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Abstract

In several workingenvironments,productioninvolvesre-
peatedexecutionsof certain procedures. A workflow de-
scribesthe individual tasksperformedin theseprocedures
and their interrelationships. Current Workflow Manage-
mentSystems(WFMSs)usea DatabaseManagementSys-
tem(DBMS)to store taskdescriptions,and implementall
workflow functionality in modulesthat run on top of the
DBMS. Motivated by scientific workflows,we proposea
much more DBMS-centricarchitecture, in which conven-
tional databasetechnology providesmuch of the desired
scientificWFMSfunctionality. A key elementof our ap-
proach is viewing the workflow as a web of data objects
interconnectedwith activelinks that carry processdescrip-
tions. Theworkflowis fully definedasa databaseschema,
and its executionis the gradual buildup of an instanceof
this schemathroughtheactiveobjectlinks. For our work,
we use the modelingand querying tools of Horse, the
object-orientedDBMSthat we havedevelopedin the con-
text of theZoo DesktopExperimentManagementEnviron-
ment.

1. Intr oduction

Several proceduresin many working environmentsare
repeatedoverandoveragain.At aninsurancecompany, ev-
ery time a claim is filed, a standardprocedureis followed�
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for its evaluation;ata carrentalagency, thereis asequence
of stepsfollowedwhenacustomerasksfor acar;andin lab-
oratories,the samescientificexperimentis executedwhen
fresh input dataare available. Theseproceduresusually
consistof asetof smallertasksthatrepresentself-contained
unitsof work, which arenaturallydependentto eachother.
The set of tasksinvolved in a procedurealong with their
interdependenciesand their inputsandoutputsis calleda
workflow. Workflow managementsystems(WFMSs) are
usedto define,execute,andmonitorworkflows.
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Figure 1. Transactionalview of workflows.
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Figure 2. Objectview of workflows.

In the typical conceptualizationof workflows, the focal
point is theaction,i.e., theprocessesthattake placeduring
workflow execution(Figure1). Workflows areconsidered
as transactions, with the informationthat they manipulate
playinga“subordinate”role– it is aside-effect,soto speak.
This transactionalview of workflows leadsto (almostim-
poses)the architecturedepictedin Figure3a,which is the
onefollowedby themajorityof existingWFMSs(commer-
cial systemsor researchprototypes).A dedicatedworkflow-
specificsoftwaresystemrunson top of a DataBaseMan-
agementSystem(DBMS), i.e.,processmanagementis sep-
aratefrom datamanagement.TheDBMS simplystoresthe



informationabouttheworkflow tasks,while the next soft-
ware layer usesthat information to conductthe workflow
execution.
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Figure 3. Two WFMSarchitectures

Motivatedprimarily by scientificapplications,we pro-
posea differentconceptualizationof workflows,wherethe
focalpoint is theinformation,i.e., thedatausedandgener-
atedduringworkflow execution(Figure2). Workflows are
consideredasgraphsof objects, with theprocessesthatcre-
atedthembeingexpressedthroughthelinks betweenthem.
Thisobjectview of workflowssuggeststhearchitecturede-
picted in Figure3b. Provided that its datamodelcanex-
pressthe activeworkflow aspects,the DBMS orchestrates
theworkflow executionasafirst-classWFMS.

In this paper, we essentiallybuild a casefor the object
view of scientificworkflows. WedemonstratethataDBMS
is itself a WFMS, offering muchof theneededfunctional-
ity with respectto processmanagementwithout additional
software (Figure 3b). Moreover, we show that any crit-
ical functionality missingfrom conventionalDBMSs can
be easily provided with minimal, naturalextensionsthat
remainfaithful to the philosophyof databasetechnology.
By providing all neededprocessmanagementwithin the
DBMS, we reapmany benefits:

	 Reducedimplementationeffort: For much of the
neededworkflow functionality, thereis no needfor
implementingspecial-purpose‘workflow tools’.	 Increasedoptimizationopportunity: The entire op-
erationof a workflow is controlledfrom within the
DBMSproper, sotheoptimizerhasglobalknowledge
of all databaseinteractions.	 Uniformity in workflow management: From speci-
fication to executionand monitoring, all workflow
functionalityis exportedto theuserthroughoneuni-
fiedaccesslanguage.	 Immediateinformationavailability: ‘Drill down’ re-
questsfrom theendresultto all aspectsof thework-
flow thatgeneratedit aredirectdatabasequeries.

As a proof of conceptfor the objectview, we describe
how workflows have beencapturedin the Horse object-
orientedDBMS, which we have built as part of the Zoo

DesktopExperimentManagementEnvironment[8] 
 . The
key characteristicsof our overall approacharethe follow-
ing:

	 A workflow is definedasanobject-orienteddatabase
schema	 An instanceof theworkflow schemais createdduring
execution	 Invocation of workflow processesis capturedand
triggeredby activerulesof a restrictedform	 External applicationsimplementingworkflow pro-
cessesarescheduledthroughupdatesto systemcata-
logs	 Statusand other kinds of information about run-
ning or finishedworkflow processesis obtainedby
databasequeries	 Information on the workflow data is obtainedby
databasequeries

Therestof thepaperis organizedasfollows. In Section
2, we provide an exampleworkflow to be usedthrough-
out the paper. In Section3, we discussthe functional-
ity requiredfrom a WFMS to supportscientificworkflows.
In Section4, we briefly describethe Moose datamodel
andtheFox datadefinitionandquerylanguageon which
Horse is based. In Section5, we discusshow Horse
achievesthe desiredfunctionality andbecomesa WFMS.
In Section6, we presentthe workflows operatedin two
scientific laboratorieswherewe areactuallyapplyingour
tools for workflow management,andin Section7, we dis-
cusssomerelatedwork. Finally, in Section8, we presenta
summaryof ourcontributionsandour futurework plans.

