
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 1959

SciSpark: Applying In-memory Distributed

Computing to Weather Event Detection and Tracking

Rahul Palamuttam
1,3

, Renato Marroquín Mogrovejo
1,4

, Chris Mattmann
1,2

, Brian Wilson
1
, Kim Whitehall

1
,

Rishi Verma
1
, Lewis McGibbney

1
, Paul Ramirez

1

1
NASA Jet Propulsion Laboratory California Institute of Technology

Pasadena, CA, USA

2
Computer Science Department, University of Southern California

Los Angeles, CA 90089 USA

3
University of California San Diego

La Jolla, CA, USA

4
ETH University

Zürich, Switzerland
rahulpalamut@gmail.com

Abstract— In this paper we present SciSpark, a Big Data

framework that extends Apache
TM

 Spark for scaling

scientific computations. The paper details the initial

architecture and design of SciSpark. We demonstrate how

SciSpark achieves parallel ingesting and partitioning of

earth science satellite and model datasets. We also

illustrate the usability and extensibility of SciSpark by

implementing aspects of the Grab ‘em Tag ‘em Graph ‘em

(GTG) algorithm using SciSpark and its Map Reduce

capabilities. GTG is a topical automated method for

identifying and tracking Mesoscale Convective Complexes

in satellite infrared datasets.

Index Terms— Apache Spark, in-memory distributed

computing, large scientific datasets, mesoscale convective

complexes

I. INTRODUCTION

Google’s MapReduce [1] is a widely used framework for

solving large computational problems in parallel. This model

adopts the ‘map’ and ‘reduce’ semantics from functional

programming to express data and task decomposition for

parallel computing. Apache
TM

 Hadoop later introduced the

Hadoop Distributed File System (HDFS) that is a highly fault

tolerant distributed file system inspired by the Google File

System (GFS) that accompanied the Google MapReduce

framework. Coupling HDFS and MapReduce, makes Hadoop

a general purpose system for use cases outside of its original

inspiration – search – and in turn this combination has been

applied to an increasing number of scientific domains such as

Earth science, biomedicine, national security, etc. MapReduce

jobs in Hadoop are launched as a series of map tasks followed

by either additional map tasks, or by a single reduce task that

combines the results. Each map task involves I/O processes to

disk thereby introducing latency.

Apache Spark [2] mitigates writing to disk by keeping

results in memory until data needs to be spilled to disk. Spark

uses the Resilient Distributed Dataset (RDD) [3] that is an in-

memory distributed data structure. Furthermore, Spark utilizes

the functional programming paradigm to extend lambda

expressions thus enabling users to express map and reduce

tasks seamlessly. Spark achieves fault-tolerance through

relying on a Directed Acyclic Graph (DAG) execution engine

for its computation workflow, thus making it more efficient

than the Hadoop work engine.

Spark’s generic RDDs are ideal for tabular or unstructured

data. Science datasets are highly structured. Reading

hierarchical files from HDFS is a known challenge for Big

Data applications due to how files are physically stored on

distributed file systems. The dissonance between logical and

physical data representation has been noted by researchers e.g.

[4]. Research endeavors such as SciHadoop [5] attempt to

solve the issue, however SciHadoop is built for Hadoop

0.20.2. A variety of MapReduce specific interfaces are

deprecated in the later Hadoop versions. Furthermore, with the

increasingly growing community around Spark and its

potential to offer speed-up and advancements of nearly 1000x

in-memory, our team at NASA’s Jet Propulsion Laboratory -

California Institute of Technology (JPL) began an exploratory

effort called “SciSpark” to augment Spark with the ability to

load, process, and deliver scientific data and results. SciSpark

is funded by NASA’s Advanced Information Systems

Technology (AIST) program [6],[7]. SciSpark is grounded in

two novel scientific use cases involving data reuse algorithms.

