discovery through Ad-
vanced Computing, GTL: Genomes to Life), just to
mention a few. While many efforts focus on the
underlying middleware infrastructure, known as “the
Grid”, scientists are ultimately interested in tools that
bring the power of distributed databases and other
computational Grid resources to the desktop, and al-
low them to conveniently put together and run their
own scientific workflows. By these we mean process
networks that are typically used as “data analysis
pipelines” or for comparing observed and predicted
data, and that can include a wide range of compo-
nents, e.g., for querying databases, for data transfor-
mation and data mining steps, for execution of sim-
ulation codes on high performance computers, etc.
Ideally, the scientist should be able to plug-in almost
any scientific data resource and computational service
into a scientific workflow, inspect and visualize data
on the fly as it is computed, make parameter changes
when necessary and re-run only the affected “down-
stream” components, and capture sufficient metadata
in the final products such that the runs of a scientific
workflow, when considered as (computational) exper-
iments themselves, help explain the results and make
them reproducible by the computational scientist and
others. Thus, a scientific workflow system becomes a
scientific problem-solving environment, tuned to an
increasingly distributed and service-oriented Grid in-
frastructure.

However, before this grand vision can become re-
ality, a number of significant challenges have to be
addressed. For example, current Grid software is still
too complex to use for the average scientist, and fast
changing versions and evolving standards require that

these details be hidden from the user by the scientific
workflow system. Web services seem to provide a sim-
ple basis for loosely coupled, distributed systems, but
core web service standards such as WSDL [WSD03]
only provide simple solutions to simple problems,1

while harder problems such as web service orchestra-
tion, 3rd party transfer (from one service directly to
another, circumventing the transfer back to a work-
flow control engine), and transactional semantics of
service-based workflows, remain the subject of emerg-
ing or future web service standards. The complexity
of the underlying technical issues and the resulting
(sometimes overly) complex standards make it less
likely that those will be as widely adopted as the core
standards such as XML and WSDL.

Another set of challenges arises from the inherent
complexity of scientific data itself. For example, how
can we capture more of the semantics of scientific
data (beyond simple metadata meant for human con-
sumption) and thus inform the system which data
sets might be suitable input for a specific analyti-
cal pipeline? Similarly, how can we define when it is
even potentially meaningful at the conceptual level
to compose two independently designed web services,
or when an analysis pipeline might be included as a
subworkflow in another scientific workflow? Knowl-
edge representation techniques, including formal on-
tologies, and corresponding Semantic Web standards
such as the Web Ontology Language [OWL03] seem
promising directions. However, as is the case for Grid
middleware, the goal is to hide the underlying com-
plexity as much as possible from the user of a scien-
tific workflow system.

The paper is organized as follows: In Section 2
we introduce scientific workflows by means of sev-
eral real-world examples from different domains. We
use those examples to illustrate some of the charac-
teristic features and requirements of scientific work-
flows, and compare the latter with business work-
flows. In Section 3 we present specific features of
Kepler and its underlying Ptolemy ii system. As
it turns out, Ptolemy ii provides much more than a
user-friendly graphical user-interface (called Vergil)
and a ready-to-be-extended open source platform.
The main advantage of the system lies in a model-
ing and design paradigm called actor-oriented mod-
eling that has proven to be essential to deal with the
complex design issues of scientific workflows. Sec-
tion 4 presents some ongoing research issues. Finally,
in Section 5, we briefly summarize our findings and
work.

1E.g. WSDL mainly provides an XML notation for function
signatures, i.e., the types of inputs and outputs of web services.

2 SCIENTIFIC WORKFLOWS 3

Figure 1: Conceptual (“napkin drawing”) view of the Promoter Identification Workflow (PIW) [ABB+03]

2 Scientific Workflows

There is a growing interest in scientific workflows as
can be seen from a number of recent events, e.g.,
the Scientific Data Management Workshop [SDM03],
the e-Science Workflow Services Workshop [eSc03],
the e-Science Grid Environments Workshop [eSc04],
the Virtual Observatory Service Composition Work-
shop [GRI04], the e-Science LINK-Up Workshop on
Workflow Interoperability and Semantic Extensions
[LIN04], and last not least, various activities as part
of the Global Grid Forum (e.g, [GGF04]), just to
name a few. Scientific workflows also play an im-
portant role in a number of ongoing large research
projects dealing with scientific data management, in-
cluding those funded by NSF/ITR (GriPhyN, GEON,
LEAD, SCEC, SEEK, ...), NIH (BIRN), DOE (Sci-
DAC/SDM, GTL), and similar efforts funded by the
UK e-Science initiative (myGrid, DiscoveryNet, and
others). For example, the SEEK project [SEE] is de-
veloping an Analysis and Modeling System (AMS)
that allows ecologists to design and execute scientific
workflows [MBJ+04]. The AMS workflow component
employs a Semantic Mediation System (SMS) to facil-
itate workflow design and data discovery via seman-
tic typing [BL04]. Thus SEEK is a good example of
a community-driven project in need of a system that
allows users to seamlessly access data sources and ser-
vices, and put them together into reusable workflows.
Indeed SEEK is one of the main projects contributing
to the cross-project Kepler initiative and workflow
system discussed below.

Aspects and Types of Workflows. Scientific
workflows often exhibit particular “traits”, e.g., they
can be data-intensive, compute-intensive, analysis-

intensive, visualization-intensive, etc. The workflows
in Sections 2.1.1, 2.1.2, and 2.1.3, e.g., exhibit differ-
ent features, i.e., service-orientation and data analy-
sis, re-engineering and user interaction, and high-
performance computing, respectively. Depending on
the intended user group, one might want to hide or
emphasize particular aspects and technical capabili-
ties of scientific workflows. For example, a “Grid en-
gineer” might be interested in low-level workflow as-
pects such as data movement and remote job control.
Having workflow components (or actors) that operate
at this level will be beneficial to the Grid engineer.
Conversely, a scientific workflow system should hide
such aspects from analytical scientists (say an ecolo-
gist studying species richness and productivity).

The Kepler system aims at supporting very dif-
ferent kinds of workflows, ranging from low-level
“plumbing” workflows of interest to Grid engineers,
to analytical knowledge discovery workflows for sci-
entists, and conceptual-level design workflows that
might become executable only as a result of subse-
quent refinement steps [BL05].

In the following we first introduce scientific work-
flows by means of several examples taken from differ-
ent projects and implemented using the Ptolemy ii-
based Kepler system [KEP]. We then discuss typi-
cal features of scientific workflows and from this de-
rive general requirements and desiderata for scientific
workflow systems. We take a closer look at underly-
ing technical issues and challenges in Section 3.

2.1 Example Workflows

2.1.1 Promoter Identification

Figure 1 shows a high-level, conceptual view of a
typical scientific knowledge discovery workflow that

2 SCIENTIFIC WORKFLOWS 4

links genomic biology techniques such as microarrays
with bioinformatics tools such as BLAST to identify
and characterize eukaryotic promoters2 – we call this
the Promoter Identification Workflow or PIW (see
also [Wer01, ABB+03, PYN+03]: Starting from mi-
croarray data, cluster analysis algorithms are used
to identify genes that share similar patterns of gene
expression profiles that are then predicted to be co-
regulated as part of an interactive biochemical path-
way. Given the gene-ids, gene sequences are retrieved
from a remote database (e.g., GenBank) and fed to
a tool (e.g., BLAST) that finds similar sequences. In
subsequent steps, transcription factor binding sites
and promoters are identified to create a promoter
model that can be iteratively refined.

While Figure 1 leaves many details open, some fea-
tures of scientific workflows can already be identified:
There are a number of existing databases (such as
GenBank) and computational tools (such as Clusfa-
vor and BLAST) that need to be combined in certain
ways to create the desired workflow. In the past, ac-
cessing remote resources often meant implementing
a wrapper that mimics a human entering the input
of interest, submitting an HTML form, and “screen-
scraping” the result from the returned page [LPH01].
Today, more and more tools and databases become
accessible via web services, greatly simplifying this
task. Another trend are web portals such as NCBI
[NCB04] that integrate many tools and databases and
sometimes provide the scientist with a “workbench”
environment.

Figure 2 depicts snapshots of an early implementa-
tion of PIW in Kepler. Kepler is an extension of
the Ptolemy ii system [PTO04] for scientific work-
flows. The topmost window includes a loop whose
body is expanded below and which performs several
steps on each of the given gene-ids: First, an NCBI
web service is used to access GenBank data. Subse-
quently a BLAST step is performed to identify similar
sequences to the one retrieved from GenBank. Then
a second inner loop is executed (bottom window) for
a transcription factor binding site analysis. Using
Ptolemy ii terminology, we call the individual steps
actors, since they act as independent components
which communicate with each other only through the
channels indicated in the figure. The overall execu-
tion of the workflow is orchestrated by a director (the
green box in Figure 2; see Section 3.3 for details).

This early PIW implementation in Kepler
[ABB+03] illustrates a number of features: Actual
“wiring” of a scientific workflow can be much more
complicated than the conceptual view (Figure 1) sug-

2A promoter is a subsequence of a chromosome that sits
close to a gene and regulates its activity.