2. A Workflow Example

The exampledepictedin Figure 4 is an actual scien-
tific workflow thatcapturestheoperationof anexperimen-
tal study in the Soil SciencesDepartmentof the Univ. of
Wisconsin[1]. The objective of the experimentis to pro-
ducedaily forecastsof near-surfacetemperaturesin cran-
berry bogsin Wisconsin. Theseforecastsgive cranberry
farmersadvancewarningof over-nightfrostconditions� , so
they cantake actionto protecttheir vinesfrom frost dam-
age.

1. Around noon eachday, satellite and ground-based
meteorologicalobservationsareprocessedin theAt-
mosphericSciencesDepartmentof UW, generatinga
24-hourweatherforecastat severalheightsin theat-
mospherefor thewholeUnitedStates;

2. ThisUSforecastis fed into aBog Forecast Extrac-
tion programthatextractsforecastsfor pointsthatare
25metersabovespecifiedcranberryboglocations;

�
Although our main interestandemphasisis on scientificworkflows,

theresultsapplyequallywell to businessworkflows also.

...asis oftenthecasein Wisconsin!
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Figure 4. Thecranberryworkflow

3. Theseforecastsaresentto the Soil ScienceDepart-
mentwherethey areprocessedby CranEB, to derive
aforecastfor thelevel of thecranberryvines(canopy
level);

4. Later in the day, as new weatherobservationsbe-
comeavailable, the initial 25m bog forecastcanbe
updated:	 ScaledCranEB outputforecastsarecompared

with new observed weather conditions in a
packageof statisticalroutines.	 Appropriatecorrectionsto theoriginal25mbog
forecastaredetermined,andCranEB is rerun.

With this feedbackmechanism,the canopy-level
forecastis updatedcontinuouslythroughouttheday.

5. Text files generatedby CranEB arefed into theDE-
ViseVisualization tool [9] thatgenerateGIF plotsof
canopy temperaturevs. time. Theseplots are then
publishedon theWeb,wherethey canbereadilyac-
cessedby cranberryfarmersthroughoutWisconsin.

In the sequel,we refer to this exampleas the “cranberry
workflow”. It is usedthroughoutthepaperfor reference.

3. BasicWFMS Functionality

In this section,we attempta closerlook at workflows
andanalyzethefollowing basicfunctionalitythata WFMS
mustdefinitelyprovide:

	 workflow specification	 workflow execution	 workflow evolution	 workflow auditing

Theabove functionality is necessaryfor all typesof ap-
plications,but is alsosufficient for someaswell, e.g.,those

thatarisein single-useror mostly-readenvironments.Sci-
entific laboratories(physicalor virtual) tend to belongin
thesecategoriesin general;sincethey areour main moti-
vation for this work, our discussionfocusesalmostexclu-
sively on theabovefunctionality. Clearly, in multi-userand
very dynamicenvironments,like thosefound in the busi-
nesssector, thereis additionalworkflow functionality that
is necessary, including transactionmanagement,workflow
recovery, workflow interaction(for cooperative work), and
others. We believe that the objectview of workflows has
many benefitsfor thesupportof this additionalfunctional-
ity aswell, but demonstratingthisremainspartof ourfuture
work.

3.1. Workflow Specification

Thespecificationof aworkflow consistsof threeitems:	 Process: This includesthe workflow tasksandhow
they arerelated. Thereshouldbe enoughflexibility
to allow variousformsof taskinterrelationships:

1. tasksoperatingin seriesor in parallel
2. tasksreceiving input from or providing (possi-

bly distinct)input to multipleothertasks
3. tasks choosingto receive input from among

many possibletasksthatprovide it
4. tasksreceiving input directly or indirectly from

themselves(feedback)
5. tasksbeingabstractedandgroupedinto higher-

level tasks

Even in the simple cranberryworkflow, we seethe
needfor mostof theabove.For example,taskStatis-
tics Package acceptsmultiple inputs (1,2); task
CranEB choosesits inputbetweenwhattaskStatis-
tics Package generatesandwhatBog Forecast Ex-
traction generates(3), partof which is indirectly af-
fectedby what it produces(4); and25m Forecast
Generation abstractsa sequenceof two tasksinto
oneasthe detailedstepsareoften (althoughnot al-
ways)unimportant(5).

	 Data: This includesthe input andoutputdataof the
workflow tasks.

