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Abstract— In this paper we present SciSpark, a Big Data 

framework that extends Apache
TM

 Spark for scaling 

scientific computations. The paper details the initial 

architecture and design of SciSpark. We demonstrate how 

SciSpark achieves parallel ingesting and partitioning of 

earth science satellite and model datasets. We also 

illustrate the usability and extensibility of SciSpark by 

implementing aspects of the Grab ‘em Tag ‘em Graph ‘em 

(GTG) algorithm using SciSpark and its Map Reduce 

capabilities. GTG is a topical automated method for 

identifying and tracking Mesoscale Convective Complexes 

in satellite infrared datasets.  
 

Index Terms— Apache Spark, in-memory distributed 

computing, large scientific datasets, mesoscale convective 

complexes 

I. INTRODUCTION  

Google’s MapReduce [1] is a widely used framework for 

solving large computational problems in parallel. This model 

adopts the ‘map’ and ‘reduce’ semantics from functional 

programming to express data and task decomposition for 

parallel computing. Apache
TM

 Hadoop later introduced the 

Hadoop Distributed File System (HDFS) that is a highly fault 

tolerant distributed file system inspired by the Google File 

System (GFS) that accompanied the Google MapReduce 

framework. Coupling HDFS and MapReduce, makes Hadoop 

a general purpose system for use cases outside of its original 

inspiration – search – and in turn this combination has been 

applied to an increasing number of scientific domains such as 

Earth science, biomedicine, national security, etc. MapReduce 

jobs in Hadoop are launched as a series of map tasks followed 

by either additional map tasks, or by a single reduce task that 

combines the results. Each map task involves I/O processes to 

disk thereby introducing latency.  

Apache Spark [2] mitigates writing to disk by keeping 

results in memory until data needs to be spilled to disk. Spark 

uses the Resilient Distributed Dataset (RDD) [3] that is an in-

memory distributed data structure. Furthermore, Spark utilizes 

the functional programming paradigm to extend lambda 

expressions thus enabling users to express map and reduce 

tasks seamlessly. Spark achieves fault-tolerance through 

relying on a Directed Acyclic Graph (DAG) execution engine 

for its computation workflow, thus making it more efficient 

than the Hadoop work engine.  

Spark’s generic RDDs are ideal for tabular or unstructured 

data. Science datasets are highly structured. Reading 

hierarchical files from HDFS is a known challenge for Big 

Data applications due to how files are physically stored on 

distributed file systems. The dissonance between logical and 

physical data representation has been noted by researchers e.g. 

[4]. Research endeavors such as SciHadoop [5] attempt to 

solve the issue, however SciHadoop is built for Hadoop 

0.20.2. A variety of MapReduce specific interfaces are 

deprecated in the later Hadoop versions. Furthermore, with the 

increasingly growing community around Spark and its 

potential to offer speed-up and advancements of nearly 1000x 

in-memory, our team at NASA’s Jet Propulsion Laboratory - 

California Institute of Technology (JPL) began an exploratory 

effort called “SciSpark” to augment Spark with the ability to 

load, process, and deliver scientific data and results. SciSpark 

is funded by NASA’s Advanced Information Systems 

Technology (AIST) program [6],[7]. SciSpark is grounded in 

two novel scientific use cases involving data reuse algorithms. 

The first, is a k-means clustering algorithm to compute climate 

extremes over decades of climate model data [8], but is 

outside the scope of this paper. We will instead focus on the 

second algorithm – a graph-based automated method for 
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identifying and tracking Mesoscale Convective Complexes 

(MCCs) [9] that can be categorized as a severe weather event.  

This paper describes the initial architecture and design of 

SciSpark. SciSpark defines the Scientific Resilient Distributed 

Dataset (sRDD), a distributed-computing array structure that 

supports multidimensional data and processing of scientific 

algorithms in the MapReduce paradigm. SciSpark will 

produce methods to create sRDDs that preserve the logical 

representation of structured and dimensional data. Our early 

focus involves ingestion of network Common Data Form 

(netCDF) [10] and Hierarchical Data Format (HDF) files [11]. 

