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Abstract  

The sparse nature of single-cell omics data makes it challenging to dissect the wiring and 

rewiring of the transcriptional and signaling drivers that regulate cellular states. Many of the 

drivers, referred to as "hidden drivers", are difficult to identify via conventional expression 

analysis due to low expression and inconsistency between RNA and protein activity caused by 

post-translational and other modifications. To address this issue, we developed scMINER, a 

mutual information (MI)-based computational framework for unsupervised clustering analysis 

and cell-type specific inference of intracellular networks, hidden drivers and network rewiring 

from single-cell RNA-seq data. We designed scMINER to capture nonlinear cell-cell and gene-

gene relationships and infer driver activities. Systematic benchmarking showed that scMINER 

outperforms popular single-cell clustering algorithms, especially in distinguishing similar cell 

types. With respect to network inference, scMINER does not rely on the binding motifs which 

are available for a limited set of transcription factors, therefore scMINER can provide 

quantitative activity assessment for more than 6,000 transcription and signaling drivers from a 

scRNA-seq experiment. As demonstrations, we used scMINER to expose hidden transcription 

and signaling drivers and dissect their regulon rewiring in immune cell heterogeneity, lineage 

differentiation, and tissue specification. Overall, activity-based scMINER is a widely applicable, 

highly accurate, reproducible and scalable method for inferring cellular transcriptional and 

signaling networks in each cell state from scRNA-seq data. The scMINER software is publicly 

accessible via: https://github.com/jyyulab/scMINER.  
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Main 

Cell fate determination and specification are governed by the wiring and rewiring of 

characteristic proteins including transcription factors (TFs) and upstream signaling factors 

(SIGs). Systematic identification of these cell-type specific drivers is crucial to understanding the 

cellular plasticity and dynamics, and providing therapeutic targets for diseases1. Nevertheless, 

many drivers, especially SIG drivers, can undergo activity alteration at the posttranslational level 

without drastic changes in their gene expression level, making them “hidden drivers” and 

difficult to capture by differential expression analysis. Network-based systems biology 

algorithms such as NetBID2 have been developed to uncover hidden drivers from bulk omics 

data. However, computational algorithms to infer cell-type specific hidden drivers and network 

rewiring from single-cell omics data are lacking. 

 

The use of single-cell RNA-sequencing (scRNA-seq) methods have revolutionized our ability to 

identify cell states with unprecedented resolution. The scRNA-seq data also provide 

opportunities to dissect the wiring and rewiring of cell states and identify the underlying TF and 

SIG drivers. However, inherent stochasticity and sparsity arising from variations and fluctuations 

among genetically identical cells, as well as low signal-to-noise resulting from the heterogeneity 

within populations of genetically similar cells present unique challenges in network and driver 

activity inference3-5. A number of recent methods have been proposed to reconstruct TF 

regulatory networks from scRNA-seq data. For example, one of the most commonly used 

methods, SCENIC6, uses TF binding motif databases and co-expression analysis to reconstruct 

TF-target networks and infer TF activity that can be used for clustering analysis. Although 

SCENIC is broadly applicable for analysis of scRNA-seq data and inferring TF regulatory 
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networks (TRNs) that define a cell state, it is restricted to the analysis of TF activity alone. Also, 

the TF cis-regulatory motif databases used for SCENIC are context-independent and incomplete, 

thus limiting the performance of this methodology. Furthermore, a recent benchmarking analysis 

of the state-of-the-art methods for TRN inference from scRNA-seq data revealed that all the 

algorithms analyzed have important limitations7, leaving an ongoing demand for robust tools. 

Additionally, there are currently no algorithms that can infer cell-type specific signaling 

networks from single-cell transcriptomics data. 

 

Another limitation is to accurately estimate cell-cell similarity and gene-gene dependency, which 

is critical but also challenging for clustering analysis and gene network inference from scRNA-

seq data. Most existing single-cell clustering algorithms select highly variable genes first and 

then perform principal component analysis (PCA) dimension reduction followed by graph-based 

or consensus k-means clustering5, 8. The selection of top variable features improves the clustering 

speed but is arbitrary and may lose the information that can distinguish close cell states. 

Furthermore, the linear-transformation of PCA and co-expression analysis using linear Pearson 

or Spearman correlations6 may not capture the nonlinear cell-cell distance and gene-gene 

correlations.  

 

To address the above challenges, we developed a mutual information (MI)-based integrative 

computational framework, termed single-cell Mutual Information-based Network Engineering 

Ranger (scMINER). ScMINER was designed to perform unsupervised clustering and reverse 

engineering of cell-type specific TF and SIG networks from scRNA-seq data. For this, we 

leveraged SJARACNe9, an MI-based algorithm for gene network reconstruction from bulk omics 
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data13, to infer cluster-specific TF and SIG networks from scRNA-seq profiles. Based on the 

data-driven and cell-type specific networks, scMINER was able to transform the single-cell gene 

expression matrix into single-cell activity profiles and then identify cluster-specific TF and SIG 

drivers including hidden ones that show changes at the activity but not expression level. We 

benchmarked the clustering performance of scMINER in 11 scRNA-seq datasets against three 

widely-used tools (Seurat10, SC311, and Scanpy12), and showed that scMINER outperforms the 

other methods. In particular, scMINER improves the separation of similar cell types, thus 

significantly increasing the signal-to-noise-ratio for downstream cell-type specific network 

reconstruction and hidden driver identification. We demonstrated the power of scMINER in 

single-cell studies of immune cell diversity in peripheral blood mononuclear cells (PBMCs), 

exhausted T cell lineage differentiation, and tissue specification of regulatory T (Treg) cells.  

 

 

Results 

Overview of scMINER 

To characterize nonlinear relationships among cells and genes from single-cell omics data, we 

developed a MI-based scMINER workflow. In scMINER, we used nonlinear MI to measure cell-

cell similarity for unsupervised clustering analysis and gene-gene correlation for reverse-

engineering of cluster-specific intracellular networks from scRNA-seq data, which enables the 

identification of cell type-specific hidden drivers and their network rewiring events. Specifically, 

scMINER was designed to include two key components (Fig. 1): (i) Mutual Information-based 

Clustering Analysis (MICA) and (ii) Mutual Information-based Network Inference Engine 

(MINIE). We chose MICA because it uses MI to quantify cell-cell distance, which allows for  
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Figure 1: Overview of scMINER. scMINER is a system biology toolkit that has been separated into 

mutual information-based clustering analysis (MICA) and mutual information-based network inference 

engine (MINIE). Mutual information (MI) is first calculated from the gene count matrix from scRNA-seq 

to obtain a MI-based distance matrix. Multidimensional scaling (MDS) based dimension reduction is then 

performed followed by K-mean clustering. Cell state specific networks are constructed using SJARACNE 

to infer the regulons of transcription (TF) and signaling protein (SIG) drivers. The importance of each TF 

and SIG driver is measured by comparing between different cell states. The regulatory network re-wiring 
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of these drivers in various cell states could be further captured, which serves the basis of identifying 

critical drivers in cell lineage differentiation and tissue specific specification. Moreover, the regulon 

activity could be further used to refine expression-based clustering (activity-based clustering). 

characterization of the intrinsic nonlinear similarity of gene expression distributions among cells. 

To balance the efficiency and accuracy of clustering, we implemented MICA that combines two 

prevalent strategies for clustering analysis of scRNA-seq data5, 8: a graph-based approach (e.g., 

Seurat10, Scanpy12), which is fast and builds a heuristic cell-cell graph and applies community 

detection, and consensus k-means-based clustering (e.g., SC311), which is slower but more 

accurate, as it iteratively identifies the globally optimal k clusters and uses a consensus approach 

to increase the robustness. Thus, we took advantage of both strategies to balance the clustering 

stability and scalability, resulting in MICA that uses graph-based clustering when the cell 

number is large (default 5,000) and uses the k-means-based approach otherwise. We also 

employed nonlinear graph embedding (GE) in graph-based clustering and multidimensional 

scaling (MDS) in k-means-based clustering to reduce the noise arising from the intrinsic 

"dropout" effects in scRNA-seq data, as well as optimization of the number of dimensions used 

for clustering.  

 

 

MICA was integrated with MINIE that uses clustering results to reverse-engineer intracellular 

gene networks for each of the clusters by using a modified MI-based algorithm, SJARACNe9. 

Although originally developed to analyze bulk omics data, we re-parameterized SJARACNe to 

handle single-cell transcriptomics data. To overcome the sparseness of scRNA-seq data for gene 

network inference, we designed MINIE to employ a MetaCell13 approach by aggregating gene 

expression profiles of similar cells to reconstruct cluster-specific TF and SIG networks from 
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scRNA-seq data. Furthermore, for each TF or SIG candidate driver, MINIE infers the cluster-

specific gene activity based on the expression of its predicted regulon genes in the corresponding 

cluster. Taken together, the combination of non-linear nature of MICA clustering, and the 

activity-based analysis performed by MINIE is expected to overcome the dropout effects of 

scRNA-seq data and identify cluster-specific hidden drivers. Therefore, we propose that 

scMINER represents a robust platform for identification of cluster-specific hidden drivers and 

their target rewiring in lineage differentiation, tissue specification and many other biological 

processes. 