The first, is a k-means clustering algorithm to compute climate

extremes over decades of climate model data [8], but is

outside the scope of this paper. We will instead focus on the

second algorithm – a graph-based automated method for

1960

identifying and tracking Mesoscale Convective Complexes

(MCCs) [9] that can be categorized as a severe weather event.

This paper describes the initial architecture and design of

SciSpark. SciSpark defines the Scientific Resilient Distributed

Dataset (sRDD), a distributed-computing array structure that

supports multidimensional data and processing of scientific

algorithms in the MapReduce paradigm. SciSpark will

produce methods to create sRDDs that preserve the logical

representation of structured and dimensional data. Our early

focus involves ingestion of network Common Data Form

(netCDF) [10] and Hierarchical Data Format (HDF) files [11].

We follow sRDD creation by discussing a new approach to

pair sequential data from separate arrays in order to implement

a SciSpark version for the initial stages of the GTG algorithm

(our further work will implement the full algorithm). We also

illustrate the shift from the sequential programming paradigm

to the MapReduce paradigm. Metrics with respect to graph

development and pitfalls encountered are discussed. Our early

work can be used as both a practical experience, and a

research roadmap for work in Spark using structured, multi-

dimensional scientific datasets going forward.

II. SCISPARK

A. The SciSpark Architecture
The SciSpark architecture presented in Figure 1 consists of

two components: the backend core and the front-end

visualization. Within the backend are three layers that interact

to complete a user-defined computation pipeline by leveraging

sciTensor objects within the Scientific Resilient Distributed

Dataset (sRDD) - the distributed-computing data structure.

The sciTensor is a self-document array-collection developed

for sRDD transformations. To interact with SciSpark’s

backend, an expert user utilizes the SciSpark API. A novice

user will interact with SciSpark via the frontend that will

leverage a RESTful web API. The functionality of the layers

in the SciSpark backend will be briefly presented.

Figure 1: The SciSpark architecture

1) Persistence layer

SciSpark ingests scientific data formats, for example

netCDF and HDF source files, from various local and remote

data sources in a non-sequential manner. SciSpark reads these

sources in the persistence layer using their uniform resource

identifiers (URIs). SciSpark also uses the persistence layer to

stage intermediate or output final results. The SciSpark API

provides methods to access these data sources, and is

extendable to other sources.

2) Partition, Extract, Transform and Load (PETaL) layer

The PETaL layer first partitions and distributes the URIs

across the compute nodes. It then extracts the data and

transforms it into a data type usable in SciSpark that is then

loaded into the processing layer. The SciSparkContext

provides the API for the PETaL layer.

3) Processing layer

In this layer of SciSpark, the user executes their

computation pipeline. The sRDD methods in the API govern

these computation tasks.

The aspects of the architecture that have been implemented

are now presented.

B. SciSpark Implementation

SciSpark is implemented in a Java and Scala environment.

The environment was chosen to avoid the known latency

issues related to the communication overhead involved with

copying data from the worker JVMs to Python daemon

processes in the PySpark environment [12]. Furthermore after

a collect call is made in PySpark, the driver JVM will write

results to local disk and that is then read by the Python

process.

The concept of a scientific Resilient Distributed Dataset

(sRDD) couples operations on multi-dimensional arrays and

distributed in-memory processing. In order to achieve this, the

idea of self-documentation in hierarchical file formats was

utilized to construct a self-documented array class called

sciTensor as illustrated in Figure 2. The goal of the sciTensor

is to provide logic that defines the data in the multi-

dimensional format that scientists are accustomed to, while

achieving high-performance matrix operations through the

ND4J [13] and Breeze [14] linear algebra libraries. These

libraries take advantage of cache locality during element-wise

operations, by allocating dimensional arrays as physical linear

arrays, similar to C and FORTRAN.

