# Scope and Limitations of Auxiliary-Assisted, PalladiumCatalyzed Arylation and Alkylation of sp ${ }^{2}$ and $\mathbf{s p}^{3} \mathrm{C}-\mathrm{H}$ Bonds 

Enrico T. Nadres, Gerson Ivan Franco Santos ${ }^{\dagger}$, Dmitry Shabashov, and Olafs Daugulis* Department of Chemistry, University of Houston, Houston, TX 77204.


#### Abstract

Auxiliary-Assisted C-H Bond Functionalization.  

The scope of palladium-catalyzed, auxiliary-assisted direct arylation and alkylation of $\mathrm{sp}^{2}$ and $\mathrm{sp}^{3}$ C-H bonds of amine and carboxylic acid derivatives has been investigated. The method employs a palladium acetate catalyst, substrate, aryl, alkyl, benzyl, or allyl halide, and inorganic base in $t$ amyl alcohol or water solvent at $100-140^{\circ} \mathrm{C}$. Aryl and alkyl iodides as well as benzyl and allyl bromides are competent reagents in this transformation. Picolinic acid auxiliary is used for amine $\gamma$-functionalization and 8 -aminoquinoline auxiliary is used for carboxylic acid $\beta$-functionalization. Some optimization of base, additives, and solvent is required for achieving best results.


## 1. Introduction

Transition-metal-catalyzed functionalization of carbon-hydrogen bonds is becoming an important synthetic tool that allows to create carbon-carbon bonds efficiently. ${ }^{1}$
Regioselective, intermolecular arylation and alkylation of heterocycles and other arenes can be efficiently accomplished by employing first- and second-row transition-metal catalysis. ${ }^{2}$ A recent report by Ackerman shows that meta-alkylation of 2-phenylpyridine derivatives is feasible. ${ }^{21}$ In contrast, intermolecular functionalization of unactivated (not benzylic or $\alpha$ to heteroatom) $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds has attracted less attention. ${ }^{3}$ Many of the published examples of $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bond functionalization involve positions adjacent to quaternary centers. ${ }^{3 \mathrm{a}-\mathrm{f}}$ Fewer reports deal with functionalization of $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds in systems where $\beta$-hydride elimination from metalated intermediates is possible. Ohno has prepared indolines from $N$-alkyl-2bromoanilines. ${ }^{3 \mathrm{i}} \mathrm{Yu}$ has developed methods for palladium-catalyzed olefination, carbonylation, and arylation of $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds by employing perfluoroaniline auxiliaries and utilized pyridine as a directing group in an example of $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bond alkylation by alkylboronic acids. ${ }^{3 \mathrm{~g}-1}$ Sanford has reported an aerobic $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bond olefination by using a pyridine directing group. ${ }^{3 \mathrm{~m}}$ A direct Pd -catalyzed $\gamma$-arylation of amino acid esters bearing a removable $N$-(2-pyridyl)sulfonyl directing group has been described by Fernández-Ibáñez. ${ }^{3 n}$