 

scMINER outperforms popular single-cell clustering tools  

To benchmark the clustering performance of scMINER, we considered the three widely-used 

methods: Seurat10 and Scanpy12, representing graph-based approaches, and SC311 representing k-

means-based algorithms. These methods were also among the top performers based on the 

previous evaluations14. We used 11 scRNA-seq datasets from different platforms with known 

cell-type labels and with various numbers of cells (Supplementary Table 1). These datasets 

consist of four gold-standard and three silver-standard datasets used for benchmarking SC3, as 

well as four additional large datasets with cell-type labels based on cell sorting markers and 

expert curations15, 16 . We used the Hubert-Arabie Adjusted Rand index (ARI), which ranges 

from 0 for random to 1 for identical matching, to quantify how well the inferred clusters by 

different methods recovered the reference labels. 

 

The benchmarking analysis indicated that MICA (in scMINER) consistently outperformed the 

other three methods with the highest ARI across all the datasets (Fig. 2a, Supplementary Fig. 
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1a), except for the Klein dataset, where the ARI of MICA, Seurat, and SC3 were almost identical 

and significantly higher than the ARI of Scanpy. Among the three benchmarking algorithms, 

there was no consistent winner: SC3 significantly outperformed graph-based Seurat and Scanpy 

in a few datasets with a small number of cells (e.g., Buettner and Pollen datasets), but failed for 

the two datasets with a large number of cells (e.g., Zheng and Bakke datasets); Seurat performed 

well in a few small datasets (e.g., Yan and Goolam datasets). Overall, MICA is the most 

consistent method with an average ARI value of 0.83 and the lowest variance (Fig. 2b). The 

superior performance of MICA was also confirmed by using an alternative metric, the Adjusted 

Mutual Information (AMI; Supplementary Fig. 1b). 

 

To evaluate MICA’s effect on visualization via UMAP, we calculated the silhouette index (SI)17 

scores of 2d-UMAP visualization against the reference labels for each clustering method in all 11  
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Figure 2: Evaluation of scMINER clustering performance. a, Clustering performance of scMINER, 

Seurat, SC3 and Scanpy measured by adjusted Rand index (ARI). b, The average ARIs and their variance 

(vertical segments). scMINER significantly outperforms other clustering methods (𝑝 0.0004 by the 

one-sided Wilcoxon test). c, UMAP and silhouette plots of the Zeisel and Klein datasets using scMINER, 

Seurat, and SC3. Silhouette index is reported (red dashed line) for each UMAP representation of 

clustering result. d, Average silhouette index values and their variance (vertical lines). scMINER 

significantly outperforms other clustering methods (𝑝 0.0019 by the one-sided Wilcoxon test). e, 

Clustering performance comparison using four distance metrics mutual information (MI), Spearman 

correlation, Pearson correlation and Euclidean distance as metrics. MI outperforms other linear metrics 

when the number of dimensions is greater than a fixed number. f, Clustering performance comparison 
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using four dimension reduction approaches multidimensional scaling (MDS), principal component 

analysis (PCA), Laplacian, and PCA sequentially followed by Laplacian (LPCA).  

 

 

benchmarking datasets. We observed that MICA exhibited much higher SI values than Seurat, 

SC3, and Scanpy (Fig. 2c), suggesting higher purity and closer to true biological cell types of 

MICA clustering than those of clustering by the other methods. Again, MICA is the most 

consistent method as shown by the lowest variance across all the datasets (Fig. 2d). 

 

We reasoned that the consistent superior clustering performance of MICA was because of the use 

of nonlinear metrics, including MI for quantifying cell-cell similarity and GE for dimension 

reduction. To investigate this further, we focused on the four gold-standard data sets with 

ground-truth data (Yan, Pollen, Kolodziejczyk, and Buettner datasets). First, we replaced the 

default MI metric with other widely-used distance metrics including Euclidean, Pearson, and 

Spearman correlation coefficients while keeping other steps of the MICA workflow the same. 

For each distance metric, we performed the clustering on the four gold-standard datasets for a 

range of MDS components from 1 to 50 (Fig. 2e, Supplementary Fig. 2a). MI-based clustering 

achieved consistently better performance than the other three metrics regardless of the number of 

components, which indicates that MI is more robust in capturing the actual cell-cell similarity, 

likely due to its non-linear nature. 

 

Similarly, we benchmarked MDS with three other commonly used dimension reduction methods: 

1) Principal Component Analysis (PCA), 2) Laplacian, 3) Parallel PCA and Laplacian 

(Laplacian/PCA) by changing the dimension reduction metric only in the MICA-k-means 
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pipeline. Clustering accuracy (ARI) was measured with the increment of selected components 

after reduction, ranging from the 1st to 50th, with downstream steps remaining the same. The 

results from the four gold-standard datasets showed that MDS reached its maximum accuracy 

during the process and remained stable with addition of more components, while the other three 

approaches reached their respective best ARI at different numbers of components and failed to 

maintain the optimal result when more components were involved (Fig. 2f, Supplementary Fig. 

2b). This behavior of MDS enabled us to optimize the selection of components, a critical 

parameter for downstream k-means clustering, and we set 19 as the default in the MICA-MDS 

pipeline as this number ensured we reached the maximum accuracy in all datasets we have 

benchmarked. 

 

We also evaluated the computing resource usage of MICA-GE and its distribution in each step 

using the two largest Zheng and Bakken datasets (Supplementary Fig. 3a). The MI-kNN step 

used ~60% of the total time. We also evaluated the effects of GE parameters (e.g., number of 

workers, number of kNN neighbors, node2vec window size, etc) on clustering performance 

(Supplementary Fig. 3b), which helped to optimize the parameters. Taken together, scMINER-

MICA is a robust, accurate, and efficient clustering algorithm. 
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Figure 3: scMINER improves the clustering of ambiguous subpopulations in PBMCs in comparison 

with Seurat. a, UMAP and Sankey plots of scMINER and Seurat clustering results annotated using true 

labels. b, CD4TCM and CD4Treg cells (by true label) projected on scMINER and Seurat clustering 

UMAP plots. c, Signature score heatmap plots of scMINER and Seurat clusters calculated using curated 

markers for each cell type. d, Donut plots of scMINER cluster 1, 2 and Seurat cluster 1 to show the cell 
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type compositions and the cluster purity. e, Comparison of the number of CD4Treg cells expressing 

master regulators FOXP3, IL2RA, and TIGIT on scMINER cluster 2 and Seurat cluster 1. f, MICA 

clustering performance comparison using CPM and CP10k normalization methods. 

 

scMINER improves the clustering of ambiguous T-cell subpopulations in PBMCs 

To document the intrinsic clustering performance on a well-characterized mixed cell population, 

we compiled a training dataset with 14,000 PBMCs forming seven mutually exclusive cell types 

from the Zheng dataset15. We picked clustering resolution parameters for MICA and Seurat to 

produce the number of clusters based on the known number of cell types, and examined the true 

labels of the cells as defined by fluorescence-activated cell sorting (FACS) (Fig. 3a). Though  

CD4+ and CD8+ differences were well-recaptured by both MICA and Seurat, we found dramatic 

differences in identifying CD4+ cell subpopulations by MICA and Seurat (Fig. 3b, c). 

Specifically, MICA clearly identified a central memory T-cell population (CD4+/CD45RO+ 

memory T) and a Treg population (CD4+/CD25+ regulatory T), whereas Seurat generated two 

clusters (cluster 1 and 2) of CD4+ cells with mixed subpopulations (53% of CD4+ central 

memory cells and 45% of CD4+ Tregs, Fig. 3d). MICA identified three subpopulations of CD4+ 

T cells and one subpopulation of CD8+ naive cytotoxic T cells. In contrast, Seurat failed to 

separate the subpopulations of CD4+ T cells even after tuning the resolution parameter to 

produce 8 clusters. To avoid over-emphasizing the ground-truth labels which arises from the one 

or two surface-markers, we compiled a set of cell type specific signature genes and calculated the 

signature scores for each of the MICA and Seurat clusters (Fig. 3c). The signature scores show 

that Seurat identified two monocyte clusters and failed to identify pure clusters of CD4+ central 

memory T cells and CD4+ Tregs. Further, by comparing the two presumably Treg clusters, 

cluster 2 in MICA and cluster 1 in Seurat, we found that the number of cells with well-known 
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Treg markers (FOXP3, IL2RA, TIGIT)18,19 in the MICA cluster is much higher than the Seurat 

cluster (Fig. 3e). The high signal-to-noise ratio highlights the advantage of MICA over Seurat to 

uncover cluster-specific signals for downstream network analysis. Additionally, we found that 

the high purity and the matching of the number of clusters to that of cell types are partially due to 

the amplified signals by MICA’s default count-per-million reads normalization approach (Fig. 