	 Invocation: This includesthe mechanism(rule) that
triggersthe executionof eachtask. Thereare two
mainchoices:explicit invocation,in which a human
initiatesthetask,andimplicit invocation,in whichthe
taskbeginsimmediatelyuponcreationof its inputas
longasany specifiedconditionsaresatisfied.For ex-
ample, in the cranberryworkflow, one may choose
someor even all of the tasksto be associatedwith
implicit invocation,dependingonhow muchautoma-
tion is desired.(Currently, theentireprocessis com-
pletelyautomated.)

3



3.2. Workflow Execution

Executionof a workflow involvesdealingwith thethree
mainelementsof its specificationasfollows:	 The processtypically involvesexecutionof applica-

tionsoutsidetheWFMS.For example,taskCranEB
in thecranberryworkflow is executedby CranEB, an
externalsurfaceenergy budgetprogram.TheWFMS
mustfollow thelogicof theworkflow andatany point
interactwith theappropriateexternalsystemto trans-
fer thecontrolof executionasneeded.	 Thedatamayneedtranslationduringexecution.For
instance,theWFMS shouldbeableto translate25m
Bog Forecastdatafrom theWFMSinternalformatto
CranEB’s input format,andCanopy-level Forecast
datafromCranEB’soutputformatbackto theWFMS
internalformat.	 The Invocationmay be automaticor not, depending
on thespecification.

Evenfor a completelyautomatedworkflow, usersretainul-
timatecontrolduringits execution,monitoringandevenin-
fluencingits operation:

	 Statusmonitoring: At any pointusersmayaskfor the
executionstatusof theentireworkflow or partsof it.
Statusinformationmaybeprovidedby theWFMSor
any externalsystemusedin theworkflow. Suchinfor-
mationdoesnot obey to any universalformat,but is
veryimportantbecauseit usersin decidingif andhow
they shouldinterveneto theexecution.For example,
aninquisitiononthestatusof thecranberryworkflow
may reveal that the incoming weatherobservations
aregarbled,which could leadin the(temporary)de-
activationof the feedbackloop throughthe Statisti-
cal Analysis taskandtheuseof anearlier25mbog
forecastasinput to theCranEB task.

	 VCRfunctionality: Userinterventionin theexecution
of a workflow is reminiscentto thefunctionalityof a
VCR: the usercanstop execution,pause execu-
tion andresume soonafterwards,or rewind exe-
cutionup to acertainpointandresume from there.

3.3. Workflow Evolution

Changesin aworkflow maybeanevery-dayroutinein a
workingenvironment.Suchchangesareof threetypes:	 Modification: new workflow hassameobjective but

differentlogic andreplacesold one.	 Versioning: asbeforebut new workflow doesnot re-
placeold one,but co-existswith it.	 Extension: new workflow hasdifferentobjectiveand
thereforeadditionallogic andreplacesold one.

In addition,someenvironmentsrequiredynamicratherthan
static workflow evolution, i.e., changingone part of the
workflow while anotherpartis running.

3.4. Workflow Auditing

Workflow executionsare relatedto several piecesand
kinds of information, including the original input and the
final outputdata,the resultsof intermediatetasks,andthe
interim andfinal statusof the WFMS andthe relevantex-
ternalsystems.Usersareconstantlyauditingworkflowsby
accessingandexploring all this information,analyzingthe
workflow results,obtainingreportsonefficiency, validating
theusedprocessmodels,etc. For scientificworkflows, this
is oftentheprimarytimewhen‘scienceis done’.

4. The MooseData Model and the Fox Query
Language

As a vehicleto demonstratethepower of our approach,
we usetheHorse object-orientedDBMS that we arede-
velopingas part of the Zoo desktopexperimentmanage-
mentenvironment.Horse is basedontheMoose � object-
orienteddatamodelandtheFox � querylanguage.Under-
standingtherestof thepaperrequiressomefamiliarity with
Moose andFox, so their most importantfeaturesarede-
scribedbelow. More detailsaboutMoose andFox canbe
foundelsewhere[8, 14].

4.1. Moose

Therearevariouskindsof objectclassesin Moose (tu-
ple,collectionor primitive). Objectsfrom theseclassesare
connectedvia binary relationships,threeof which arerel-
evant to this paper. The structureof a tuple classis de-
finedby anarbitrarynumberof has-partrelationships,each
pointing to a singleobject. Associationrelationshipscon-
nectindividual objectsin two classesof any kind. An is-a
relationshipbetweentwo classeshastheusualmeaning.All
relationshipsarebidirectional,i.e., they canbetraversedin
eitherdirection.

Any relationshipbetweentwo classes� 
 and � � may
bespecifiedasderivedfrom � 
 to � � or from � � to � 
 or
both.In thefirst case,for each� 
 object,therelated� � ob-
jectis constructedor identifiedbasedonobjectsthatare(in-
directly) connectedto the � 
 objectvia otherrelationships
(similarly for theothercases).Theconstructionor identifi-
cationis througha rule, which maybeany Fox command
that returnsan object. This includesthe execcommand,
whichinvokesanexternalsystemthat,in thiscase,receives
asinputa file containing(partsof) theseotherobjects.The
semanticsof a derivationrule from class � 
 to class � � is
thatit is invokedevery timeanobjectis insertedin � 
 , and
whatever � � objectit produces(if any) is placedin the � 
�

ModelingObjectsOf ScientificEnvironments�
FindingObjectsof eXperiments
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object as its value for the correspondingrelationshipand
viceversa.Thus,derivationrulesin Moose area ratherre-
strictedform of triggers[4], in thesensethattheonly event
thatcantriggera rule is aninsertionin a specificclass.