Figure 2: PIW implemented in Kepler [ABB+03].
Composite actors (subworkflows) expanded below.

gests. A mechanism for collapsing details of a sub-
workflow into an abstract component (called compos-
ite actor in Ptolemy ii) is essential to tame com-
plexity: The windows in Figure 2 have well-defined
input and output ports and thus correspond to (sub)-
workflows that can be collapsed into a more abstract,
composite actor as indicated. Nevertheless, the re-
sulting workflow is fairly complex and we will need
to introduce additional mechanisms to simplify the
design in particular of loops (see Section 4.1).

2.1.2 Mineral Classification

The second example, from a geoinformatics domain,
illustrates the use of a scientific workflow system for
automation of an otherwise manual procedure, or al-
ternatively, for reengineering an existing custom tool
in a more generic and extensible environment. The
upper left window in Figure 3 shows the top-level
workflow: Some samples are selected from a database
holding experimentally determined mineral composi-
tions of igneous rocks. This data, together with a set
of classification diagrams are fed into a Classifier
subworkflow (bottom left). The manual process of
classifying samples involves determining the position
of the sample values in a series of diagrams such as
the one shown on the right in Figure 3: if the loca-
tion of a sample point in a non-terminal diagram of
order n has been determined (e.g., diorite gabbro

2 SCIENTIFIC WORKFLOWS 5

anorthosite, bottom right), the corresponding dia-
gram of order n+1 is consulted and the point located
therein. This process is iterated until the terminal
level of diagrams is reached (here shown in the upper
right: the classification result is anorthosite).

This traditionally manual process has been auto-
mated in commercial custom tools, or here in the
Kepler workflow shown in Figure 3. As above, work-
flows are shown in graphical form using Ptolemy ii’s
Vergil user interface [BLL+04b]. Note that in Vergil,
workflows can be annotated with user comments.
Subworkflows (e.g., bottom-left) become visible by
right-clicking on a composite actor (such as Clas-
sifier, upper-left) and selecting “Look Inside” from
the resulting pop-up menu. Vergil also features sim-
ple VCR-like control buttons to play, pause, resume,
and stop workflow execution (red icons in the top-left
toolbar; e.g., right-triangle for play).

Kepler specific features of this workflow include:
A searchable library of actors and data sources (Actor
and Data tabs close to the upper-left) with numerous
reusable Kepler actors. For example, the Browser
actor (used in the bottom-right of the Classifier
subworkflow) launches the user’s default browser and
can be used as a powerful generic input/output device
in any workflow. In this example, the classification
diagrams are generated on the client side as interac-
tive SVG displays in the browser (windows on the
right in Figure 3). Moving the mouse over the dia-
gram highlights the specific region and displays the
rock name classification(s) for that particular region.
The Browser actor has proven to be very useful in
many other workflows as well, e.g., as a device to
display results of a previous step, and as a selection
tool that passes user choices (made via HTML forms,
check-boxes, etc.) to subsequent workflow steps.

2.1.3 Job Scheduling

The final example workflow, depicted in Figure 4, is
from a cheminformatics domain and involves running
thousands of jobs of the GAMESS quantum chemical
code [SBB+93] under the control of the Nimrod/G
Grid distribution tool [AGK00]. This is an example
of a workflow employing high-performance computing
(HPC) resources in a coordinated manner to achieve
a computationally hard task, in this case a variant
of a hybrid quantum mechanics/molecular mechan-
ics (QM/MM) technique; see [GT98] and [SBA+04]
for details. Interestingly, the workflow in Figure 4 is
rather domain-neutral and illustrates some features
typical of many high-performance computational ex-
periments:

The main window shows four composite actors,

Figure 4: Workflow for scheduling HPC jobs.

corresponding to the four depicted subworkflows.
The first one, PrepareInputs creates a list of in-
put files for the subsequent jobs. These files are then
used to create a plan file for Nimrod/G in the Pre-
pareExperiment step. The AddExperiment sub-
workflow takes a plan file and generates experiment
run files using several CommandLine actors. The
latter is shown with a “$” icon (to indicate a com-
mand shell), and has proven to be a very useful rapid-
prototyping tool: Existing local applications can be
made part of a workflow simply by providing a suit-
able command line expression and the correspond-
ing command line arguments. The ManageRe-
sources subworkflow can create new processes (via
AddFork) to run jobs and subsequently add exper-
iments as new server processes.

This example workflow also highlights the possibil-
ity of incremental design and development: At the
time of writing, not all components of the overall
workflow are operational. Nevertheless, due to the
clearly defined input/output interfaces of all subwork-
flows (a feature inherited from Ptolemy ii), each of
them can be designed, implemented, and tested sepa-
rately. Moreover, the current version of the workflow
relies heavily on invoking external applications via
the CommandLine actor. Some of these applications
might be “promoted” to custom actors with native
Java implementations in the future. Such changes are
encapsulated by the containing subworkflow and thus
do not require changes of other parts of the workflow.

2 SCIENTIFIC WORKFLOWS 6

Figure 3: Mineral Classification workflow (left) and generated interactive result displays (right).

2.2 Requirements and Desiderata

In this section we summarize a number of common re-
quirements and desiderata of scientific workflows, as
exhibited by the examples above or by other work-
flows we encountered in various application-oriented
research projects including GEON, SEEK and several
others [GEO, SEE, SDM, BIR, ROA].

R1: Seamless access to resources and services:
This is a very common requirement (e.g., see the
example workflows in Section 2.1), and web ser-
vices provide a first, simple mechanism for re-
mote service execution and remote database ac-
cess3 via service calls. However, as mentioned
before, web services are a simple solution to a
simple problem. Harder problems, e.g., web ser-
vice orchestration, and 3rd party transfer are not
solved by “vanilla” web services alone.

R2: Service composition & reuse and workflow
design: Since web services emerge as the ba-
sic building blocks for distributed Grid appli-
cations and workflows, the problem of service
composition, i.e., how to compose simple ser-
vices to perform complex tasks, has become a

3We do not elaborate on the important challenges of data

integration [She98]; see, e.g., [Hal01] for a survey of query re-
writing techniques, and [NL04] and [LGM03, BLL04a] for re-
lated issues of query capabilities and semantics, respectively.

hot research topic [ICA03]. Among the differ-
ent approaches are those that view service com-
position as an AI planning problem [BDG03],
a query planning problem [LAG03, LN04], or a
general design and programming problem. A re-
lated issue is how to design components so that
they are easily reusable and not geared to only
the specific applications that may have driven
their original development. As we will see, ser-
vice composition and reuse are addressed by em-
ploying an actor-oriented approach at the de-
sign level (Section 3.3), but also require flexible
means for data-transformations at the “plumb-
ing” level (Section 3.2).

R3: Scalability: Some workflows involve large vol-
umes of data and/or require high-end compu-
tational resources, e.g., running a large num-
ber of parallel jobs on a cluster computer (such
as workflow in Section 2.1.3). To support such
data-intensive and compute-intensive workflows,
suitable interfaces to Grid middleware com-
ponents (sometimes called Compute-Grid and
Data-Grid, respectively) are necessary.

R4: Detached execution: Long running workflows
require an execution mode that allows the work-
flow control engine to run in the background
on a remote server, without necessarily stay-
ing connected to a user’s client application that

2 SCIENTIFIC WORKFLOWS 7

has started and is controlling workflow execution
(such as the Vergil GUI of Kepler).

R5: Reliability and fault-tolerance: Some com-
putational environments are less reliable than
others. For example, a workflow that incorpo-
rates a new web service can easily “break”, as the
latter can often fail, change its interface, or just
become unacceptably slow (as it becomes more
popular). To make a workflow more resilient
in an inherently unreliable environment, contin-
gency actions must be specifiable, e.g., fail-over
strategies with alternate web services.

R6: User-interaction: Many scientific workflows
require user decisions and interactions at vari-
ous steps.4 For example, an improved version of
PIW (Section 2.1.1) allows the user to inspect
intermediate results and select and re-rank them
before feeding them to subsequent steps. An
interesting challenge is the need for user inter-
action in a detached execution. Using a noti-
fication mechanism the user might be asked to
reconnect to the running instance and make a
decision before the paused (sub-)workflow can
resume.

R7: “Smart” re-runs: A special kind of user inter-
action is the change of a parameter of a workflow
or actor. For example, in a visualization pipeline
or a long running workflow, the user might de-
cide to change some parameters after inspecting
intermediate or even final results. A “smart” re-
run would not execute the workflow from scratch,
but only those parts that are affected by the pa-
rameter change. In dataflow-oriented systems
(e.g., visualization pipeline systems such as AVS,
OpenDX, SCIRun, or the Kepler system) this
is easier to realize than in more control-oriented
systems (e.g., business workflow systems), since
data and actor dependencies are already explicit
in the system. Another useful technique in this
context is checkpointing, which allows to back-
track (in the case of a parameter change or even
a system failure; cf. (R5)) to a previously saved
state without starting over from scratch.

R8: “Smart” (semantic) links: A scientific work-
flow system should assist workflow design and
data binding phases by suggesting which actor
components might possibly fit together (this is
also an aspect of (R2), service composition), or

4In fact, when workflow management was still called “office
automation”, humans were the main processors of tasks – the
workflow system was just used for book-keeping; cf. Section 2.3.

by indicating which data sets might be fed to
which actors or workflows. To do so, some of
the semantics of data and actors has to be cap-
tured. However, capturing data semantics is a
hard problem in many scientific disciplines: e.g.,
measurement contexts, experimental protocols,
and assumptions made are often not adequately
represented. Even if corresponding metadata is
available, it is often not clear how to best make
it useable by the system. It seems clear though
that ontologies provide a very useful semantic
type system for scientific workflows, in addition
to the current (structural) type systems [BL04].