3f, Supplementary Fig. 4). 

 

Every clustering approach has a few intrinsic parameters that could potentially change the 

clustering results. Therefore, it is instructive to examine the robustness of these parameters, such 

as the resolution parameter in the Louvain algorithm. We used CD4+ Tregs as a proxy to 

examine how the clusters vary across different resolutions and cluster counts (Supplementary 

Fig. 5). The analysis revealed that CD4+ Tregs spread across more Seurat clusters with 

increasing resolution, whereas most CD4+ Tregs form a single MICA cluster regardless of the 

resolution. Given that Seurat employs a variation-based gene selection step before PCA analysis, 

we examined whether the number of highly variable genes impacts the clustering performance 

and so no improvement on Seurat's ability to characterize CD4+ Treg cell similarities 

(Supplementary Fig. 6). Taken together, these studies indicate that scMINER achieves 

improved clustering of ambiguous cellular subpopulations. 

 

scMINER infers immune marker protein activity and improves clustering of PBMCs 

With improved clustering, we then applied the scMINER-MINIE workflow to map cell-type-

specific intracellular TF and SIG networks from scRNA-seq data. Therefore, this process 

allowed us to transform the single-cell expression profiles into single-cell protein activity 
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profiles, and identify hidden drivers underlying each cell type that expression may fail to capture. 

We continued the analysis of the PBMC dataset with 7 cell types – monocytes, B cells, NK cells, 

CD4+ T cells, and naïve CD8+ T cells (Fig. 4a). With MINIE, we first generated cell-type-

specific TF and SIG networks based on scRNA-seq profiles of each of the seven sorted 

populations containing 2,000 cells (Supplementary Fig. 7a). We then inferred TF and SIG 

activities by taking the expression level of predicted targets into account, resulting in an activity 

matrix of 1,428 TFs and 3,382 SIGs. The activity matrix overcame the sparseness of scRNA-seq 

data; it satisfied a normal distribution, which drastically cut down the theoretical pre-requisite for 

any statistical testing. 
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Figure 4: Comparison of scMINER and SCENIC on activity-based mark identification and 

clustering of PBMC cell types. a, Unsupervised scMINER clustering of 7 clusters of sorted PBMC cell 

types on UMAP. b, Heatmap visualization of cell marker expression (left) and predicted activity (right) in 

each cell from sorted PBMC cell types. The regulatory networks are generated in cell-type specific 

manner. c, FOXP3 (left) and CD56 (encoded by NCAM1, right) expression and scMINER activity on 

UMAP. d, UMAP visualization of FOXP3 activity predicted by SCENIC pipeline. e, Unsupervised 

clustering of the 7 sorted PBMC cell types based on SCENIC and scMINER activity. The true labels of 

these 7 cell types are labeled. f, The Adjusted Rand Index (ARI) of clustering in e based on SCENIC and 

scMINER activity. 
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Unique molecular signatures have been used in literature to define different immune cells in 

PBMCs, including monocytes (LYZ, CD68, and CD14), B cells (CD19, MS4A1, and CD79A), 

Treg cells (CTLA4, TIGIT, and FOXP3), NK cells (GZMB, IL2RB, FCGR3A, and KLRB1) and 

naïve CD8+ T cells (CD8A, CD8B, SELL)20-22. However, the expression level of a few markers 

cannot identify and separate immune cell subtypes, especially CD4+ T cell subsets in this PBMC 

dataset, possibly due to gene dropout (Fig. 4b). Compared to expression, the activity of classical 

immune markers can well separate these immune cell types (Fig. 4b). The dropout of both Treg 

marker FOXP3 and NK cell marker CD56 (encoded by NCAM1 gene) marker expression can be 

rescued by their effect on the UMAP (Fig. 4c), as well as other cell type-specific markers such as 

CD19, CD8A, and CD14 (Supplementary Fig. 7b). The activity of their signatures further 

separated the subsets of CD4+ T cells. For example, naïve CD4+ T cells showed higher FHIT and 

SATB1 activity and lower CXCR3 activity than CD4+ memory T cell subsets (Fig. 4b and 

Supplementary Fig. 7c). Compared with the widely used scRNA-seq regulon analysis method 

SCENIC (Fig. 4d), scMINER was able to identify Treg cells with FOXP3 activity with more 

specificity (Fig. 4c). 

 

The activity calculated from scMINER could also be used to improve clustering unbiasedly. We 

calculated the activity of the cell type signatures based on GRN generated from MetaCell13 using 

the total PBMC cells (Fig. 4f). We observed that MINIE-based activity clustering outperformed 

SCENIC-based activity clustering, in terms of recovering the reference labels. The separation of 

Treg cells from other T cells was further improved compared to gene expression-based clustering 
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(Fig. 4g). Taken together, scMINER-inferred activity overcomes the “dropout” effects to 

improve marker protein identification and clustering from scRNA-seq data. 

 

scMINER reveals drivers and their network rewiring in exhausted CD8+ T cell 

differentiation 

Next, we demonstrated the power of scMINER to identify drivers in cell lineage and 

differentiation using a specific example of exhausted CD8+ T cell differentiation, a phenotype 

associated with severe infection, cancer and autoimmunity23-26. Previous studies have shown that 

the exhausted CD8+ T cells contain heterogeneous subpopulations with differential capability to 

respond to anti-PD1 therapy27-33. We performed scMINER clustering on scRNA-seq profiles of 

exhausted CD8+ T cells in mice chronically infected with lymphocytic choriomeningitis virus 

(LCMV) Clone 13 (Cl13) at a late stage (day 28)32. We recapitulated the 3 major subpopulations 

of exhausted CD8+ T cells defined by TCF-1 (encoded by Tcf7 gene), CX3CR1, and TIM3 

(encoded by Hacvr2)+: TCF-1+ exhaustion progenitor (Tpex), CX3CR1+ effector-like (Teff-like, 

effector-like Tex), and CX3CR1TIM3+ terminal exhausted T cells (Tex) (Fig. 5a). These three 

populations are distinct both phenotypically and functionally32, 34, 35.  
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Figure 5: scMINER captures cluster-specific drivers for CD8+ exhausted T cells.  a, MICA MDS 

clustering of GP33-tetramer+ CD8+ T cells at day 28 from mice chronically infected with LCMV Clone 

13 (GSE122712). The expression of Tcf7, Cx3cr1 and Havcr2 is visualized on UMAP. b, Heatmap 
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visualization of expression (left) and predicted activity (right) of selected TFs in each cell from 3 subsets 

of CD8+ T cells. c, Heatmap visualization of the average TF SCENIC activity in each cluster of CD8+ T 

cells. TFs without activity predicted by SCENIC are shown in light grey. d, Similarity of TF regulon in 

Tpex and Tex CD8+ T cells generated by SJARACNe and footprint genes detected by ATAC-seq data 

(GSE123236) in corresponding cell clusters. Expected number of genes in intersection of ATAC-seq 

footprints as reference (log10 scale, x axis) with regard to hypergeometric distribution vs. observed 

intersection (log10 scale, y axis). For all genes, the observed intersection is significantly higher than 

expectation (black line). The color of the dots represents log10 (P-value) according to Fisher’s exact test. 

e, Heatmap visualization of cell marker expression (left) and predicted activity (right) of selected SIGs in 

each cell from 3 subsets of CD8+ T cells. f, The regulons of Batf in Tpex (red), Teff-like (green) and Tex 

(blue) cells. Regulons shared by 2 or more cell types are highlighted as yellow (Tpex and Teff-like), grey 

(Teff-like and Tex), magenta (Tex and Tpex), and turquoise (Tpex, Teff-like and Tex). g, Functional 

pathway enrichment of Batf regulons of Tpex and Teff-like cells and the one shared by Tpex and Teff-

like. h, Violin plot of the expression (upper) and activity (lower) of Tox, Tcf7 and Batf in wild-type and 

Tox deficient CD8+ T cells. 

 

 

We then applied scMINER to delineate the transcription regulatory networks and underlying 

hidden drivers along the state changes from Tpex to Teff-like to Tex. Previous studies reported 

that TCF-1, FOXO1, ID3, LEF1, and NF-kB related transcriptional factors REL and NFKB1 are 

involved in Tpex regulation36, 37, although the expression levels of these TFs didn’t show marked 

changes (Fig. 5b). In contrast, scMINER-inferred activities of these TF regulators based on 

cluster-specific regulatory networks uncovered their importance in Tpex (Fig. 5b). The 

surprising enrichment of NF-kB-related transcriptional factors suggested possible roles of NF-κB 

signaling pathway in regulating the formation or maintenance of Tpex cells. For the Teff-like 
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subpopulation, T-bet (encoded by Tbx21) is known to be important for the effector function of 

this population36 and indeed has heightened scMINER activity (Fig. 5b and Supplemental Fig. 