We follow sRDD creation by discussing a new approach to 

pair sequential data from separate arrays in order to implement 

a SciSpark version for the initial stages of the GTG algorithm 

(our further work will implement the full algorithm). We also 

illustrate the shift from the sequential programming paradigm 

to the MapReduce paradigm. Metrics with respect to graph 

development and pitfalls encountered are discussed. Our early 

work can be used as both a practical experience, and a 

research roadmap for work in Spark using structured, multi-

dimensional scientific datasets going forward. 

II. SCISPARK 

A. The SciSpark Architecture  
The SciSpark architecture presented in Figure 1 consists of 

two components: the backend core and the front-end 

visualization. Within the backend are three layers that interact 

to complete a user-defined computation pipeline by leveraging 

sciTensor objects within the Scientific Resilient Distributed 

Dataset (sRDD) - the distributed-computing data structure. 

The sciTensor is a self-document array-collection developed 

for sRDD transformations. To interact with SciSpark’s 

backend, an expert user utilizes the SciSpark API.  A novice 

user will interact with SciSpark via the frontend that will 

leverage a RESTful web API. The functionality of the layers 

in the SciSpark backend will be briefly presented. 

 
Figure 1: The SciSpark architecture 

 

1) Persistence layer  

SciSpark ingests scientific data formats, for example 

netCDF and HDF source files, from various local and remote 

data sources in a non-sequential manner.  SciSpark reads these 

sources in the persistence layer using their uniform resource 

identifiers (URIs). SciSpark also uses the persistence layer to 

stage intermediate or output final results. The SciSpark API 

provides methods to access these data sources, and is 

extendable to other sources. 

2) Partition, Extract, Transform and Load (PETaL) layer 

The PETaL layer first partitions and distributes the URIs 

across the compute nodes. It then extracts the data and 

transforms it into a data type usable in SciSpark that is then 

loaded into the processing layer. The SciSparkContext 

provides the API for the PETaL layer. 

3) Processing layer 

In this layer of SciSpark, the user executes their 

computation pipeline. The sRDD methods in the API govern 

these computation tasks. 

The aspects of the architecture that have been implemented 

are now presented. 

 

B. SciSpark Implementation 

SciSpark is implemented in a Java and Scala environment. 

The environment was chosen to avoid the known latency 

issues related to the communication overhead involved with 

copying data from the worker JVMs to Python daemon 

processes in the PySpark environment [12]. Furthermore after 

a collect call is made in PySpark, the driver JVM will write 

results to local disk and that is then read by the Python 

process. 

The concept of a scientific Resilient Distributed Dataset 

(sRDD) couples operations on multi-dimensional arrays and 

distributed in-memory processing. In order to achieve this, the 

idea of self-documentation in hierarchical file formats was 

utilized to construct a self-documented array class called 

sciTensor as illustrated in Figure 2. The goal of the sciTensor 

is to provide logic that defines the data in the multi-

dimensional format that scientists are accustomed to, while 

achieving high-performance matrix operations through the 

ND4J [13] and Breeze [14] linear algebra libraries. These 

libraries take advantage of cache locality during element-wise 

operations, by allocating dimensional arrays as physical linear 

arrays, similar to C and FORTRAN.  

 

 
Figure 2: Illustration of the sRDD and sciTensor architectures 
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C. sRDD and sciTensor Architectures 

The sciTensor class consists of two hash tables. The 

metadata hash table is used to record information about the 

dataset as key-value pairs. Users can query the table within an 

sRDD transformation function. The table can also be used to 

enter information such as date, area, or minimum and 

maximum values. Each sciTensor is constructed from arrays 

loaded from a unique path, irrespective of its data source from 

the persistent layer i.e. whether it is from OpenDAP, HDFS, 

or the local filesystem. Since hierarchical files can have 

multiple variable arrays, sciTensor also keeps a hash table of 

these arrays where the keys are the variable names and the 

values are the arrays. Users can specify which variables they 

want to load from the dataset and can specify which variable 

they want to use for computation during run-time.  
 

