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The effect of scintillation, arising from propagation through atmospheric turbulence, on the sift and error
probabilities of a quantum key distribution (QKD) system that uses the weak-laser-pulse version of the Bennett-
Brassard 1984 (BB84) protocol is evaluated. Two earth-space scenarios are examined: satellite-to-ground and
ground-to-satellite transmission. Both lie in the far-field power-transfer regime. This work complements previous
analysis of turbulence effects in near-field terrestrial BB84 QKD [J. H. Shapiro, Phys. Rev. A 67, 022309
(2003)]. More importantly, it shows that scintillation has virtually no impact on the sift and error probabilities
in earth-space BB84 QKD, something that has been implicitly assumed in prior analyses for that application.
This result contrasts rather sharply with what is known for high-speed laser communications over such paths, in
which deep, long-lived scintillation fades present a major challenge to high-reliability operation.
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I. INTRODUCTION

In [1] we used the normal-mode decomposition for line-
of-sight optical propagation through atmospheric turbulence
[2] to obtain upper and lower bounds on the sift and error
probabilities of a free-space optical implementation [3] of
the Bennett-Brassard 1984 (BB84) protocol for quantum
key distribution (QKD). There we focused on modest-length
terrestrial paths, for which the transmit and receive pupils
could easily be large enough that operation is in the near-
field power-transfer regime. Earth-space BB84 QKD is being
considered for transcontinental to worldwide applications, and
these configurations are in the far-field power-transfer regime.
To date, almost all assessments of the impact of atmospheric
propagation on such far-field systems have not included
scintillation [4]; i.e., only the effects of atmospheric extinction,
turbulence-induced beam spread and angular spread, and
background-light collection have been quantified (see, e.g.,
[5]). In this paper we rectify that deficiency. In particular,
we show that scintillation has virtually no effect on the sift
and error probabilities of a BB84 QKD system that uses
satellite-to-ground or ground-to-satellite transmission. This
result contrasts rather sharply with what is known for high-
speed laser communications over such paths, in which deep
and long-lived scintillation fades present a major challenge—
arguably the major challenge—to high-reliability operation.

The rest of this paper is organized as follows. In Sec. II we
briefly describe the BB84 QKD protocol that is treated and
give expressions for its sift and error probabilities conditioned
on knowledge of the fractional transmitter-to-receiver power
transfer. These conditional probabilities are independent of
whether operation is in the near-field or far-field power-transfer
regimes, so they are available from [1] for the weak-laser-
pulse system that we consider. In Sec. III we address the
satellite-to-ground link. Using a lognormal-fading model we
show that aperture-averaged scintillation has a negligible
effect on the unconditional sift and error probabilities [6].
Section IV presents a similar analysis for two versions of the
ground-to-satellite link. The first employs a collimated-beam
(nonadaptive) transmitter. The second is an ideal adaptive-
optics transmitter that perfectly tracks the maximum power-
transfer input eigenfunction for the ground-to-space path.

In both cases the conclusion reached is the same as that
found in the satellite-to-ground analysis, viz., scintillation
has a negligible effect on the unconditional sift and error
probabilities.

II. SIFT AND ERROR PROBABILITIES FOR BB84
FREE-SPACE QKD

The QKD system we consider is the one described in [1]. It
uses a line-of-sight optical link to connect a transmitter (Alice,
shown in Fig. 1) with a receiver (Bob, shown in Fig. 2). On
each bit interval, Alice chooses randomly between two linear
polarization bases, 0◦ or 90◦ and ∓45◦, which we denote + and
×, respectively. Having chosen a basis, she sends a random bit
value, 0 or 1, using the coding

0 −→
{

0◦, if + was chosen,

−45◦, if × was chosen,
(1a)

1 −→
{

90◦, if + was chosen,

+45◦, if × was chosen.
(1b)

Bob’s receiver uses a passive 50:50 beam splitter to create
inputs for a pair of polarization analysis systems—one for the
+ basis and one for the × basis—that employ identical single-
photon avalanche photodiodes (APDs), each of quantum
efficiency η [7]. For a single photon arriving at Bob’s receiver,
this passive arrangement amounts to a random choice between
the + and the × measurement bases.