8a). Other TFs such as KLF2/3, RUNX1, and ROR-α (encoded by Rora) also have increased 

regulon activities in the Teff-like cluster, consistent with the prediction by SCENIC analysis in 

the literature36. Finally, the terminally exhausted Tex cells showed increased activity of 

NFATC1, BLIMP1 (encoded by Prdm1), and TOX, which were reported to promote 

exhaustion36, 38-41. Notably, the increased scMINER activities for T-bet and BLIMP1 in Teff-like 

and Tex respectively are much more obvious than their expression. Although BATF function in 

terminal exhaustion and effector function is still debatable depending on the biological context36, 

42-45, overexpressed BATF has been shown to be critical for regulating effector function in 

adoptively transferred antigen-specific CD8+ T cells and CAR-T cells45, 46. The scMINER 

analysis was able to accurately detect BATF activity that was missed by analysis of its 

expression pattern alone (Supplementary Fig. 8a).  

 

The TF transcriptional networks of these three CD8+ T cell exhaustion stages also captured 

known master TF drivers in CD8+ T cells. For example, in Tpex cells, the TCF-1 is predicted to 

directly promote expression of Cd9 and Ms4a4c (Supplementary Fig. 8b), while FOXO1 is 

known to promote Pdcd1 expression during exhaustion36, 47. In Teff-like cells, T-bet regulates 

Zeb2 expression, which has been reported to be critical for effector CD8+ cytotoxic cell 

differentiation48, 49. In terminal Tex cells, TOX regulates co-inhibitory molecular Lag3 

expression50. 
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To benchmark the performance of scMINER, we compared it with SCENIC6. SCENIC was 

applied to the exhausted CD8+ T cell dataset and was able to capture a few positive control 

drivers of T cell exhaustion, including REL, NFKB1, FOXO1, KLF2/3, RUNX1, T-bet, ROR-α, 

and E2F2, all of which were predicted by scMINER (Fig. 5c). However, SCENIC failed to 

predict TCF-1, ID3, LEF1, BATF, and TOX activity in this dataset based on their co-expressed 

regulons (filtered out in motif2tf step), among which TCF-1, BATF, and TOX are well-

established TF regulators of exhausted T cell differentiation. This suggested that scMINER goes 

beyond the limitation of TF motif database and can predict a broader spectrum of TF drivers in 

exhausted T cell differentiation directly from scRNA-seq data. Intriguingly, we also found the 

TF regulons predicted by scMINER have a significant overlap with TF footprint genes detected 

by ATAC-seq analysis51 of Tpex and Tex cells. This suggested that scMINER regulons reflect 

true transcriptional targets of TFs in a context-specific fashion (Fig. 5d). 

 

Distinct from SCENIC that is focused on TF driver inference, scMINER can be used to 

reconstruct context-specific signaling networks and infer the activity of signaling factors. Indeed, 

scMINER successfully identified that memory-associated surface markers such as CCR7 and 

IL7R are uniquely activated in Tpex cells (Fig. 5e). CX3CR1, a surface hallmark for Teff-like 

cells, also exhibited higher activity in Teff-like cells. Effector function of CD8+ T cells is 

correlated with high mTOR activity34, 52, and scMINER did capture that the activities of mTOR 

and its upstream regulator V-ATPases53 were high in Teff-like cells (Fig. 5e and 

Supplementary Fig. 8c). Further, genes that were reported to be highly expressed in terminal 

Tex cells such as Cd244 (2B4)54 and Cd3855 exhibited the highest activity in Tex cluster (Fig. 

5e). MAP4K1 (encoded by Hpk1) is known to promote terminal exhaustion56, and scMINER 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2023. ; https://doi.org/10.1101/2023.01.26.523391doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.26.523391
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

captured the most increased activity in terminal Tex cells. Notably, the selective kinase activity 

of mTOR and MAP4K1 in Teff-like and Tex could not be captured by their gene expression 

changes from scRNA-seq data (Fig. 5e). All of the above indicates that scMINER can capture 

context-dependent activity of signaling proteins, including surface receptors, intracellular 

enzymes, and kinases. 

 

By inferring cell-type-specific networks for various clusters, scMINER can uncover the regulon 

rewiring of drivers among cell types, and thus determine the transcription regulation during cell 

state transition. BATF has recently been identified to have a role in promoting Tpex to Teff-like 

transition via different regulons36. Indeed, scMINER network analysis captured that BATF 

regulon targets were significantly rewired among Tpex, effector-like Tex, and terminal Tex 

states (Fig. 5f). In the overlapped BATF regulons between Tpex and effector-like Tex, BATF 

regulates effector CD8+ T cell-associated oxidative phosphorylation and T cell receptor signaling 

pathway (Fig. 5g), which suggested BATF may promote metabolic rewiring to increase effector-

like Tex and is consistent with the role of BATF reported in the literature45, 46. In contrast, BATF 

regulons that are unique in Tpex cells were enriched in cytotoxic IFN- and IFN- response 

pathways while BATF regulons that are unique in Teff-like cells were enriched in cell cycle-

related pathways (Fig. 5g). Together, these results indicated that BATF may alter its regulons in 

different cell subsets to tune their activity and exert their regulatory function during the process 

of CD8+ T cell exhaustion.  

 

Understanding complex transcriptional network changes in response to gene perturbation is 

among the biggest challenges for mechanism studies. Since TOX is a master TF regulator of T 
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cell exhaustion, we analyzed scRNA-seq data (GSE119940) profiling wild-type (WT) and TOX 

knockout (KO) CD8+ T cells38 during chronic infection to examine whether scMINER can reveal 

the regulatory circuits of TOX in chronic infection (Supplementary Fig. 8d). TOX-KO CD8+ T 

cells exhibited reduced TOX activity compared to WT cells (Fig. 5h), indicating scMINER can 

correctly capture TOX activity in this biological context. Tcf7 expression was reported to be 

downregulated upon TOX KO38, 39, and we indeed found that TOX KO decreased both 

expression and activity of Tcf7 (Fig. 5h). Since Tcf7 marks the Tex cell precursors (Tpex), our 

results aligned with previous reports that the primary defect in TOX-KO exhausted T cells was 

the inability to rewire the transcriptional control of Tcf7 after the initial development of Tpex. 

Apart from the reduction of Tcf7 activity, TOX-KO CD8+ T cells were also accompanied by the 

reduced activity of BATF (Fig. 5h), which is required for sustaining antiviral CD8+ response 

during chronic infection57. TF motif enrichment analysis also validated the reduced activity of 

BATF in TOX-KO CD8+ T cells (Supplementary Fig. 8e). Moreover, the TOX-KO cells also 

increased the activity of effector-related transcription factor ZEB2 (Fig. 5h), in line with the 

increased effector T cell function in TOX-KO cells, which cannot be solely explained by loss of 

Tcf739. Moreover, other top TF and SIG drivers predicted by scMINER in TOX-KO CD8+ T 

cells were also enriched in the effector T cell signature but not exhausted T cell signature 

(Supplementary Fig. 8f). These results together highlighted that a complex transcription 

regulatory network, not just Tcf7 expression, is required for TOX-mediated effector function and 

exhaustion progression in CD8+ T cells during chronic infection. 

 

scMINER exposes drivers underlying Treg tissue specification 
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Figure 6: Tissue-specific differentiation of Treg identified by scMINER. a, MICA MDS clustering of 

mouse Foxp3+ regulatory CD4+ T cells (GSE130879) isolated from spleen, lung, skin and visceral adipose 
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tissue (VAT). The expression of Cd44 and Sell is visualized by violin plots. b, Heatmap visualization of 

predicted activity of top TFs in each cell from spleen, muscle, colon and VAT Treg cells. c, Violin plot 

visualization of Bach2, Klf2, Atf6 and Pparg expression, scMINER activity, scATAC gene activity in 

spleen, muscle, colon and VAT Treg cells. scATAC gene activity was by signac R package based on 

GSE156112. d, Functional pathway enrichment of a union of top 50 TFs and top 200 SIGs in each tissue 

Treg cells based on t value from Student’s t test. e, The regulons of Pparg in spleen (red), lung (orange), 

skin (green) and VAT (blue) Treg cells. Regulons shared by 2 or more cell types are highlighted as pink. 

f, Functional pathway enrichment of Pparg regulons in spleen, muscle, colon and VAT Treg cells. g, 

MICA MDS clustering of mouse Klrg1Nfil3, Klrg1Nfil3, Klrg1Nfil3 Treg cells isolated from spleen 

(GSE130879). Pdcd1, Klrg1 and Nfil3 expression are visualized on UMAP. h, Violin plot visualization of 

Batf, Gata3, Nfil3 and Pparg expression and activity in spleen, muscle, colon and VAT Treg cells. i, 

Functional pathway enrichment of a union of top 50 TFs and top 200 SIGs in each stage of spleen Treg 

cells. 