The datadefinition languageof Moose providesstate-
mentsto create,destroy, andrenameclassesandrelation-
ships,associaterulesto relationships,deactivaterules(tem-
porarilymodifyingtheschemaasif theruledoesnotexist),
andreactivatethemback. Ruledeactivationholdsonly for
the currentusersessionanddoesnot affect otherusersof
theschema.

4.2. Fox

Fox is thedeclarative queryanddatamanipulationlan-
guageof Moose. Onemayreferto anobjectin aFox com-
mandby its uniqueobject id (assignedby the system),its
name(optionallyassignedby theuser),or theuniversalkey-
word this in casesanobjectis uniquelyidentifiedby some
context in which theFox commandis nested.In addition,
onemayspecifyanobjectvariablein aFox queryandbind
it to membersof a classextentor a collectionsdefinedby a
pathexpression.Pathexpressionsin Fox areusedto nav-
igatethroughinterrelatedclasses.A pathexpressionstarts
from a known objectspecification(constantor boundvari-
able)andfollows relationshipsfrom thatobject. Thebasic
structureof aFox queryis deriveddirectly from SQL:

for � range-binding-list�
select � projection-list�
where � qualification�
as � name� ;

The for clause(optional)definesa setof objectsusingob-
ject variablesor constants,or both. The selectclausede-
finesprojections,as in SQL, which could be pathexpres-
sions.Thewhereclause(optional)involvesaconditionthat
definestheselectionamongtheresults.Theasclause(op-
tional) specifiesa namefor future referenceto the query
results.

Therearefive datamodificationstatementsin Fox: in-
sert, delete, update, load, andexec. Themiddlethreeare
not usedin this paper, so they arenot describedany fur-
ther (load is for bulk insertionof datafrom a file, gener-
ally into multiple classesat once). The insert command
generatesnew objectsfor a classwith valuesfor their re-
lationshipsspecifiedeitherdirectly in a list or astheresult
of a Fox query, asin SQL. Theexeccommandschedules
theexecutionof aprogram(‘agent’)externalto Horse. Its
argumentsarethenameof theprogramandalist of pathex-
pressions,whichform theprograminput. Examplesof Fox
commandsaregivenin thefollowing sectionsin thecontext
of describinghow workflowsarecapturedwithin Horse.

5. A DatabaseWay to Workflow Functionality

In this section,we describehow we capturein Moose,
Fox, andHorse all aspectsof WFMS functionality pre-
sentedearlier(Section3), i.e.,workflow specification,exe-
cution,evolution,andauditing.

5.1. Workflow Specification

One of the most important characteristicsof our ap-
proach is that workflows are directly representedas
databaseschemas.This offers tremendousflexibility and
makesmany otheraspectsof the desiredfunctionality fall
out for free. Theessenceof theworkflow-to-schemamap-
ping is asfollows:

	 tasks,input data,andoutputdataareall represented
asordinaryMoose classes;	 task interconnectionsare representedby ordinary
Moose relationships;and	 taskinvocationis expressedby assigningruleson the
appropriaterelationships.

Thedetailsof this mappingwith respectto workflow data,
process,andinvocationarepresentedseparatelybelow.

Simple task and data: A workflow task is a process
thatoperatesonsomeinputandproducessomeoutput.De-
pendingon which aspectsof thetaskonewantsto capture,
therearedifferentschemasthatcanbeused.Theinput and
outputdataarealwaysrepresentedasMoose classesin a
straightforward way. In somecases,the processitself is
alsoof interest,e.g.,to storeinformationabouttheduration
of eachexecution. Then, the correspondingtask is repre-
sentedin theschemaasa Moose classaswell, connected
via has-partrelationshipswith thecorrespondinginput and
outputclasses.In othercases,thetaskpresentsno interest,
so it doesnot appearin the generatedschema.Then, the
correspondinginput andoutputclassesareconnectedwith
anassociationrelationship.

Thefirst row (row 0) of Figure5 showsasingletaskwith
its associateddataandaschemathatcanrepresentit for the
first of thetwo casesdiscussedabove (whentheprocessis
of interest).Theothercaseis similar: theexplicit taskclass
is missingandthe input andoutputclassesareconnected
via anassociation.Thisholdsfor theremainingrowsof the
figure,wherefor eachof theworkflows in the left column
andthe correspondingschemathat capturesthe workflow
tasks(secondcolumn)areshown. In thesequel,workflows
andschemasin row N arereferredto asFigure5(N).

