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REVIEW

SCO-spondin, a giant matricellular protein 
that regulates cerebrospinal �uid activity
Vania Sepúlveda†, Felipe Maurelia†, Maryori González, Jaime Aguayo and Teresa Caprile*  

Abstract 

Cerebrospinal fluid is a clear fluid that occupies the ventricular and subarachnoid spaces within and around the 

brain and spinal cord. Cerebrospinal fluid is a dynamic signaling milieu that transports nutrients, waste materials and 

neuroactive substances that are crucial for the development, homeostasis and functionality of the central nervous 

system. The mechanisms that enable cerebrospinal fluid to simultaneously exert these homeostatic/dynamic func-

tions are not fully understood. SCO-spondin is a large glycoprotein secreted since the early stages of development 

into the cerebrospinal fluid. Its domain architecture resembles a combination of a matricellular protein and the 

ligand-binding region of LDL receptor family. The matricellular proteins are a group of extracellular proteins with the 

capacity to interact with different molecules, such as growth factors, cytokines and cellular receptors; enabling the 

integration of information to modulate various physiological and pathological processes. In the same way, the LDL 

receptor family interacts with many ligands, including β-amyloid peptide and different growth factors. The domains 

similarity suggests that SCO-spondin is a matricellular protein enabled to bind, modulate, and transport different 

cerebrospinal fluid molecules. SCO-spondin can be found soluble or polymerized into a dynamic threadlike structure 

called the Reissner fiber, which extends from the diencephalon to the caudal tip of the spinal cord. Reissner fiber 

continuously moves caudally as new SCO-spondin molecules are added at the cephalic end and are disaggregated at 

the caudal end. This movement, like a conveyor belt, allows the transport of the bound molecules, thereby increasing 

their lifespan and action radius. The binding of SCO-spondin to some relevant molecules has already been reported; 

however, in this review we suggest more than 30 possible binding partners, including peptide β-amyloid and several 

growth factors. This new perspective characterizes SCO-spondin as a regulator of cerebrospinal fluid activity, explain-

ing its high evolutionary conservation, its apparent multifunctionality, and the lethality or severe malformations, such 

as hydrocephalus and curved body axis, of knockout embryos. Understanding the regulation and identifying binding 

partners of SCO-spondin are crucial for better comprehension of cerebrospinal fluid physiology.
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Introduction
Cerebrospinal fluid (CSF) is a clear fluid that occupies the 

ventricular and subarachnoid spaces inside and around 

the brain and spinal cord. CSF plays an essential role in 

the homeostasis of the central nervous system (CNS) and 

its composition must be finely tuned to establish a sta-

ble internal milieu. It provides buoyancy and protection 

to the brain and spinal cord; it transports nutrients, neu-

roactive substances, and even waste substances for clear-

ance over the entire CNS; and it regulates brain volume, 

neurogenesis, behavior, and sleep/wake cycles [1–5].

�e appearance of the CSF is concomitant with neural 

tube formation, a shared feature in all vertebrates. At this 

early stage, amniotic fluid gets trapped inside the neural 

tube and constitutes the earliest embryonic CSF (eCSF) 
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[6]. After the appearance of this sealed cavity inside the 

primordial CNS, the composition of the eCSF changes as 

the embryo matures, adapting to the CNS requirements. 

eCSF impacts neuroepithelial cells by the trophic influ-

ence of various factors that regulate their survival, prolif-

eration, and differentiation [4, 7, 8] (Table 1).

�e neurogenic and proliferative activities of some of 

these factors have been reported by inhibition in vivo and 

in vitro (Table 2). �ese studies showed that although the 

eCSF contains numerous factors, the inhibition of any of 

them dramatically affects neuroepithelium development, 

suggesting that eCSF is not merely a sum of molecules 

with independent effects. In contrast, these molecules 

must be acting in a coordinated and interrelated man-

ner. �e same interrelation occurs within the classical 

extracellular matrix (ECM) that facilitates the interaction 

between different molecules and serves as a reservoir and 

regulator of different morphogens via the action of matri-

cellular proteins.

Matricellular proteins are modular extracellular pro-

teins with the ability to interact with different ligands, 

including growth factors, cytokines, proteases, and cell 

receptors [9]. �ese proteins act as integrators or mod-

ulators of extracellular signals, and their function is 

variable depending on the combination of available cell-

surface and extracellular ligands [10]. �e group of matri-

cellular proteins includes thrombospondin (TSP) 1–5, 

tenascins (TNC), R-spondin, F-spondin, and CCN fam-

ily (for Connective tissue growth factor (CTGF), Cysteine 

rich protein (Cyr61), and Nephroblastoma overexpressed 

gene (Nov)), among others [11] (Fig. 1).

�e size of matricellular proteins is diverse, with tenas-

cin being the largest, with a monomeric size of ~ 250 kDa 

and oligomers of over a million Daltons, whereas CCN-1 

Table 1 Relevant CSF molecules and their ascribed functions

The molecules listed were chosen because they bind to proteins with similar domains as those present in SCO-spondin

CSF component Function References

Amyloid-β peptide Neurodegeneration [190]

BMPs Differentiation, proliferation, and survival of neuroepithelium [6, 191–193]

Clusterin (ApoJ) Neurodegeneration [194]

Epithelial growth factor Proliferation and differentiation of neuroepithelium [78]

Fibroblast growth factor 2 Proliferation, differentiation, and survival of neuroepithelium [78, 195]

Insulin growth factor 1 Differentiation, proliferation, and survival of neuroepithelium. Adult neurogenesis, 
synaptogenesis

[191, 196–198]

Lipoproteins (LDL, VLDL, HDL) Proliferation and differentiation of neuroepithelium [106, 199]

Monoamines (Epinephrine, norepinephrine, 
serotonin,
L-Dopa)

Neurotransmission [200]

Nerve growth factor Cell proliferation and survival of neuroepithelium [201]

Reelin Brain development [202]

Retinoic acid Differentiation of neuroepithelium [203]

Shh Differentiation, proliferation, and survival of neuroepithelium [204]

SCO-spondin Differentiation, proliferation, and survival of neuroepithelium [24, 25, 205]

Transforming growth factor β1–β2 Regeneration and pathological processes [206, 207]

Wnts (Wnt4, 5A) Differentiation and proliferation of neuroepithelium, brain morphogenesis [109, 191, 208, 209]

Table 2 Effect of inhibition of individual eCSF factors on the differentiation and proliferation of neuroepithelium

The summation of individual e�ects is higher than 100%, revealing that CSF factors have interactive e�ects

CSF component Inhibition approach Inhibition versus control References

Lipoproteins Chick mesencephalic explants cultured in eCSF depleted of lipoproteins 80% lower neurodifferentiation
90% lower proliferation

[106]

FGF2 Addition of anti-FGF2 to chick mesencephalic explants cultured in eCSF 40% lower neurodifferentiation
60% lower proliferation

[195]

SCO-spondin Addition of anti-SCO-spondin to chick mesencephalic explants cultured in eCSF 75% lower neurodifferentiation
275% higher proliferation

[24, 81]

Retinoic acid/retinol 
binding protein (RBP)

Addition of anti-RBP to chick mesencephalic explants cultured in eCSF 40% lower neurodifferentiation [203]
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only 35–40  kDa. Independently from their size, a com-

mon characteristic of matricellular proteins is their mod-

ular structure. Some domains are shared among several 

matricellular proteins, such as the epidermal growth 

factor (EGF)-like domain, von Willebrand factor type-C 

domain (vWF-C), thrombospondin type I repeat (TSR), 

and a carboxyl-terminal cystine knot (CTCK) motif 

(Fig. 1). Each of these domains has the potential to bind 

to extracellular proteins and cell-surface receptors [11, 

12] (Fig.  2). For instance, CCN proteins interact with 

several cell receptors of the integrin family, low density 

lipoprotein receptor (LDLr) related proteins, contactin, 

or heparan sulfate proteoglycan (HSPG), as well as with 

soluble factors, such as bone morphogenetic proteins 

(BMPs), and family members or vascular endothelial 

growth factor (VEGF), fibroblastic growth factor (FGF) 

and transforming growth factor-β (TGFβ) (Fig.  2) [13, 

14]. �e diversity of the binding partners leads to a com-

parison of these proteins with a centralized coordination 

network [15]. �e role of matricellular proteins in the 

CNS is an area of intense research, revealing that they 

are mainly involved in processes that require remodeling 

events, such as development, synaptogenesis, injury and 

in CNS disorders [16–20].

To date, the occurrence of matricellular proteins in CSF 

that account for the interrelationship between the differ-

ent components of CSF has not been described. How-

ever, the existence of some type of “sensor” that controls 

eCSF homeostasis was suggested by Parvas et  al. [21, 

22], whom analyzed the eCSF concentration of FGF-2 

and retinol binding protein (RBP) before and after the 

injection of these compounds into the eCSF, and found 

that surprisingly the concentration of these compounds 

did not increase, but remained stable after injection. 