 

 

While different types of T cells play different roles, the same type of T cell could have specific 

roles in specific tissues, driven by the underlying transcriptional regulatory networks58. For 

example, tissue specific Treg cells not only maintain immune tolerance but also promote 

homeostasis and regeneration after tissue damage59, 60. To examine this further, we used 

scMINER to dissect TF and SIG drivers underlying tissue specification of Treg cells. We 

performed scMINER clustering of scRNA-seq profiles of Treg cells from different tissues 

including spleen, lung, skin and visceral adipose tissue (VAT)61. Clustering results exhibited that 

Treg cells were well separated by their tissue origins. Skin and VAT Treg cells displayed high 

Cd44 and low Sell expression, while spleen and lung Treg cells showed the opposite (Fig. 6a). 

We then reconstructed tissue-specific regulatory networks of Treg cells to establish the regulons 
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of TF drivers for their activity inference. Differential activity analysis by scMINER revealed that 

resting Treg cell-associated TFs (e.g., TCF-1, KLF2, SATB1, and BACH2) all have the highest 

activity in spleen and lung Treg cells (Fig. 6b and c). Endoplasmic reticulum (ER) stress is 

critical for normal skin function and associated with skin-related autoimmune disease62. 

Interestingly, Treg cells in the skin upregulate the activity of ER stress regulator ATF6, 

suggesting a possible influence from the skin microenvironment (Fig. 6b and c). VAT Treg is 

the most well-characterized tissue Treg with high activity of PPARG, FLI1, RORA, and RARA, 

consistent with the prediction based on motif enrichment analysis of ATAC-seq data63 and 

literature61 (Fig. 6b right). Notably, scMINER activity-based TF driver inference captured these 

tissue-specific drivers, which could not be clearly identified from their expression patterns (Fig. 

6b left). Orthogonal scATAC-seq-based TF accessibility analysis (Fig. 6c) and SCENIC analysis 

(Supplementary Fig. 9a) captured differential tissue-selective activity of BACH2, KLF2, ATF6, 

and PPARG, but their signals were much weaker than scMINER-based activity analysis, and 

could not correctly predict the high FLI1, RORA, and RARA activity in VAT Treg cells 

(Supplementary Fig. 9b). 

 

The prediction of selective scMINER activity, but not expression, of Bach2 and Pparg in spleen 

and VAT Treg cells could be validated by another independent scRNA-seq study that profiled 

spleen, colon, muscle, and VAT Treg cells61 (Supplementary Fig. 9c, d). This further indicates 

the robustness and reproducibility of scMINER in identifying regulators of tissue-specific Treg 

cells from different studies. Moreover, the top scMINER-predicted TF and SIG drivers from skin 

and VAT Treg cells were significantly enriched in the core tissue resident Treg signature. They 

were enriched in the skin and VAT-specific signatures, respectively (Fig. 6d). These results 
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indicated the top TF and SIG drivers predicted by scMINER could faithfully reveal tissue Treg 

differentiation reported in the literature. 

 

To validate whether TF regulons predicted by scMINER also reflect TF transcriptional activity, 

we compared the scMINER-predicted regulons with footprint genes detected by ATAC-seq 

profiles of corresponding spleen and VAT Treg cells and indeed found a significant overlap of 

TFs between them (Supplementary Fig. 9e). Pparg is known as a master regulator of VAT Treg 

cells64, 65, and its transcription activity was correctly captured by scMINER in VAT (Fig. 6c and 

Supplementary Fig. 9d). Intriguingly, Pparg regulons are distinctly rewired in different tissues 

(Fig. 6e). The Pparg regulons in VAT Treg cells are significantly enriched in the VAT/Fat Treg 

signatures based on ATAC-seq analysis63 (Fig. 6f). Notably, predicted Pparg regulons in the 

spleen are also enriched in the core tissue Treg signature (Fig. 6f). This finding suggests Pparg 

may have an essential role in regulating early tissue Treg development and is consistent with 

previous studies66, 67. To further investigate this, we analyzed a scRNA-seq dataset of tissue Treg 

cell precursors (KLRGNFIL3+ and KLRG+NFIL3+) in the spleen66 by scMINER (Fig. 6g). 

Tissue Treg cell precursors also express higher Pdcd1, Klrg1 and Nfil3 than KLRGNFIL3 

cells. Batf is known to regulate the generation of tissue Treg cell precursors66. scMINER 

identified increased activity of Batf, Gata3, and Nfil3 in the two tissue Treg cell precursors, 

consistent with the original study66(Fig. 6h). Indeed, Pparg activity was enhanced in these tissue 

Treg cell precursors despite its low expression, which supports that Pparg could regulate a 

common step of early tissue Treg cell generation in the spleen through its tuned regulons in the 

spleen, consistent with our observation above. Apart from Pparg, top TF and SIG drivers in the 

KLRG+NFIL3+ tissue Treg precursors are enriched in the core tissue resident Treg cell signatures 
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and Pparg related gene expression (Fig. 6i), indicating that scMINER can reveal the drivers 

underlying the early generation of tissue Treg cell precursors in the spleen. 

 

Similar to TF drivers, top SIG drivers for each tissue specific Treg cell are also highlighted 

(Supplementary Fig. 9f). Among these signaling drivers, Ccr1 was demonstrated to possibly 

contribute to VAT Treg accumulation65, which was correctly captured by scMINER. In addition, 

a common epigenetic and transcriptional hallmark of tissue Treg cells is the upregulation of IL-

33 receptor ST2 (Il1rl1)68. Treg cells from all three other Treg cells upregulated ST2 activity 

compared to the spleen. Still, VAT Treg cells have the highest ST2 activity (Supplementary 

Fig. 9f), which supports the critical role of the IL-33-ST2 axis in pan-tissue Treg cell generation. 

Moreover, other chemokine receptors such as Ccr4 and Ccr5, which are essential in tissue Treg 

cell migration68, 69, have also been uncovered by scMINER. Together, these results indicate that 

scMINER can capture the upstream signals that modulate tissue Treg cell specification. 

 

Discussion 

We have developed an integrative computational framework for unsupervised clustering and 

reconstruction of cell-type specific intracellular networks that enables the identification of 

hidden drivers directly from scRNA-seq data. Our scMINER framework takes advantage of 

mutual information for nonlinear measurements of intrinsic relationships among cells and genes. 

For clustering, scMINER also leverages an ensemble dimension reduction approach based on a 

reasonable assumption of the nature of biological dynamics: that a wider range of dynamics 

should be observed from a large population of cells of the same cell type. Using benchmarking 
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datasets with ground-truth labels, we demonstrated that scMINER outperforms the state-of-the-

art methods in single-cell clustering.  

 

From scRNA-seq data alone, scMINER is able to uncover hidden TF and SIG drivers underlying 

cell states, which have not been captured by differential gene expression analysis but have been 

experimentally validated as key drivers. Further, the scMINER-inferred TF regulons are 

significantly overlapped with the targets defined from ATAC-seq footprinting of the same cell 

type, suggesting high accuracy of the scMINER-derived TF networks. For TF driver prediction, 

we benchmark scMINER with SCENIC and demonstrate that scMINER identifies known TF 

drivers that SCENIC fails to reveal due to the lack of TF binding motif information or low 

expression of TFs. Importantly, scMINER is the only method that can predict SIG drivers from 

scRNA-seq data. Together, scMINER provides a new toolbox to dissect the TF regulatory and 

signaling networks and pinpoint hub drivers underlying cell lineage differentiation and 

specification from single-cell omics data. 

 

In addition to improving clustering accuracy, scMINER provides insights that could only be 

gleaned using an activity analysis pipeline. In particular, the established lineage markers of some 

subsets of lymphocytes, especially regulatory T cells, were missed in the conventional 

expression-based analysis, due to significant gene dropouts. In contrast, activity-based scMINER 

analyses rescue the dropout and reveal the hidden drivers and rewiring of their regulons in each 

cell state. Our results show that the importance of these cell-state drivers is consistent with their 

role reported in literature and these top drivers can be faithfully recapitulated in multiple scRNA-

seq datasets profiled in similar experimental contexts. Moreover, scMINER provides quantitative 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2023. ; https://doi.org/10.1101/2023.01.26.523391doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.26.523391
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33

activity assessment for > 6,000 TF and SIG proteins in a single experiment; it outperforms 

traditional low-throughput methods examining protein expression and activity, such as flow 

cytometry; and it overcomes the limitations of TF motif based SCENIC activity inference. Thus, 

activity-based scMINER analyses provide higher accuracy, reproducibility and scalability for 

inferring cellular transcriptional networks in each cell state from scRNA-seq data. 