Theactionthatproducesthetask’soutputis specifiedby
a derivationrule associatedwith the appropriaterelation-
ship of the output class. This is either the has-partrela-
tionshipconnectedto thetaskclassor theassociationcon-
nectedto theinput class.In Figure5, this is indicatedby a
D( � input-class� ) labelon theappropriaterelationshipand
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Figure 5. Taskinterconnectionsin theMoosemodel

closeto theoutputclass.AssumethatthetaskT1 of Figure
5(0) is implementedby anexternalapplicationaProgram
on its input. Thecorrespondingrule in Fox is

execaProgram(this.I1)

Whenthe task is invoked, the systemshouldsendthe ap-
propriateI1 object(possiblywith its parts)to the external
applicationto generatetheoutput.

Task interr elationships: Figure 5 concentrateson a
setof ‘atomic’ workflows (i.e., workflows of the simplest
form), which capturefive possibletask interrelationships.
Thefigureshows onenaturalandconsistentway to repre-
senteachworkflow with a Moose schema(but this is not
forceduponthe designer).By combiningthe appropriate
schemasshown, onecanconstructothersthatrepresentar-

bitrarily complex workflows(like thecranberryworkflow).

Theworkflow in Figure5(1)hastasksT1 andT2 operat-
ing in series(similarly with tasksT1 andT3), andtasksT2
andT3 operatingin parallel.Thecorrespondingschemais
straightforwardfrom theassociatedschemafor thesimple-
taskworkflow (Figure5(0)) andneedsno furtherexplana-
tion.

Theworkflow in Figure5(2) hastaskT1 receiving mul-
tiple inputs and providing multiple outputs. The basic
schemais now enhancedwith two auxiliary classes,I and
O,whichactasinputandoutputconcentrators,respectively.

Theworkflow in Figure5(3) hastaskT1 receiving two
alternativeinputs,of which it usesoneeachtime. Assum-
ing thegeneralcasethatthetwo inputsareof differenttype,
this is modeledthroughinheritance,by makingtheclasses
capturingthetwo inputtypessubclassesof anauxiliarygen-
eral input classI. If the alternative inputsareof the same
type,no inheritanceis necessary.

Theworkflow in Figure5(4)hastaskT1 receiving input
indirectly from itself. Theschemacorrespondingto sucha
feedbackcycle aredirect derivativesof the corresponding
single-taskschema.For simplicity, wehaveassumedin the
figure that theoutputof taskT2 is of thesametypeasthe
inputof T1, soinheritancedoesnotappearin theschema.

Theworkflow in Figure5(5) hasa simpleworkflow (se-
riesof taskT1 followedby taskT2) abstractedandgrouped
into a higherlevel taskT. This is simply modeledby con-
nectingtheclassesof theinputof theentireseriesto its out-
put,eitherthroughanexplicit taskclassT (shown in Figure
5) thathasthe individual taskclassesandtheoverall input
andoutputclassesasparts,or througha directassociation.
In theschemashown, T.I andT.O arederivedrelationships
whoserulesessentiallyretrievethepathexpressionsT.T1.I
andT.T2.O, respectively. Theserulesarenot indicatedin
5, to bringout therulesthatcapturetaskexecution.

Fromtheaboveexposition,it shouldbeclearthatwork-
flows of arbitrarycomplexity canbe capturedin ordinary
Moose schemaswithout usingany specialconstructs,al-
mosteffortlessly. For example,workflowsthatrequirecon-
structslike if-then-elsearecapturedasparalleltasks(Figure
5(1)). The if-condition is expressedin the qualificationof
thederivationrule of the then-task,while the complemen-
tary conditionis in the qualificationof the derivation rule
of theelse-task.Likewise,workflowsthatrequireprogram-
ming constructslike for andwhile arecapturedwith loops
in theworkflow schema(Figure5(4)). Thedesiredcondi-
tion of theconstructis expressedin thequalificationof the
correspondingderivationrulethatinitiatestheloop,e.g.,the
rule that insertsanobjectin taskT1 (Figure5(4)). As long
astheconditionis satisfied,therule firesandtheloop con-
tinues;thefirst time theconditionis not satisfied,the loop
stops.
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Moreover, all desiredinformation on workflow execu-
tions is uniformly andcentrallycapturedin a schema,in-
cludingthedatamanipulated,detailsof theexecutionitself,
the exact stepsfollowed by the workflow and the mecha-
nism usedto invoke eachone,etc. The schemabecomes
the formal documentdescribingevery aspectof the work-
flow. Theexplorability of workflow historythusaffordedis
oneof the greatestbenefitsof our approachthat make the
implementationof workflow managementinsidea DBMS
veryattractive.

Invocation: Considerthesimpleexampleof Figure5(0).
In thecorrespondingschema,by thesemanticsof derivation
rules(Section4), thetaskis invokedassoonasanobjectis
insertedin classT throughthe triggeringof the rule in the
relationshipfrom classT to classO. An additionalrule in
therelationshipfrom classI to classT of theform

insert into T() instance()

capturesan implicit invocationof the task. As soonasan
object is insertedin I, the above rule insertsan object in
T, which in turn fires off the task. On the otherhand,the
absenceof such(i.e., if therelationshipis notderived)cap-
turesanexplicit invocationof the task. Taskexecutionbe-
ginsonly whena human(or someapplicationprogram)ex-
plicitly insertsanobjectin T andconnectsit to theappro-
priateI object.