Fig. 1 Schematic representation of matricellular proteins, LDL receptor, and von Willebrand factor compared with SCO-spondin. Yellow box: 

Matricellular proteins are modular proteins, with a high prevalence of TSR, vWF-C, EGF-like, and CTCK domains. The SCO-spondin structure shares 

homology with several matricellular proteins, especially TSP and CCNs. Blue box: Domain structure of the LDL receptor and vWF. Both proteins 

have structural similarities with SCO-spondin, particularly in the ligand-binding region of the LDL receptor family (several LDLrA in tandem and 2 

EGF-like domains) and in the domains responsible for polymerization of vWF (3 vWF-D domains followed by TIL domains at the N-terminus and 

a CTCK domain at the C-terminus). CTCK Carboxyl-terminal cystine knot, EGF Epidermal growth factor, EMI Elastin microfibril interface domain, 

HBD Heparin-binding domain, IGFBP insulin-like growth factor-binding protein, LDLr Low density lipoprotein receptor, SP Signal peptide, TSR 

Thrombospondin repeat, TSP Thrombospondin, vWF von Willebrand factor, vWF-A,C and D von Willebrand factor domain type A,C and D
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�ese results may be explained by the occurrence of a 

CSF mechanism, such as matricellular proteins, with the 

capacity to trap different molecules when concentration 

exceeds homeostatic levels and release them when the 

concentration diminishes.

A possible candidate to exert this sensing and modu-

latory activity is SCO-spondin, a giant CSF glycoprotein, 

named for the site of secretion at the subcommissural 

organ (SCO) and its similarity with members of the spon-

din family, such as TSP, F-spondin, or R-spondin [23] 

(Fig. 1). SCO-spondin is secreted into CSF since the early 

stages of development, where it can remain soluble, espe-

cially during development [24–26] or aggregate to form 

a threadlike structure called Reissner fiber (RF) [27, 28], 

which extends from the diencephalon through the fourth 

ventricle and runs through the central canal of the entire 

spinal cord (Figs. 3, 4). �e SCO-spondin molecules that 

form the RF are in continuous movement, as new SCO-

spondin molecules are added at its cephalic end and are 

disaggregated at the caudal end [28, 29]. For instance, a 

SCO-spondin molecule secreted at the mouse SCO and 

incorporated into the RF, will reach the tip of the spinal 

cord 10 days later [28].

Since its description in 1860 [27], the RF has been 

involved in different biological processes, such as neu-

rogenesis, hydrodynamic balance, CSF flow, morpho-

genesis, mechanoreception, and CSF transport and 

detoxification (reviewed in [30–32]), although definitive 

evidence of some of these roles is lacking. In the same 

way, the precise composition of RF and the mechanism 

of SCO-spondin aggregation in order to form the RF are 

not well understood. However, in the past few years, the 

study of RF and its mainly component, SCO-spondin, 

have been addressed by new methodological approaches, 

revealing some clues about its functional relevance, 

aggregation process and dynamism [29, 33–37].

In the next sections, we will analyze the principal 

characteristics of SCO-spondin, including place and 

regulation of its secretion “SCO-spondin secretion by 

the floor plate and the SCO” section; its large size and 

modular structure “SCO-spondin modular structure: a 

blend of matricellular protein, LDLr family, and vWF 

Fig. 2 Schematic diagram of the domain structures of CCN-1 and LDL receptor showing their canonical interactions. Left) CCN-1 consist of 

insulin-like growth factor-binding protein (IGFBP), von Willebrand factor type C repeat (vWF-C), thrombospondin type I repeat (TSP), and a 

carboxyl-terminal cystine knot motif (CTCK) domain. The locations of identified interaction with cell receptors and soluble factors are shown in the 

diagram (modified from [228]). Right) The ligand-binding region of the LDL receptor is formed by several LDLrA domains in tandem, followed by 2 

EGF-like domains. This region, also present in SCO-spondin, binds several molecules shown in the image and is characteristic and conserved in all 

members of the LDLr family (Modified from [103]). BMP Bone morphogenetic protein, CTCK Carboxyl-terminal cystine knot, EGF Epidermal growth 

factor, EMI Elastin microfibril interface domain, HBD Heparin-binding domain, HSPG Heparan sulfate proteoglycan, IGF insulin-like growth factor, 

IGFBP insulin-like growth factor-binding protein, LDLr Low density lipoprotein receptor, LRP LDLr-related protein, TGFβ Transforming growth factor 

β, TSR Thrombospondin repeat, TrkA Tyrosine kinase A, TSP Thrombospondin, VEGF Vascular endothelial growth factor, vWF von Willebrand factor, 

vWF-A,C and D von Willebrand factor domain type A,C and D
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polymerization domains” section; its extensive and var-

ied glycosylation “SCO-spondin glycosylation” section; 

its intrinsic disorder “Intrinsic disorder of SCO-spon-

din, a structural plasticity relevant to binding” section; 

possible isoforms and protein cleavages “SCO-spondin, 

alternative splicing and proteolytic cleavage” section; 

its multimerization to form the RF “Reissner fiber: 

composition, formation and movement” section and 

the function of soluble and aggregated SCO-spondin 

“Function of the SCO, SCO-spondin, and RF” section.

Fig. 3 Scheme of the CNS of zebrafish, mouse, and chick embryos, highlighting the localization of SCO. A Zebrafish embryos 48 h post-fertilization 

(hpf ). In zebrafish, the RF is formed early in development by SCO-spondin secreted from the SCO and the floor plate. Violet arrows: Direction of CSF 

flow at this early stage [229]. B Chick embryos at 4 days of embryonic development (E4). SCO-spondin is secreted into eCSF from E3.5 and remains 

soluble until E11, where at least some SCO-spondin aggregates to form the RF. The localization of the first penetrating vessels is shown in red, at 

the basal region, just in front the SCO [22]. The red arrows represent substances entering to the eCSF through this incipient blood–brain barrier. 

C Mouse embryo at E14. In mouse embryos, the differentiation of the SCO begins at E11, SCO-spondin is secreted into CSF from E14, and the RF 

forms during the first postnatal week. The first penetrating vessels (in red) enter the mouse brain embryo at the location at which the SCO began 

differentiating 2 days prior [63]. Di Diencephalon, F Forebrain, FP Floor plate, H Hindbrain, M Midbrain, Mes Mesencephalon, RF Reissner fiber, SCO 

Subcommissural organ, Tel Telencephalon
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SCO-spondin secretion by the �oor plate 
and the SCO
SCO-spondin is highly conserved in all chordates, char-

acterized by the presence of a notochord and a hollow 

neural tube, structures that arise concomitant to the 

appearance of RF inside this cavity [38–40]. SCO-spon-

din is secreted into CSF since the early stages of devel-

opment, although the place of secretion varies according 

to the stage of development and the species studied. In 

cephalochordates and urochordates, SCO-spondin secre-

tion occurs at the infundibular organ, located at the ros-

tral floor plate. �is location is maintained in vertebrata 

embryos, where secretion first occurs at the flexural 

organ (equivalent to the infundibular organ), and in the 

floor plate, decreasing at the same time that the SCO 

begins its secretion, which continues for the entire lifes-

pan of the organism [29, 41–45].

�e SCO is an ancient brain gland, located at the mid-

line of the caudal–dorsal diencephalon (Figs. 3, 4A, B). It 

protrudes toward the third ventricle just at the entrance 

of the cerebral aqueduct and is one of the first glands to 

differentiate. �e SCO is composed of radial glial cells, 

with the apical surface in contact with the ventricular 

CSF, and a long basal process that transverses the poste-

rior commissure and contacts with blood vessels and the 

lamina terminalis which connects with the subarachnoid 

Fig. 4 Schematic drawing of rat SCO and RF. A Schematic drawing of sagittal section of the adult rat brain showing the cerebral cavities (in blue), 

highlighting the subcommissural organ (SCO, in red) at the caudal dorsal diencephalon, and Reissner fiber (RF in green) that extends along the 

cerebral aqueduct (CA), forth ventricle (4-V) and the central canal of the spinal cord. B Schematic drawing of a sagittal section of the SCO. The radial 

cells are arranged in a pseudostratified epithelium composed of a cell body in contact with CSF of the third ventricle (3-V) and a basal process that 

traverses the posterior commissure (PC) and ends at the external membrane or on blood vessels (BV). At the apical membrane, the SCO-spondin 

secreted into CSF gradually aggregates to form the RF, first as flocculent material on the cell surface, then as fibrils that aggregate to form the 

pre-RF, and finally as the RF that reaches the CA. This aggregation requires the ciliary movement of the ependymal cells and CSF turbulence (round 

arrows) generated at the entrance of the CA. C Schematic representation of the RF (in green) inside the central canal of the spinal cord, showing the 

ciliated ependymal cells, being the motile ventral cilia four times more numerous than the dorsal ones [230] and the cerebrospinal fluid contacting 

neurons (CSFcN in blue). The RF binds and transports various molecules (see main text for details)
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space (Fig.  4B). SCO to secrete its products toward the 

third ventricle from the apical region and toward CSF of 

the subarachnoid space through the basal processes [28]. 