Let {N0◦ ,N90◦ ,N−45◦ ,N+45◦ } denote the photon counts from
the four APDs during a single bit interval. Bob has a
detection event when N0◦ + N90◦ + N−45◦ + N+45◦ = 1, i.e.,
when exactly one of his detectors registers a count. In the
BB84 protocol, Bob discloses to Alice the sequence of bit
intervals and associated measurement bases for which he has
detections. Alice then informs Bob which detections occurred
in bases coincident with the ones that she used. These are
the sift events, i.e., bit intervals in which Bob has a detection
and his count has occurred in the same basis that Alice used.
For example, if Alice sent her bit value as a 90◦-polarized
laser pulse, then a sift event means that Bob had detected
exactly one count from his four detectors, with N0◦ = 1 or
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FIG. 1. Block diagram of a single-laser QKD transmitter (Alice).
The laser output is a stream of linearly polarized pulses. The
polarization controllers are driven by a pair of random binary
sequences. The first sequence determines the sequence of polarization
bases that will be sent: + = 0◦ or 90◦ and × = ∓45◦. The second
sequence determines the bit value to be sent, according to the coding
rule given in Eq. (1). The attenuator reduces the transmitter’s output
to nS photons, on average, per bit interval.

N90◦ = 1. An error event is a sift event in which Bob decodes
the incorrect bit value. For example, if Alice sent her bit value
as a 90◦-polarized laser pulse, then an error event means that
Bob had a sift in which N0◦ = 1 occurred. Once sift events have
been identified, the remainder of the BB84 protocol—which
does not concern us in this paper—is standard. Alice and Bob
follow a prescribed set of operations to identify errors in their
sifted bits, correct these errors, and apply sufficient privacy
amplification to deny useful key information to any potential
eavesdropper (Eve). At the end of the full QKD procedure,
Alice and Bob have a shared one-time pad with which they
can communicate in complete secrecy. For a given level of
privacy amplification (secrecy), the principal figure of merit
for the BB84 QKD system is its key rate, i.e., the number
of one-time pad bits per second that Alice and Bob produce.

FIG. 2. Block diagram of a QKD receiver (Bob): IF, interference
filter, provides spectral discrimination against background light;
50:50, ordinary beam splitter, provides a passive, random choice
of polarization-analysis basis (+ or ×) for a single photon; HWP,
half-wave plate, converts × basis into + basis; PBS, polarizing beam
splitter; FS, field stop, provides spatial-mode discrimination against
background light; APD, single-photon (Geiger mode) avalanche
photodiode.

The key rate decreases with decreasing sift probability and
increasing error probability. Our objective is to determine the
degree to which turbulence affects these probabilities [8].

As in [1], we assume that Alice transmits an appropriately
polarized laser signal pulse with an average photon number
of nS to represent her bit value. Bob’s receiver collects a
random fraction, γ , of the transmitted photons owing to
the combined effects of diffraction, atmospheric turbulence,
and (absorption-plus-scattering-induced) extinction. Indeed,
because Bob’s receiver employs a narrow field of view—to
minimize background-light shot noise—it collects only the
turbulence-modified extinguished direct beam from Alice’s
transmitter; i.e., no scattered light is collected. Moreover,
for bit durations that are appreciably shorter than 1 ms and
appreciably longer than 1 ps, we can neglect time-dependent
fading and multipath spread, and, because atmospheric tur-
bulence is nondepolarizing, we then have that attenuation by
the capture fraction γ is the only propagation effect incurred
by Alice’s transmitted pulse en route to Bob’s receiver. In
addition, Bob’s receiver collects nB background photons per
polarization, on average, and each of his detectors is subject
to a dark-current-equivalent average photon number of nD .