Clearly, the above can be generalizedto arbitrary
schemas,and the decisionaboutimplicit or explicit invo-
cationcanbemadeindependentlyfor eachtaskby defining
or not the appropriatederivationrules. Again, the easeof
capturingsuchbehavior throughpurely databasemeansis
clear.

As an example of the entire methodologydescribed
above, Figure 6 shows a schemafor the cranberrywork-
flow. For simplicity we do not show any of theactualrules
or their invocationmechanism;wesimply indicatetheexis-
tenceof rulesby usingtheir namesaslabelsandagainthis
only for thosethat capturetaskexecution. Note that tasks
US Forecast Model andCranEB havebeencapturedwith
explicit classesdueto their importance,while the remain-
ing oneshave not, asthe workflow designerfrom the Soil
SciencesDepartmentexpressedno interestin incorporating
in herown schemaany informationon theirexecution.

5.2. Workflow Execution

Given a schemathat capturesa workflow asdescribed
above,executingit becomesalmosttrivial, asit reducesto
simpledatabaseinsertions;the rulesdo the rest! As soon
asobjectsfor the initial workflow inputsare insertedinto
theappropriateclasses,executionstartsimmediately(if the
first tasksareassociatedwith implicit invocation),or after
a humaninsertstaskobjectsin the appropriateclasses(if

they areassociatedwith explicit invocation).Thiscontinues
throughouta workflow executionwith explicit or implicit
insertionscausingfurthertaskfiring.

Workflow monitoring is also accomplishedby Fox
queries,featuringa novel path-expressionconnector. In
particular, the traditional connector‘.’ indicatesmoving
alongrelationshipsof a specifickind from a given (or re-
trieved)objectto thoserelatedto it. In thepresenceof de-
rivedrules,suchrelationshipsmaybe‘underconstruction’.
Queryingabouttheexecutionstatusof sucha construction
task is essentiallyqueryingaboutthe statusof the corre-
spondingderived relationship. We take advantageof this
mappingbetweentasksand relationshipsand introducea
novel connector, ‘?’, whichcanbeusedanywhereappropri-
atein pathexpressions.Informally, the new connectorin-
dicatesretrieval of thestatusinformationgeneratedby the
(external)systemprocessingthe correspondingtask. This
informationis storedasanobjectin a possiblyindependent
databasecreatedby theindividual systemfor thatpurpose,
whichneitheritself nor its schemaarenecessarilyknown to
theworkflow user.

Theconnectoralsoindicatesnormaltraversalof theob-
ject relationshipsif they have alreadybeenconstructed,so
that‘?’ connectorsfurtherdown thepathexpressionmaybe
correctlyinterpretedaswell. If the ‘?’ connectoris placed
onrelationshipsthatarenotderivedor donot involveexter-
nalexecution,it is equivalentto the‘.’ connector.

For example,considerthe cranberryworkflow schema
of Figure6. Assumethat oneis interestedin the statusof
theUS Forecast Model execution(rule ����� ) initiatedby
themostrecentweatherdata,i.e., themostrecentlyadded
objectin ‘WeatherObservations’. Assumethat this object
hasbeennamed‘now’. Obtainingthestatusinformationof
interestis simplyachievedby thequery

selectnow.UsForecastModel?UsForecast

Its result is an objectof whatever the statusschemamain-
tainedfor executionsof theUS Forecast Model taskhap-
pensto be. Likewise, if one is interestedin the statusof
theentireworkflow initiatedby ‘now’ (excludingany visu-
alizationsor feedback),theappropriatequerywouldbe

selectnow.UsForecastModel?UsForecast?
25mBogForecast.CranEB?CranEBForecast

Note that the querycontainsa ‘?’ connectorfor relation-
shipsderived throughworkflow tasks,and the regular ‘.’
connectorfor all others.Its resultincludesanywherefrom
zeroto threeobjects,dependingon how many of the cor-
respondingtaskshave beeninitiated. For example,if the
queryis posedwhile theBog Forecast Extraction is run-
ning (rule ������� ), two objectswill be retrieved: the final
statusobjectfor theexecutionof US Forecast Model (rule
� ��� ) andthecurrentstatusobjectfor Bog Forecast Ex-
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Figure 6. A schemafor thecranberryworkflow

traction.
Finally, any form of VCR functionality correspondsto

simple databasemanipulation. A stop or a pause on
an executioncorrespondsto deactivating a set of deriva-
tion rules. A resume correspondsto activating these
rulesback. A rewind up to a certaintaskfollowed by a
resume correspondsto aninsertionof a new objectin the
relevanttaskclassthathasthesameinput objectasbefore.
Overwritingtheolddataissimplyasetof deletecommands.

5.3. Workflow Evolution

By representingworkflows as schemas,all flavors of
workflow evolutionreduceto schemaevolutionandarethus
obtainedfor free. Workflow modificationandextensionre-
ducetochangingtheschema,whileworkflow versioningre-
ducesto obtainingversionsof theschema,bothoperations
beingwell studiedandunderstoodin the databaseworld.
Moreover, schemaevolutiondoesnot requireisolationof a
databasefrom its users(exceptmaybefor the portion that
is beingevolved),soworkflow executioncanbedoneboth
staticallyanddynamically.