Figure 2: Illustration of the sRDD and sciTensor architectures

Persistence layer

openDap

servers
HDFS local FS

Partition, Extract, Transform and Load (PETaL)

Mapping

Regridding

Metrics

Algorithms

sRDD cache

S
c
iS

p
a

rk
 A

P
I

Data

scientist/

Expert

SciSpark RESTful API

Scientists /

Decision

Makers /

Educators /

Students

Backend

Visualization layer

Frontend

1961

C. sRDD and sciTensor Architectures

The sciTensor class consists of two hash tables. The

metadata hash table is used to record information about the

dataset as key-value pairs. Users can query the table within an

sRDD transformation function. The table can also be used to

enter information such as date, area, or minimum and

maximum values. Each sciTensor is constructed from arrays

loaded from a unique path, irrespective of its data source from

the persistent layer i.e. whether it is from OpenDAP, HDFS,

or the local filesystem. Since hierarchical files can have

multiple variable arrays, sciTensor also keeps a hash table of

these arrays where the keys are the variable names and the

values are the arrays. Users can specify which variables they

want to load from the dataset and can specify which variable

they want to use for computation during run-time.

D. How PETaL Materializes sRDDs

To extend RDDs to the scientific community, sRDD

requires three ingredients as illustrated in Figure 3.

Figure 3: Illustration of the sRDD Materialization Process

a. The URI Set: The user provides a set of line-

separated URI’s from OpenDAP URLs, HDFS path

names, or path names on the local filesystem in a file.

b. The partition function is called when computing the

partition sets of sRDD. It groups the URI set after,

which SciSpark distributes the subsets of URI’s to

different compute nodes in the cluster.

c. The user must also provide a loader function that

corresponds to the specific source the URI is pointing

to. For example, if given a path to a netCDF file the

loader function must leverage the netCDF Java API

to extract the necessary information.

The SciSparkContext of the SciSpark API provides

methods to materialize sRDDs such as NetCDFFile and

MergFile. These methods follow the above three-ingredient

pattern.

D. Description of Tensor Libraries

Between the persistence layer and the PETaL layer, is the

process of extracting the data from the native format into the

sciTensors. This component of the sciTensor is the

AbstractTensor whose role is to provide a common interface

to different linear algebra libraries. This need arose due to

ND4J’s support for n-dimensional arrays but lack of maturity,

whereas Breeze is a seasoned project but only supports 2-

dimensional arrays.

Breeze takes advantage of Scala's operator overloading

feature and is backed by Netlib-java - a wrapper library

around existing BLAS [15] libraries. Instead of calling

verbose function names for different levels of BLAS

operations, Breeze enables code to be succinct by utilizing

operator overloading. It is limited to matrix operations, and

does not support beyond 2-dimensional arrays.

ND4J claims to provide Python NumPy-like syntax and

performance. The library gives the option to choose from a

variety of backend BLAS libraries to use. ND4J, like Breeze,

supports operations on complex numbers. ND4J also provides

a backend called Nd4j-x86 that uses BLAS for linear algebra

operations and uses C-level for-loops for element-wise

operations. ND4J is a young project and is not as mature as

Breeze.

We performed evaluations of the Breeze and ND4J

libraries compared to NumPy for two time periods, weeks

apart. It was found that the ND4J metrics changed drastically

between these periods - further indicating the immaturity of

this project.

III. A SCISPARK USE CASE

The code for our experiments can be found at the GitHub

repo https://github.com/SciSpark/SciSpark. The data used in

this study are the National Centers for Environmental

Prediction / Climate Prediction Center (NCEP/CPC) 4 km

Global (60N – 60S) Infrared Dataset (also known as MERG –

merged dataset) [16].

A. The Grab ‘em, Tag ‘em, Graph ‘em (GTG) method

The Grab ‘em, Tag ‘em, Graph ‘em (GTG) method

illustrated in Figure 4, automates identification of a particular

weather phenomenon by searching for cloud elements in

consecutive time data frames (acquired from files) of

brightness temperature, correlating them in a graph, and

analyzing the graph [15]. The cloud elements are identified via

a criteria based on shape, size and absolute values of

brightness temperatures of contiguous points within a data

frame, and are denoted as the vertices in the graph.