Again following [1], we assume our detectors have photon-
number resolution capability and that the their dead time and
afterpulsing can be neglected, so that they are governed by
conditionally Poisson counting statistics. We then have that
the conditional sift and error probabilities, given the fractional
power transfer γ [9], are

Prob(sift | γ ) = η(nSγ /2 + 2nN )e−η(nSγ+4nN ) (2)

and

Prob(error | γ ) = ηnNe−η(nSγ+4nN ), (3)

where nN ≡ nB/2 + nD is the average number of noise
(background light plus dark-equivalent) photons reaching each
detector. Taking 0 < L < 1 to be the atmospheric extinction
encountered along the propagation path, we write γ = μL,
where μ differs from its diffraction-limited (vacuum propaga-
tion) value solely because of atmospheric turbulence.

Our interest is in the unconditional sift and error probabil-
ities, i.e.,

Prob(sift) =
∫ 1

0
dμp(μ)η(nSμL/2 + 2nN )e−η(nSμL+4nN )

(4)
and

Prob(error) =
∫ 1

0
dμp(μ)ηnNe−η(nSμL+4nN ), (5)

where p(μ) is the probability density function (PDF) for the
random variable μ.

Consider far-field propagation from the ground (z = 0) to
a satellite (z = L), or vice versa, in the absence of turbulence.
In either case a collimated-beam transmitter realizes a deter-
ministic fractional power transfer given by [10]

γNT = μNTL =
(

πDGDS

4λL

)2

L � 1, (6)

where DG and DS are the diameters of the circular exit-
entrance ground and satellite pupils, λ is the laser wavelength,
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L is the path length,

L = exp

(
−

∫ L

0
dz α(z)

)
(7)

gives the extinction along the path in terms of the local
extinction coefficient, α(z), and the subscript NT denotes “no
turbulence.” In this case we have p(μ) = δ(μ − μNT), where
δ(·) is the impulse function, so that

Prob(sift)NT = η(nSμNTL/2 + 2nN )e−η(nSμNTL+4nN ) (8)

and

Prob(error)NT = ηnNe−η(nSμNTL+4nN ) (9)

are the no-turbulence sift and error probabilities.
To proceed further we consider satellite-to-ground and

ground-to-satellite scenarios, so that we can employ specific
PDFs for μ and evaluate Prob(sift) and Prob(error).

III. SATELLITE-TO-GROUND SCENARIO

Consider the satellite-to-ground scenario in which the
satellite’s diameter-DS exit pupil lies well within a single tur-
bulence coherence area but the ground terminal’s diameter-DG

entrance pupil comprises many turbulence coherence areas. In
this case the extended Huygens-Fresnel principle leads to the
following expression for the no-extinction fractional power
transfer, assuming that the ground detector’s field of view is
large enough to capture all the laser light reaching the ground
terminal’s entrance pupil [11]:

μ = πD2
S

4(λL)2

∫
|ρ|�DG/2

dρ e2χ(0,ρ). (10)

Here, χ (0,ρ) is the log-amplitude fluctuation imposed on the
field received at transverse coordinate ρ in the z = 0 plane
from a point source radiating from transverse coordinate 0 in
the z = L plane. Energy conservation implies that

〈e2χ(0,ρ)〉 = 1, (11)

where 〈·〉 denotes ensemble average, from which

〈μ〉 =
(

πDGDS

4λL

)2

= μNT. (12)

Equation (12) represents well-known downlink behavior; i.e.,
there is no beam spread due to turbulence when the transmitter
pupil lies within a single coherence area, so the average power
transfer is unaffected by turbulence if the receiver’s field of
view is sufficient to accommodate any turbulence-induced
angular spread [12].

At this point, we assume that χ (0,ρ) is Gaussian distributed,
statistically homogeneous, and isotropic. Thus it is completely
characterized by its mean mχ , variance σ 2

χ , and covariance
function

Kχχ (ρ) ≡ 〈�χ (0,ρ)�χ (0,0)〉, (13)

with ρ = |ρ| and �χ (0,ρ) ≡ χ (0,ρ) − mχ . The energy con-
servation condition in Eq. (12) then implies that mχ = −σ 2

χ .
Furthermore, because the sum of real-valued lognormal ran-
dom variables is well approximated by a real-valued lognormal

random variable [13], we can write [14]

μ = μNTe2u, (14)

where u is a Gaussian random variable with mean −σ 2
u and

variance σ 2
u , with

e4σ 2
u − 1 = 4

πD2
G

∫ DG

0
dρ ρ(e4Kχχ (ρ) − 1)

× 2

π

[
cos−1(ρ/DG) − (ρ/DG)

√
1 − (ρ/DG)2

]
.