R9: Data provenance: Just as the results of a con-
ventional wet lab experiment should be repro-
ducible, computational experiments and runs of
scientific workflows should be reproducible and
indicate which specific data products and tools
have been used to create a derived data product.
Beyond the conventional capture of metadata,
a scientific workflow system should be able to
automatically log the sequence of applied steps,
parameter settings and (persistent identifiers of)
intermediate data products. A related desider-
ata is automatic report generation: The system
should allow the user to generate reports with
all relevant provenance and runtime information,
e.g., in XML format for archival and exchange
purposes and in HTML (generated from the for-
mer, e.g., via an XSLT script) for human con-
sumption.

Data provenance can be seen as a prerequisite to
(R8): In order to provide semantic information
about a derived data product, suitable prove-
nance information is needed.

While the above list of requirements and desiderata
for scientific workflow systems is by no means com-
plete, it should be sufficient to capture many of the
core characteristics. Other requirements include the
use of an intuitive GUI to allow the user to compose
a workflow visually from smaller components, or to
“drill-down” into subworkflows, to animate workflow
execution, to inspect intermediate results, etc.

A scientific workflow system should also support
the combination of different workflow granularities.
For example, coarse-grained workflows, akin to Unix
pipelines or web service-based workflows, consist
mainly of “black box” actors whose contents are un-
known to the system. Scientific workflows may also
be very fine-grained, or include fine-grained subwork-
flows. In that case, components are “white boxes”
containing, e.g., the visual programming equivalent

3 HIGHLIGHTS OF KEPLER 8

of an algorithm, or a system of differential equations
to be solved, in other words, a detailed specification
known to the system.

2.3 Differences to Business Workflows

The characteristics and requirements of scientific
workflows are partially overlapping those of business
workflows. Indeed, the term ‘scientific workflows’
seems to indicate a very close relationship with the
latter, while a more detailed comparison reveals a
number of significant differences. Historically, busi-
ness workflows have roots going back to office au-
tomation systems of the 1970’s and 80’s, and gained
momentum in the 90’s under different names includ-
ing business process modeling and business process
engineering ; see, e.g., [AM97, vdAvH02, zM04].

Today we see some influence of business workflow
standards in the web services arena, specifically stan-
dards for web service choreography.5 For example, the
Business Process Execution Language for Web Ser-
vices (BPEL4WS) [CGK+02], a merger of two earlier
standards, IBM’s WSFL and Microsoft’s XLANG,
has received some attention recently.

When analyzing the underlying design princi-
ples and execution models of business workflow ap-
proaches, a focus on control-flow patterns and events
becomes apparent, whereas dataflow is often a sec-
ondary issue. For example, [vdAtHKB03] describe a
large number of workflow design patterns that can be
used to analyze and compare business workflow stan-
dards and products in terms of their control features
and expressiveness.

Scientific workflow systems, on the other hand,
tend to have execution models that are much more
dataflow-oriented. This is true, e.g., for academic
systems including Kepler, Taverna [TAV], and
Triana [TRI], and for commercial systems such as
Inforsense’s DiscoveryNet or Scitegic’s Pipeline-
Pilot. With respect to their modeling paradigm and
execution models, these systems seem closer to an
“AVS for scientific data and services” than to the more
control-flow and task-oriented business workflow sys-
tems, or to their early scientific workflow predecessors
[CM95, MVW96, AIL98].

The difference between dataflow-orientation and
control-flow orientation can also be observed in the
underlying formalisms. For example, visualizations
of business workflows often resemble flowcharts, state
transition diagrams, or UML activity diagrams, all
of which emphasize events and control-flow over

5Despite the long history of business workflows, it is sur-
prising how short-lived some of the so-called standards are, as
“most of them die before becoming mature” [vdA03].

dataflow. Formal analysis of workflows usually in-
volves studying their control-flow patterns [Kie02],
and is often conducted using Petri nets.

Conversely, the underlying execution model of cur-
rent scientific workflow systems usually resembles or
is even directly implemented as a dataflow process
network [KM77, LP95], having traditional applica-
tion areas, e.g., in digital signal processing. Dataflow-
oriented approaches are applicable at very differ-
ent levels of granularity, from low-level CPU oper-
ations found in certain processor architectures, to
high-level programming paradigms such as flow-based
programming [Mor94]. Scientific workflow systems
and visualization pipeline systems can also be seen
as dataflow-oriented problem solving environments
[WBB96] that scientists use to analyze and visualize
their data. Last not least, there is also a close re-
lationship between dataflow-oriented approaches and
(pure) functional languages, including non-strict vari-
ants such as Haskell (cf. Section 4.1).

3 Highlights of Kepler

In this section, we discuss some highlights of the cur-
rent Kepler system as well as some upcoming ex-
tensions. Many features directly address the require-
ments and desiderata from Section 2. More research-
oriented extensions are described in Section 4.

3.1 Web Service Extensions

A basic requirement for scientific workflows is seam-
less access to remote resources and services (see (R1)
in Section 2.2 and the examples in Section 2.1). Since
web services are emerging as the standard means for
remote service execution of loosely coupled systems,
we extended Kepler early on to handle web services.
Given the URL of a web service description [WSD03],
the generic WebService actor of Kepler can be in-
stantiated to any particular operation specified in the
service description. After instantiation, the Web-
Service actor can be incorporated into a scientific
workflow as if it were a local component. In partic-
ular, the WSDL-defined inputs and outputs of the
service are made explicit via the instantiated actor’s
input and output ports.

Figure 5 shows screenshots of an extended web ser-
vice harvesting feature, implemented by a special web
service Harvester component.6 As in the case of
the generic WebService actor, a URL is first pro-
vided (see (1) in Figure 5), however this time not
to an individual WSDL description of a web service,

6Inspiration came from a similar feature in Taverna.

3 HIGHLIGHTS OF KEPLER 9

�

�

�

�

Figure 5: Kepler web service Harvester in action: repository access (1-2), harvesting (3), and use (4).

but to a web service repository. The repository URL
might point to a UDDI repository, or simply to a
web page listing multiple WSDL URLs as shown in
(2). The Harvester then retrieves and analyzes all
WSDL files of the repository, creating instantiations
of web service actors in the user’s local actor library;
see (3). For example, one of the harvested services,
the BLAST web service, comprises five service oper-
ations which are imported into a corresponding sub-
directory. The user can then drag-and-drop any of
these service operations on the workflow canvas for
use in a scientific workflow (4). The Harvester
feature facilitates rapid prototyping and development
of web service-based applications and workflows in a
matter of minutes – that is, provided

(i) the web services are alive when needed, and

(ii) they can be wired together more or less directly
to perform the desired complex task.

The problem with (i) is that, while harvested web ser-
vices look like local components, their runtime failure
can easily “break” a scientific workflow, reminding the
user that the service interface has been harvested,
not the actual code.7 We are currently extending
Kepler to make workflows with web services more
reliable. One simple approach is to avoid the as-
sociation of a service operation with a fixed URL.
Instead, a list of alternate services can be provided
when the workflow is launched, and service failure
can then be compensated by invocation of one of the
alternate services. Another option is to insert spe-
cial control tokens into the data stream, indicating

7Which is of course the whole point of web services.

to downstream actors the absence of certain results.
Long running workflows may thus more gracefully
react to web service failures and produce at least
partial results. This idea has been further devel-
oped for “collection-oriented” (in the functional pro-
gramming sense) workflows: via so-called “exception-
catching actors”, invalid (due to failures) data col-
lections can be filtered out of the data stream, while
valid subcollections pass through unaffected [McP05].
An interesting research question is how to extend
Ptolemy ii’s pause-resume model to a full-fledge
transaction model that can handle service failures.

The problem (ii) is even more fundamental and
has different aspects: At the design level the chal-
lenge is how to devise actors that can be reused eas-
ily. In Section 3.3 we give a brief introduction to
actor-oriented modeling, the underlying paradigm of
Ptolemy ii, and discuss how it facilitates component
composition and reuse. At the “plumbing” level it
is often necessary to apply data transformations be-
tween two consecutive web services (called “shims”
in Taverna). Such data transformations are sup-
ported through various actors in Kepler, e.g., XSLT
and XQuery actors to apply transformations to XML
data, or Perl and Python actors for text-based trans-
formations.

3.2 Grid and other Extensions

Figure 6 depicts a number of Kepler actors that fa-
cilitate scientific workflows, including workflows that
make use of “the Grid”. In the upper left, the previ-
ously discussed generic WebService actor and some

3 HIGHLIGHTS OF KEPLER 10

instantiations are shown. Note how the latter spe-
cialize their actor interface via their input/output
ports: e.g., Blast_SearchSimple has three input
ports and one output port, for the search arguments
and result, respectively. The naming scheme used is
WSN_OP, where WSN is the name of the web ser-
vice and OP is a specific web service operation.

Figure 6: Grid actors and other Kepler extensions.

