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Abstract 
 
Single-cell RNA-seq (scRNA-seq) is widely used to investigate the composition of complex            
tissues1–9 since the technology allows researchers to define cell-types using unsupervised           
clustering of the transcriptome8,10. However, due to differences in experimental methods and            
computational analyses, it is often challenging to directly compare the cells identified in two              
different experiments. Here, we present scmap ( http://bioconductor.org/packages/scmap), a        
method for projecting cells from a scRNA-seq experiment onto the cell-types or individual cells              
identified in other experiments (the application can be run for free, without restrictions, from              
http://www.hemberg-lab.cloud/scmap).  
 

Main  text 
 
As more and more scRNA-seq datasets become available, carrying out comparisons between            
them is key. A central application is to compare datasets of similar biological origin collected by                
different labs to ensure that the annotation and the analysis is consistent. Moreover, as very large                
references, e.g. the Human Cell Atlas (HCA)11, become available, an important application will be              
to project cells from a new sample (e.g. from a disease tissue) onto the reference to characterize                 
differences in composition, or to detect new cell-types (Fig. 1a). Conceptually, such projections are              
similar to the popular BLAST12 method, which makes it possible to quickly find the closest match in                 
a  database for a newly identified nucleotide or amino acid sequence. 
 
Projecting a new cell, c, onto a reference dataset, amounts to identifying which cluster or cell c is                  
most similar to, i.e. the nearest neighbor. We represent each cluster by its centroid, i.e. a vector of                  
the median value of the expression of each gene, and we measure the similarity between c and                 
each cluster centroid or cell. Searching for the nearest cluster can be done exhaustively since the                
number of clusters is typically much smaller than the number of cells in the reference. To speed up                  
the search for the nearest cell, we carry out an approximate nearest neighbor (ANN) search using                
a product quantizer13. Moreover, instead of using all genes when calculating the similarity, we use               
unsupervised feature selection to include only the genes that are most relevant for the underlying               
biological  differences which allows us to overcome batch effects14.  
 
We investigate three different strategies for feature selection: random selection, highly variable            
genes (HVGs)15 and genes with a higher number of dropouts than expected (M3Drop)14. To              
increase speed, we modified the M3Drop method and instead of fitting a Michaelis-Menten model              
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to the log expression-dropout relation, we fit a linear model (Methods, Fig. S1a). For the number of                 
features, we used the top 100, 200, 500, 1000, 2000, 5000, or all genes. Similarities were                
calculated using the cosine similarity, Pearson and Spearman correlations. This has the advantage             
of being insensitive to differences in scale between datasets as the similarities are restricted to the                
interval [-1, 1]. To make the cluster assignments more robust, we required that at least two of the                  
three similarities were in agreement, and that their value exceeded .7 for at least one of them. If                  
these criteria are not met, then c is labelled as “unassigned” to indicate that it does not correspond                  
to any cell-type present in the reference. For the ANN search, which we refer to as scmap-cell, we                  
carry out a form of k-nearest neighbour classification with only the cosine similarity. The nearest               
three neighbours are found and we require that they have the same cell-type and that the highest                 
similarity among them to be >.5 for the cell-type to be assigned.  
 