Consecutive frames are then checked for overlapping cloud

elements. Two cloud elements that overlap are represented as

an edge in the graph. The graphs are then analyzed via graph

methods to determine the type of weather phenomenon. The

GTG method presents an opportunity to explore parallelizing

the sequential approach of constructing the final graph with

inherent chronology from multi-dimensional arrays within the

SciSpark framework. We present this as the Distributed GTG.

1962

Figure 4: The (sequential) GTG workflow. The GTG reads files sequentially from a local filesystem and places the data into an array. Cloud elements are

identified in each time frame - these are the graph nodes. Spatial overlapping between sequential time frames determines the graph edges. The graph is then
analyzed to determine the type of weather feature.

B. The Distributed GTG

The initial steps of sequential GTG are to load the files

sequentially, then find cloud elements and overlapping cloud

elements across consecutive frames. Once cloud elements are

identified, the sequential implementation relies on a “for loop”

to iterate through each data frame to determine graph edges.

Since the array is shared on each iteration, array elements can

be referenced by index. The sequential GTG will operate in

O(n) time as it iterates through all elements in a single thread

(as illustrated in Figure 4).

sRDDs on the other hand are computed by executing

transformation calls on all partitions simultaneously which

makes directly porting the sequential version of GTG to a

distributed implementation infeasible. The primary limitation

is that map tasks cannot access sciTensors in other sRDD

partitions. In order to overcome this lack of shared-memory in

distributed system tasks, the approach of the sequential GTG

required redesigning. The Distributed GTG is presented in

Figure 5.

Figure 5: The Distributed GTG workflow. The original data is read into sciTensors into a sRDD. The cloud elements and overlapping regions are determined from
each sciTensor pair.

Within the Distributed GTG, the workflow is:

a. Identify the files required for an experiment on a

given file system. A path to the HDFS was used. A

hash table mapping of chronological dates to

indices of the file list found at the path was

generated.

b. Partition the file list, extract, transform and load

the data frame into SciSpark’s sciTensors on a

sRDD. SciSparkContext leverages SparkContext’s

binaryFiles function to read binary data from

HDFS into sciTensors.

c. Build the graph in the processing layer utilizing

sRDD mapping capabilities. By finding ways to

pair sciTensors in the sRDD, we can compute the

initial stages of the GTG in parallel.

C. Structuring input sRDD for Distributed GTG graph

construction

We wish to achieve a chronological frame pairing in

order to replicate the original graph construction in the

GTG. This section provides the algorithmic assessment of

the approaches explored. We do not evaluate run-time since

that is specific to how the task function is implemented.

1) Naïve port of GTG

 We attempted to port the sequential GTG by utilizing

the sRDD filter operation to reference specific frames.

However this exploited little parallelism, as the filtered

sRDDs represented one frame each and it was required to

execute the collect operation at the end of each iteration

(See Figure 6).

1963

Figure 6: Implementation of the naive approach to represent the initial
stages of the sequential GTG in SciSpark

Our naïve approach suffered from network latency in

SciSpark resulting from overhead communications with all

the partitions.

2) Cartesian product approach

SciSpark extends the ability to create Cartesian products

between two sRDDs. Naturally a Cartesian product of a

sRDD with itself would compute all pairs of frames. The

frame-pair set is then filtered for frame pairs that are

consecutive as illustrated in Figure 7. This is the simplest

solution to achieve parallelism, but has the highest

performance cost. When SciSpark computes the Cartesian

product, it scales the partition space, and consequently the

number of tasks and memory requirements, by N2. This

means that for each frame there are N - 1 copies which are

never used. Furthermore, if an entire sRDD partition is

empty after the filter call, it is not eliminated from the

SciSpark DAG execution pipeline. Thus unnecessary

network latency is incurred when tasks communicate back

to the master node.

Figure 7: Illustration of the Cartesian product between two sRDDs. Note

the elements are not ordered. Filtering on the frame-pair set obtains the

chronological frame pairs necessary for edge mining. The implementation

is shown at the bottom.