[^0]In 2005, we reported the $\beta$-arylation of carboxylic acid and $\gamma$-arylation of amine derivatives by employing an 8 -aminoquinoline or picolinic acid auxiliary, catalytic $\mathrm{Pd}(\mathrm{OAc})_{2}$,
stoichiometric AgOAc , and an aryl iodide coupling partner. ${ }^{4 \mathrm{a}}$ Subsequently, a number of auxiliaries were investigated for carboxylic acid $\beta$-arylation and it was shown that silver salts can be replaced by simple inorganic bases (Scheme 1). ${ }^{4 \mathrm{~b}}$ Omission of silver allowed catalytic alkylation of $\mathrm{sp}^{2}$ and $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds. Functionalization regiochemistry is determined by a double five-membered palladacycle intermediate $\mathbf{1}$ that is formed in C-H bond activation step. The electron-rich dianionic pincer-type ligand on palladium facilitates oxidative addition of aryl halide to the $\operatorname{Pd}($ II ) intermediate 1 and stabilizes the presumed high-valent Pd intermediates. ${ }^{4 \mathrm{~b}, 6} \mathrm{We}$ have also reported auxiliary-directed synthesis of unnatural amino acids as well as picolinic acid-directed heterocycle formation. ${ }^{4 \mathrm{c}, \mathrm{d}}$ Aminoquinoline and picolinic acid can also direct copper-catalyzed carbon-heteroatom bond formation. ${ }^{4 \mathrm{e}-\mathrm{g}}$ Subsequently, several other groups have used these auxiliaries for new reaction development and synthetic purposes. Corey has used the 8 -aminoquinoline auxiliary to arylate $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds in amino acid derivatives. ${ }^{5 \mathrm{a}}$ Chen has employed 8aminoquinoline auxiliary in total synthesis of Celogentin C. ${ }^{5 b}$ Synthesis of the Leu-Trp component of the celogentin family of cyclic peptides via $\mathrm{C}-\mathrm{H}$ bond functionalization methodology has also been disclosed. ${ }^{5 \mathrm{c}}$ Elegant total syntheses of piperborenines and the proposed structure of pipercyclobutanamide A by using 8 -aminoquinoline and 2thiomethylaniline directing groups have been developed by Baran. ${ }^{5 d, e}$ Carbocycles have been constructed by using 8 -aminoquinoline directing group. ${ }^{5 f}$ Chen has employed picolinic acid directing group for arylation, alkenylation, and alkylation of $\mathrm{sp}^{2}$ and $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds. ${ }^{5 \mathrm{~g}, \mathrm{~h}, 1, \mathrm{~m}}$ Quinolinecarboxylic acid naphthylamide arylation has been recently disclosed. ${ }^{3 \mathrm{k}}$ Picolinamide and 8-aminoquinoline-directed alkynylation of $\mathrm{sp}^{2}$ and $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds has also been reported. ${ }^{5 i, j}$ Furthermore, iron, nickel, copper, and ruthenium catalysis has been used for 8 -aminoquinoline-containing carboxamide functionalization. ${ }^{4 \mathrm{e}-\mathrm{g}}, 5 \mathrm{n}-\mathrm{q}$ These examples show that monoanionic, chelating auxiliaries have found wide applications for C-H to C-C bond conversion in a variety of catalytic systems. Significantly, application of these auxiliaries in the construction of complex natural products shows that C-H bond functionalization methodology has been introduced into mainstream organic synthesis. Consequently, further methodological and mechanistic investigations that would increase the scope and understanding of C-H bond functionalization processes are warranted. We report here the scope and limitations of auxiliary-assisted, palladium-catalyzed arylation and alkylation of $\mathrm{sp}^{2}$ and $\mathrm{sp}^{3} \mathrm{C}$ - H bonds in amine and carboxylic acid derivatives (Scheme 2).

## 2. Results and Discussion

### 2.1 Picolinamide Arylation Optimization

Based on our previous results with carboxylic acid derivative functionalization, the initial optimization experiments were aimed at replacing silver acetate with other stoichiometric additives for arylation of cumylamine picolylamide (Table 1). Potassium phosphate and cesium carbonate bases were inefficient (entries 1 and 2). Better results were obtained with cesium acetate in $t$-amyl alcohol (entry 4). Addition of $10 \mathrm{~mol} \%$ of $\mathrm{CuBr}_{2}$ allowed achieving full conversion to diarylation product (entry 6). Thus, the optimized arylation conditions include 4 equivalents of CsOAc base in $t$-amyl alcohol solvent, $5 \mathrm{~mol} \%$ $\mathrm{Pd}(\mathrm{OAc})_{2}, 10 \mathrm{~mol} \% \mathrm{CuBr}_{2}$, and 4 equivalents of ArI at $140^{\circ} \mathrm{C}$.

### 2.2. Benzylpicolinamide arylation

The silver-free conditions were applied to arylation of a number of benzylpicolinamides (Table 2). Benzylamine derivatives are arylated in excellent yields (entries 1-3). Diarylated products are obtained if unsubstituted benzylamines are employed (entries 1-2). We are interested in synthesis of 8-aryl-1-naphthylamines that could be used in the synthesis of
ligands for Brookhart-type transition-metal catalyzed olefin polymerization. ${ }^{7}$ Consequently, arylation of picolinamide of 1-naphthylamine was investigated in depth (entries 4-12). The reaction is successful both by using AgOAc base and by using CsOAc base. Thus, reaction with 4-iodoanisole gives $98 \%$ isolated yield if AgOAc is used, and $73 \%$ yield if CsOAc is employed (entry 6). 4-Bromophenylation of 1-naphthylamine picolinamide affords nearly identical yield of product in both cases (entry 10). However, AgOAc conditions allow for a lower $\mathrm{Pd}(\mathrm{OAc})_{2}$ loading ( $2 \%$ vs. $5 \%$ for CsOAc base). Three large scale reactions (entries 4 , 11 , and 12) afforded excellent product yields showing that scale-up to at least 50 mmol is possible. Phenethylamine derivative is arylated in moderate yield, presumably due to requirement for less favorable six-membered palladacycle intermediate (entry 13). In contrast to this result, our previous benzylamine arylation methodology is not applicable to arylation of phenethylamines. ${ }^{8}$ Alkenylation of $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bonds is also possible, and benzylamine picolinamide was reacted with iodostyrene to give coupling product in $86 \%$ yield. The ester, chloro, bromo, ether, and trifluoromethyl functionalities are compatible with the arylation conditions. The reaction fails if aryl bromide coupling partners are used. Benzylamine picolinamide was reacted with bromobenzene under conditions of entry 2 and arylation product was not detected in the reaction mixture.