5.4. Workflow Auditing

All informationrelevantto aworkflow andits executions
arestoredin a databasepopulatingthe workflow schema,
andcanthusbeaccessedby queries.A workflow execution

Cranberry Workflow

Weather observations Time vs temperature graphs

Figure 7. Cranberryworkflow abstraction

canbeviewedasa ‘web’ thatholdsall theinformationpro-
ducedonthewayfrom theinputto theoutput.For example,
assumethattheentirecranberryworkflow is abstractedin a
singletaskthat acceptsa setof weatherobservationsfiles
asinput andproducesa setof graphsasoutput(Figure7).
Thesegraphsarenaturallyconnectedto all theobjectscon-
taining executioninformationfor the individual tasksthat
make thishappen.With asinglequeryaboutaspecificout-
putgraph,all theinformationthatis connectedto thecorre-
spondingobjectis broughtalongto theuser. In addition,as
schemasareobjectspopulatingameta-schema(of aschema
database),any informationabouttheworkflowsthemselves
is obtainedthroughqueriesas well. Clearly, our schema
representationof a workflow makesauditing fall squarely
into databasetechnology.

6. SystemStatusand CustomizedInstallations

Over thepastfew years,wehavebeenimplementingthe
Zoo system[8] , whichhasseveralfeaturesthataregeared
towardssupportingthe WFMS functionality discussedin
Section3. Currently, all aspectsof specification,execu-
tion, and auditing areoperational,including invoking ex-
ternalapplicationsand statusmonitoring. Workflow evo-
lution hasbeendesigned,but implementationhasonly just
begun. In additionto thecranberryworkflow, we currently
havetwo experimentalinstallationsof thesystem,oneatthe
Soil SciencesDepartmentandoneat theNationalMagnetic
ResonanceFacility At Madison(NMRFAM), hostedby the
BiochemistryDepartmentof the University of Wisconsin-
Madison.

The Zoo installationat the Soil SciencesDepartment
runsanexperimentthatpredictswatershedresponseto rain-
fall, runoff, and sedimentdelivery at an areaof interest,
givena specificationof vegetationandsoil properties.The
Zoo installationat the NMRFAM runsan experimentthat
usesa powerful spectrometer, andthroughfurtherprocess-
ing of theresultingNMR databy severalsoftwarepackages,
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elucidatesthethree-dimensionalstructureof abiomolecule.
Theoverallexperienceof thescientistsof bothgroupswith
varioustestsof thesystemhasbeenveryencouraging.

7. Relatedwork

Over thepastfew years,workflowshave beena favorite
topicin boththecommercialandtheresearchworlds.Since
workflow managementinvolvesaverybroadareaof issues,
thesystemsthathave resultedfrom all this activity present
aconsiderablediversityin theirgoalsandapproaches,mak-
ing it often difficult to compareour work with the entire
field. Themain,essentiallyuniversal,differenceof our ap-
proachwith existingworkflow systemsis in thearchitecture
(Figure3). Independentof theirgoals,primaryapplications,
andworkflow type, the commondenominatorof all these
systemsappearsto be the useof a DBMS (or other stor-
agemanageror file system)asa datarepository, on top of
whichoneor moresoftwaremodulesimplementthedesired
workflow functionality. To thecontrary, we usetheDBMS
itself for all workflow activities, reapingthebenefitsof the
databasetechnologymaturityandobtainingmuchof thede-
siredfunctionalityfor free.

A similar approachis taken by HiPAC [11], an active
DBMS that usesdatabaserulesto trigger databaseopera-
tionsaswell asexternalapplications.HiPAC offersa more
completerule systemthanZOO,which includesonly rules
thatseemto beneededto runworkflow tasks(asis thecase
with almostall of theactiveDBMSs). We usethis technol-
ogy to designworkflows andotherworkflow necessitiesas
well, suchasmonitoring,VCR functionality, anddynamic
evolution.

The state-of-the-artin the workflow areais determined
bycommercialproducts[6], whosegoals,however, arevery
differentfrom oursandincludecooperativework, taskrout-
ing, anddatasharingin businessenvironments. Probably
reactingto thepredominantlackof commercialattentionto
issueslike scalability, reliability, concurrency control,and
recovery [7], most researchefforts have focusedon inter-
operability, transactionmanagementand high availability
for businessworkflows,noneof which is againamongour
interests. Characteristicis the fact that interoperabilityis
themaingoalof theWorkflow ManagementCoalition [7],
a standardizationbureauthat providesa genericreference
modelfor workflows.

In general,existingcommercialandresearchsystemsof-
fer mostof the functionality outlinedin Section3. There
aretwo critical capabilities,however, thataremissingfrom
thesesystems(with few exceptions):invocationof ad-hoc
external software and dynamicexecutionmonitoring and
reporting. Theredo exist somesystemsthat offer interac-
tion with specificoffice applications(specificvendor, op-
eratingsystem,andplatform), but the ability to dealwith

ad-hocsystemsis largely not offered. Likewise, existing
systemsdo permittheretrieval of statisticsaboutthework-
flow execution,but theseare of a fixed, predefinedform
whosecollection is intertwinedwith the workflow execu-
tion in a predeterminedfashion. The ability that we offer
to usersto askat any point for statusinformationthatmay
be definedindependentlyby arbitraryexternalsystemsor
for theworkflow resultsandany informationrelatedto their
creationis not there.