We conclude that while the Cartesian product combined

with the filter is powerful and easy to use, it does not scale

for larger problems as it creates wasteful data and

unnecessary tasks.

3) The group-by approach

Another solution involved making a copy of each frame

to map to the next frame thus creating key-value pairs

between original frame and the next frame. The key-value

pairs were then grouped by the key (i.e. the original frame),

thus generating consecutive frame pairs as illustrated in

Figure 8. This implementation did not change the partition

space and consequently the number of tasks. At this point

we treat each pair as input to a single sequentially

implemented function.

Figure 8: Illustration of the copy and mapping of the two sRDDs and the

groupBy operation leading to the chronological frame pairs necessary for

edge mining. The implementation is shown at the bottom.

Table 1 summarizes the results of our approaches to

accomplish the first stages of the sequential GTG. We

concluded from our analysis the group-by approach is

favorable for constraining the memory footprint.

Original

GTG

Naïve port Cartesian

product
Group-by

Level of

Parallelism
1 <1 p p

Number of

Tasks
1 n k k

Total

Memory
O(n) O(n) O(n2) 2n = O(n)

Input

Memory

per task

O(n) 2 = O(1) O(n2/k2) 2n/k = O(n/k)

Table 1: Algorithmic assessment of the approaches used to achieve the

chronological frame pairing necessary for replicating the graph

construction in the GTG

Within the Distributed GTG implementation in SciSpark

we utilize the groupby approach. The next steps involve

defining the task that identify the cloud elements with a user

defined criteria. Then implementing a depth first search to

find and label these cloud elements. The labeled component

arrays are referred to as component frames within the

Distributed GTG implementation. We now look at reducing

the runtime for a single task in the graph construction job. A

key point to note is that we needed to increase our input size

in order to restructure the problem into a parallel workflow.

(N,N*) where N = the key which is a numeric label
N* = the value which is a physical frame matrix

1964

D. Graph vertex and edge mining from a single pair

Once the sRDD of consecutive frame-pairs is computed,

each pair can be computed on independently. Reducing

computations to independent tasks is paramount to

MapReduce programming, as well as monitoring memory

consumption associated with individual tasks. This section

analyzes task runtime and the impact on overall job runtime

as it relates to the graph construction in the GTG. The tests

were run on a 4-node cluster, each node has 32 cores, 240

GB memory and 100 GB disk space. The tests record job

runtimes to process 6000 frames of data type double, split

over 350 partitions. The frame size was varied.

1) Cartesian product approach

In our initial approach, we extracted unique labeled

components from each frame into masked component

frames. From a single pair of frames, we extracted all

component frames, then called a Cartesian product on the

two lists of component frames. For small frames with few

components this is a feasible operation. However for large

frames with several components, the component-pair space

becomes infeasible for a single task as shown in Table 2.

2) In-place Iteration approach

As we are considering a single task, we can rely on the

shared-memory state of sequential programming since the

enclosed function of a map operation is independent of

other executing functions. This approach generated two

component-labeled arrays for each pair, introduced a list to

record overlapping labels, and stored the overall properties

of each component in a hash table (as defined by the criteria

used in the GTG). The two labeled matrices are multiplied

to obtain a product matrix with non-zero values in positions

of overlap. Since the dimensions of the labeled matrix and

the product matrix are the same, we iterate over the product

matrix and update our list of component edges for each non-

zero value. For each component label encountered in the

loop, we update the corresponding properties in the hash

table. At this stage of the Distributed GTG implementation

we leverage sequential programming techniques to write

algorithms that consume fewer resources (see Table 2).

 Cartesian

product

In-place

Iteration

Average Number of

Components per

Frame

n n

Number of Matrix

Products
n

2
1

Table 2: Algorithmic analysis of the single task to the GTG construction

approaches

Figure 9 provides the job runtime achieved on the 4-node

cluster between the two task implementations.