Additionally, this location allows the SCO to sense CSF 

because the narrow entrance of the cerebral aqueduct 

acts as a funnel and generates turbulence that contributes 

to mixing of CSF components [46] (Fig. 4B). In this con-

text, the SCO expresses diverse receptors, including FGF 

receptor 1, 2, and 4 [47] and receptors for melatonin [48], 

leptin, estrogen [49], aldosterone [50], angiotensin II [51], 

angiotensin [52], adenosine, imidazoline, glucocorticoids, 

mineralocorticoids, noradrenaline [53], and prolactin 

[54]. �e physiological relevance of these receptors is not 

fully understood, but it has been suggested that they con-

trol SCO secretion in response of the CSF composition 

[55]. In this way, amphibian brains treated with aldos-

terone showed an inhibition of the secretory activity of 

the SCO [56], and the RF grew faster in the light-adapted 

than in the darkness-adapted animals [57, 58] probably in 

response of melatonin. However, the circadian secretion 

of SCO-spondin in frogs may be also due by the inner-

vation of SCO by neuronal fibers from the pineal gland 

[59]. It is well-established that the SCO is richly inner-

vated and downregulated by serotonergic fibers, in a 

lesser extent by GABAergic fibers and poorly innervated 

by other neuronal systems [60–62]. �e SCO location is 

also relevant during development, when a blood–brain 

barrier and the choroid plexus are absent, and the first 

penetrating vessels appear. In the mouse, the first vessels 

penetrate the location of the SCO at E8.5 [63] (Fig. 3C). 

In chick, the first penetrating vessels arise in the pros-

encephalon–mesencephalon ventral region (Fig.  3B), in 

front of the SCO. �ese vessels appear around E4 [22], 

exactly at the moment at which SCO-spondin is detected 

in the eCSF, allowing interaction between SCO-spondin 

and the molecules entering the chick eCSF through the 

ventral region.

Immunohistochemical analysis of SCO in 25 vertebrate 

species shows a similar organization in all species stud-

ied [64], although there is no clear evidence of RF forma-

tion in humans, anthropoid apes, or bats. In the case of 

humans, the SCO is one of the first areas of the brain to 

differentiate, and the secretion of high molecular weight 

glycoprotein during fetal and neonatal life is well docu-

mented [65, 66]. Since childhood, SCO-specific secre-

tory cells are progressively replaced by a non-secretory 

ependyma, finding only irregular scattered islets of SCO-

cell in a 34-year-old man and a vestigial SCO at older 

stages [66]. In relation with the secretion of human SCO, 

it is well documented the absence of RF and a myriad of 

antibodies made against the bovine RF does not recog-

nize the human SCO. However, the antibody anti P-15 

(made against a synthetic 15-mer peptide derived from 

SCO-spondin sequence) showed intense immunoreactiv-

ity in the apical region of the human embryo SCO, where 

secretion to the eCSF was confirmed by western blot 

[26], concluding that human SCO-spondin is secreted to 

the CSF, at least during fetal stages.

SCO-spondin modular structure: a blend 
of matricellular protein, LDLr family, and vWF 
polymerization domains
A general approach to determine the functions of new 

proteins is to transfer annotations from well-charac-

terized proteins with similar domains, which works 

even better when there is co-occurrence of several 

such domains [67, 68]. SCO-spondin is a modular pro-

tein, with a molecular weight higher than 500  kDa and 

composed of several domains with biological relevance 

(Fig.  1). In chick (UniProt Q2PC93) [69], highly simi-

lar to the rest of vertebrates, these domains include one 

elastin microfibril interface (EMI) domain, three vWF-D 

domains, one FA5/8C domain, 13 LDL receptor class 

A (LDLrA) domains, 12 trypsin inhibitor-like (TIL) 

domains, 27 TSR domains, seven vWF-C domains, three 

EGF-like domains, and one CTCK domain. �e disposi-

tion of these domains resembles the summation of CCN 

matricellular proteins, the ligand-binding region of the 

LDL receptor family, and the domains responsible for von 

Willebrand Factor (vWF) aggregation (Fig. 1). Despite the 

relevance of these domains in other proteins, their func-

tion in SCO-spondin remains to be elucidated. In the 

next sections, we analyze the roles and binding partners 

described for these domains in other proteins and sug-

gest a possible role for these domains in SCO-spondin, 

paying special attention to their capacity to bind soluble 

factors present in CSF, to receptors present in the epend-

yma, and to domains associated with polymerization, a 

process necessary to form the RF.

Matricellular domains in SCO-spondin

Among the SCO-spondin domains, TSR, vWF-C, EGF-

like (also present in the LDL receptor family), and CTCK 

domains are characteristic of matricellular proteins.

TSR domain

�e TSR domain (IPR000884) is found in several matri-

cellular proteins, such as TSP, R- and F-spondin and all 

members of the CCN family (Fig. 1). �e roles attributed 

to the TSR domain in TSP-1 include cell attachment, 

protein–protein interactions, and protein–glycosamino-

glycan interactions [70]. Interactors of the TSR domain 

include transmembrane proteins, such as CD36 and inte-

grins; and extracellular molecules, such as TGF-β, matrix 

metalloproteinases 2 and 9 (MMP2,9), and FGF2 [71, 72]. 

For instance, the C-terminus of the TSR domain present 
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in the heparin affin regulatory peptide is responsible for 

the direct binding to FGF-2, inhibiting its chemotactic 

role in HUVEC cells [72]. However, under pathological 

circumstances such as cancer, the TSR domain within 

TSP-1 mediates tumor growth by interacting with TGF-β 

and the membrane protein CD36 [73, 74].

�ere are 27 TSR domains in the vertebrate SCO-

spondin protein, suggesting an important role in the 

biological functions of this protein [40]. In this way, a 

dodecapeptide derived from the most conserved type 1 

TSR sequence promotes neurite outgrowth in neuro-

blastoma cells by a β1-integrin-dependent mechanism 

[75] and protects against glutamate neurotoxicity in pri-

mary cultures of rat cortical and hippocampal neurons by 

modulating receptors (integrin B1 and alpha secretase) 

and intracellular mediators that trigger apoptosis, sur-

vival or neurite growth [76]. �e same peptide also pro-

motes axonal regeneration/collateral sprouting and 

subsequent functional recovery in aspiration and contu-

sion models of spinal cord injury in rats [77]. However, 

this peptide encompassed only a small region of one of 

the 27 TSR domains of SCO-spondin, suggesting that 

these domains play more unidentified roles.

As previously stated, the TSR domain in other pro-

teins is a well-established interacting domain for solu-

ble factors, such as FGF-2 and TGF-β, which are also 

present in CSF (Table 1). FGF-2 is a key eCSF molecule 

that promotes the proliferation and differentiation of the 

neuroepithelium [78]. �erefore, the possible binding 

between FGF-2 and a TSR domain within SCO-spondin 

could be a regulatory mechanism through which SCO-

spondin regulates neurogenic events related to the neu-

roepithelium. �e CD36 receptor, also known as fatty 

acid translocase, is expressed on the apical region of 

ependymal cells, which are in contact with CSF [79], and 

is a high affinity receptor for lipoproteins [80]. �e bind-

ing of TSR domains from SCO-spondin with this recep-

tor would be important, considering that SCO-spondin 

also binds LDL from eCSF [81], indicating that this inter-

action could facilitate binding of LDL to its receptor in 

ependymal cells.

vWF‑C domain

�e vWF-C (IPR001007) domain, also known as a 

chordin-like cysteine-rich repeat, is present in several 

matricellular proteins, including TSP and CCN family 

members, as well as in other extracellular proteins such 

as vWF, Chordin family members, and the BMP-binding 

endothelial regulator.

One of the most reported functions for this domain is 

the regulation of TGF-β and BMPs [82–84]. �e prin-

cipal effect of this domain in BMP signaling is inhibi-

tion and regulation of bioavailability, although in some 

cases potentiation has been reported [85]. For instance, 

functional studies of Crossveinless-2 (a member of the 

chordin family with four vWF-C domains) have shown 

that BMP binds to the subdomain 1 of vWF-C1 to trig-

ger an anti-BMP effect, whereas direct binding of BMP 

to chordin via subdomain 2 of vWF-C1 and vWF-C2-4 

triggers its pro-BMP effect [84]. TSP-1 also antagonizes 

BMP2 and BMP4 through its vWF-C domain, probably 

via the regulation of their bioavailability [85]. CCN2 has 

been shown to directly bind BMP-4 through its vWF-C 

domain, impeding its interaction with the receptor, 

whereas the same domain enhances the binding of TGF-β 

with its receptor [82]. �ese BMP-binding proteins might 

also increase signaling by promoting BMP diffusion and 

lifespan; in this manner, the same BMP-binding proteins 

sequester and inhibit BMP signal locally, but increase 

BMP lifespan and activity range [86], allowing BMPs 

to travel longer distances and generate gradients with a 

maintained signal over long periods [87].