(15)

Equation (15) is an aperture-averaging formula; viz., it
amounts to

e4σ 2
u − 1 = e4σ 2

χ − 1

Nχ (DG)
, (16)

where Nχ (DG) 	 1 by assumption is the number of log-
amplitude coherence areas in the ground terminal’s entrance
pupil.

Unfortunately, the lognormal distribution for μ does not
permit us to obtain closed-form expressions for the sift and
error probabilities. So, to demonstrate that scintillation has
essentially no effect on these probabilities, we take a numerical
approach, employing a worst-case value for σ 2

u . In particular,
we choose σ 2

χ = 0.5, which is a conservative upper bound on
saturated scintillation, and use Nχ (DG) = 1 in Eq. (16), thus
obtaining a worst-case value σ 2

u = 0.5. Using the reasonable
values nS = 0.5, nN = 5 × 10−6, η = 0.5, and γNT = 10−3,
we find

Prob(sift)NT = 1.299 × 10−4 (17)

and

Prob(error)NT = 2.499 × 10−6. (18)

Using a lognormal distribution for u with mu = −σ 2
u = −0.5

we then find that∣∣∣∣ Prob(sift)

Prob(sift)NT
− 1

∣∣∣∣ = 1.52 × 10−3 (19)

and ∣∣∣∣ Prob(error)

Prob(error)NT
− 1

∣∣∣∣ = 1.97 × 10−7, (20)

showing that scintillation has indeed had a negligible influence
on the sift and error probabilities.

Before moving on to the ground-to-satellite scenario, it is
worth noting that the key-distribution secrecy of BB84 QKD
depends on Prob( error | sift )—a quantity usually called the
quantum bit-error rate (QBER)—being sufficiently small. In
particular, the QBER provides an estimate of the information
an eavesdropper may have obtained about the sifted bits,
which, in turn, dictates the amount of privacy amplification
required for Alice and Bob to distill a shared secret key. For
the example given above we find that

Prob( error | sift )NT = 1.92 × 10−2 (21)

in the absence of turbulence, and we get∣∣∣∣ Prob( error | sift )

Prob( error | sift )NT
− 1

∣∣∣∣ = 1.53 × 10−3

(22)
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in the presence of worst-case scintillation. Thus worst-case
scintillation on the satellite-to-ground path has virtually no
effect on the QBER.

IV. GROUND-TO-SATELLITE SCENARIO

Now let us turn to the ground-to-satellite scenario. We
continue to make the geometric assumptions that we employed
for the satellite-to-ground case, namely that the ground
terminal’s diameter-DG exit pupil comprises many turbulence
coherence areas, and that the satellite’s diameter-DS entrance
pupil lies well within a single turbulence coherence area. Here,
however, it turns out that there are two cases worth considering:
nonadaptive versus adaptive-optics transmitters. We start with
the nonadaptive case using a collimated-beam transmitter.

A. Collimated-beam transmitter

In the absence of turbulence, a ground-based collimated-
beam transmitter whose normalized spatial mode pattern is

ξo(ρ) =
⎧⎨
⎩

√
4

πD2
G

, for |ρ| � DG/2,

0, otherwise,
(23)

achieves γNT for its far-field power transfer to the satellite.
In the presence of turbulence, this same collimated-beam
transmitter yields γ = μL for its fractional power transfer,
where

μ =
(

DS

DGλL

)2 ∣∣∣∣
∫

ρ�DG/2
dρ eχ(0,ρ)+iφ(0,ρ)

∣∣∣∣
2

. (24)

In this expression, χ (0,ρ) and φ(0,ρ) are the log-amplitude
and phase fluctuations imposed on the field received at
transverse coordinate 0 in the z = L plane from a point source
at transverse coordinate ρ in the z = 0 plane. Atmospheric
reciprocity [15] implies that this χ (0,ρ) and φ(0,ρ) can also be
regarded as the log-amplitude and phase fluctuations imposed
on the field received at transverse coordinate ρ in the z = 0
plane from a point source radiating from transverse coordinate
0 in the z = L plane.