D. How PETaL  Materializes sRDDs 

To extend RDDs to the scientific community, sRDD 

requires three ingredients as illustrated in Figure 3.  

 

Figure 3: Illustration of the sRDD Materialization Process 

a. The URI Set: The user provides a set of line-

separated URI’s from OpenDAP URLs, HDFS path 

names, or path names on the local filesystem in a file. 

b. The partition function is called when computing the 

partition sets of sRDD. It groups the URI set after, 

which SciSpark distributes the subsets of URI’s to 

different compute nodes in the cluster. 

c. The user must also provide a loader function that 

corresponds to the specific source the URI is pointing 

to. For example, if given a path to a netCDF file the 

loader function must leverage the netCDF Java API 

to extract the necessary information. 

The SciSparkContext of the SciSpark API provides 

methods to materialize sRDDs such as NetCDFFile and 

MergFile. These methods follow the above three-ingredient 

pattern.  

D. Description of Tensor Libraries 

Between the persistence layer and the PETaL layer, is the 

process of extracting the data from the native format into the 

sciTensors. This component of the sciTensor is the 

AbstractTensor whose role is to provide a common interface 

to different linear algebra libraries. This need arose due to 

ND4J’s support for n-dimensional arrays but lack of maturity, 

whereas Breeze is a seasoned project but only supports 2-

dimensional arrays.  

Breeze takes advantage of Scala's operator overloading 

feature and is backed by Netlib-java - a wrapper library 

around existing BLAS [15] libraries. Instead of calling 

verbose function names for different levels of BLAS 

operations, Breeze enables code to be succinct by utilizing 

operator overloading. It is limited to matrix operations, and 

does not support beyond 2-dimensional arrays.   

ND4J claims to provide Python NumPy-like syntax and 

performance. The library gives the option to choose from a 

variety of backend BLAS libraries to use. ND4J, like Breeze, 

supports operations on complex numbers. ND4J also provides 

a backend called Nd4j-x86 that uses BLAS for linear algebra 

operations and uses C-level for-loops for element-wise 

operations. ND4J is a young project and is not as mature as 

Breeze.  

We performed evaluations of the Breeze and ND4J 

libraries compared to NumPy for two time periods, weeks 

apart. It was found that the ND4J metrics changed drastically 

between these periods - further indicating the immaturity of 

this project. 

III. A SCISPARK USE CASE 

The code for our experiments can be found at the GitHub 

repo https://github.com/SciSpark/SciSpark. The data used in 

this study are the National Centers for Environmental 

Prediction / Climate Prediction Center (NCEP/CPC) 4 km 

Global (60N – 60S) Infrared Dataset (also known as MERG – 

merged dataset) [16]. 

 

A. The Grab ‘em, Tag ‘em, Graph ‘em (GTG) method 

The Grab ‘em, Tag ‘em, Graph ‘em (GTG) method 

illustrated in Figure 4, automates identification of a particular 

weather phenomenon by searching for cloud elements in 

consecutive time data frames (acquired from files) of 

brightness temperature, correlating them in a graph, and 

analyzing the graph [15]. The cloud elements are identified via 

a criteria based on shape, size and absolute values of 

brightness temperatures of contiguous points within a data 

frame, and are denoted as the vertices in the graph. 

Consecutive frames are then checked for overlapping cloud 

elements. Two cloud elements that overlap are represented as 

an edge in the graph. The graphs are then analyzed via graph 

methods to determine the type of weather phenomenon. The 

GTG method presents an opportunity to explore parallelizing 

the sequential approach of constructing the final graph with 

inherent chronology from multi-dimensional arrays within the 

SciSpark framework. We present this as the Distributed GTG.  
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Figure 4: The (sequential) GTG workflow. The GTG reads files sequentially from a local filesystem and places the data into an array. Cloud elements are 

identified in each time frame - these are the graph nodes. Spatial overlapping between sequential time frames determines the graph edges. The graph is then 
analyzed to determine the type of weather feature.  