Because TGF-β1 and 2 and BMP7 are present in the 

adult CSF, and BMP activity is detected at the embryonic 

stage (Table  1), the presence of seven vWF-C domains 

in SCO-spondin strongly suggests interaction among 

them. �is interaction would be relevant to the concen-

tration, bioavailability, and transport of TGF-β and BMP 

throughout the entire CNS.

Cystine Knot C‑ terminal domain (CTCK)

�e CTCK domain (IPR006207) is a highly conserved 

three-dimensional folded domain found in several extra-

cellular proteins, including vWF, several mucins, a wide 

variety of cytokines (e.g. nerve growth factor, TGF-βs, 

VEGF, BMP antagonists, and slit family proteins), hor-

mones (e.g. luteinizing hormone, chorionic gonadotro-

pin, thyroid-stimulating hormone, and follicle stimulating 

hormone), and CCN matricellular proteins [88–90]. �e 

consensus sequence of the CTCK motif can be identified 

by a pattern of six cysteine amino acids within a defined 

space comprising three intertwined disulfide bridges, two 

of which form a loop through which the third disulfide 

bond passes. �e rigidity of this domain causes exposure 

of hydrophobic residues, favoring protein–protein inter-

action to decrease hydrophobicity [88, 91, 92].

Several interacting partners of the CTCK domain 

have been identified in other proteins, such as integrins 

(α6β3, αvβ5, αvβ3, αmβ2, and α5β1), perlecan, vitronec-

tin, decorin, and cell-surface heparan sulfate proteogly-

cans (HSPGs). In all these interactions, CTCK acts as an 

important domain that determines how these proteins 

control cell adhesion processes [93–95]. Additionally, 

CTCK modulates the Wnt signaling pathway through 

interactions with LDL receptor related protein 6 (LRP6) 

[96, 97].
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CTCK domain is also involved in the dimerization 

and polymerization of homo and heterodimers with 

other proteins containing the same domain [92] and 

in the formation of long polymers of vWF and mucins 

[98].

Cumulatively, these antecedents suggest a possible 

interaction between the CTCK domain within SCO-

spondin and factors present in CSF (Table 1) with the 

same domain, such as nerve growth factor, TGF-βs or 

HSPGs, as well as its participation in SCO-spondin 

polymerization to form the RF.

LDLr family domains in SCO-spondin

All members of the LDLr family share a similar ligand-

binding region comprising at least seven LDLrA 

domains in tandem, followed by two EGF-like domains 

[99]. The same conformation is found in SCO-spon-

din, with ten LDLrA domains followed by two EGF-

like domains (Fig. 1).

LDLrA domain

�e LDLrA domain (IPR023415) is distinctive of the 

LDL receptor family, whose members contain at least 

seven of these domains in tandem (Figs.  1, 2) crucial 

for LDL binding activity [100, 101]. �e LDL receptor 

is the prototype of this family, which also includes LDL 

receptor-related protein 1 and 1b (LRP1-LRP1B), meg-

alina/GP330/LRP2, the VLDL receptor, ApoE receptor-2 

(ApoER2), and LRP6. �is family of receptors has been 

linked with several normal and pathological processes of 

CNS [102].

�e binding partners of the LDLrA domain is extensive, 

and include apolipoproteins (Apo) B, ApoE, reelin, ApoJ 

(clusterin), TSP, F-spondin, carrier proteins for lipophilic 

vitamins, proteases/inhibitor complexes, and members of 

the Wnt family (Table 3) [102, 103].

LRP1 also binds to the amyloid-β peptide (Aβ), whose 

accumulation in the brain is a hallmark of Alzheimer’s 

disease. �is receptor is expressed in the brain capillaries 

and is able to transport Aβ across the blood–brain bar-

rier in a concentration-dependent manner. It has been 

Table 3 Summary of SCO-spondin domains and possible CSF binding partners on the basis of described interactions of these 

domains in other proteins

Domain Protein Ligand (soluble or cell receptor) References

EMI Periostin, Emilin-3 Itself, TGFβ1 [118, 119, 210]

SCO-spondin Itself [33]

LDLrA LDLr Lipoproteins (Apo B and E) [102]

VLDLr Apo E, Reelin [102, 103]

ApoER2 ApoE, Reelin, F-spondin, APP [102, 211]

Megalin/LRP2 ApoB, ApoE, carrier proteins for lipophilic vitamins, proteases and inhibitors, Apo J [102, 212]

LRP-1 ApoE, APP, protease/inhibitor complex, Thrombospondin-1: β Amyloid peptide, TGFβ, 
BMP4 MMP2 and 9, Insulin growth factor-1

[102, 213–217]

LRP6 Wnts [102, 218]

SCO-spondin LDL [81]

vWFC Crossveinless BMP2 [219]

TSP-1 BMP2,4 [85]

CCN2 BMP2, TGFβ [82]

CCN1 BMPs, Integrin αv β3 [220]

TSR Thrombospondin-1 MMP-2, CD36, Integrin β1, TGF-β, FGF-2 [74, 221–225]

CCN Family Integrin TGFB LRP-1 [17]

SCO-spondin Integrin β1 [75]

CTCK CCN3 Notch1 [226]

CCN2 HSPG and Integrins αv β3 [95]

CCN1 Wnts and LRP6 [96, 97]

vWF Itself [123]

vWFD vWF Itself [123]

Gel forming mucins Itself [125]

EGF-like Neuroregulin Integrins αv β3 [227]

Thrombospondin-1 FGF-1 [110]

Tenascin EGF receptor [111]
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proposed that the main directionality of the Aβ from 

the brain to the plasma is owing to the presence of solu-

ble LRP1 in the blood, which acts a “sink,” sequestering 

70–90% of the plasmatic Aβ, diminishing its concentra-

tion, and favoring the directional transfer from the brain 

to the blood [104, 105].

�e similarity between SCO-spondin and the ligand-

binding region of the LDLr family suggests that SCO-

spondin binds the same molecules, some of which are 

present in CSF in normal or pathological conditions, 

such as Aβ, lipoproteins, clusterin, or reelin (Table 1). In 

this regard, it has been reported the in  vivo interaction 

between LDL and SCO-spondin in the eCSF [81]. LDL 

from CSF is critical during early stages of development 

for the proliferation and differentiation of the neuroepi-

thelium [106]. In  vitro, LDL–SCO-spondin interac-

tion diminishes neurodifferentiation induced by LDL in 

mesencephalic neuroepithelium explants, revealing the 

modulatory effect of SCO-spondin [81]. Additionally, 

the participation of lipoprotein particles in the trans-

port of Shh [107, 108] and Wnt5A through the eCSF has 

been recently reported [109], suggesting the interaction 

of all these compounds as part of a morphogenic eCSF 

complex.

In addition to the binding capacities, a hypomorphic 

missense mutation that disrupts evolutionary conserved 

cysteine at LDL domain [29] revealed a progressive disas-

sembly of the RF and a possible disruption in the secre-

tion of SCO-spondin from the floor plate, concluding 

that this domain is also critical for the stability of the RF 

during zebrafish larval development.

EGF‑like domain

�e EGF-like domain (IPR000742) has been linked to 

several biological functions and is able to bind different 

extracellular molecules as well as cellular receptors. In 

addition to the LDLr family, this domain is also present in 

some matricellular proteins, such as tenascin and TSP. In 

TSP, the third EGF-like domain is responsible for FGF-2 

binding [110]; in tenascin, EGF-like repeats directly bind 

to the EGF receptor and activate ERK1/2 signaling [111, 

112]. In the LDL receptor family (Figs. 1, 2), this domain, 

together with the LDLrA domains, forms part of the 

ligand-binding region [99].

SCO-spondin contains two EGF-like domains follow-

ing the LDLrA domains, resembling the ligand-binding 

region of the LDL receptor family. Additionally, this 

SCO-spondin domain may bind soluble FGF-2 in CSF or 

the EGF receptor expressed on ependymal cells and in 

subventricular neurogenic niches [113], where this recep-

tor is involved in the regulation of neural stem cell num-

ber and self-renewal [114].

Polymerization related domains in SCO-spondin

As stated above, SCO-spondin can be found soluble in 

CSF or as aggregates in the form of RF, an elastic thread-

like structure. �e process of SCO-spondin polymeri-

zation has not been elucidated, but it is interesting that 

the same domains responsible for the polymerization 

of vWF (vWF-D, TIL, and CTCK domains), a protein 

capable of forming ultra-long chains of several hundred 

of monomers, are also present in SCO-spondin. In addi-

tion to these domains shared with the vWF, SCO-spon-

din also contains one EMI domain, also related with 

polymerization.