The upper right shows two Grid actors, called
FileFetcher and FileStager, respectively. These
actors make use of GridFTP [Pro00] to retrieve files
from, or put files to, remote locations on the Grid.
The GlobusJob actor below is another Grid actor,
in this case for running a Globus job [Glo]. At the
bottom of Figure 6 a small workflow is shown that
takes a Globus proxy and some input files, staging the
files to where the job is run, then fetching the results
from the remote location and displaying them on the
client side. The green box specifies that this workflow
is executed using an SDF (Synchronous Data-Flow)
director. This director analyzes the dataflow depen-
dencies and token consumption and production rates
of actors (here: token = file), and schedules the exe-
cution of actors accordingly.

On the right, a number of actors that use the SDSC
Storage Resource Broker [SRB] are shown, e.g., to
connect and disconnect from SRB and to get and put
files from and to SRB space, respectively. We are
currently in the process of providing all commonly
used SRB commands as actors. This will allow the
Kepler user to design and execute Grid workflows
involving a number of different tools, e.g., SRB for

data handling aspects, and Globus, Nimrod and other
tools for computational aspects and job scheduling.

In the center and left of Figure 6, various other
Kepler actors are shown: The CommandLine ac-
tor can be used to incorporate any application into a
workflow, provided it can be accessed from the com-
mand line.8 The “$” icon is reminiscent of a shell
prompt. The actor is parameterized with the argu-
ments of the shell command, making it easy to cre-
ate generic or specialized command line invocations.
A Browser actor is shown directly below (cf. Sec-
tion 2.1.2). It takes as input an HTML file or URL
and displays it in the user’s default browser. This
makes the actor an ideal output device for displaying
intermediate or final workflow results in ways that are
well-known to users. Another extremely useful appli-
cation of this actor is as an input device for user in-
teractions. The result file of an upstream actor might
have been transformed to an HTML file (e.g., using
the xslt actor) and augmented with HTML forms,
check boxes, or other input forms that are displayable
to the user in a standard web browser. Upon execut-
ing the desired user interaction, an http-post re-
quest is sent to a special Kepler web server, acting
as a listener, and from there the workflow is resumed.

The Email actor in the center of the figure pro-
vides a simple notification mechanism to inform the
user of specific situations in the workflow. Together,
the Email and Browser actors address core issues
of requirement (R6) in Section 2.2. The Pause ac-
tor (red down-triangle) pauses workflow execution at
specific points, allowing the user to inspect intermedi-
ate results, possibly changing parameter values, and
resuming the workflow subsequently (addressing (R7)
in Section 2.2).

Finally, actors for accessing real-time data streams
from ROADNet sensor networks [ROA] have recently
been added. These actors (e.g., OrbWaveform-
Source) can be integrated easily into Kepler, since
many of the underlying Ptolemy ii directors support
streaming execution.9

3.3 Actor-Oriented Modeling

Arguably the most unique feature of Kepler comes
from the underlying Ptolemy ii system:

“The focus [of the Ptolemy project] is on assem-
bly of concurrent components. The key underly-
ing principle ... is the use of well-defined mod-

8E.g., Kepler workflows can include data analysis steps via
calls to R [R].

9This should come as no surprise, since dataflow process
networks are defined on token streams in the first place.

3 HIGHLIGHTS OF KEPLER 11

els of computation that govern the interac-
tion between components.” 10

This focus together with the actor-oriented modeling
paradigm make Ptolemy ii an ideal starting point
for tackling the breadth of challenges in scientific
workflow design and execution. In Ptolemy, a system
or model thereof (in our case, a scientific workflow) is
viewed as a composition of independent components
called actors. Communication betweem actors hap-
pens through interfaces called ports. We distinguish
between input ports and output ports. In addition
to the ports, actors have parameters, which configure
and customize the behavior.11 For example, a generic
filter actor might consume a stream of input tokens
via an input port, letting through to the output port
only those tokens that satisfy a condition specified by
a parameter.

producer

actor

consumer

actor

IO-ports

receiver

Director

Figure 7: The semantics of component interaction is
determined by a director, which controls execution
and supplies the objects (called receivers) that im-
plement communication.

Actors, or more precisely their ports, are connected
to one another via channels. Given an interconnec-
tion of actors, however, there are many possible ex-
ecution semantics that one could assign to the di-
agram. For example, actors might have their own
thread of control, or their execution might be trig-
gered by the availability of new inputs.

A key property of Ptolemy ii is that the execu-
tion semantics is specified in the diagram by an object
called a director (see Figure 7). The director defines
how actors are executed and how they communicate
with one another. Consequently, the execution model
is less an emergent side-effect of the various intercon-
nected actors and their (possibly ad-hoc) orchestra-
tion, and more a prescribed concurrent semantics as
one might find in a well-defined concurrent program-
ming language. The execution model defined by the
director is called the model of computation. Patterns
of concurrent interaction are factored out into the de-
sign of the directors, rather than being individually

10http://ptolemy.eecs.berkeley.edu/objectives.htm.
11Parameters are usually not shown in the figures.

constructed by the designer of the workflow. Figure 7
depicts a producer and a consumer actor whose ports
are connected by a unidirectional channel. The dia-
gram is annotated by a director, which might, for ex-
ample, execute the producer prior to the consumer so
as to respect data precedences. The communication
between the actors is mediated by an object called a
receiver, which is provided by the director, not by the
actors. Thus, for example, whether the communica-
tion is buffered or synchronous is determined by the
designer of the director, not by the designer of the
actor. This hugely improves the reusability of actor
designs.

Process Networks. The Process Network (PN)
director is a popular choice for designers of scien-
tific workflows. It gives a diagram the semantics of
(dataflow) process networks [KM77, LP95]. In this
semantics, actors are independent processes that ex-
ecute concurrently, each with its own thread of con-
trol, and communicate by sending tokens through
unidirectional channels with (in principle) unbounded
buffering capacity. Writing to a channel is a non-
blocking operation, while reading from a channel can
block until sufficient input data are available. This
model of computation is similar to that provided by
Unix pipes, as in the following example of a Unix
command-line composition of processes:

cat foo.txt | bar | baz

This example shows three independently executing
processes (cat, bar, and baz) that are connected
to one another through unidirectional pipes. The
stream of tokens flowing between the processes also
synchronizes them if necessary. For example if bar

and baz are filter operations working on a single
line of text at a time (e.g., grep xyz), then a Unix
process executing bar will block until a line of text
is provided by the process executing cat foo.txt.
Unlike Unix pipes, however, the PN director in
Ptolemy iitolerates feedback loops and forking and
merging of data streams. It performs deadlock detec-
tion, and manages buffers to keep memory require-
ments bounded (if possible).

The PN director is only one example of a large
number directors available in Ptolemy ii. There is
also, for example, the SDF (Synchronous Data-Flow)
director, which can be used for specialized process
networks with fixed token production and consump-
tion rates per firing (see below). The SDF director
performs static analysis on a workflow that guaran-
tees absence of deadlocks, determines required buffer
sizes, and optimizes the scheduling of actor execution.
Other directors have been constructed for modeling

http://ptolemy.eecs.berkeley.edu/objectives.htm

3 HIGHLIGHTS OF KEPLER 12

Discrete Event systems (DE), Continuous-Time mod-
els (CT, which solve ordinary differential equations),
and Communication Sequential Processes (CSP), to
mention just a few [BLL+04b].

By relieving actors from the details of component
interaction, the actors themselves become much more
reusable (cf. (R2) in Section 2.2). The behavior of
an actor adapts to the execution and communication
semantics provided by the director. This feature of
actor-oriented modeling is called behavioral polymor-
phism. For example, a single Ptolemy ii actor im-
plementation of an arithmetic operation, say Plus,
can be connected to any number of input operands
and reused within different models of computation
and under the control of different directors. An SDF
director, e.g., schedules the actor invocation (or “fir-
ing”) as soon as all inputs have data, which it knows
since actors declare their fixed token consumption
and production rates in the SDF domain. In con-
trast, when the Plus actor is governed by a DE direc-
tor, additions happen when any input has data, cor-
responding to the different overall execution model
in the Discrete Event domain. In addition to be-
havioral polymorphism, the Ptolemy ii type system
also supports data polymorphism, again increasing
the reusability of actors. For example, our Plus ac-
tor can be implemented in such a way that it dynam-
ically chooses the correct numeric addition (integer,
float, double, complex), depending on the types of in-
puts it receives. Moreover, on other data types, e.g.,
strings, vectors, matrices, or user-defined types, the
Plus actor12 can execute appropriate actions, e.g.,
string concatenation, vector or matrix addition, etc.

Actor-Oriented Programming Interface.
Actor-oriented modeling addresses several challenges
in the design of complex systems [EJL+03]. We have
already mentioned improved component reusability
due to behavioral and data polymorphism. Another
aspect is hierarchical modeling. As illustrated by
the examples in Section 2.1, subworkflows can be
abstracted into (composite) actors themselves (e.g.,
see the Classifier actor/subworkflow in Figure 3)
and thus arbitrarily nested. In the following, we give
a simplified introduction on some implementation
aspects of Ptolemy ii’s actor-oriented approach.
These can be adapted to the context of scientific
workflows and distributed, service-oriented environ-
ments, leading to a more structured approach to
service composition and workflow design.