Scientific workflows have been explicitly addressed
mainly by two projects: WASA [12] and LabFlow-
1/LabBase[2]. But again,thegoalsandapproachof these
efforts have beendifferentfrom ours. WASAusesa com-
mercialWFMS on top of a DBMS extendedby advanced
features,andseveral user-interface,decisionsupport,and
analysistoolsthatofferausefulfront-endtoscientificwork-
flow management.WASA offers most of the functional-
ity describedin Section3, althoughpossiblyrestrictedby
thecapabilitiesof theunderlyingWFMS [13]. LabBaseis
a DBMS specializedfor useby genomelaboratories,and
LabFlow-1is a databasebenchmarkthat teststheusability
of storagemanagersto serve asa basisfor WFMS devel-
opmenton top of them. Both of thesesystemsfall beyond
the scopeof our work, andin generalwe areawareof no
othersystemusesa DBMS to provide run-timeworkflow
management.

Finally, therearea few efforts in thescientificdatabase
areathat have similaritieswith someaspectsof our work,
althoughthey have not beendirectly addressingworkflow
issues. The OPM effort at LBNL is probably the clos-
est to this effort [3]. OPM is prominentin the genome
databasecommunityandis usedto implementsomeof the
mostimportantinternationalgenomedatabases.It hasthe
samephilosophyasoursin thatworkflows arerepresented
asschemasin theOPMdatamodel,whichofferstwo kinds
of classes,onefor dataandonefor protocols,to facilitate
thedefinitionof experimentalprocesses.However, protocol
classesdonotcaptureany activeaspectsof thecorrespond-
ing workflow tasks,but aresimply datacontainers,indica-
torsof executionsof thecorrespondingtasks.Theworkflow
executionis notdrivenby OPMschemasbut externally, and
theresultingdataarethenstoredunderOPM.Thisis thekey
differencebetweenOPM andZoo. In essence,thecurrent
OPM-centeredtoolsapproachworkflowsbasedonthetradi-
tionalarchitectureof Figure3a,whereasby usingthearchi-
tectureof Figure3b,weareabletoproviderun-timesupport
to workflowsthroughtheDBMS itself. With respectto data
models,theExtendedEntity-Relationship(EER)modelhas
alsobeenenhancedwith severalfeaturesandusedto model
processes[10], againwith no active featurescapturedby
theschema.Finally, with respectto invocationsof external
systems,computationalproxies[5] have beenproposedfor
interactionbetweena scientificDBMS andexternalchem-

9



ical models.This is very similar to how thecorresponding
Zoo moduleoperatesto achieve thesamegoal. Oneof the
differencesis our useof a generictranslationtool in read-
ingdeclarativespecificationsto translatedbetweendatabase
objectstructuresandexternalformats.

8. Summary and Future Work

In this paper, we have introducedthe object view of
workflowsandhave demonstratedthatmuchof theneeded
workflow functionality canbe supportedwithin a DBMS,
throughregulardatabaseoperations,with noneedfor devel-
opingspecializedworkflow software.Thekey enablingele-
mentof ourdatabase-centricapproachis theuseof aDBMS
whosedatamodelcanexpressthe active aspectsof work-
flowsaswell (likeMoose). Thisallows theDBMS to have
controlover workflow executions,andthereforeto provide
completerun-timesupportto workflow management:inter-
actingwith externalsystemsimplementingworkflow tasks,
obtainingtheir statusduring their execution,modifying a
workflow during its execution,optimizing workflow tasks
asglobally aspossible,etc. Moreover, the object-oriented
schemarepresentationof aworkflow providesanintegrated
view of all workflow-relatedinformationthatcapturesin a
naturalway the connectionbetweenthe workflow process
andthedatait manipulates,thuspermittingseveral impor-
tant typesof queriesand analysisof workflow execution.
Our implementationof mostof thedesiredfunctionality in
theHorseDBMSandourexperimentalinstallationsin two
scientificlaboratoriesindicatethattheobject-view of work-
flows hasmany benefitsandcanserve theneedsof several
environmentswell.

Themaingoalof our futurework is to demonstratethat
theobjectview for workflows andtheresultingDBMS-as-
a-WFMSarchitecturecanprovide theremainingworkflow
functionalitythatwe have not addressedin this paper, e.g.,
transactionmanagement,workflow recovery, andworkflow
interaction.We believe this is indeedthe case,anda pos-
sible successin this endeavor will be very importantand
beneficialto several businessenvironments. Other future
tasksincludecompletionof the implementationof Horse
with respectto thefeaturesnecessaryfor workflows,inves-
tigationof additionalformsof derivationrules(triggers)and
their potentialbenefitsfor workflow management,andde-
velopingavisualuserinterfacesuitablefor designingwork-
flowsata level higherthantheschema.
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