EMI domain

�e cysteine-rich EMI domain typically contains six 

or seven cysteine residues, which likely form disulfide 

bonds. �e EMI domain has been identified in few pro-

teins, including elastin microfibril interfacer 1 (EMI-

LIN-1) protein, multimerins, NEU1/NG3, periostin, and 

TGFβ-inducing protein [115]. In all these proteins as well 

as in SCO-spondin, the EMI domain is present in a sin-

gle copy located at the N-terminus [115–117]. �e EMI 

domain is likely responsible for intramolecular disulfide-

bridges and intermolecular multimer formation [118, 

119].

�e role of EMI as a multimerization domain criti-

cal for RF assembly is also supported by the analysis of 

a SCO-spondin zebrafish mutant with five extra amino 

acids in the single EMI domain, which expresses an 

abnormal protein that fails to form the RF [33].

vWF‑D and CTCK domains

vWF-D (IPR001846) is a large domain present in few 

proteins such as otogelin, zonadhesin, different mucins, 

vWF, and SCO-spondin, all characterized by the genera-

tion of multimers by inter and intrachain disulfide bonds.

vWF contains four vWF-D domains with a self-organi-

zation function (Fig. 5). �is protein polymerizes to form 

long structures critical during the coagulation process, 

and mutation of the vWF-D domain generates aberrant 

multimers that lead to a bleeding disorder [120, 121]. 

In vWF, as well as in mucins, each of the four vWF-D 

domains is followed by a TIL domain, forming the D1–

D4 groups arrangement. Oligomer formation assays 

revealed that in vWF, D1–D2 are responsible for dimeri-

zation at the N-terminus, which is zipped by the inter-

action among CTCK domains at the C-terminal-end. 

After dimer formation, the D3 domain forms interchain 

disulfide bonds with the same domain in an adjacent 

dimer [98, 122–124]. Once secreted, the propeptide con-

taining the D1-D2 domains is cleaved, causing unzipping 

of the dimer and leading vWF to acquire a concatenated 
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elongated conformation, which can contain up to 200 

monomers, forming a long, flexible, dynamic structure 

[123]. �erefore, the formation of this long cord of vWF 

protein relies on three vWF-D domains at its N-termi-

nal end, two of which are removed extracellularly, and a 

CTCK domain at the C-terminal end. A similar oligomer-

ization process has been described in gel-forming mucins 

[98, 125]. �e same domains are present in SCO-spon-

din, which contains three vWF-D domains (each followed 

by a TIL domain) at the N-terminus and a CTCK domain 

at the C-terminal region (Fig.  1), suggesting that SCO-

spondin follows the same strategy of polymerization.

Trypsin inhibitor‑like cysteine‑rich domain (TIL)

�e TIL domain (IPR002919) is mainly present in trypsin 

inhibitor proteins; however, it can also be found in other 

extracellular proteins, including several mucins [125], the 

IgGFc-binding protein (nine TIL domains), and the scav-

enger receptor cysteine-rich protein (six TIL domains) 

[126]. �e principal activity of TIL domain is to inhibit 

proteinase activity, but it also forms an arrangement with 

vWF-D domain in some mucins and in vWF [98, 122] 

where it contributes to the polymerization process.

SCO-spondin contains 16 TIL domains, described 

previously as SCO-spondin repeats [40], distributed 

throughout the entire protein and probably contribut-

ing to SCO-spondin integrity. �ree of these domains are 

situated after each vWF-D domain, suggesting a role in 

the SCO-spondin multimerization. In fact, a hypomor-

phic missense mutation that disrupts a evolutionary con-

served cysteine at the second TIL domain [29] generated 

a progressive disassembly of the RF and a possible dis-

ruption in the secretion of SCO-spondin from the floor 

plate. Similar results were reported after the mutation 

of other cysteine in the same domain [36], generating 

abnormal intracellular SCO-spondin immunoreactivity 

at sites of protein production (even in heterozygotes) and 

the lack of RF in homozygous embryos, concluding that 

this mutation may disrupt SCO-spondin secretion and is 

critical for the stability of the RF during zebrafish larval 

development [36].

SCO-spondin glycosylation
In addition to the protein component, SCO-spondin 

displays a great variety of different N-glycan struc-

tures. Electrophoretic analysis of bovine RF treated with 

Fig. 5 Schematic illustration of von Willebrand factor polymerization, showing the domains responsible of this process. A vWF monomers dimerize 

intracellularly via the interaction of D1 (vWF-D plus TIL domains) and D2 at the N-terminus and the formation of a disulfide bridge between the 

CTCK domains at the C-terminus of the 2 monomers. B The dimers polymerize by the formation of disulfide bridges between D3 regions of 

adjacent dimers. C The region containing D1 and D2 is extracellularly cleaved, and the polymer acquires a threadlike structure
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endoglycosidase F shows a decrease (between 10 and 

25%) in the molecular mass of its four principal immu-

noreactive compounds [127]. �e precise localization of 

N-glycosylation in this protein is not known, although 

UNIPROT reveals 44 potential glycosylation sites in 

chick SCO-spondin.

Recent analysis by multiplexed capillary gel electropho-

resis with laser-induced fluorescence detection revealed 

an extremely complex glycosylation pattern, one of the 

most intricate found in nature. �is pattern ranges from 

simple neutral biantennary N-glycans to highly complex 

tetra-antennary N-glycans containing bisected N-acetyl-

glucosamine (GlcNAc), up to three sulfations, and/or 

several sialic acids of the Neu5Gc or Neu5Ac type [35].

�e presence of this abundant and varied negatively 

charged glycosylation may have important functional 

consequences. First, it would transform SCO-spondin 

into a highly polar molecule with relevance in main-

taining osmotic pressure. Osmotic pressure is a crucial 

mechanism to expand the cephalic vesicles during devel-

opment [128] and may also be important to maintain the 

opening of narrow cavities, such as the cerebral aqueduct 

and central canal [129]. Second, its complex glycosylation 

is similar to that in glycosaminoglycans (GAGs). �ese 

molecules consist of disaccharide units frequently modi-

fied by sulfation. GAGs interact with various proteins, 

including soluble proteins (growth factors, morphogens, 

and chemokines), ECM proteins, bioactive fragments, 

membrane receptors such as integrins, and lipopro-

teins [130]. �e impacts of GAGs on binding partners 

are diverse. In some cases, GAGs regulate their activity, 

acting as a co-factor (like the requirement of heparin for 

FGF2 function), whereas in other cases, the GAGs may 

sequester the binding partners, thereby limiting their 

bioavailability [131]. �ese antecedents suggest that the 

glycosylic component of SCO-spondin may be acting in 

a similar way that GAGs, contributing to the binding and 

modulation of CSF compounds.

Intrinsic disorder of SCO-spondin, a structural 
plasticity relevant to binding
Not long ago, it was believed that all proteins have a well-

defined 3D structure related to their unique function. 

Now, it is known that several proteins lack a stable  3D 

structure along their entire length or in determinate 

regions. �ese proteins have neither regular secondary 

nor tertiary structures and are dynamic, highly flexible, 

and disordered under physiological conditions [132]. 

Intrinsically disordered proteins (IDPs) and intrinsically 

disordered regions (IDPRs) undergo constant changes 

by forming hybrids with either ordered or disordered 

domains, including folded, semi-folded, and unfolded 

regions, as well as inducible folded regions, depending 

on the binding partner interaction. Consequently, these 

proteins exhibit multifunctional behaviors [133, 134]. 

�is structure plasticity also confers the ability to adopt 

different conformations as they interact with differ-

ent partners. Contrary to ordered proteins, which fold 

before becoming functional, IDPs fold at the interaction 

interface and even after the interaction has completely 

occurred [133, 135].

IDPRs have a wide range of biological roles. �ey are 

important for cell signaling because they can form inter-

action networks by binding to multiple partners. In this 

way, several hub proteins are mostly disordered, enabling 

them to participate in and modulate multiple networks 

as they bind to multiple ligands [136]. Conversely, IDPRs 

also act as linkers and spacers, regulating the distance 

between adjacent domains [137].

Analysis of several extracellular proteins revealed that 

IDPRs provide structural plasticity necessary for interac-

tion with other molecules. Among the analyzed proteins, 

the matricellular proteins contain on average a 16.8% 

of predicted disorder, being the EMI, TSR, vWF-C, and 

EGF-like domains (all of them present in SCO-spondin) 

some of the most disorder domains, as they contain high 

percentages of disorder-promoting residues [138].

�e spondin family, including human SCO-spondin, 

contains several possible disorder-based binding sites 

with higher degrees of IDPRs in SCO-spondin compared 

with other spondin family members [139]. SCO-spondin 

has a range of disorder from 71.2 to 5.4% (evaluated by 

different IDPRs predictors) with an average of 20–23% 

(i.e., percentage of residues with disorder scores exceed-

ing the threshold of 0.5). �e analysis of IDPR distribu-

tion profile in SCO-spondin from different species of 

vertebrates revealed the presence of IDPRs along its 

entire length, with a conserved distribution in all species 

analyzed [139]. �ese results suggest that intrinsic disor-

der has a functional importance in SCO-spondin, allow-

ing it to interact with multiple partners or act as a linker/

spacer between adjacent domains.