The structure we propose is based on various
phases and methods in Ptolemy ii’s actor-oriented

12This actor is called AddSubtract in Ptolemy ii.

execution−→ preinitialize, type-check, run*, wrapup

run −→ initialize, iteration*

iteration −→ prefire, fire*, postfire

Figure 8: AOPI execution phases and actor methods.

programming interface (AOPI), see Figure 8. These
AOPI methods are used by a director to orchestrate
overall execution. Symbols in boldface denote actual
methods that actor implementations have to provide;
the remaining symbols describe other phases13 of the
overall execution.

When a director starts a workflow execution, it in-
vokes the preinitialize method of all actors. Since
this method is invoked only once per lifetime of an
execution (even if there are multiple runs), and prior
to all other activities, this is a good time to put in
place the receiver components of actors, and for ac-
tors to “advertise” their supported port data types,
transport protocols, etc.

Next the director type-checks all connections and
ports. This includes checking each port’s data types,
all (previously advertised) type constraints, and the
validity of port types being connected through chan-
nels. A type inference algorithm is used to deter-
mine the most general types satisfying the given con-
straints. For scientific workflows, we can modify di-
rectors to also type-check which transport protocol
to use, or to check whether producer and consumer
actors exchange data directly or via handles:14 For
example, if an actor A declares its output port to be
of handle type “http | ftp” and a connected actor B

declares its input port to be of handle type “http”,
then type-checking can establish that the connection
is valid, provided A’s output port is subtyped to use
http handles only. Indeed such information can and
should be passed to the actor with the invocation of
the initialize method.

Other possible actions during execution of initial-

ize are: Web service actors can “ping” the web ser-
vices they represent and signal failure-to-initialize if
the corresponding service is not alive. A “fail-over-
aware” director can use this information to replace
the defective web service with an equivalent one that
is alive (see (R5) in Section 2.2). A workflow ex-

ecution will often consist only of one run, but if a
workflow is re-run, initialize is called again. A run

usually includes multiple iterations, each of which in-
cludes a call to prefire, fire (possibly called repeat-

13Some correspond to methods of other Ptolemy ii entities,
e.g., director methods or manager methods [BLL+04b].

14By handle we mean a unique identifier that can also be
used to retrieve data, e.g., a URL.

4 RESEARCH ISSUES 13

edly by some special directors), and a call to postfire.
The main actor operation finally happens in the fire

method, e.g., a web service actor will make the actual
remote service call here.

Towards Actor-Oriented Scientific Workflows.
The idea of actor-oriented scientific workflows is to
apply the principles of actor-orientation and hierar-
chical modeling, underlying the Ptolemy approach
[EJL+03, BLL+04b], to the modeling and design of
scientific workflows. In particular, web service op-
erations, which provide the building blocks of many
loosely coupled workflows, should be structured into
different parts, corresponding to the different phases
and methods used in actor-oriented modeling. For
example to implement a web service wA, the service
developer should think of specific web service opera-
tions such as wA.initialize and wA.prefire in addition
to the main “worker” method wA.fire. As in the case
of Ptolemy actors, this will lead to more generic and
reusable components and even facilitate more com-
plex extensions such as stateful web services.15

4 Research Issues

In this section we briefly discuss some technical issues
that we have begun addressing for Kepler, but that
are less mature and require some additional research.

4.1 Higher-Order Constructs

The early implementation of the Promoter Identifi-
cation Workflow (PIW) depicted in Figure 2 demon-
strated the feasibility and some advantages of im-
plementing scientific workflows in the Kepler ex-
tension of Ptolemy ii [ABB+03]. However, it also
highlighted some inherent challenges of the dataflow-
oriented programming paradigm [LA03]. We have
argued in Section 2.3 that many current scientific
workflow systems are more dataflow-oriented than
business workflow systems and approaches, which
tend to emphasize event-based control-flow rather
than dataflow. When designing real-world scientific
workflows it is necessary, however, to handle com-
plex control-flows within a dataflow-oriented setting
as well. It is well-known that control-flow constructs
require some thought in order to handle them prop-
erly. The fairly intricate network topology in Figure 2
includes backward-directed “dataflow” channels, hav-
ing the sole purpose of sending control tokens that

15Statefulness is an established concept in actor-oriented
modeling and dataflow networks; e.g., it can be represented
explicitly via feedback loops.

��������	�
��
���������������������������� !�"
#�������{“CAGT…AATATGAC",“GGGGA…CAAAGA“}

Figure 9: PIW variant with map iterator.

initiate another iteration of a subworkflow. While
such complicated structures achieve the desired effect
(here, a special kind of loop), they are hard to under-
stand, design, and maintain. Such ad-hoc construc-
tions also increase the complexity of workflow design
while diminishing the overall reusability of workflow
components (see (R2) in Section 2.2). Fortunately,
there are better ways to incorporate structured con-
trol into a dataflow-oriented system, thereby directly
supporting workflow design as required by (R2).

In [LA03] we have illustrated how higher-order
functional programming constructs can be used to
improve the design of PIW. In particular, the higher-
order function map :: (α → β) → [α] → [β] has
proven to be very useful to implement a certain type
of iteration. It takes a function f (from α to β) and
a list of elements of type α, and applies f to each list
element, returning the list of result elements (each of
type β). Thus map is defined as

map f [x1, x2, . . . , xn] = [f(x1), f(x2), . . . , f(xn)]

For example, map f [1, 2, 3] = [1, 4, 9] for f(x) = x2.
Figure 9 shows an improved version of the PIW

workflow from Section 2.1.1 and Figure 2, now using
the higher-order map function. Note how backward-
directed flows of control-tokens are avoided. Instead,
iterations are realized as nested subworkflows inside
a higher-order Map actor. For example, to imple-
ment a look-up of a list of gene sequences via a
GenBank web service that can only accept one gene
at a time, we simply create the higher-order con-
struct Map(GenBankWS) as shown in Figure 9
(the “stack” icon indicates that the contained work-
flow is applied multiple times).

Other higher-order functional programming con-
structs, e.g., foldr (for “fold right”) can be similarly
used to provide more abstract and modular iteration
and control constructs in a dataflow setting, and we
plan to add those to Kepler in the future. The

4 RESEARCH ISSUES 14

utility of declarative functional programming meth-
ods for dataflow-oriented systems is no coincidence;
see, e.g., [Ree95] for more on the close links between
dataflow, functional, and visual programming, and
[NA01] for interesting applications in implicit paral-
lel programming. Here we only give a simple illus-
tration using a core subworkflow of PIW in a Haskell
specification; see [LA03] for details:

d0 = $Gid % input: some gene-id
d1 = genBankG in % get its gene sequence
d2 = blastP d1 % find candidates from similar seqs
d3 = map genBankP d2 % get promoter sequences
d4 = map promoterRegion d3 % compute regions
d5 = map transfac d4 % compute transcr. factor sites
d6 = zip d2 d4 % create list of (promoter-id,region) pairs
d7 = map gpr2str d6 % accumulate into string list
d8 = concat d7 % create a single file
d9 = putStr d8 % output to subsequent steps

The input and output (ports) of this workflow are
given by d0 and d9, respectively. Note the use of
map to iterate over lists where the available services
(e.g. genBankP) can only handle one item at a time.
Also note that these ten equations establish a sim-
ple forward-only dataflow process network with the
di representing named channels, and the expressions
on the right of the equation representing processes
(i.e., actors). A merge of two parallel branches hap-
pens, e.g., through the function zip that creates a
single stream of pairs (promoter-id, promoter-region)
in channel d6 from the two streams in d2 and d4.

4.2 Third Party Transfers

Scientific workflows can involve large volumes of data
(see (R3) in Section 2.2). In a web service setting, this
creates a problem since so-called 3rd party transfers
are not currently supported by web services: Let us
consider two web services wA and wB, located at two
sites s1 and s2, respectively. wA takes some input x

and produces some data d that we would like to pass
on to wB, which produces the final output data y. We
can depict this as follows:

x
→ wA@s1

d
−→ wB@s2

y
→

Assume that the overall execution of this workflow
WF is coordinated and controlled by a workflow en-
gine E (e.g., Kepler) running at some site s3. Cur-
rent web service implementations do not allow the
engine E to call wA@s1, telling it to route d directly
to wB@s2. Instead, web service invocations and the
input/output dataflows that go with them, all go

through E@s3. In pseudo-code this means:

WF@s3(in x,out y) = {
d@s3 := wA@s1(x@s3);
y@s3 := wB@s2(d@s3) }

How do we execute the “remote assignments” shown
here? To execute WF@s3, the workflow engine E first
sends a request message containing x to wA@s1. Upon
completion, wA replies back to E@s3 with the result d.
Now WF@s3 can proceed and E forwards d to s2 where
wB can work on it. The final result y is then sent
from s2 back to s3. This simple call/return execution
is quite desirable from a modeling and design point of
view since control-flow and dataflow go hand in hand,
and since the control engine E does not have to worry
about the status of direct (i.e., 3rd party) transfers
of data d from wA to wB. The downside, however, is
that data is moved around more often than necessary.
Let us trace the “data shipments” of x, d, and y:

1. ship x@s3❀x@s1 % part of request to wA

2. @s1 execute d := wA(x) % execute wA

3. ship d@s1❀d@s3 % part of reply from wA

4. ship d@s3❀d@s2 % part of request to wB

5. @s2 execute y := wB(d) % execute wB

6. ship y@s2❀y@s1 % part of reply from wB

If d is very large, executing both steps (3) and (4) is
wasteful: first d is sent from s1 to s3 where the work-
flow engine E runs, only to be sent to s2 in the next
step. Instead of sending d over the wire twice, the

more direct 3rd party transfer wA@s1
d
❀ wB@s2 moves

d only once, but as mentioned before, is not currently
supported by web services.16 The question becomes:
How can we avoid unnecessary transfers and achieve
the efficiency of 3rd party transfer, while retaining
the above simple call/return execution model?