 
Figure 1 scmap use-cases and performance. (a) scmap can be used to compare two different samples by                 
mapping individual cells from a query sample either to cell-types in the reference (scmap-cluster, thick lines)                
or to individual cells in a reference (scmap-cell, thin lines). The comparison can be carried out either when                  
both samples have been annotated (full lines) or when only one of them is annotated (dashed lines). (b)                  
Cohen’s κ values and (c ) percentage of unassigned cells for positive controls. The plots are based on                 
datasets listed in Table S2 (projections are performed in both directions). Dropout-based feature selection is               
used for all three methods (see Methods). scmap-cell is run once for each pair of datasets. (d) Percentage                  
of unassigned cells in negative controls. The plot is based on datasets listed in Table S3 and projections are                   
performed in both directions. Dropout-based feature selection is used everywhere (see Methods).            
scmap-cell is run once for each pair of datasets. (e ) scmap-cell was used to search for nearest neighbours                  
and the accuracy shows how often the true nearest neighbour was found amongst the five or ten nearest                  
cells. The plots are based on datasets listed in Table S1 except Shekhar and Macosko (projections are                 
performed in both directions). Dropout-based feature selection is used (see Methods). scmap-cell is run 100               
times for each  dataset. 
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To validate the projections, we considered 17 different datasets1–9,16–22 from mouse and human,             
collected and processed in different ways (Table S1). First, we evaluated different feature selection              
methods by carrying out a self-projection experiment where each dataset is mapped onto itself.              
We used 70% of the cells from the original sample for the reference and the remaining 30% were                  
projected, with clusters as defined by the original authors. To quantify the accuracy of the               
mapping, we use Cohen’s κ23 which is a normalized index of agreement between sets of labels                
that accounts for the frequency of each label. A value of 1 indicates that the projection                
assignments were in complete agreement with the original labels, whereas 0 indicates that the              
projection assignment was no better than random guessing. We find that the dropout-based             
method for feature selection has the best performance, and somewhat surprisingly we also find              
that random selection is better than HVG (Fig. S1b). Furthermore, the dropout-based method             
performs consistently well when the number of features selected is in the range of [100, 1000]. The                 
dropout-based method performs better than HVG because it selects genes that are either absent              
or present in each cluster, and these genes provide a more reliable signal for separating groups of                 
cells14. As a comparison, we also considered two commonly used supervised methods for             
assigning labels to new samples, a random forests classifier (RF) and a support vector machine               
(SVM). These classifiers were trained on the reference and then applied to the held out cells as                 
before. For the self-projection experiment, we find that both RF and SVM perform slightly better               
than  both scmap-cluster and scmap-cell  for all  three feature selection methods.  
 
As a positive control, we considered seven pairs of datasets (Table S2) that we expected to                
correspond well based on their origin. The positive controls represent a more realistic use-case              
since these comparisons include systemic differences between the reference and projection           
samples, i.e. batch effects. For example, for three of the pairs, one of the datasets was collected                 
using a full-length protocol and the other was collected using a UMI based protocol. The results                
showed that despite the substantial differences between the protocols16,24,25, both scmap-cluster           
and scmap-cell on average achieve κ>.75 and assignment rates >75% when the number of              
features used was between 100 and 500 (Fig. 1b, c, S2a, S3). Even though RF achieves the                 
highest κ of the three approaches it also has the lowest assignment rate (< 50%) indicating that it                  
achieves a high specificity at the cost of low sensitivity. An important feature of scmap is that it is                   
robust to gene dropouts since both the centroids and the nearest neighbour relations are              
unaffected by the increased frequency of zeros (Fig. S4). 
 
As a negative control, we projected datasets with an altogether different origin from the reference               
(e.g. mouse retina onto mouse pancreas, Table S3). Reassuringly, we found that both scmap              
versions categorized >90% of the cells as unassigned when the number of features used was               
>100 (Fig. 1d). Notably, SVM has a much smaller fraction of unassigned cells than RF and scmap,                 
indicating that it is too lenient in assigning matches. Comparing the evidence across the              
self-projection experiments, the positive and negative controls, we conclude that scmap with 500             
features provides the best performance by balancing high sensitivity and specificity with a low              
false-positive rate. 
 
We evaluated the scmap-cell by asking how often it was able to identify the true nearest neighbor,                 
as defined by calculating the nearest neighbor exactly, amongst one of the five or ten nearest                
cells. For 15 of the 17 datasets used earlier, scmap has an average accuracy of 64% or 80%,                  
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respectively (Fig. 1e). For the two Drop-seq datasets, scmap-cell performed well in identifying the              
correct cluster, yet it only achieved an accuracy of ~20% for identifying the nearest neighbor. We                
hypothesize that deeper sequencing is required for scmap-cell to be able to reliably identify              
nearest neighbors. The ANN search is most useful for differentiation trajectories where the cells              
are typically thought to best be represented as a continuum rather than discrete clusters 26. We               
evaluated the ANN feature of scmap for trajectories for mouse myoblast differentiation27, mouse             
ES differentiation28 and mouse fibroblast to neuron reprogramming29. We again found that scmap             
can  correctly identify the nearest neighbor in 76%, 91%, and 94% of the cases (Fig. 2a). 
 
An important feature of scmap is that it is very fast. It takes only around twenty seconds to select                   
features and to calculate the centroids for 40,000 cells for scmap-cluster, for scmap-cell it takes               
less than one minute to create the index, whereas it takes almost thirty minutes to train using RF                  
or SVM (Fig. 2b). For all four methods the time to project the new cells is negligible, which means                   
they are very fast with a pre-computed reference. Since the complexity scales with the number of                
clusters in the reference, rather than the number of cells, scmap-cluster will be applicable to very                
large datasets as the index is ~5000 times smaller than the original expression matrix. The               
scmap-cell  index is ~500-fold smaller than the original  expression matrix (Table S1). 
 