B. The Distributed GTG 

The initial steps of sequential GTG are to load the files 

sequentially, then find cloud elements and overlapping cloud 

elements across consecutive frames. Once cloud elements are 

identified, the sequential implementation relies on a “for loop” 

to iterate through each data frame to determine graph edges. 

Since the array is shared on each iteration, array elements can 

be referenced by index. The sequential GTG will operate in 

O(n) time as it iterates through all elements in a single thread 

(as illustrated in Figure 4). 

 

sRDDs on the other hand are computed by executing 

transformation calls on all partitions simultaneously which 

makes directly porting the sequential version of GTG to a 

distributed implementation infeasible. The primary limitation 

is that map tasks cannot access sciTensors in other sRDD 

partitions. In order to overcome this lack of shared-memory in 

distributed system tasks, the approach of the sequential GTG 

required redesigning. The Distributed GTG is presented in 

Figure 5.  

Figure 5: The Distributed GTG workflow. The original data is read into sciTensors into a sRDD. The cloud elements and overlapping regions are determined from 
each sciTensor pair.  

Within the Distributed GTG, the workflow is: 

a. Identify the files required for an experiment on a 

given file system. A path to the HDFS was used. A 

hash table mapping of chronological dates to 

indices of the file list found at the path was 

generated. 

b. Partition the file list, extract, transform and load 

the data frame into SciSpark’s sciTensors on a 

sRDD. SciSparkContext leverages SparkContext’s 

binaryFiles function to read binary data from 

HDFS into sciTensors. 

c. Build the graph in the processing layer utilizing 

sRDD mapping capabilities. By finding ways to 

pair sciTensors in the sRDD, we can compute the 

initial stages of the GTG in parallel.  

C. Structuring input sRDD for Distributed GTG graph 

construction 

We wish to achieve a chronological frame pairing in 

order to replicate the original graph construction in the 

GTG. This section provides the algorithmic assessment of 

the approaches explored. We do not evaluate run-time since 

that is specific to how the task function is implemented. 

1) Naïve port of GTG 

 We attempted to port the sequential GTG by utilizing 

the sRDD filter operation to reference specific frames. 

However this exploited little parallelism, as the filtered 

sRDDs represented one frame each and it was required to 

execute the collect operation at the end of each iteration 

(See Figure 6). 
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Figure 6: Implementation of the naive approach to represent the initial 
stages of the sequential GTG in SciSpark 

Our naïve approach suffered from network latency in 

SciSpark resulting from overhead communications with all 

the partitions.  

 

2) Cartesian product approach 

SciSpark extends the ability to create Cartesian products 

between two sRDDs. Naturally a Cartesian product of a 

sRDD with itself would compute all pairs of frames. The 

frame-pair set is then filtered for frame pairs that are 

consecutive as illustrated in Figure 7. This is the simplest 

solution to achieve parallelism, but has the highest 

performance cost. When SciSpark computes the Cartesian 

product, it scales the partition space, and consequently the 

number of tasks and memory requirements, by N2. This 

means that for each frame there are N - 1 copies which are 

never used. Furthermore, if an entire sRDD partition is 

empty after the filter call, it is not eliminated from the 

SciSpark DAG execution pipeline. Thus unnecessary 

network latency is incurred when tasks communicate back 

to the master node.  

Figure 7: Illustration of the Cartesian product between two sRDDs. Note 

the elements are not ordered. Filtering on the frame-pair set obtains the 

chronological frame pairs necessary for edge mining. The implementation 

is shown at the bottom.  

We conclude that while the Cartesian product combined 

with the filter is powerful and easy to use, it does not scale 

for larger problems as it creates wasteful data and 

unnecessary tasks.   