SCO-spondin, alternative splicing and proteolytic 
cleavage
One of the characteristics of matricellular proteins is the 

presence of multiple isoforms generated by alternative 

splicing and proteolytic cleavage [140–142]. �e expres-

sion of different isoforms or fragments explains the func-

tional diversity reported for these proteins in several 

cases. For instance, there are multiple initiation sites in 

the TN-C mRNA with the potential to generate more 

than 500 different isoforms through alternative splicing; 

to date approximately 100 have been reported [143]. Fur-

thermore, TN-C isoforms can be cleaved by members 

of the MMP family, generating isoforms with specific 
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functions and modulating their interaction with other 

molecules [144]. Similar results have been reported for 

TSP-1, which can be cleaved between the vWF-C domain 

and TSR domain, leading to its release from the extracel-

lular matrix and promoting activation of latent TGF-β 

[142] or members of the CCN family, cleavage of which 

regulates the bioavailability and activity of several growth 

factors [141].

Several imprecise variants of SCO-spondin have been 

identified in the SCO (place of synthesis), RF (SCO-

spondin aggregates) and CSF (SCO-spondin soluble) of 

vertebrates. Northern blot analysis of SCO using spe-

cific probes for SCO-spondin revealed different results, 

perhaps owing to the probes used, sensitivity of analy-

sis, species, or the developmental stage analyzed. �ere 

are two northern blot analysis reports for adult bovine 

SCO, one describing a unique and strong band larger 

than 10 kb [145] and the other describing a strong band 

of 14 kb and minor transcripts of 10 kb, 7 kb and 4.9 kb 

[146]. In chick embryos, the same analysis revealed a 

strong band of approximately 15 kb and faint bands of 7, 

4, and 2 kb [69]. �ese results indicate that SCO-spondin 

may be alternatively spliced, although in a lesser extend 

than other matricellular proteins considering its enor-

mous size.

At protein level, western blot analyses of protein 

extracts from the SCO, RF, and CSF revealed a multi-

plicity of SCO-spondin bands that strongly suggest that 

SCO-spondin is proteolytically cleaved [24, 25, 147]. In 

these experiments, the most used antibody is a poly-

clonal antibody made against the bovine RF. �e specific-

ity of this antibody has been confirmed in zebrafish null 

mutants, in which this antibody does not immunoreacted 

with any structure, including the floor plate and SCO 

[36]; and in scospondin-GFP knocking zebrafish in which 

the label of GFP has a perfect colocalization with this 

antibody [29]. Additionally, other antibodies against spe-

cific SCO-spondin sequences have been used, like anti-

p15, made against a synthetic 15-mer peptide derived 

from bovine SCO-spondin [25].

Western blot analysis using these antibodies showed 

few bands of high molecular weight (540, 450, and 

320  kDa in bovine and 630, 450, 390, and 200  kDa in 

rat) when protein was extracted from the SCO; how-

ever, in the RF and CSF extracts more than 15 bands 

ranking from 450 to 25  kDa are found in bovine [147] 

and from 320 to 25  kDa in rat [25]. Moreover, in eCSF 

of chick embryo, the number and weight of bands immu-

nostained with anti-SCO-spondin depends on embryonic 

stage [24]. To our knowledge, in humans, there is only 

one report concerning SCO-spondin in the eCSF, show-

ing seven bands ranging in size from 200 to 25 kDa when 

the anti P-15 antibody is used [26].

�e lack of higher molecular weight SCO-spondin 

variants in the RF and CSF suggests that SCO-spondin is 

extracellularly cleaved by unidentified proteases.

Together, these antecedents reveal that SCO-spondin 

is susceptible to alternative splicing and protein cleavage, 

suggesting that like other matricellular proteins, these 

variants have differential roles, such as modifying the 

bioavailability of binding partners or activation of growth 

factors.

Reissner �ber: composition, formation 
and movement
One of the most fascinating properties of SCO-spondin is 

its capacity to aggregate and form the RF, a supramolecu-

lar structure that traverses caudally from the diencepha-

lon through the cerebral aqueduct, the fourth ventricle, 

and central canal of the spinal cord (Fig. 4). �e RF exists 

in a state of continuous movement via the addition of 

new molecules at its cephalic end, which progressively 

advance until their disaggregation, several days later, at 

the caudal region of the spinal cord [28, 29] in a move-

ment that resembles a conveyor belt. �e daily RF growth 

rate is different depending on the species studied. For 

instance, in mouse, the RF grows 10% of its entire length 

every day; 7% in rat, and 1% in carp; thus, a SCO-spondin 

molecule secreted at the SCO of these animals will reach 

the tip of the spinal cord 10 days, 15 days, or 3 months 

after being secreted respectively [28].

�e RF was first described over a century ago [27], and 

despite the great contributions to our knowledge of this 

protein made by several research groups, there are sev-

eral unresolved questions regarding the RF, including the 

following: What is it composed of? How is it assembled? 

And What is its function? In the last few years, RF has 

been studied using new methodological approaches, such 

as tandem mass spectrophotometry [35] and mutant 

zebrafish lines [29, 33, 34, 36, 37, 148], providing some 

insight on these historical questions.

�e RF has long been postulated to be composed of 

SCO-spondin, and it was confirmed by the lack of FR 

in scospondin mutant zebrafish [33] and by the strong 

GFP-fluorescence of the RF in scospondin-GFP knocking 

zebrafish [29]. Additionally, tandem mass spectropho-

tometry (MS/MS) analysis of the bovine RF revealed that 

the main constituent of the RF is SCO-spondin; some 

other proteins did appear in the analysis [35], although 

there is no certainty whether these proteins are part 

of the RF or they are bound to the RF. �ese proteins 

included clusterin (ApoJ), galectin-1, creatinine kinase 

B-type, β tubulin 2B chain, α tubulin 1B chain, S100B, 

S100A1, and calmodulin. Among these proteins, galec-

tin-1 shows immunolocalization within the RF, and its 

inhibition by injection of antibodies into CSF impeded 
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RF formation, suggesting a role in RF assembly [35]. By 

contrast, other proteins found in the MS/MS analysis, 

such as clusterin, appear as possible binding partners, 

since its interaction with LDLrA domains has been well-

established [149].

After its secretion into CSF, SCO-spondin undergoes 

progressive aggregation, initially as flocculent mate-

rial deposited on the apical membrane, that undergoes 

arrangements into fibrils, later as a mesh of fibrils (pre-

RF) over the whole SCO surface, and finally as RF, which 

marks its journey toward the caudal region of the CNS 

(Fig. 4) [28]. SCO-spondin molecules that conforms the 

RF are in continuous movement as new molecules are 

added at its cephalic end. �is rostro-caudal movement 

was initially showed by classical pulse-chase labeling of 

the RF with radioactive cysteine [150, 151] or radioac-

tive monoamines [152]. Recently, in an elegant study, 

this process has been showed in  vivo by the generation 

of a scospondin-GFP knocking zebrafish line [29]. �is 

experimental approach confirmed the continuous RF 

movement, and allowed the visualization of the initial 

assembly of SCO-spondin to form the RF, revealing that 

at 20–30  h post-fertilization (hpf) there are a caudal 

movement of short SCO-spondin fibers from the brain, 

and SCO-spondin puncta and several boluses of SCO-

spondin from the floor plate down the central canal that 

join with other SCO-spondin-GFP material at the end of 

the spinal cord, forming a continuous RF between 2 and 

3 days post-fertilization.

�e progressive aggregation of SCO-spondin has been 

detailed in bovine RF. Light and electron microscopy 

revealed a threadlike structure of 50-µm, composed 

of bundles of thin filaments of approximately 2–5  µm 

thickness, which in turn are formed by microfilaments 

of approximately 10  nm thickness that run longitudi-

nally along the fiber [35]. �e thickness of the RF varies 

depending on the species, but the 10-nm microfilaments 

are maintained throughout the vertebrate phylum, being 

the structural element of the RF [35].

�e mechanisms that cause this high grade of SCO-

spondin polymerization are not fully understood, but 

it seems to have intra and extracellular components. At 

intracellular level, pulse–chase assays after intraventricu-

lar injection 35S-cysteine in adult rats [35] showed that 

some SCO-spondin molecules rapidly enter the secretory 

pathway, whereas other SCO-spondin molecules were 

found some days after the 35S-cysteine pulse in dilated 

rough endoplasmic reticulum (RER) cisterns. Dilated 

RER cisterns are common in cells that secrete proteins 

with several disulfide bridges as well as those that secrete 

polymeric proteins [153–156]. In these cells, the presence 

of dilated cisterns is attributable to the initial oligomeri-

zation steps, as propeptides impede higher grades of 

intracellular polymerization. For instance, the initial oli-

gomerization of vWF occurs in the RER and relies on the 

CTCK domain at the C-terminus and the vWF-D1-TIL 

(D1) and vWF-D2-TIL (D2) domains at the N-terminus. 