 

Importantly, the reasons why activity-based scMINER analyses outperforms single cell 

expression-based analysis in the identification of multiple known transcription factors and 

signaling pathways go beyond the rescue of dropout. For instance, in regulating CD8+ T cell 

exhaustion and Treg cell tissue specification, Batf is an example of hidden driver because its 

expression is largely comparable among three subsets of CD8+ exhausted T cell subsets. 

However, its role acting in opposing Tpex generation is reported in the literatures33, 45. Thus, the 

identification of Batf has a more important role for effector-like TCF1TIM3 cells by scMINER, 

which stripped the disguise of its expression profile. The rewiring of the TF targets shown in 

different subsets of CD8+ T or Treg cells also suggests the necessity of studying cell-cluster 

specific TF regulons rather than the invariant TF regulons predicted by SCENIC, which could 

help in understanding unique transcriptional regulation in novel cell states and the molecular 

mechanism underlying the 'hidden' drivers. Since CD8+ T cell exhaustion and Treg cell 

development in tissues are both critical in regulating tumor and infection progression, targeting 

these top master regulators could help relieve these diseases and open the door for new 

combinational immunotherapies using current checkpoint blockade strategies. 
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While scMINER is a robust and powerful tool for single-cell clustering and network analysis, it 

has several limitations. First, the nonlinear MI estimation of cell-cell or gene-gene similarities is 

time-consuming, especially with a large number of cells. For clustering, scMINER doesn't select 

top variable genes to retain information that can separate close cell states. Computing platforms 

supporting parallelism may help improve the efficiency. For network inference of big clusters, 

downsampling is one solution, but a MetaCell-type approach is preferred because it also helps 

improve the gene coverage by aggregating expression in multiple cells. Second, although 

scMINER provides silhouette analysis to guide selection of the optimal number of clusters, 

determining the number of clusters is still quite challenging, thus a manual and problem-dependent 

task. 

 

In summary, we report the development and application of a novel scRNA-seq analytic pipeline, 

which utilizes mutual information and network-based inference to complement gene expression 

for better clustering and predicting the importance of TF and SIG drivers in each cell type. The 

MICA clustering algorithm in scMINER can also be applied to other high-dimensional data, 

including scATAC-seq, bulk transcriptomics and proteomics, and spatial omics. While our 

examples focused on the immune system, the scMINER tool could be effectively applied to any 

other systems profiled by scRNA-seq.  
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Methods 

 

Data compilation and preprocessing 

We summarize the 11 single-cell data sets used for accessing the clustering methods in Table 1. 

We filtered out genes detected in less than three cells, and cells that express less than 200 genes. 

The gold (Yan, Goolam, Pollen, Kolod) and silver standard data sets (Usoskin, Klein, Zeisel) 

were normalized using the same methods reported in SC311. In addition, the Buettner data set 

was normalized using FPKM; Chung data set was normalized with TPM; all the UMI-based data 

sets were normalized to 10,000 reads per cell. We then performed a natural log transformation 

for all the normalized data. In addition, we extracted highly variable genes using the default 

parameters for the clustering analysis by Seurat and Scanpy as recommended in the tutorials for 

PCA dimension reduction. We only used the known cell labels afterward to access the clustering 

results.  

The dataset used in Fig. 3 was based on PBMC dataset generated by Zheng et al.15. It has 

20,000 PBMCs purified via well-known cell surface markers with each subpopulation of 2,000 

cells. To create a more purified simulation dataset, CD4+ T helpers, total CD8+ cytotoxic T, and 

CD34+ cells (HSPCs) were removed with the remaining 14,000 cells forming seven mutually 

exclusive cell types. 

 

Mutual information estimation 

Cell-to-cell distances are calculated using MI: 

𝐼 𝐶 ;𝐶  ∑ ∑ 𝑝 , 𝑥,𝑦 log
, ,

∙∈∈  , 
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where 𝐶  and 𝐶  are the 𝑖-th and 𝑗-th rows in matrix 𝑀. Since normalized gene expression values 

are continuous, we use a binning approach70 for discretizing the expression values for the joint 

and marginal probability calculations, where the bin size 𝑏 is defined as √𝑛, n being the total 

number of genes. We then define a normalized distance between cells as 

𝐷 𝐶 ,𝐶 1
;

,
, 

where 𝐻 𝐶 ,𝐶  is the joint entropy of cells 𝐶  and 𝐶 .  

 

Ensemble dimension reduction 

For data sets with more than t (default is 5,000) cells (according to the clustering performance 

evaluation), we first represent MI matrix 𝑀 as a 𝑘-nearest neighbor graph 𝐺  and then adopted 

node2vec71 algorithm to embed 𝐺  to a 𝑑 dimensional space, where 𝑘 and 𝑑 are predefined 

parameters to control the scale of the local structure to explore and the number of low 

dimensional components to transform, respectively. The embedding is performed for a range of 

𝑑 from 8 to 96 with step size four followed by consensus clustering to reduce the randomness 

caused by selecting a fixed 𝑑 in a single clustering run. We use classical multidimensional 

scaling (MDS) to preserve the intercell distances for data sets with less than or equal t cells. We 

set the number of components to be a fixed number of 19, as explained in the Main section (Fig. 

2d). As MDS requires storing the entire MI matrix in the memory, to enable MI estimation for 

large datasets, we parallelized the calculation in four steps: 1) partitioning 𝑀 into 𝑀 ,  of a fixed 

number of cells, 2) MI estimation for every pair of 𝑀 ,  in parallel, 3) merging MI matrices, and 

4) normalization using equation (1). 

 

Cell clustering 
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To ensure reasonable running time, we build a k-nearest neighbor (kNN) graph 𝐺  again after 

embedding 𝐺  to a 𝑑 dimensional space and use the Louvain algorithm as the default clustering 

method. Instead of using mutual information as the distance function, we use Euclidean distance 

to determine the similarity of cells on the 𝑑 dimensional space. Euclidean distance has much 

fewer arithmetic operations than MI; thus, we adopt the KD-tree algorithm70 to construct an 

exact kNN graph 𝐺  instead of an approximate graph 𝐺 . Similar to SC3, we use k-means 

clustering as the default method on the MDS transformed space. However, K-means clustering is 

sensitive to the centroid seed initialization and produces very different results for each run. To 

reduce randomness, we run k-means clustering ten times by default and use consensus clustering 

to aggregate multiple runs of k-means clustering results. 

 

Determination of the optimal number of clusters 

We compute a silhouette coefficient17 average over all the cells for the clustering results and rank 

the results by the coefficients. scMINER users may evaluate the top candidates to determine the 

optimal number of clusters with a priori knowledge of the biological context of the data set. 

 

Determination of parameters for graph-embedding in MICA 

With the increasing complexity and depth of cellular neighborhood in the cell-cell distance space 

for large datasets, we speculate that the ability to explore the diverse local neighborhoods in a 

non-linear fashion is important to the clustering performance. Therefore, we adopt node2vec71, a 

non-linear graph-based dimension reduction approach with the flexibility in exploring diverse 

neighborhoods, to maximize the likelihood of preserving local neighborhoods of cells. Most of 

the current dimension reduction techniques rely on eigendecomposition of the appropriate data 
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matrix, which unsatisfies the scalability requirement for large datasets. A feasible solution is to 

explore and preserve the local neighborhood of cells approximated by a graph representation 

with each node representing a cell. node2vec’s random walk-based approach with flexible 

parameters, which allows for unsupervised exploration of the local neighbors in a graph and 

offers scalability for large datasets without sacrificing much clustering performance. We choose 

a subset of parameters critical to the dimension reduction performance and perform the grid 

searches over a predefined range for each parameter independently using the Zheng dataset. The 

default parameters are selected by considering the clustering performance in terms of ARI, the 

elapsed wall time and the highest memory consumption. 

 

Performance analysis and parameter tuning 

We compute the running time for each step of MICA for PBMC and Human Motor Cortex 

datasets using 25 CPU cores from a redhat linux machine (Supplementary Fig. 3a). The 1st step 

(MI-kNN) takes more than half of the total running time due to the number of arithmetic 

operations of mutual information calculation for each cell pair. We also perform parameter 

tunings by grid searching in a predefined range of selected parameters for PBMC clustering 

analysis (Supplementary Fig. 3b). The parameters in MI-kNN and node2vec steps have the 

greatest influence on the clustering performance and running time. We chose the default 

parameters to balance the clustering performance, running time and memory usage. 