3) The group-by approach  

Another solution involved making a copy of each frame 

to map to the next frame thus creating key-value pairs 

between original frame and the next frame. The key-value 

pairs were then grouped by the key (i.e. the original frame), 

thus generating consecutive frame pairs as illustrated in 

Figure 8. This implementation did not change the partition 

space and consequently the number of tasks. At this point 

we treat each pair as input to a single sequentially 

implemented function. 

 

Figure 8: Illustration of the copy and mapping of the two sRDDs and the 

groupBy operation leading to the chronological frame pairs necessary for 

edge mining. The implementation is shown at the bottom.  

 

Table 1 summarizes the results of our approaches to 

accomplish the first stages of the sequential GTG. We 

concluded from our analysis the group-by approach is 

favorable for constraining the memory footprint. 

 
Original 

GTG 

Naïve port Cartesian 

product 
Group-by 

Level of 

Parallelism 
1 <1 p p 

Number of 

Tasks 
1 n k k 

Total 

Memory 
O(n) O(n) O(n2) 2n = O(n) 

Input 

Memory 

per task 

O(n) 2 = O(1) O(n2/k2) 2n/k = O(n/k) 

 

Table 1: Algorithmic assessment of the approaches used to achieve the 

chronological frame pairing necessary for replicating the graph 

construction in the GTG  

 

Within the Distributed GTG implementation in SciSpark 

we utilize the groupby approach. The next steps involve 

defining the task that identify the cloud elements with a user 

defined criteria. Then implementing a depth first search to 

find and label these cloud elements. The labeled component 

arrays are referred to as component frames within the 

Distributed GTG implementation. We now look at reducing 

the runtime for a single task in the graph construction job. A 

key point to note is that we needed to increase our input size 

in order to restructure the problem into a parallel workflow. 

  

(N,N*) where N = the key which is a numeric label
N* = the value which is a physical frame matrix
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D. Graph vertex and edge mining from a single pair  

Once the sRDD of consecutive frame-pairs is computed, 

each pair can be computed on independently. Reducing 

computations to independent tasks is paramount to 

MapReduce programming, as well as monitoring memory 

consumption associated with individual tasks. This section 

analyzes task runtime and the impact on overall job runtime 

as it relates to the graph construction in the GTG. The tests 

were run on a 4-node cluster, each node has 32 cores, 240 

GB memory and 100 GB disk space. The tests record job 

runtimes to process 6000 frames of data type double, split 

over 350 partitions. The frame size was varied.  

1) Cartesian product approach 

In our initial approach, we extracted unique labeled 

components from each frame into masked component 

frames. From a single pair of frames, we extracted all 

component frames, then called a Cartesian product on the 

two lists of component frames. For small frames with few 

components this is a feasible operation. However for large 

frames with several components, the component-pair space 

becomes infeasible for a single task as shown in Table 2.   

2) In-place Iteration approach  

As we are considering a single task, we can rely on the 

shared-memory state of sequential programming since the 

enclosed function of a map operation is independent of 

other executing functions. This approach generated two 

component-labeled arrays for each pair, introduced a list to 

record overlapping labels, and stored the overall properties 

of each component in a hash table (as defined by the criteria 

used in the GTG). The two labeled matrices are multiplied 

to obtain a product matrix with non-zero values in positions 

of overlap. Since the dimensions of the labeled matrix and 

the product matrix are the same, we iterate over the product 

matrix and update our list of component edges for each non-

zero value. For each component label encountered in the 

loop, we update the corresponding properties in the hash 

table. At this stage of the Distributed GTG implementation 

we leverage sequential programming techniques to write 

algorithms that consume fewer resources (see Table 2).  

 

 Cartesian 

product 

In-place 

Iteration 

Average Number of 

Components per 

Frame 

n n 

Number of Matrix 

Products 
n

2 
1 

Table 2: Algorithmic analysis of the single task to the GTG construction 

approaches 

Figure 9 provides the job runtime achieved on the 4-node 

cluster between the two task implementations.  