After the formation of dimers, the third vWF-D3-TIL 

(D3) domain interacts with the same domain in adjacent 

dimers, and subsequently, the N-terminus is cleaved, 

allowing the polymerized vWF to acquire a threadlike 

structure (Fig. 5) [123]. Similar cleavage of the N-termi-

nal region may occur during SCO-spondin aggregation. 

�is protein is initially synthesized as a precursor protein 

of 540 kDa, which can be found in the SCO, but not in the 

RF, where the largest SCO-spondin has molecular weight 

of 450 kDa [147]. Cleavage at the C-terminal end seems 

unlikely because the linkage of GFP to this end allowed 

the visualization of a fluorescent RF [29]. Conversely, the 

N-terminal region contains the EMI and vWF-D-TIL 

domains (similar to those in the cleaved region of vWF); 

moreover, the participation of EMI domain in SCO 

aggregation has been suggested because the insertion of 

five amino acids in this domain impaired RF formation 

[33]. �e study on chick SCO-spondin sequence by Pro-

cleave, a novel bioinformatic approach [157], revealed 

hypothetical cleavages sites at positions 914 and 669, 

with scores of 0.994 and 0.974, respectively, by MMP 

family. �is family of proteases is present in CSF [158] 

and is involved in the cleavage of other matricellular pro-

teins [159, 160]. �is proteolytic activity remains to be 

confirmed but suggests that SCO-spondin polymerizes in 

a manner similar to vWF.

At the extracellular level, the progressive polymeriza-

tion of SCO-spondin is CSF dependent. �is require-

ment seems to have the following three components: 

first, SCO-spondin may form oligomers at the intracellu-

lar level, but the formation of interchain disulfide bridges 

seems to require other CSF proteins, such as galectin 

[35]. Second, as stated above, the formation of the RF 

requires partial proteolysis of the secreted oligomers. 

�ird, the contribution of CSF flow to RF assembly has 

been confirmed in mutated zebrafish embryos with defi-

cits in cilium motility, in which the RF cannot assemble 

despite correct SCO-spondin secretion [29, 33]. At this 

respect, is important to highlight that SCO is located 

at the entrance of the narrow cerebral aqueduct, char-

acterized by the presence of turbulences [46] and that 

extensional flow can catalyze the partial/full unfold-

ing of proteins, exposing previously sequestered protein 

sequences whose aggregation propensity determines the 

probability and extent of aggregation [161].

Once formed, RF exists in a state of continuous move-

ment via the addition of new molecules at its cephalic 

end, which progressively advance until their disaggrega-

tion, several days later, at the caudal region of the spinal 
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cord [28]. In this manner, the daily RF growth rate is dif-

ferent depending on the species studied. For instance, in 

mouse, the RF grows 10% of its entire length every day; 

7% in rat, and 1% in carp; thus, a SCO-spondin molecule 

secreted at the SCO of these animals will reach the tip of 

the spinal cord 10 days, 15 days, or 3 months after being 

secreted respectively [28].

In summary, the formation of the RF is a complex pro-

cess, which may require initial intracellular SCO-spondin 

oligomerization, extracellular SCO-spondin cleavage, 

interaction with galectin, and polymerization in growing 

structures (microfilaments, filaments, bundles, and FR) 

dependent on CSF flow.

Function of the SCO, SCO-spondin, and RF
�e function of the SCO and its secreted product, SCO-

spondin, has remained elusive for more than a century. 

Multiple possible functions have been attributed, with 

the most relevant being different aspects related with 

morphogenesis, CSF cleaning and transport, mainte-

nance of CSF flow, and prevention of hydrocephalus [28, 

30, 31, 38]. �ese functions are in accordance with the 

proposed function of SCO-spondin as a matricellular 

protein, which depending on the isoform, binding part-

ners, and physiological context, can have multiple func-

tions. Recently, with the advancement of microscopy and 

implementation of new molecular biology techniques, 

some of these historically suggested functions have 

gained support.

Morphogenesis: neurogenesis, axon guidance, and straight 

body axis

SCO-spondin is expressed early during development, but 

at a variable stage depending on the species; for instance, 

17  h post-fertilization (hpf) in zebrafish, 3.5  days in 

chick, and 14 days in rat [29, 162, 163]. In the same man-

ner, its aggregation to form the RF also varies, with some 

species exhibiting concomitant secretion and aggrega-

tion, whereas in others, the formation of RF occurs days 

or even weeks after the first secretion of SCO-spondin; 

for instance, 20 hpf in zebrafish, 11  days in chick, and 

first postnatal week in rat [29, 162, 163]. It is interest-

ing to highlight that in aquatic animals that need to rap-

idly acquire the correct axis and swimming competence, 

RF formation begins early in development, whereas in 

contrast, in mammals or birds, the formation of the RF 

is delayed, and SCO-spondin remains soluble in eCSF 

meantime (Fig. 3).

�e inhibition of SCO-spondin using diverse 

approaches showed the relevance of this protein at 

various embryonic stages and different animal mod-

els (Fig.  6). In this manner, chick embryos elec-

troporated with SCO-spondin RNAi presented high 

neuroepithelium proliferation at the expense of inhibi-

tion of the neurodifferentiation process. �ese embryos 

showed serious malformations throughout the entire 

brain and died some days after electroporation [24]. In 

chick embryo, SCO-spondin remains exclusively soluble 

from 3.5  day until day 11, when it begins to aggregate 

to form the RF [162]. Immunohistochemical analysis 

revealed that during this period, SCO-spondin binds to 

the apical membrane of neuroepithelial cells [24]. �e 

neurogenic function of SCO-spondin is also supported 

by in vitro experiments in which solubilized RF or pep-

tides derived from SCO-spondin promoted the survival 

and differentiation of neuronal cells [32, 164–166]. Simi-

larly, mesencephalic explants maintained in eCSF exhib-

ited a drastic decrease in neurodifferentiation after the 

addition of anti-SCO-spondin antibodies into the culture 

medium [24] (Table  2). �e neurodifferentiation pro-

moted by SCO-spondin is mediated, at least in part, by 

its capacity to bind and regulate other CSF factors, such 

as LDL, supporting again its matricellular function [81].

�e relationship between abnormal RF and curved 

body axis has been historically reported in fishes and liz-

ards [167, 168] although until recently the cause-effect 

relationship was not clear. In zebrafish, the secretion of 

SCO-spondin begins at 17 hpf and is almost simultane-

ous with its aggregation to form the RF. In an elegant 

study, Cantaut-Belarif et al. [33] generated the first SCO-

spondin (sspo) mutant using CRISPR/Cas-9-mediated 

genome editing. �e homozygous mutant embryos failed 

to assemble the RF, developed curled-down axes, and 

finally died approximately 10 days post-fertilization. �is 

phenotype resembles the curly tail phenotype described 

for cilia motility mutants, although sspo mutants dis-

play normal cilia motility and eCSF flow. By contrast, 

mutant animals with altered cilia motility and normal 

SCO-spondin fails to form the RF, suggesting that RF for-

mation requires CSF flow generated by motile cilia. �e 

curly phenotype of embryonic SCO-spondin mutants 

and the embryonic lethality of this mutation were con-

firmed by Rose et  al. [36] (Fig.  6). In these null SCO-

spondin mutants, the removal of the chorion at 24hpf 

produced embryos with less severely curved axis and 

approximately 30% of these dechorionated embryos sur-

vive and matures into adult fish with strong curvatures of 

the spine [37]. In the same way, the relevance of the RF 

in the maintenance of straight body axis was revealed by 

the generation of two hypomorphic zebrafish mutants, in 

which an intact RF develops up to 5 days, but it begins to 

disassemble after a week, coinciding with the appearance 

of axial curvature in these animals [29].

Transcriptomic analysis of sspo zebrafish mutants 

[36, 148] revealed high downregulation of urotensin 

neuropeptide 2 (Urp2). �is peptide is secreted in the 
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spinal cord by ventral cerebrospinal fluid-contacting 

neurons (CSFcNs), a group of mechanosensory neurons 

that extend motile cilia and microvilli toward the cen-

tral canal that will eventually contact the RF, detecting 

the spinal curvature in a directional manner (Fig.  4C) 

[34]. �e secretion of Urp2 by CSFcNs [148] is stimu-

lated by epinephrine and norepinephrine, molecules 

that are bound on RF surface [152]. �e relevance 

of Urp2 lies in the fact that its expression can restore 

the axis defects shown in sspo mutants. In the same 

way, the exposure of sspo mutants to epinephrine and 

norepinephrine increased Urp2 expression, thereby 

restoring straight body axis [37, 148]. �ese results 

demonstrate the relevance of the RF in the transport of 

molecules throughout the entire nervous system.