The average behavior of the preceding μ is well known
(see, e.g., [11]). For our case, in which the ground terminal’s
exit pupil comprises many turbulence coherence areas, we can
use the asymptotic result,

〈μ〉 =
(

πDT DS

4λL

)2

, (25)

where

DT = 3.18ρ0 (26)

gives the effective (turbulence-limited) transmitter diameter in
terms of the turbulence coherence length

ρ0 =
(

2.91k2
∫ L

0
dz C2

n(z)(1 − z/L)5/3

)−3/5

, (27)

with k = 2π/λ being the wave number at the laser wavelength,
and C2

n(z) being the turbulence strength parameter along the
propagation path from the ground terminal to the satellite.
Note that this result, which was originally derived in the
weak-perturbation (Rytov-approximation) regime, is valid in

the strong-perturbation regime. More importantly, DT � DG,
because we have assumed that the ground terminal’s exit
pupil comprises a large number of turbulence coherence
areas. It follows that 〈μ〉 � μNT for the collimated-beam
(nonadaptive) ground-to-satellite transmitter. This is the well-
known beam spread result, which has driven earth-space BB84
QKD designs to prefer satellite-to-ground operation, wherein
〈μ〉 = μNT prevails [5], as we saw in Sec. III.

To complete our evaluation of the sift and error probabilities
for the collimated-beam transmitter, we make use of the central
limit theorem argument that implies μ will be exponentially
distributed when the ground terminal’s exit pupil contains
a large number of turbulence coherence areas. Unlike the
lognormal statistics that arose in Sec. III, the exponential
distribution leads to simple closed-form results, i.e.,

Prob(sift) = ηe−4ηnN

2

(
nS〈μ〉L

(1 + ηnS〈μ〉L)2
+ 4nN

1 + ηnS〈μ〉L
)

,

(28)
and

Prob(error) = ηnNe−4ηnN

1 + ηnS〈μ〉L . (29)

In seeking to assess the impact of scintillation on this
nonadaptive-transmitter QKD system, it is unfair to compare
these probabilities to the results from Eqs. (8) and (9), because
those sift and error probabilities assume that there is no
turbulence, whereas turbulence-induced beam spread—which
is due primarily to the phase fluctuations φ(0,ρ)—has a
dramatic impact on the average ground-to-satellite power
transfer even if there are no log-amplitude fluctuations, viz.,
χ (0,ρ) = 0. So, for our comparison case, we consider a
ground-to-satellite link in which p(μ) = δ(μ − 〈μ〉) with 〈μ〉
given by the turbulence-limited result from Eq. (25). This
no-scintillation (NS) case then has the following sift and error
probabilities:

Prob(sift)NS = η(nS〈μ〉L/2 + 2nN )e−η(nS 〈μ〉L+4nN ), (30)

and

Prob(error)NS = ηnNe−η(nS 〈μ〉L+4nN ). (31)

Figure 3 shows plots of Prob(sift)NS, Prob(error)NS, and
Prob( error | sift )NS versus 〈μ〉L. The nS , nN , and η values
assumed are the same as were used in the satellite-to-ground
example in Sec. III, viz., nS = 0.5, nN = 5 × 10−6, and η =
0.5. These curves are indistinguishable from similar plots for
Prob(sift), Prob(error), and Prob( error | sift ) because, over the
range 10−4 � 〈μ〉L � 10−2, we have that

max

∣∣∣∣ Prob(sift)

Prob(sift)NS
− 1

∣∣∣∣ = 2.48 × 10−3, (32)

max

∣∣∣∣ Prob(error)

Prob(error)NS
− 1

∣∣∣∣ = 3.11 × 10−6, (33)

max

∣∣∣∣ Prob( error | sift )

Prob( error | sift )NS
− 1

∣∣∣∣ = 2.49 × 10−3,

(34)

when nS = 0.5, nN = 5 × 10−6, and η = 0.5. Once again we
see virtually no effect from scintillation.
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log10[ µ L]

log
10

[Pr(error)NS]

log
10

[Pr(sift)NS ]

log10 [Pr(error|sift)NS]

FIG. 3. (Color online) No-scintillation sift probability, error
probability, and quantum bit-error rate plotted vs the logarithm of
the average fractional power transfer, 〈μ〉L. These curves assume
nS = 0.5, nN = 5 × 10−6, and η = 0.5.