Large references, including the HCA, will be an agglomeration of datasets collected by different              
groups. Merging different scRNA-seq datasets remains an open problem30–32, but the results from             
our study suggest that samples with similar origin are largely consistent33 (Fig. 1c). Instead of               
correcting for batches and merging, one can create a composite reference and compare the new               
cells to each dataset separately. When there are multiple datasets in the reference, scmap reports               
the best match for each dataset. Thus, if a cell shows a high degree of similarity to clusters with                   
similar annotations from different datasets, that will increase the confidence of the mapping. To              
illustrate the mapping to multiple datasets, we considered the pancreas dataset by Baron et al 4               
since it had the most unassigned cells when projected to the other pancreas datasets. Combining               
all projections (Methods) we were able to reduce the fraction of unassigned cells from 99% (Xin3)                
and 88% (Segerstolpe1) to 63% while not making κ worse. Interestingly, for this example the               
performance of scmap-cell was better than scmap-cluster (Fig. 2c-e). Since the reference used by              
scmap is modular and can be extended without re-calculating the features or centroids for the               
datasets that have been processed previously, the strategy of not merging datasets is well suited               
for large  references that are expected to grow over a long period of time.  
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Figure 2. scmap for combined references. (a ) scmap-cell accuracy for three datasets27–29 with             
differentiation trajectories showing how often the true nearest neighbour was found amongst the ten nearest               
cells (1000 dropout-selected features were used for projections and scmap-cell was run 100 times for each                
dataset). (b) CPU run times of creating Reference (for scmap) and training classifiers (for SVM and RF). The                  
x-axis represents a number of cells in the reference dataset. For all methods 1,000 features were used. All                  
methods were run on a MacBook Pro laptop (Mid 2014) with 2.8 GHz Intel Core i7 processor, 16 GB 1600                    
MHz DDR3 of RAM. For 10 5 cells, scmap-cell failed due to lack of memory. Points are actual data, solid lines                    
are “loess” fit to the points with span = 1 (see ggplot2 documentation). (c ) Results of scmap-cluster                 
projection of the Baron 4 dataset to Muraro 2 , Segerstolpe 1 and Xin 3 dataset using a combination strategy               
(Sankey diagram) and (d) scmap-cell projection (Sankey diagram). (e ) Results of scmap-cluster and             
scmap-cell projections of the Baron4 dataset to three human pancreas datasets (Reference) and results of               
the  Combination  projection. 
 
We have implemented scmap as an R-package, and it is part of Bioconductor to facilitate               
incorporation into bioinformatic workflows. Since scmap is integrated with scater 34, it is easy to              
combine with many other popular computational scRNA-seq methods. Moreover, we have made            
scmap available via the web (http://www.hemberg-lab.cloud/scmap), allowing users to either          
upload their own reference, or to use a reference collection of datasets from this paper for which                 
the  features and centroids have been pre-calculated (Methods). 
 
Due to differences in experimental conditions, comparing scRNA-seq datasets remains          
challenging. However, for researchers to be able to take advantage of large references, e.g. the               
HCA, fast, robust and accurate methods for merging35,36 and projecting cells across datasets are              
required. To the best of our knowledge, scmap is the first widely applicable projection method               
since it can identify both the best matching cell-type as well as individual cell in the reference. We                  
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have demonstrated that scmap can be used to compare samples of similar origin collected by               
different groups, as well  as for comparing cells to a large reference composed of multiple datasets. 
 
 
 

Methods 
 
Datasets 
 
All datasets and cell type annotations were downloaded from their public accessions. The datasets              
were converted into Bioconductor’s SingleCellExperiment     
(http://bioconductor.org/packages/SingleCellExperiment) class objects (details are available on our        
dataset website: https://hemberg-lab.github.io/scRNA.seq.datasets). In the Segerstolpe1 dataset       
cells labeled as "not applicable" were removed since it is unclear how to interpret this label and                 
what it should be matched to in the other datasets. In the Xin3 dataset cells labeled as                 
"alpha.contaminated", "beta.contaminated", "gamma.contaminated" and "delta.contaminated" were      
removed since they likely correspond to cells of lower quality. In the following datasets similar cell                
types were merged together: 
 

● In the Deng17 dataset zygote and early2cell were merged into zygote cell type, mid2cell and               
late2cell were merged into 2cell cell type, and earlyblast, midblast and lateblast were             
merged into blast cell  type. 