  

Overview of MINIE 

MINIE allows users to reconstruct cell-type-specific GRNs for driver activity inference and 

target network rewiring analysis. MINIE takes inputs of a gene expression profile and cell cluster 
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labels. It first filters the genes with all zero expressions on the cell cluster basis. Then MINIE 

invokes SJARACNe to reconstruct cell-type-specific transcriptional factor and signaling 

networks. While users can provide a list of known drivers (TFs or SIGs) as input, well-curated 

lists of drivers are included in the MINIE package for users' convenience. To resolve the 

sparseness of the networks due to the scRNA-seq dropout effect, we fine-tuned SJARACNE 

parameters (e.g., two p-value thresholds) to consider a series of network properties, including the 

median number of targets, a power law-like degree distribution, etc. Finally, with the predicted 

targets of a driver for a cell cluster, MINIE calculates the driver activity by performing a 

column-wise normalization to ensure each cell is on a similar expression level, followed by 

averaging the expression of the driver's target genes. 

 

Bulk ATAC-seq data analysis 

ATAC-seq analysis was performed as described previously. Briefly, two × 50-bp paired-end 

reads we obtained from public datasets were trimmed for Nextera adaptor by trimmomatic 

(v0.36, paired-end mode, with parameter LEADING:10 TRAILING:10 

SLIDINGWINDOW:4:18 MINLEN:25) and aligned to mouse genome mm10 downloaded from 

gencode release M10 (https://www.gencodegenes.org/mouse/release_M10.html) by BWA 

(version 0.7.16, default parameters). Duplicated reads were then marked with Picard (v2.9.4), 

and only non-duplicated proper paired reads were kept by samtools (parameter '-q 1 -F 1804' 

v1.9). After adjustment of Tn5 shift (reads were offset by +4 bp for the sense strand and −5 bp 

for the antisense strand), we separated reads into nucleosome-free, mononucleosome, 

dinucleosome, and trinucleosome as previously described by fragment size and generated 

'.bigwig' files by using the centre 80-bp of fragments and scaled to 30 × 106 nucleosome-free 
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reads. We observed reasonable nucleosome-free peaks and a pattern of mono-, di- and tri-

nucleosomes on IGV (v2.4.13). All samples in this study had approximately 1 × 107 nucleosome-

free reads, indicating good data quality. Next, peaks were called on nucleosome-free reads by 

MACS2 (v2.1.1.20160309, with default parameters with '–extsize 200–nomodel'). To assure 

reproducibility, we first finalized nucleosome-free regions for each sample and retained a peak 

only if it called with a higher cut-off (MACS2 -q 0.05). We further generated consensus peaks 

for each group by keeping peaks presenting in at least 50% of the replicates and discarding the 

remaining, non-reproducible peaks. The reproducible peaks were further merged between 

samples if they overlapped by 100-bp; we counted nucleosome-free reads from each sample by 

bedtools (v.2.25.0). To identify the differentially accessible open chromatin regions (OCRs), we 

first normalized raw nucleosome-free read counts per million (CPM) followed by differential 

accessibility analysis by implementing the negative binomial model in the DESeq2 R package72. 

FDR-corrected P-value < 0.05, |log2 FC| > 0.5 were used as cut-offs for more- or less-accessible 

regions in TOX KO samples compared to their WT samples. Principal component analysis was 

performed using function prcomp in R. We then assigned the differentially accessible OCRs in 

the ATAC-seq data for the nearest genes to generate a list of DA genes using HOMER. This 

analysis identified 25,646 open chromatin regions (OCRs) with differential expression in TOX 

KO versus control cells (FDR < 0.05; |log2 FC (TOX KO/WT)| > 0.5).  

 

Motif analysis and footprinting of transcription factor binding sites 

For motif analysis, we further selected 1,000 unchanged regions log2 FC < 0.5 and FDR-

corrected P-value > 0.5 as control regions. FIMO from MEME suite (v4.11.3, '–thresh 1e-4–

motif-pseudo 0.0001')73 was used for scanning motif (TRANSFAC database release 2019, only 
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included Vertebrata and not 3D structure-based) matches in the nucleosome-free regions, and 

two-tailed Fisher's exact test was used to determine whether a motif was significantly enriched in 

differentially accessible compared to the control regions. To perform footprinting analysis of 

transcription factor binding site, the RGT HINT application was used to infer transcription factor 

activity and plot the results51. 

 

Single-cell ATAC-seq processing and data analysis 

All preprocessing steps were performed using "Cell Ranger ATAC version 1.2.0" (10X 

Genomics). Read filtering, alignment, peak calling, and count matrix generation from fastq files 

were done per sample using 'cellranger-atac count'. Reference genome assemblies mm10 

(refdata-cellranger-atac-mm10-1.2.0) provided by 10xGenomics were used for samples. All 

further analysis steps were performed in R (Version 4.0.0). Fragments were loaded into R using 

the package Seurat10. The R package Signac (version 1.3.0, https://github.com/timoast/signac) 

was used for normalization and dimensionality reduction. The peak-barcode matrix was then 

binarized and normalized using the implementation of the TF-IDF transformation described in 

(RunTFIDF (method = 1)). Subsequently, singular value decomposition was run (RunSVD) on 

the upper quartile of accessible peaks (FindTopFeatures (min.cutoff = 'q75')). The first 20 

components from the SVD reduction were used for secondary dimensionality reduction with 

UMAP. 

 

Gene activity scores of scATAC-seq data 

To calculate gene activity scores, gene body coordinates were first obtained by using the 

command genes (TxDb.Mmusculus.UCSC.mm10.knownGene) from the package 
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GenomicFeatures in R. The coordinates were filtered for normal chromosomes 

(keepStandardChromosomes (pruning.mode = 'coarse')) and extended by 2,000 bp upstream of 

the transcription start sites to include promoter regions (Extend(upstream = 2000)). Then, the 

command 'FeatureMatrix' from the Signac package was used with the 'features' parameter set to 

the extended gene coordinates, to sum up the number of unique reads within gene regions for 

each cell. The above steps can be performed using the wrapper function GeneActivity. 

Eventually, these gene activity scores were log-normalized and multiplied by the median read 

counts per cell (nCount_Reads) with the command NormalizeData(normalization.method =' 

LogNormalize',scale.factor = median(nCount_Reads). Normalized gene activities were capped at 

the 95th quantile for plotting. 

 

Estimation of transcription factor activity with chromVAR 

Transcription factor (TF) activities for each cell were measured using chromVAR (Schep et al., 

2017). TF position weight matrices were downloaded from the Homer website 

(http://homer.ucsd.edu/homer/custom.motifs). Signac was used to build a motif-peak matrix for 

all peaks in the murine and human datasets (CreateMotifMatrix) using reference genomes from 

the packages BSgenome.Mmusculus.UCSC.mm10 and BSgenome.Hsapiens.UCSC.hg19, 

respectively. After assembling and adding the Motif object to the Seurat object 

(CreateMotifObject, AddMotifObject), information on the base composition was calculated for 

each peak (RegionStats). Eventually, the wrapper function 'RunChromVAR' was called to obtain 

chromVAR deviation z-scores. ChromVAR deviation z-scores below the 5th and above the 95th 

quantile were capped for plotting. 

 

SCENIC regulon analysis 
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Previously published scRNA-seq data of CD8+ T cells from LCMV infection model 

(GSE122712, GSE119940), tissue-specific Treg cells (GSE130879) were used for SCENIC 

analysis6, with raw count matrix as input. Briefly, the co-expression network was calculated by 

GRNBoost2, and RcisTarget identified the regulons. Next, the regulon activity for each cell was 

scored by AUCell. For some regulons, AUCell thresholds were manually adjusted as 

recommended by the SCENIC developers. Finally, the activity of each transcription factor was 

visualized by heatmap among all the cell clusters. 

 

Calculate activity from MetaCell 

Raw count matrix was imported by mcell_import_scmat_tsv function in metacell R package and 

metacell membership was calculated by its default pipeline. Cells with Log2 (library normalized) 

gene expression was assigned the metacell membership and average gene expression of cells 

with the same membership was calculated to form a gene x metacell pseudobulk matrix. Based 

on the TF and SIG list in SJARACNE, the gene x metacell matrix was exported by 

generateSJARACNeInput function to for generating TF and SIG network by SJARACNE. The 

activity of each cell was further calculated with cal.Activity function with 

es.method='weightedmean'. 