Directing groups can be removed by using $n$-butylamine and $\mathrm{AlCl}_{3}$ in toluene at $90^{\circ} \mathrm{C}$ or NaOH in ethanol (Scheme 3). ${ }^{9}$ Free arylated amines are obtained in good to excellent yields.

Synthesis of even more hindered amines is possible. Acylation of 8-(p-tolyl)-1naphthylamine by propionyl chloride followed by palladium-catalyzed arylation affords 2-(4-carbethoxyphenyl)-8-8-( $p$-tolyl)-1-naphthylamine derivative in a good yield (Scheme 4). ${ }^{10}$ Recently, a method for 1 -aminonaphthalene quinolinecarboxamide arylation has been reported; however, it requires use of $15 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2} .{ }^{5 \mathrm{k}}$

### 2.3 Arylation of Alkylpicolinamides

Arylation of unactivated $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds can be accomplished by employing conditions developed for $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bond functionalization (Table 3). Comparison of the arylation yields for propyl (entry 1), s-butyl (entry 2), and 2-(2-methylbutyl) derivatives (entry 3) shows that the reaction is most efficient for the substrates possessing the most $\alpha$-methyl groups. The increase in yield is likely due to Thorpe-Ingold effect. ${ }^{11}$ Arylation of secondary aliphatic CH bonds is also feasible and proceeds in good yield (entry 4). An amide derived from $t$ octylamine was arylated in modest yield. A mixture of mono- and diarylation products was obtained, with functionalization occurring at $\delta$-positions (entry 5). Sixmembered palladacycle intermediate may be responsible for less efficient arylation. 2-Iodotoluene was unreactive in all reactions tested as shown before for arylations proceeding via high-valent palladium intermediates. ${ }^{4 \mathrm{a}, \mathrm{b}, 10}$

### 2.4 Picolinamide alkylation

The alkylation of picolinamide C-H bonds is presented in Table 4. Short optimization showed that the best results are obtained by employing potassium carbonate base in conjunction with water solvent. a-Methylbenzylamine derivatives can be alkylated by various alkyl iodides such as butyl iodide (entry 1), 4,4,4-trifluorobutyl iodide (entry 2 ), isobutyl iodide (entry 3), and 2-phenethyl iodide (entry 4) in good yields. However, if butyl iodide was replaced with butyl bromide, no product was obtained. Benzylation can be performed by employing benzyl iodide (entry 5). a, a-Dimethylbenzylamine picolinamide reaction with $n$-butyl iodide gave the dialkylation product in a good yield (entry 6). Unexpectedly, secondary alkyl iodides are also reactive. Cyclohexylation of benzyl picolinamide affords a $20 \%$ yield of monoalkylation product in addition to $14 \%$ of dialkylation (entry 7). Similarly, alkylation of a 2-methoxybenzylamine derivative gives the
product in $14 \%$ yield (entry 8 ). 1-Naphthylamine derivative is alkylated by $n$-octyl iodide in moderate yield (entry 6). The alkylation of unactivated $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds is inefficient.

Reaction of picolinic acid 2-(2-methyl)butylamide with $n$-amyl iodide yielded only $27 \%$ of the product (entry 10). Chen has recently reported method for picolinamide $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bond alkylation. ${ }^{51}$ We have previously shown that a-methylbenzylamines do not racemize under palladium-catalyzed arylation conditions. ${ }^{4 h}$