● All  bipolar cell  types of the Shekhar9 dataset were merged into bipolar  cell  type. 
● In the Yan21 dataset oocyte and zygote  cell  types were merged into zygote  cell  type. 

 
Feature  selection 
 
To select informative features we used a method conceptually similar to M3Drop14 to relate the               
mean expression (E) and the dropout rate (D). We used a linear model to capture the relationship                 
log(E) and log(D ), and after fitting a linear model using the lm() command in R, important features                 
were selected as the top N residuals of the linear model (Fig. S1a). The features are only selected                  
from the reference dataset, and those of them absent or zero in the projection dataset are are                 
further excluded before running scmap. All three feature selection methods are described in             
Supplementary Note 1. 
 
Reference  centroid 
 
In scmap-cluster each cell type in the reference dataset is represented by its centroid, i.e. the                
median  value of gene expression for each feature gene across all  cells in that cell  type. 
 
Approximate  nearest neighbor  search  using  product quantizer 
 
scmap-cell performs fast approximate k-nearest neighbour search using product quantization13.          
The original algorithm, built around the Euclidean distance, was adapted to incorporate the cosine              
distance, which helps to protect against batch effects and scaling inconsistencies between            
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datasets. The product quantizer creates a compressed index where every cell in the reference is               
identified with a set of sub-centroids found via k-means clustering based on a subset of the                
features. By concatenating the sub-centroids, a close approximation to the original expression            
vector is obtained. When searching the reference for the nearest neighbours to a query cell, the                
approximations provided by the sub-centroids are used instead of the individual cells in the              
reference. Since the number of centroids can be made much smaller than the original number of                
cells in the dataset, the method provides a substantial reduction in both computation time and               
storage  requirements compared to exact search.  
 
Projection dataset 
 
Projection of a dataset to a reference dataset is performed by calculating similarities between each               
cell and all centroids of the reference dataset, using only the common selected features. Three               
similarity measures are used: Pearson, Spearman and cosine. The cell is then assigned to the cell                
type which correspond to the highest similarity value. However, scmap-cluster requires that at             
least two similarity measures agree with each other, otherwise the cell is marked as “unassigned”.               
Additionally, if the maximum similarity value across all three similarities is below a similarity              
threshold (default is .7), then the cell is also marked as “unassigned”. Since only the cosine                
similarity measure was calculated for scmap-cell, the default threshold of .5 was used, and the               
nearest three neighbours are required to agree on the cell-type for it to be assigned. Positive and                 
negative control plots corresponding to Figs. 1c-e for different values of the similarity/probability             
(see  SVM and  RF) threshold (.5, .6, .8 and .9) are shown in Fig. S2. 
 
SVM and  RF 
 
The scmap projection algorithm was benchmarked against support vector machines 37 (with a linear             
kernel) and random forests38 (with 50 trees) classifiers from the R packages e1071 and              
randomForest. The classifiers were trained on all cells of the reference dataset and a cell type of                 
each cell in the projection dataset was predicted by the classifiers. Additionally, a threshold              
(default value of .7) was applied on the probabilities of assignment: if the probability was less than                 
the  threshold the cell  was marked as “unassigned”. 
 
Sensitivity to  sequencing  depth  and dropouts 
 
The dropout rate in the positive control datasets (Table S2) was artificially increased by randomly               
setting 10%, 30% and 50% of the non-zero expression values to zero (Fig. S4a,b). scmap was run                 
100  times for each box. 
 
Projection based  on multiple  datasets 
 
When the reference contains multiple datasets collected from similar samples by different groups             
in addition to all similarities, for each cell scmap also reports a top cell type match based on the                   
highest value of similarities across all reference cell types. A similarity threshold of .7 is also                
applied  in this case. 
 
scmap  on  the Cloud 
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An example of a cloud version of scmap is available at http://www.hemberg-lab.cloud/scmap.            
Instructions of how to set it up on a user’s personal web cloud environment are available on our                  
github page: https://github.com/hemberg-lab/scmap-shiny. An extended tutorial on how to use          
scmap  can be found in Supplementary Note 2. 
 
Figures 
 
All data and scripts used to generate figures in this paper are available at              
https://github.com/hemberg-lab/scmap-paper-figures.  
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