SCO-spondin also participates in axon guidance in 

the posterior commissure (PC). �is commissure is 

located between the basal processes of SCO cells, and 

immunohistochemical analysis suggested that SCO-

spondin is also secreted by these processes toward the 

extracellular space, aiding in the guidance and fascicu-

lation of the PC axons [24, 169–171].

In summary, SCO-spondin is crucial in morphogen-

esis, and its mutation causes severe malformations and 

embryonic lethality. �ese malformations are found in 

the cephalic cavity of embryos in which SCO-spondin 

remains soluble (e.g. in chick) and in the spinal cord of 

embryos where the SCO-spondin rapidly aggregates to 

form the RF (e.g. in zebrafish). �ese malformations can 

be explained, at least partially, by the ability of SCO-

spondin to bind LDL [81], epinephrine, and norepineph-

rine [148, 152].

CSF �ow and hydrocephaly

CSF flow depends on multiple factors, such as CSF pro-

duction by the choroid plexus, ciliary beating of epend-

ymal cells, heartbeat, and pulsatile and local exchange 

among interstitial fluid, blood, and CSF [4, 172]. In addi-

tion to these factors, CSF flow, SCO development, and 

RF formation seem to have a mutual interdependence. 

Animals with ciliopathy, in which CSF flows abnormally, 

fail to form the RF and develop severe malformations [33] 

or hydrocephaly [173]. �e requirement of correct CSF 

flow for the formation of the RF is not well understood, 

Fig. 6 Schematic illustration of the phenotype of SCO-spondin-deficient animals. Hydrocephaly is described in mammals, the curved spinal cord 

described in zebrafish embryos, and the severe brain malformations described in chick embryos (See main text for details)
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but it has been suggested that the turbulence of the flow 

plays an important role, resembling the requirement of 

blood flow for vWF polymerization. Conversely, at least 

in mammals, there is a correlation between SCO-spon-

din and the cerebral aqueduct opening; thus, individu-

als develop hydrocephaly when the SCO development 

or the RF formation is impaired [129]. In this regard, 

immune-mediated blockage of the SCO and RF in rats 

by the maternal transfer of anti-SCO-spondin antibodies 

leads to stenosis in the cerebral aqueduct and appearance 

of hydrocephalus (Fig.  6) [174]. Similar findings have 

been reported in the human fetal hydrocephalic brain, 

which also exhibits SCO alterations [175], abnormali-

ties in SCO-spondin secreted into CSF, and occlusion of 

the cerebral aqueduct [26]. A proposed explanation of 

this pathology is that the highly charged negative glyco-

sylation of SCO-spondin may generate an electrostatic 

repulsion on the ependymal walls [26, 129], impeding 

the collapse of this narrow aqueduct. On the other hand, 

when RF formation is altered in adult rats by injecting 

antibodies against RF into the third ventricle, the main 

CSF flow in the central canal of the spinal cord decreases, 

as well as the uptake of CSF soluble molecules by epend-

ymal cells [176].

Matricellular function, a conveyor belt inside the CNS

As stated in the introduction, CSF composition must be 

finely tuned, establishing a stable internal milieu for the 

brain, but it is a dynamic fluid, which transports nutri-

ents, neuroactive substances, and waste substances for 

clearance across the entire CNS. �is apparent paradox 

can be explained by mechanisms capable of binding and 

releasing CSF factors depending on physiological con-

text. SCO-spondin and the RF appear to be optimally 

suited for this job owing to the multiple potential binding 

sites for CSF factors (Table 3, and references therein) and 

the movement of the RF that allows bound molecules to 

move toward the caudal region.

To date, there is evidence regarding the binding of 

monoamines [152] and LDL [81] to SCO-spondin. 

�ese bindings seem to be reversible and concentration-

dependent, presenting the possibility that SCO-spondin 

acts as a concentration regulator of these molecules, and 

in doing so, participates in the homeostasis of CSF. In 

this regard, it was possible to detect tritiated serotonin 

and norepinephrine attached to the RF after their injec-

tion into the rat lateral ventricle. Initially, these amines 

were detected in the cephalic RF region, but 1 week after 

the injection, these amines were found on the surface of 

the most caudal region of the RF, reaching the tip of the 

spinal cord. �e intensity of the autoradiographic stain 

revealed that as the RF moved along the central canal, 

these amines progressively detached [152].

�e function of SCO-spondin as matricellular protein is 

also supported by transcriptome analysis of sspo mutant 

zebrafish. It is well-established that the loss of a gene in a 

mutant animal is frequently compensated for by another 

with overlapping functions, triggering a transcriptional 

adaptive response [177]. In this manner, transcriptome 

analysis of mutant sspo zebrafish embryos revealed that 

genes involved in transport or neuromodulation, such 

as apolipoprotein a4, the ADAM metallopeptidase with 

a TSR motif, suppressor of cytokine signaling 3, cerebel-

lin, a Wnt signaling pathway inhibitor, and solute carrier 

family 13, are among the most overexpressed genes [36, 

148], supporting the role of SCO-spondin in the trans-

port and modulation of diverse CSF molecules, including 

waste substances.

�e relevance of SCO-spondin in CSF homeostasis 

is also suggested in scoliotic  scospondindmh4/+ mutant 

zebrafish [36]. �ese animals present a severe disruption 

in the SCO-spondin localization at juvenile stages, with 

ectopic SCO-spondin accumulation in the brain cavities 

and a lack of RF. �e RNA seq analysis of brains isolated 

from these animals revealed an upregulation in genes 

that govern inflammatory and oxidative stress responses. 

Localization of proinflammatory cytokines in these ani-

mals revealed an increment in the telencephalon, con-

firming the neuroinflammatory response [36]. Having 

into account that the telencephalon is not in contact 

with RF, this result suggests that the neuroinflammatory 

response are due to defects in the activity of SCO-spon-

din soluble or alterations in CSF homeostasis.

�e detoxification role of SCO-spondin has also been 

suggested in animal models of copper [178], aluminum 

[179], and lead [180] intoxication. In these animals, acute 

or chronic metal exposure led to a reduction in the secre-

tion of RF material, suggesting that this decrease, at least 

in part, causes toxicity. In these cases, treatment with 

curcumin leads to restoration of RF secretion parallel 

with an improvement in the toxicity symptoms.

Conclusions and perspectives
�e background set out above suggests that SCO-spon-

din is a giant matricellular protein capable of maintaining 

homeostasis in CSF by modulating and trapping several 

binding factors and permitting the physical dynamism 

necessary for transporting and releasing the bound mol-

ecules in different spatial, temporal, and biological con-

texts. �e binding of SCO-spondin to some relevant 

molecules has been already reported; however, consider-

ing that other smaller matricellular proteins bind more 

than 80 different molecules, it seems that only the tip of 

the iceberg of binding partners has been discovered. In 

this review, we suggest more than 30 possible binding 
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partners (Table 3), including Aβ and several growth fac-

tors, interactions that deserve to be studied.

In relation to the SCO-spondin in humans the infor-

mation is contradictory. Human SCO is well developed 

during fetal and neonatal stages, but it progressively 

regresses at posterior stages [66]. �e secretion of SCO-

spondin has been reported at fetal stages [26], but there 

is no information about posterior stages and the RF is 

not formed at any stage. UniProtKB database reveals the 

occurrence of human SCO-spondin at transcriptomic 

level (A2VEC9) although the Human Genome Organi-

zation Gene Nomenclature Committee classifies human 

SCO-spondin as pseudogen (HGNC: 21998). �e rel-

evance of clarifying this aspect lies in the fact that anor-

mal human SCO-spondin has been linked to several 

pathologies, including hydrocephaly [26, 175], Parkin-

son’s disease [181], phenylketonuria [182], cancer [183], 

congenital midline cervical cleft [184], and schizophrenia 

[185]. In relation to schizophrenia, is interesting to high-

light that this disease is related with cerebral aqueduct 

stenosis [186] and hydrocephaly [187], two pathologies 

also associated with SCO-spondin anomalies [26, 175]. 

It has also been proposed that the progressive atrophy 

of human SCO with the subsequent lack of SCO-spon-

din may be contributing to the failure of human adult 

neurons to repair in CNS injuries or diseases [76]. In 

this way, a peptide derived from the first TSR domain of 

SCO-spondin protects neurons from glutamate-induced 

excitotoxicity [76] and restore learning and memory in a 

mouse model of Alzheimer’s disease [188].

Full understanding of SCO-spondin properties, includ-

ing its structural conformation, regulation, and behavior 

in different contexts, will lead to a better comprehension 

of CSF physiology and open possibilities to new thera-

peutic tools for treating pathologies. In fact, the bind-

ing capacities of matricellular proteins and GAGs have 

already been exploited in drug delivery for the treatment 

of different diseases [131, 189].

In summary, SCO-spondin is an incredible protein, 

highly conserved, highly glycosylated, highly disordered, 

with several isoforms and enormous size. �e study of 

this protein is complex but extremely relevant. �us, 

with this review, we aim to motivate new researchers in 

the field to better understand this ancient and versatile 

protein.
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