 

Software packages 

For comparing the clustering performance with Seurat, SC3, and Scanpy, we used the following 

packages: (i) Seurat version 4.0.3 from CRAN (https://cran.r-

project.org/web/packages/Seurat/index.html); (ii) SC3 version 1.18.0 from Bioconductor 

(https://bioconductor.org/packages/release/bioc/html/ SC3.html); (iii) Scanpy version 1.6.0 from 
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GitHub (https://github.com/theislab/scanpy); for approximated nearest neighbor graph 

construction, we used PyNNDescent version 0.5.2 (https://github.com/lmcinnes/pynndescent), a 

Python implementation of NNDecent algorithm74; for graph embedding, we used PecanPy75, an 

efficient Python implementation of node2vec71; we used an open-source compiler Numba 

(http://numba.pydata.org/) for translation of our Python and NumPy implementation of mutual 

information calculation into fast machine code.   
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Data availability 

All the data sets in Supplementary Tables 1 and 2 were downloaded from the accession 

numbers provided in the original publication.  

 

Code availability 

The source code for scMINER is available online at https://github.com/jyyulab/scMINER. The 

documentation with a tutorial is available online at https://jyyulab.github.io/scMINER. 
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scMINER: a mutual information-based framework for identifying hidden 
drivers from single-cell omics data 
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Supplementary Figure 1. scMINER clustering performance evaluation using AMI and true 
label projection on four datasets. 
a, ARI bar plots and UMAP plots of scMINER clustering results annotated using true labels on 
Yan, Zeisel, Usoskon, and Zheng datasets. b, Clustering performance of scMINER, Seurat, SC3 
and Scanpy measured by adjusted mutual information (AMI). 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2023. ; https://doi.org/10.1101/2023.01.26.523391doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.26.523391
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Supplementary Figure 2. Effect of distance metrics and parameters on the clustering 
performance. 
a, Clustering performance comparison using four distance metrics (left) and four dimension 
reduction methods (right) on Yan, Pollen, Kolodziejczyk, and Buettner datasets. b, Clustering 
performance in term of ARI with respect to dimension and resolution parameters.  
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Supplementary Figure 3. MICA computing resource usage analysis for PBMC (Zheng) and 
Human Motor Cortex (Bakken) datasets. 
a, Run time for each step of MICA for PBMC20k and human motor cortex datasets using 25 
cores. b, ARI, run time and memory consumption for PBMC with respect to some important 
parameters, e.g., number of workers, number of neighbors in building MI-kNN, and node2vec 
window size, etc. 
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Supplementary Figure 4. Effect of CP10K and CPM normalization on the clustering result 
of Zheng dataset. 
a, UMAP plots of all 7 clusters using count per 10K (CP10K) for normalization. b, UMAP plots 
of all 7 clusters using count per million (CPM) for normalization. 
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Supplementary Figure 5. Comparison of scMINER and Seurat CD4Treg cell distribution 
on UMAPs with respect to the changing of clustering resolution. 
a, CD4Treg cell distribution on Seurat clusters with respect to the increasing number of 
resolution and cluster count. b, CD4Treg cell distribution on scMINER clusters with respect to 
the increasing number of resolution and cluster count. 
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Supplementary Figure 6. CD4Treg cell distribution on Seurat clusters with respect to the 
changing of the number of highly variable genes. 
a-c, CD4Treg cells are distributed in three Seurat clusters with 4,000 (a), 6,000 (b) and 8,000 (c) 
highly variable genes. 
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Supplementary Figure 7. scMINER measures the activity of cell type-specific markers in 
PBMC. 
a, Mean TF and SIG regulon sizes in 7 sorted cell populations from PBMC scRNA-seq data. b, 
Expression and activity of CD19, CD8A and CD14 on UMAP using PBMC scRNA-seq data. c, 
Violin plot visualization of FHIT, SATB1 and CXCR3 expression and scMINER activity in 7 
sorted cell populations from PBMC scRNA-seq data. *, P < 2e-16. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2023. ; https://doi.org/10.1101/2023.01.26.523391doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.26.523391
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Supplementary Figure 8. scMINER reveals drivers in wild-type and gene-perturbed CD8+ 
T cells during chronic infection. 
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a, Violin plot visualization of Tbx21, Blimp1 and Batf expression and activity in 3 subsets of 
CD8+ T cells. b, GRNs for Tpex cells, Teff-like cells and Tex cells. Key TFs shown in Fig. 5b 
for each CD8+ T cell subset are highlighted in red. c, Violin plot visualization of Mtor and 
Map4k1 expression and activity in 3 subsets of CD8+ T cells. d, UMAP visualization of wild 
type and Tox deficient CD8+ T cells in chronic infection (GSE119940). The numbers in the 
bracket indicates the cell numbers of each genotype. e, TF motif enrichment analysis for Tox 
deficient vs. wild-type CD8+ T cells using an ATAC-seq dataset (GSE132986). BH FDR, the 
Benjamini-Hochberg false discovery rate. f, Functional pathway enrichment of a union of top 50 
TFs and top 200 SIGs predicted by scMINER for wild type and Tox deficient CD8+ T cells. 
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Supplementary Figure 9. scMINER showed reproducibility in unravelling drivers in tissue 
specific Treg cells from different datasets. 
a, UMAP visualization of SCENIC binary activity of Bach2, Klf2, Atf6 and Pparg. b, Heatmap 
of average SCENIC activity of FLI1, RARA and RORA in Treg cells from each tissue. Grey 
indicates that the TF activity could not be predicated by SCENINC. c, MICA MDS clustering of 
mouse Foxp3+ regulatory CD4+ T cells (GSE109742) isolated from spleen, colon, muscle and 
visceral adipose tissue (VAT). d, Violin plot visualization of Bach2 and Pparg expression and 
scMINER activity in spleen, colon, muscle and VAT Treg cells from GSE109742. e, Similarity 
of TF regulon in spleen and VAT Treg cells (GSE109742) generated by SJARACNe and 
footprint genes detected by ATAC-seq data (GSE112731) in corresponding tissues. Expected 
number of genes in intersection of ATAC-seq footprints as reference (log10 scale, x axis) with 
regard to hypergeometric distribution vs. observed intersection (log10 scale, y axis). For all 
genes, the observed intersection is significantly higher than expectation (black line). The color of 
the dots represents the -log10 (P-value) according to Fisher’s exact test. f, Heatmap visualization 
of SIG expression in each cell clustered by mouse Foxp3+ regulatory CD4+ T cells isolated from 
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spleen, lung, skin and VAT. Drivers for Pan tissue Treg, drivers that have higher activity in Treg 
cells from the lung, skin and VAT than from spleen. 
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Supplementary Table 1. Summary of 11 single-cell datasets used for the evaluation of 
clustering methods. 
 

Dataset Protocol Size  Class Taxonomy Tissue Accession ID 

Yan (2013)1 Tang 124 8 Human Embryonic stem GSE36552 
Goolam (2016)2 Smart-Seq2 124 5 Mouse Development 

b
E-MTAB-3321 

Buettner 
(2015)3

C1 182 3 Mouse Embryonic stem E-MTAB-2805 

Pollen (2014)4 SMARTer 301 11 Human Cerebral cortex SRP041736 

Chung (2017)5 SMARTer 515 5 Human Breast cancer GSE75688 

Usoskin (2015)6 STRT-seq 622 4 Mouse Sensory neurons GSE59739 

Kolod (2015)7 SMARTer 704 3 Mouse Embryonic stem E-MTAB-2600 

Klein (2015)8 inDrop 2,717 4 Mouse Embryonic Stem GSE65525 

Zeisel (2015)9 STRT-seq 3,005 7 Mouse Cortex, hippocampus GSE60361 

Zheng (2017)10 10x Genomics 20,000 10 Human Sorted peripheral 
bl d

SRP073767 

Bakken (2020)11  10x Genomics 76,533 20 Human Motor cortex Azimuth 

 
 
Supplementary Table 2. Summary of scRNA-seq and ATAC-seq datasets used for 
scMINER applications. 

 
 

Supplementary Note: Comprehensive scMINER documentation and tutorial with examples 
is publicly accessible via https://jyyulab.github.io/scMINER. 

 

  

Accession ID Data type Cell types Protocol 
GSE122712  scRNA-seq CD8+ T cells from chronic infection12 10x Genomics 
GSE130879 scRNA-seq Tissue (spleen, lung, skin, and VAT) Treg cells13 10x Genomics 
GSE130879 scRNA-seq Tissue Treg precursors13 10x Genomics 
GSE109742 scRNA-seq Tissue (spleen, colon, muscle, and VAT) Treg cells14 InDrop 
GSE119940 scRNA-seq CD8+ T cells from WT and Tox KO in chronic infection 

(day 7)15 
10x Genomics 

GSE123236 ATAC-seq Tpex and Tex in LCMV infection12 Bulk 
GSE132986 ATAC-seq WT and Tox KO CD8+ T cells16 Bulk 
GSE112731 ATAC-seq Tissue (spleen and VAT) Treg cells14 Bulk 
GSE156112 scATAC-seq Tissue (spleen, lung, skin, and VAT) Treg cells17 10x Genomics 
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