A Handle-Oriented Approach. A simple solu-
tion to the above problem is that wA does not send
the actual data d but a handle hd to it. Such a han-
dle corresponds to a “logic pointer” and can be rep-
resented by a globally unique URI, but may also be
a URL and indicate the protocol by which d is to be
accessed, e.g., http, ftp, GridFTP00, scp, or SRB. If
we replace all data occurrences x, d, and y by handles
hx, hd, and hy, respectively, we obtain:

1. ship hx@s3❀hx@s1 % request to wA

16And even if it were, “divorces” control-flow and dataflow,
resulting in more complex execution models.

4 RESEARCH ISSUES 15

2. @s1 execute hd := wA(hx) % execute wA

3. ship hd@s1❀hd@s3 % reply from wA

4. ship hd@s3❀hd@s2 % request to wB

5. @s2 execute hy := wB(hd) % execute wB

6. ship hy@s2❀hy@s1 % reply from wB

Now, instead of sending (the possibly very large) d

over the wire twice in (3) and (4), we only do so for
the (constant size) handle hd. We cannot hope to
further reduce this since a reply message from wA to
E and a new request from E to wB are necessary for
the overall control of workflow execution.

In order to implement the above handle-solution,
we need to slightly extend our web services: in steps
(2) and (5), wA and wB need to process handles by
dereferencing them or by creating new ones. The for-
mer happens when a web service acts as a consumer
of data (wA consumes x), while the latter is needed
in the role of a data producer (wA produces d).

Consider, e.g., the case where handles are rep-
resented as URLs with http as the transport pro-
tocol. In step (2) above, wA needs to dereference
hx before it can execute its function. hx might be,
e.g., http://foobar.com/f17. When dereferenced
via http-get it yields the actual data x.17 To prop-
erly process handles as a data consumer, the op-
eration “receive x” has to be replaced by “receive
hx”, followed by a “dereference and get” operation
x := http-get(hx). All subsequent read operations
can then operate on x as before.

In the role of a data producer, we have the re-
verse situation. We want to avoid shipping of the
actual result data d and instead send a handle hd.
Thus, we need to first create this handle, e.g., by cre-
ating a new file f18 that can be accessed via hd =
http://baz.edu/f18. All subsequent write access
to d will proceed unchanged, provided the file name
f18 is used for d. Finally, we need to replace “send
d” with “send hd”.

We are currently working on extensions of Kepler
that make the system “handle-aware” [Lud04]. For
example, during the type-checking phase (Figure 8)
a handle-aware director could determine whether two
web service actors A and B that invoke the web ser-
vices wA and wB, respectively, support compatible
handle types. For this to work seamlessly, web ser-
vices themselves should offer an actor-oriented pro-
gramming interface as presented in Section 3.3.

17Note that while the handle hx is sent from s3 to s1 in step
(1), x might actually not reside at s3.

4.3 Other Research Issues

Higher-order constructs and the handle-approach to
3rd party transfers are only two of a number of press-
ing research issues in scientific workflows.18 For ex-
ample, detached execution (R4), reliability and fault-
tolerance (R5), semantic links (R8), and data prove-
nance (R9) are all scientific workflow requirements
that need further attention in the future. For exam-
ple, [BL04] presents some initial work on the use of
ontologies as semantic types to help generate data
transformation mappings between consecutive work-
flow steps. These kinds of semantic extensions can
help at both levels, at the “plumbing” level to create
data transformations as in [BL04], and at the design
level to create more reusable components (R2) and
to support “smart” links in workflows (R8).

4.4 Related Work

In Section 3 we have described some of the features of
Kepler and the underlying Ptolemy ii system on
which Kepler is based. Ptolemy ii aims at model-
ing and design of heterogeneous, concurrent systems.
In contrast, Kepler aims at the design and execution
of scientific workflows. Consequently, Kepler ex-
tensions to Ptolemy ii include numerous actors and
capabilities that facilitate scientific workflows (e.g.,
web service actors and harvester, GridFTP, SRB and
database actors, command-line and secure shell ac-
tors, etc.) Additional components are constantly
added, e.g., to support statistics packages (such as
R), GIS functionality (e.g., Grass and ArcIMS cou-
plings), and other scientific data analysis and visual-
ization capabilities [WPS+05].

The research and development on Kepler also
benefits from interactions and collaborations with
other groups. On one hand, development is driven
by application scientists, the ultimate “customers” of
scientific workflow system, on the other hand, work
in related projects also influences Kepler develop-
ments. For example, Taverna [TAV, OAF+04] is
a system that focuses on web service-based bioin-
formatics workflows. In contrast, Triana [TRI,
CGH+05] provides mechanisms for coupling work-
flows more tightly with Grid middleware tools. Cross-
fertilization between these and other projects has
happened, e.g., through e-Science LINK-UP work-
shops [LIN04], meetings and workshops at GGF
[GGF04], etc. Other scientific workflow tools in-
clude Pegasus [DBG+03], Chimera, and job schedul-
ing tools such as Condor/G [DTL04] and Nimrod/G
[AGK00]. For a taxonomy of workflow management

18Addressing (R2) and (R3), respectively.

http://foobar.com/f17
http://baz.edu/f18

REFERENCES 16

systems for Grid computing and a comparison of sys-
tems see [YB05]. Future work will address the various
outstanding research issues and workflows require-
ments that have not yet been (fully) met. For ex-
ample, some projects contributing to Kepler plan
to provide couplings to highly-interactive visualiza-
tion tools such as SCIRun [WPS+05] and GeoVista
[TG02].

5 Conclusions

We have provided an overview of scientific workflow
management issues, motivated by real-world exam-
ples that we encountered in a number of application-
oriented projects. The spectrum of what can be
called a scientific workflow is wide and includes scien-
tific discovery workflows (e.g., Section 2.1.1), work-
flows that automate manual procedures or reengi-
neer custom tools (e.g., Section 2.1.2), and data
and compute-intensive workflows (e.g., Section 2.1.3).
Scientific workflow support is needed for practically
all information-oriented scientific disciplines, includ-
ing bioinformatics, cheminformatics, ecoinformatics,
geoinformatics, physics, etc. We identified a num-
ber of common requirements and desiderata of sci-
entific workflows (Section 2.2) and contrasted them
with business workflows.

The Kepler system addresses many of the core
requirements (Section 3) and provides support for
web service-based workflows and Grid extensions.
The source code of Kepler is freely available [KEP]
and a first alpha-release has been distributed ear-
lier this year. A unique feature of Kepler is in-
herited from the underlying Ptolemy ii system: the
actor-oriented modeling approach. This approach
facilitates modeling and design of complex systems
and thus provides also a very promising direction
for pressing problems such as web service composi-
tion and orchestration. The way data polymorphism
and behavioral polymorphism are supported by an
actor-oriented approach that “concentrates” compo-
nent interaction in a separate director entity, can also
shed light on other efforts to create reusable compo-
nent architectures such as CCA [AGG+99]. Areas of
research include modeling issues such as the use of
higher-order functional constructs for workflow de-
sign (Section 4.1), and optimization issues such as
the use of virtual data references (handles) to fa-
cilitate data-intensive, web service-based workflows
(Section 4.2).

Acknowledgements. Kepler is an open source,
cross-project collaboration that would not exist with-

out the contributions of the many team mem-
bers. We thank all current and past contributors
to Ptolemy ii – the Kepler systems would not be
possible without them. We also thank all Kepler
members for their contributions, in particular, To-
bin Fricke for implementing actors that access the
wonderful world of ROADNet real-time data streams,
Steve Neuendorffer and Christopher Brooks for shar-
ing their insights into Ptolemy ii, Rod Spears for
QBE facilities, Xiaowen Xin for many contributions
including to the PIW workflow, Zhengang Cheng for
providing some of the first web service actors, Werner
Krebs for EOL extensions, Steve Mock for Globus ac-
tors, Shawn Bowers for his work on semantic types
for Kepler, and last not least the many scientists
and PIs that provide direct or indirect support to
this effort, among them Bill Michener, Chaitan Baru,
Kim Baldrige, Mark Miller, Arie Shoshani, Terence
Critchlow, and Mladen Vouk.

References

[ABB+03] I. Altintas, S. Bhagwanani, D. But-
tler, S. Chandra, Z. Cheng, M. Cole-
man, T. Critchlow, A. Gupta, W. Han,
L. Liu, B. Ludäscher, C. Pu, R. Moore,
A. Shoshani, and M. Vouk. A Model-
ing and Execution Environment for Dis-
tributed Scientific Workflows. In 15th
Intl. Conf. on Scientific and Statistical
Database Management (SSDBM), Boston,
Massachussets, 2003.