B. Optimum adaptive-optics transmitter

For the far-field ground-to-satellite scenario we are con-
sidering, it is known that the optimum adaptive-optics
transmitter—which perfectly adapts both the amplitude and
the phase of the transmitter’s spatial mode pattern to max-
imize the fractional power transfer—produces the following
normalized spatial mode pattern [16]:

ξ (ρ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eχ(0,ρ)−iφ(0,ρ)(∫
|ρ�DG/2

dρ e2χ(0,ρ)

)1/2 , for |ρ| � DG/2,

0, otherwise.
(35)

This transmitter achieves

μ = πD2
S

4(λL)2

∫
|ρ|�DG/2

dρ e2χ(0,ρ), (36)

because it is the reciprocity dual of the satellite-to-ground
case. Hence the same considerations made in Sec. III show
that scintillation has essentially no effect on the sift prob-
ability, error probability, and quantum bit-error rate of this
system.

V. CONCLUSIONS

We have evaluated the sift probability, error probabil-
ity, and quantum bit-error rate for satellite-to-ground and
ground-to-satellite BB84 QKD when the ground terminal’s
entrance-exit pupil contains a large number of turbulence
coherence areas, the satellite’s entrance-exit pupil lies well
within a single turbulence coherence area, and operation is
deep into the far-field power-transfer regime. For reasonable
choices of the average transmitted photon number, the average
number of noise photons reaching each detector, and the
quantum efficiency, we have found that scintillation has no
appreciable effect on the aforementioned performance metrics.
Two final questions are worth addressing. First, why is it
that scintillation is so impotent here, when it has long been
known to have a major impact on the error probabilities of
uncoded laser communication systems? Second, would our
results change were we to use the γ -γ distribution, instead of
the lognormal distribution, for the satellite-to-ground scenario
and the optimum adaptive-optics ground-to-satellite scenario?
The reason for the disparity in scintillation effects is that laser
communication systems are trying to operate at very low error
probabilities, whereas the typical QBER of a free-space optical
BB84 QKD system is a few percent. As a result, it is hard for
even the most severe fading to change the QKD performance
from what is achieved at the average value of the fractional
power transfer. Consequently, we do not expect the results we
reported for the lognormal distribution in Sec. III to be changed
in any significant way if we did a similar calculation using the
γ -γ distribution.
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the turbulent atmosphere, the atmosphere does not disturb
the normalized shape of the transmitted pulse. Under these
conditions fractional energy transfer is the same as fractional
(average or peak) power transfer.

[10] The far-field power-transfer regime is defined by the condition
(πDGDS/4λL)2 � 1.

[11] J. H. Shapiro, in Laser Beam Propagation in the Atmosphere,
edited by J. W. Strohbehn (Springer-Verlag, Berlin, 1978),
Chap. 6.

[12] Of course, opening up the receiver’s field of view to accommo-
date turbulence-induced angular spread increases the amount of
background light collected by that receiver.

[13] R. L. Mitchell, J. Opt. Soc. Am. 58, 1267 (1968).
[14] Strictly speaking, the lognormal model cannot be correct, as

it assigns nonzero probability to the impossible event μ > 1.
However, because μNT � 1 holds in far-field power transfer
and 〈e2u〉 = 1, the likelihood that the lognormal distribution
assigns to this aphysical μ > 1 event is inconsequentially small.
A similar observation applies to the exponential fading statistics
that arise in the ground-to-satellite case when a nonadaptive
(collimated-beam) transmitter is employed.
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