 

Figure 9: The job runtimes of the task approaches to the graph construction 

in the GTG. The matrices are randomly generated, factoring out the I/O 

latency incurred by ingesting physical data. Note that the component-wise 

Cartesian product implementation cannot scale beyond frames of 1000 x 

1000. The in-place iteration approach scales to frames of 3000 x 3000. This 
is close to a terabyte of data being processed. 

The final Distributed GTG is presented using the 

MapReduce paradigm in Figure 10. It is worth noting that 

optimizations, such as pre-aggregations over partitions 

containing consecutive time-frames, can be achieved by 

using an extra data structure to perform an In-Mapper 

aggregation. We do not describe such optimizations here as 

Apache Spark optimizes the DAG execution plan it 

generates. 

Figure 10: The Distributed GTG algorithm using the MapReduce paradigm 
in SciSpark 

E. Latency Trade-Offs with Apache Spark 

We observed that Spark successfully mitigates I/O 

latency by only spilling to disk when necessary. However, 

Spark’s reliance on the JVM combined with its greedy 

usage of memory has introduced another significant source 

1: class Mapper 

2: // a time-frame id represents the actual 

date/timestamp when the data was gathered.  

3: method MAP(key frameId, sciTensor r) 

4: EMIT(frameId, r) 

5: // the (frameId + 1) operation outputs the next 

sequential frameID 

6: EMIT(frameId + 1, r) 

1: class Reducer 

2: method Reduce(key frameId, sciTensors [r1, r2, . . 

.]) 

3:  // Avoids using first and last frames 

4:  If sciTensors.length == 2 Then 

5:        // label the components inside each sciTensor 

6:        AL = labelComponents(sciTensors[0]) 

7:        BL = labelComponents(sciTensors[1]) 

8:        // outputs the edge found between those 

consecutives time-frames 

9:    EMIT (overlappingComponents(AL, BL)) 

10:  EndIf 
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of latency in SciSpark, namely Java’s “stop-the-world” 

garbage collection. We observed for matrices larger than 

2500 x 2500 approximately 20 - 25% of the task time is 

waiting on garbage collection.  

 

IV. CONCLUSIONS AND FUTURE WORK 

SciSpark provides an API that abstracts the methods to 

ingest scientific data into a distributed pipeline away from 

the end scientist user. For future work a solution that does 

not tightly couple reading hierarchical files with the HDFS 

version is required. One idea is to use binaryFiles to read the 

entire NetCDF files or binaryRecords to read specific 

offsets. The netCDF API would need to be integrated into 

these methods.  

SciSpark abstracts the ND4J and Breeze linear algebra 

libraries behind a common interface for evaluation 

purposes. The performance of current and future multi-

dimensional array Java libraries needs to be consistently 

evaluated. Towards this effort, SciSpark’s design will 

provide seamless access to operations on multi-dimensional 

scientific datasets.  

The SciSpark API provides developers with a clean 

architecture for contributing new methods to partition, 

extract, transform and load data from different 

formats.  Partitioning in time was tested in this research. For 

future work, partition and extraction methods in the 

SciSparkContext of the API will be explored to achieve 

range partitioning in other dimensions. 

Within SciSpark, we are able to process high resolution 

grids using a complex sequential-based algorithm without 

compromising on the original matrix size.  

Our case study demonstrated that copying of data can 

lead to better use of resources in distributed applications. 

For the distributed implementation of GTG, it was found 

that creating a copy of the input data allowed for 

maintaining the chronological order necessary for the graph 

creation. This finding supports SciSpark’s architectural 

design in the processing layer of creating a cache space for 

large jobs.  

We found that SciSpark’s architecture supports 

leveraging the advantages of both distributed and sequential 

programming to complete user-defined problems. The 

recommended approach is to construct jobs for parallel 

work while utilizing the shared-memory state of each 

independent task. 

While the Cartesian product coupled with the filter is a 

powerful API feature for generating pairs, it is infeasible for 

Big Data applications.  End users framing a Big Data 

problem should reformulate it within the MapReduce 

paradigm from the onset.  
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