Figure 9: The job runtimes of the task approaches to the graph construction

in the GTG. The matrices are randomly generated, factoring out the I/O

latency incurred by ingesting physical data. Note that the component-wise

Cartesian product implementation cannot scale beyond frames of 1000 x

1000. The in-place iteration approach scales to frames of 3000 x 3000. This
is close to a terabyte of data being processed.

The final Distributed GTG is presented using the

MapReduce paradigm in Figure 10. It is worth noting that

optimizations, such as pre-aggregations over partitions

containing consecutive time-frames, can be achieved by

using an extra data structure to perform an In-Mapper

aggregation. We do not describe such optimizations here as

Apache Spark optimizes the DAG execution plan it

generates.

Figure 10: The Distributed GTG algorithm using the MapReduce paradigm
in SciSpark

E. Latency Trade-Offs with Apache Spark

We observed that Spark successfully mitigates I/O

latency by only spilling to disk when necessary. However,

Spark’s reliance on the JVM combined with its greedy

usage of memory has introduced another significant source

1: class Mapper

2: // a time-frame id represents the actual

date/timestamp when the data was gathered.

3: method MAP(key frameId, sciTensor r)

4: EMIT(frameId, r)

5: // the (frameId + 1) operation outputs the next

sequential frameID

6: EMIT(frameId + 1, r)

1: class Reducer

2: method Reduce(key frameId, sciTensors [r1, r2, . .

.])

3: // Avoids using first and last frames

4: If sciTensors.length == 2 Then

5: // label the components inside each sciTensor

6: AL = labelComponents(sciTensors[0])

7: BL = labelComponents(sciTensors[1])

8: // outputs the edge found between those

consecutives time-frames

9: EMIT (overlappingComponents(AL, BL))

10: EndIf

1965

of latency in SciSpark, namely Java’s “stop-the-world”

garbage collection. We observed for matrices larger than

2500 x 2500 approximately 20 - 25% of the task time is

waiting on garbage collection.

IV. CONCLUSIONS AND FUTURE WORK

SciSpark provides an API that abstracts the methods to

ingest scientific data into a distributed pipeline away from

the end scientist user. For future work a solution that does

not tightly couple reading hierarchical files with the HDFS

version is required. One idea is to use binaryFiles to read the

entire NetCDF files or binaryRecords to read specific

offsets. The netCDF API would need to be integrated into

these methods.

SciSpark abstracts the ND4J and Breeze linear algebra

libraries behind a common interface for evaluation

purposes. The performance of current and future multi-

dimensional array Java libraries needs to be consistently

evaluated. Towards this effort, SciSpark’s design will

provide seamless access to operations on multi-dimensional

scientific datasets.

The SciSpark API provides developers with a clean

architecture for contributing new methods to partition,

extract, transform and load data from different

formats. Partitioning in time was tested in this research. For

future work, partition and extraction methods in the

SciSparkContext of the API will be explored to achieve

range partitioning in other dimensions.

Within SciSpark, we are able to process high resolution

grids using a complex sequential-based algorithm without

compromising on the original matrix size.

Our case study demonstrated that copying of data can

lead to better use of resources in distributed applications.

For the distributed implementation of GTG, it was found

that creating a copy of the input data allowed for

maintaining the chronological order necessary for the graph

creation. This finding supports SciSpark’s architectural

design in the processing layer of creating a cache space for

large jobs.

We found that SciSpark’s architecture supports

leveraging the advantages of both distributed and sequential

programming to complete user-defined problems. The

recommended approach is to construct jobs for parallel

work while utilizing the shared-memory state of each

independent task.

While the Cartesian product coupled with the filter is a

powerful API feature for generating pairs, it is infeasible for

Big Data applications. End users framing a Big Data

problem should reformulate it within the MapReduce

paradigm from the onset.

ACKNOWLEDGMENT

We acknowledge the AIST for the funding of this

research under NASA proposal number 14-AIST-14-0034.