[AGG+99] R. Armstrong, D. Gannon, A. Geist,
K. Keahey, S. Kohn, L. McInnes,
S. Parker, and B. Smolinski. Toward
a Common Component Architecture for
High-Performance Scientific Computing.
In 8th IEEE Intl. Symposium on High Per-
formance Distributed Computation, Au-
gust 1999.

[AGK00] D. Abramson, J. Giddy, and L. Kotler.
High Performance Parametric Modeling
with Nimrod/G: Killer Application for the
Global Grid. In Intl. Parallel and Dis-
tributed Processing Symposium (IPDPS),
Cancun, Mexico, May 2000. http://www.

csse.monash.edu.au/~davida/nimrod/.

[AIL98] A. Ailamaki, Y. E. Ioannidis, and
M. Livny. Scientific Workflow Manage-
ment by Database Management. In 10th
Intl. Conf. on Scientific and Statistical
Database Management (SSDBM), Capri,
Italy, 1998.

[AM97] G. Alonso and C. Mohan. Workflow
Management Systems: The Next Gener-
ation of Distributed Processing Tools. In

http://www.csse.monash.edu.au/~davida/nimrod/
http://www.csse.monash.edu.au/~davida/nimrod/

REFERENCES 17

S. Jajodia and L. Kerschberg, editors, Ad-
vanced Transaction Models and Architec-
tures. 1997.

[BDG03] J. Blythe, E. Deelman, and Y. Gil. Plan-
ning for workflow construction and main-
tenance on the Grid. In ICAPS [ICA03].

[BIR] Biomedical Informatics Research Network
Coordinating Center (BIRN-CC), Univer-
sity of California, San Diego. http://

nbirn.net/.

[BL04] S. Bowers and B. Ludäscher. An Ontol-
ogy Driven Framework for Data Trans-
formation in Scientific Workflows. In In-
ternational Workshop on Data Integration
in the Life Sciences (DILS), LNCS 2994,
Leipzig, Germany, March 2004. .

[BL05] S. Bowers and B. Ludäscher. Actor-
Oriented Design of Scientific Workflows.
submitted for publication, 2005.

[BLL04a] S. Bowers, K. Lin, and B. Ludäscher. On
Integrating Scientific Resources through
Semantic Registration. In 16th Intl.
Conf. on Scientific and Statistical Data-
base Management (SSDBM), Santorini Is-
land, Greece, 2004.

[BLL+04b] C. Brooks, E. A. Lee, X. Liu, S. Neuen-
dorffer, Y. Zhao, and H. Zheng. Het-
erogeneous Concurrent Modeling and De-
sign in Java (Volumes 1-3). Technical re-
port, Dept. of EECS, University of Califor-
nia, Berkeley, 2004. Technical Memoranda
UCB/ERL M04/27, M04/16, M04/17.

[CGH+05] D. Churches, G. Gombas, A. Harrison,
J. Maassen, C. Robinson, M. Shields,
I. Taylor, and I. Wang. Programming Sci-
entific and Distributed Workflow with Tri-
ana Services. Concurrency and Computa-
tion: Practice and Experience. Special Is-
sue on Scientific Workflows, 2005.

[CGK+02] F. Curbera, Y. Goland, J. Klein, F. Ley-
man, D. Roller, S. Thatte, and S. Weer-
awarana. Business Process Execution Lan-
guage for Web Services (BPEL4WS), Ver-
sion 1.0, 2002. http://www.ibm.com/

developerworks/library/ws-bpel/.

[CM95] I. Chen and V. Markowitz. The Object-
Protocol Model: Design, Implementation,
and Scientific Applications. ACM Trans-
actions on Information Systems, 20(5),
1995.

[DBG+03] E. Deelman, J. Blythe, Y. Gil, C. Kessel-
man, G. Mehta, K. Vahi, K. Blackburn,
A. Lazzarini, A. Arbree, R. Cavanaugh,
and S. Koranda. Mapping Abstract Com-
plex Workflows onto Grid Environments.
Journal of Grid Computing, 1(1):25–39,
2003.

[DTL04] T. T. Douglas Thain and M. Livny. Dis-
tributed Computing in Practice: The Con-
dor Experience. Concurrency and Compu-
tation: Practice and Experience, 2004.

[EJL+03] J. Eker, J. W. Janneck, E. A. Lee,
J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming Hetero-
geneity – the Ptolemy Approach. In Pro-
ceedings of the IEEE, volume 91(1), Janu-
ary 2003.

[eSc03] e-Science Workflow Services Workshop, e-
Science Institute, Edinburgh, Scotland,
December 2003. http://www.nesc.ac.uk/
esi/events/303/index.html.

[eSc04] e-Science Grid Environments Workshop,
e-Science Institute, Edinburgh, Scotland,
May 2004. http://www.nesc.ac.uk/esi/

events/.

[GEO] NSF/ITR: GEON: A Research Project to
Create Cyberinfrastructure for the Geo-
sciences. www.geongrid.org.

[GGF04] Workflow in Grid Systems Workshop,
GGF10, Berlin, Germany, March 2004.
http://www.extreme.indiana.edu/

groc/Worflow-call.html.

[Glo] The Globus Alliance. www.globus.org.

[GRI04] GRIST Workshop on Service Composition
for Data Exploration in the Virtual Obser-
vatory, California Institute of Technology,
July 2004. http://grist.caltech.edu/

sc4devo/.

[GT98] J. Gao and M. A. Thompson, editors.
Combined Quantum Mechanical and Mole-
cular Mechanical Methods. American
Chemical Society, 1998.

[Hal01] A. Halevy. Answering Queries Using
Views: A Survey. VLDB Journal,
10(4):270–294, 2001.

[ICA03] Proceedings of the ICAPS Workshop on
Planning for Web Services, Trento, Italy,
June 2003.

[KEP] Kepler: A System for Scientific Work-
flows. http://kepler-project.org.

[Kie02] B. Kiepuszewski. Expressiveness and Suit-
ability of Languages for Control Flow Mod-
elling in Workflows. PhD thesis, Queens-
land University of Technology, 2002.

[KM77] G. Kahn and D. B. MacQueen. Corou-
tines and Networks of Parallel Processes.
In B. Gilchrist, editor, Proc. of the IFIP
Congress 77, pp. 993–998, 1977.

[LA03] B. Ludäscher and I. Altintas. On Provid-
ing Declarative Design and Programming
Constructs for Scientific Workflows

http://nbirn.net/
http://nbirn.net/
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.nesc.ac.uk/esi/events/303/index.html
http://www.nesc.ac.uk/esi/events/303/index.html
http://www.nesc.ac.uk/esi/events/
http://www.nesc.ac.uk/esi/events/
www.geongrid.org
http://www.extreme.indiana.edu/groc/Worflow-call.html
http://www.extreme.indiana.edu/groc/Worflow-call.html
www.globus.org
http://grist.caltech.edu/sc4devo/
http://grist.caltech.edu/sc4devo/
http://kepler-project.org

REFERENCES 18

based on Process Networks. Technical
Report SciDAC-SPA-TN-2003-01, San
Diego Supercomputer Center, 2003.
http://kbi.sdsc.edu/SciDAC-SDM/

scidac-tn-map-constructs.pdf.

[LAG03] B. Ludäscher, I. Altintas, and A. Gupta.
Compiling Abstract Scientific Work-
flows into Web Service Workflows.
In 15th Intl. Conf. on Scientific and
Statistical Database Management (SS-
DBM), Boston, Massachussets, 2003.
http://kbis.sdsc.edu/SciDAC-SDM/

ludaescher-compiling.pdf.

[LGM03] B. Ludäscher, A. Gupta, and M. E. Mar-
tone. A Model-Based Mediator System for
Scientific Data Management. In Z. Lacroix
and T. Critchlow, editors, Bioinformatics:
Managing Scientific Data. Morgan Kauf-
mann, 2003.

[LIN04] LINK-Up Workshop on Scientific Work-
flows, San Diego Supercomputer Center,
October 2004. http://kbis.sdsc.edu/

events/link-up-11-04/.

[LN04] B. Ludäscher and A. Nash. Web Ser-
vice Composition Through Declarative
Queries: The Case of Conjunctive Queries
with Union and Negation. In 20th Intl.
Conf. on Data Engineering (ICDE), 2004.

[LP95] E. A. Lee and T. Parks. Dataflow
Process Networks. Proceedings of the
IEEE, 83(5):773–799, May 1995. http:

//citeseer.nj.nec.com/455847.html.

[LPH01] L. Liu, C. Pu, and W. Han. An XML-
Enabled Data Extraction Tool for Web
Sources. Intl. Journal of Information Sys-
tems, Special Issue on Data Extraction,
Cleaning, and Reconciliation, 2001.

[Lud04] B. Ludäscher. Towards Actor-Oriented
Web Service-Based Scientific Workflows
(or: How to Handle Handles). Technical
report, San Diego Supercomputer Center,
September 2004.

[MBJ+04] W. K. Michener, J. H. Beach, M. B. Jones,
B. Ludäscher, D. D. Pennington, R. S.
Pereira, A. Rajasekar, and M. Schildhauer.
A Knowledge Environment for the Biodi-
versity and Ecological Sciences. Journal of
Intelligent Information Systems, 2004. to
appear.

[McP05] T. M. McPhillips. Pipelined scientific
workflows for inferring evolutionary rela-
tionships. Natural Diversity Discovery
Project, 2005. manuscript.

[Mor94] J. P. Morrison. Flow-Based Programming
– A New Approach to Application Devel-
opment. Van Nostrand Reinhold, 1994.

[MVW96] J. Meidanis, G. Vossen, and M. Weske.
Using Workflow Management in DNA Se-
quencing. In Intl. Conf. on Cooperative
Information Systems (CoopIS), 1996.

[NA01] R. S. Nikhil and Arvind. Implicit Parallel
Programming in pH. Morgan Kaufmann,
2001.

[NCB04] National Center for Biotechnology Infor-
mation (NCBI). http://www.ncbi.nlm.

nih.gov/, 2004.

[NL04] A. Nash and B. Ludäscher. Processing
Unions of Conjunctive Queries with Nega-
tion under Limited Access Patterns. In 9th
Intl. Conf. on Extending Database Tech-
nology (EDBT), LNCS 2992, pp. 422–440,
Heraklion, Crete, Greece, 2004.

[OAF+04] T. Oinn, M. Addis, J. Ferris, D. Mar-
vin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat, and
P. Li. Taverna: A tool for the com-
position and enactment of bioinformat-
ics workflows. Bioinformatics Journal,
20(17):3045–3054, 2004.

[OWL03] OWL Web Ontology Language Reference,
W3C Proposed Recommendation, Decem-
ber 2003. www.w3.org/TR/owl-ref/.

[Pro00] G. Project. GridFTP – Universal
Data Transfer for the Grid, 2000. see
http://www.globus.org/datagrid/

gridftp.html.

[PTO04] Ptolemy II project and system. De-
partment of EECS, UC Berkeley, 2004.
http://ptolemy.eecs.berkeley.edu/

ptolemyII/.

[PYN+03] L. Peterson, E. Yin, D. Nelson, I. Alt-
intas, B. Ludäscher, T. Critchlow, A. J.
Wyrobek, and M. A. Coleman. Mining
the Frequency Distribution of Transcrip-
tion Factor Binding Sites of Ionizing Ra-
diation Responsive Genes. In New Hori-
zons in Genomics, DOE/SC-0071, Santa
Fe, New Mexico., March 30–April 1 2003.

[R] R – Statistical Data Analysis. http://

www.r-project.org.

[Ree95] H. J. Reekie. Realtime Signal Process-
ing: Dataflow, Visual, and Functional
Programming. PhD thesis, School of Elec-
trical Engineering, University of Technol-
ogy, Sydney, 1995.

[ROA] ROADNet: Real-time Observatories, Ap-
plications and Data management Network.
roadnet.ucsd.edu.

[SBA+04] W. Sudholt, K. Baldridge, D. Abram-
son, C. Enticott, and S. Garic. Parame-
ter Scan of an Effective Group Difference

http://kbi.sdsc.edu/SciDAC-SDM/scidac-tn-map-constructs.pdf
http://kbi.sdsc.edu/SciDAC-SDM/scidac-tn-map-constructs.pdf
http://kbis.sdsc.edu/SciDAC-SDM/ludaescher-compiling.pdf
http://kbis.sdsc.edu/SciDAC-SDM/ludaescher-compiling.pdf
http://kbis.sdsc.edu/events/link-up-11-04/
http://kbis.sdsc.edu/events/link-up-11-04/
http://citeseer.nj.nec.com/455847.html
http://citeseer.nj.nec.com/455847.html
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
www.w3.org/TR/owl-ref/
http://www.globus.org/datagrid/gridftp.html
http://www.globus.org/datagrid/gridftp.html
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://www.r-project.org
http://www.r-project.org
roadnet.ucsd.edu

REFERENCES 19

Pseudopotential Using Grid Computing.
New Generation Computing, 22:137–146,
2004.

[SBB+93] M. Schmidt, K. Baldridge, J. Boatz, S. El-
bert, M. Gordon, J. Jensen, S. Koseki,
N. Matsunaga, K. Nguyen, S. Su, T. Win-
dus, M. Dupuis, and J. Montgomery.
The General Atomic and Molecular Elec-
tronic Structure System. Journal of
Computational Chemistry, 14:1347–1363,
1993. cf. http://www.msg.ameslab.gov/

GAMESS/GAMESS.html.

[SDM] Scientific Data Management Cen-
ter (SDM). http://sdm.lbl.gov/

sdmcenter/, see also http://www.npaci.

edu/online/v5.17/scidac.html.

[SDM03] Scientific Data Management Framework
Workshop, Argonne National Labs, Au-
gust 2003. http://sdm.lbl.gov/~arie/

sdm/SDM.Framework.wshp.htm.

[SEE] NSF/ITR: Enabling the Science Environ-
ment for Ecological Knowledge (SEEK).
seek.ecoinformatics.org.

[She98] A. Sheth. Changing Focus on Interoper-
ability in Information Systems: From Sys-
tem, Syntax, Structure to Semantics. In
M. Goodchild, M. Egenhofer, R. Fegeas,
and C. Kottman, editors, Interoperating
Geographic Information Systems, pp. 5–
30. Kluwer, 1998.

[SRB] SDSC Storage Resource Broker. http://

www.npaci.edu/DICE/SRB/.

[TAV] The Taverna Project. http://taverna.

sf.net/.

[TG02] M. Takatuska and M. Gahegan. Geo-
VISTA Studio: A codeless visual program-
ming environment for geoscientific data
analysis and visualization. Computers and
Geosciences, 28(2):1131–1144, 2002.

[TRI] The Triana Project. http://www.

trianacode.org/.

[vdA03] W. van der Aalst. Don’t go with the
flow: Web services composition standards
exposed. IEEE Intelligent Systems.
Web Services – Been there done that?
Trends & Controversies, Jan/Feb 2003.
http://tmitwww.tm.tue.nl/research/

patterns/download/ieeewebflow.pdf.

[vdAtHKB03] W. van der Aalst, A. ter Hofstede, B. Kie-
puszewski, and A. Barros. Workflow Pat-
terns. Distributed and Parallel Databases,
14(3):5–51, July 2003.

[vdAvH02] W. van der Aalst and K. van Hee. Work-
flow Management: Models, Methods, and
Systems (Cooperative Information Sys-
tems). MIT Press, 2002.

[WBB96] H. Wright, K. Brodlie, and M. Brown. The
Dataflow Visualization Pipeline as a Prob-
lem Solving Environment. In M. Göbel,
J. David, P. Slavik, and J. J. van Wijk,
editors, Virtual Environments and Scien-
tific Visualization, pp. 267–276. Springer,
1996.

[Wer01] T. Werner. Target gene identification from
expression array data by promoter analy-
sis. Biomolecular Engineering, 17:87–94,
2001.

[WPS+05] D. Weinstein, S. Parker, J. Simpson,
K. Zimmerman, and G. Jones. Visualiza-
tion in the SCIRun Problem-Solving En-
vironment. In C. Hansen and C. Johnson,
editors, Visualization Handbook, pp. 615–
632. Elsevier, 2005.

[WSD03] Web Services Description Lan-
guage (WSDL) Version 1.2. http:

//www.w3.org/TR/wsdl12, June 2003.

[YB05] J. Yu and R. Buyya. A Taxonomy
of Workflow Management Systems for
Grid Computing. Technical Report
GRIDS-TR-2005-1, Grid Computing
and Distributed Systems Labora-
tory, University of Melbourne, 2005.
http://www.gridbus.org/reports/

GridWorkflowTaxonomy.pdf.

[zM04] M. zur Muehlen. Workflow-based Process
Controlling. Logos Verlag, Berlin, 2004.

http://www.msg.ameslab.gov/GAMESS/GAMESS.html.
http://www.msg.ameslab.gov/GAMESS/GAMESS.html.
http://sdm.lbl.gov/sdmcenter/
http://sdm.lbl.gov/sdmcenter/
http://www.npaci.edu/online/v5.17/scidac.html
http://www.npaci.edu/online/v5.17/scidac.html
http://sdm.lbl.gov/~arie/sdm/SDM.Framework.wshp.htm
http://sdm.lbl.gov/~arie/sdm/SDM.Framework.wshp.htm
seek.ecoinformatics.org
http://www.npaci.edu/DICE/SRB/
http://www.npaci.edu/DICE/SRB/
http://taverna.sf.net/
http://taverna.sf.net/
http://www.trianacode.org/
http://www.trianacode.org/
http://tmitwww.tm.tue.nl/research/patterns/download/ieeewebflow.pdf
http://tmitwww.tm.tue.nl/research/patterns/download/ieeewebflow.pdf
http://www.w3.org/TR/wsdl12
http://www.w3.org/TR/wsdl12
http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf
http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf

	Introduction
	Scientific Workflows
	Example Workflows
	Promoter Identification
	Mineral Classification
	Job Scheduling

	Requirements and Desiderata
	Differences to Business Workflows

	Highlights of Kepler
	Web Service Extensions
	Grid and other Extensions
	Actor-Oriented Modeling

	Research Issues
	Higher-Order Constructs
	Third Party Transfers
	Other Research Issues
	Related Work

	Conclusions