Rahul Palamuttam and Renato Marroquín Mogrovejo would

like to acknowledge the JPL Summer Internship Program for

the opportunity and group 398M at JPL. We would also like

to acknowledge the Apache Spark community and the ND4J

developers.

REFERENCES

[1] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: Simplified Data

Processing on Large Clusters." Communications of the ACM 51, no. 1

(2008): 107-13.

[2] Zaharia, Matei, Mosharaf Chowdhury, Michael J. Franklin, Scott

Shenker, and Ion Stoica. "Spark: Cluster Computing with Working

Sets." Proceedings of the 2nd USENIX Conference on Hot Topics in

Cloud Computing (HotCloud'10), 2010, 10.

[3] Zaharia, Matei, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker,

and Ion Stoica. “Resilient distributed datasets: a fault-tolerant

abstraction for in-memory cluster computing.” Proceedings of the 9th

USENIX conference on Networked Systems Design and

Implementation (NSDI'12). 2012, 2-2.

[4] Zitting, Jukka L., and Chris A. Mattmann. Tika in Action. Manning,

2012.

[5] Buck, Joe B., Noah Watkins, Jeff LeFevre, Kleoni Ioannidou, Carlos

Maltzahn, Neoklis Polyzotis, and Scott Brandt. "SciHadoop: Array-

based Query Processing in Hadoop." Proceedings of 2011

International Conference for High Performance Computing,

Networking, Storage and Analysis on - SC '11, 2011.

[6] Wilson, B. D., C. A. Mattmann, D. E. Waliser, J. Kim, P. Loikith, H.

Lee, L. J. McGibbney, and K. D. Whitehall. "SciSpark: Highly

Interactive and Scalable Model Evaluation and Climate Metrics." In

AGU Fall Meeting Abstracts, vol. 1, p. 3772. 2014.

[7] Mattmann, C.A. “SciSpark: Interactive and Highly Scalable Climate

Model Analytics”. Presentation. Earth Science Technology Office,

2015.

[8] Loikith, P. C., B. R. Lintner, J. Kim, H. Lee, J. D. Neelin, and D. E.

Waliser. "Classifying reanalysis surface temperature probability

density functions (PDFs) over North America with cluster

analysis." Geophysical Research Letters 40, no. 14 (2013): 3710-

3714.

[9] Whitehall, Kim, Chris A. Mattmann, Gregory Jenkins, Mugizi

Rwebangira, Belay Demoz, Duane Waliser, Jinwon Kim et al.

"Exploring a graph theory based algorithm for automated

identification and characterization of large mesoscale convective

systems in satellite datasets." Earth Science Informatics: 1-13.

[10] Rew, Russ, and Glenn Davis. "NetCDF: an interface for scientific

data access."Computer Graphics and Applications, IEEE 10, no. 4

(1990): 76-82.

[11] NCSA HDF Calling Interfaces and Utilities, Version 3.0, National

Center for Supercomputing Applications, Univ. of Illinois at Urban-

Champaign, Nov. 1989.

[12] Rosen, Joshua. “PySpark Internals”.

https://cwiki.apache.org/confluence/display/SPARK/PySpark+Interna

ls (accessed September 1, 2015).

[13] Skymind. “ND4J: Scientific Computing for

Java”. http://nd4j.org/about.html (accessed September 1, 2015).

[14] Hall, David. “Scala NLP: Scientific Computing, Machine Learning,

and Natural Language

Processing”. http://www.scalanlp.org/documentation/ (accessed

September 1, 2015).

[15] Goto, Kazushige, and Robert Van De Geijn. "High-performance

implementation of the level-3 BLAS." ACM Transactions on

Mathematical Software (TOMS) 35, no. 1 (2008): 4.

[16] Kempler, Steve. “NCEP/CPC 4km Global (60N – 60S) IR Dataset

Product Description”.

http://mirador.gsfc.nasa.gov/collections/MERG__001.shtml (accessed

September 30, 2015).