### 2.5 Alkylation of 8-Aminoquinoline Benzamides

Our initial conditions reported in 2005 that use AgOAc for iodide removal were not successful for C-H bond alkylation. Silver acetate reacts with alkyl iodides competing with $C$-alkylation. The new silver-free conditions, developed in 2010, are successful since the competitive destruction of alkyl iodides is slow. ${ }^{4 \mathrm{~b}}$ We have determined that the optimal auxiliary for $\mathrm{C}-\mathrm{H}$ bond alkylation of benzamide derivatives is 8 -aminoquinoline. As reported earlier, alkylation conditions involve heating of the substrate with alkyl iodide or benzyl bromide to $100-110^{\circ} \mathrm{C}$ in $t$-amyl alcohol in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ base and catalytic amount of pivalic acid. We have previously reported 3 examples of 8aminoquinoline benzamide alkylation. ${ }^{4 \mathrm{~b}}$ Table 5 shows the alkylation scope and functional group tolerance. Benzylation of alkoxy- (entries 1, 5 and 6), bromo- (entry 2), and trifluoromethyl-substituted (entry 4) benzoic acid amides occurs with good to excellent yields. The reaction cleanly affords dialkylation products if benzamide is substituted at 4position or possesses a small substituent at 3-position (entry 6). The alkylation of 4-tbutylbenzoic acid derivative can be accomplished by employing ethyl iodide (entry 7), $i$ butyl iodide (entry 8), 2-phenethyl iodide (entry 9), and ethyl-7-iodoheptanoate (entry 10). Phthaloyl-protected 6-amino-1-iodohexane is also reactive (entry 15). Furthermore, a variety of benzyl bromides can be employed in the alkylation. Thus, reaction is successful with benzyl bromides possessing chloro (entry 11), ester (entry 12), trifluoromethoxy (entry 13), and nitro (entry 14) substituents, attesting to the functional group tolerance of C-H bond alkylation methodology. Allylation is also possible by employing 1-bromo-3-methylbut-2ene, although the isolated yield of the product is low (entry 16).

### 2.6 Alkylation of 8-Aminoquinoline Amide sp ${ }^{3} \mathrm{C}-\mathrm{H}$ Bonds

We have previously determined that the optimal auxiliary for carboxamide $\mathrm{C}-\mathrm{H}$ bond alkylation is 8 -aminoquinoline. Two examples of 8 -aminoquinoline propionylamide $\alpha$ alkylation were published. ${ }^{4 \mathrm{~b}}$ Alkylation conditions involve heating of the substrate with $5 \%$ $\mathrm{Pd}(\mathrm{OAc})_{2}$ and alkyl iodide or benzyl bromide to $100-110^{\circ} \mathrm{C}$ in $t$-amyl alcohol in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ base and catalytic amount of pivalic acid (Table 6). 8-Aminoquinoline propionamide can be alkylated with simple alkyl iodides such as ethyl (entry 1), butyl (entry 2), octyl (entry 3), and phenetyl iodide (entry 4). Allylation by 1-bromo-3-methylbut-2-ene is also possible, affording the product in a low yield (entry 5). Isobutyl iodide is reactive and the alkylation proceeds in a good yield (entry 6). Benzylation with 2-bromobenzyl bromide is successful and product is obtained in $60 \%$ yield (entry 7). 2-Methylbutyric acid derivative is selectively alkylated in the a-methyl group (entry 8 ). Flurbiprofen ${ }^{12}$ amide can also be alkylated in a moderate yield (entry 9). Finally, alkylation of a secondary C-H bond proceeds in a low yield (entry 10).

## 3. Summary

In this paper, we report the scope and limitations of auxiliary-assisted, palladium-catalyzed arylation and alkylation of $\mathrm{sp}^{2}$ and $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds in amine and carboxylic acid derivatives. The method employs a palladium acetate catalyst, substrate, aryl, alkyl, benzyl, or allyl halide, and inorganic base in $t$-amyl alcohol or water solvent at $100-140^{\circ} \mathrm{C}$. Aryl and alkyl iodides as well as benzyl and allyl bromides are competent reagents in this transformation.

Picolinic acid auxiliary is used for amine $\gamma$-functionalization and 8 -aminoquinoline auxiliary is used for carboxylic acid $\beta$-functionalization. Some optimization of base, additives, and solvent is required for achieving best results. The arylation is possible for both secondary

## 4. Experimental Section

General considerations-Flash chromatography was performed on $60 \AA$ silica gel. Preparative TLC was performed on TLC plates, $20 \times 20 \mathrm{~cm}, 2000 \mu \mathrm{~m}$ thick, with fluorescent indicator. GC analyses were performed on a Restek column (Rtx ${ }^{\circledR}-5,15 \mathrm{~m}, 0.25 \mathrm{~mm}$ ID). Residual solvent peaks were used as reference in ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra. Melting points are uncorrected. The following starting materials were obtained from commercial sources and were used without further purification: picolinic acid, triethylamine, dichloromethane, ethyl chloroformate, $\mathrm{MgSO}_{4}$, hexanes, ethyl acetate, cumylamine, amethylbenzylamine, benzylamine, 1-naphthylamine, pyridine, triphenylphosphite, $\mathrm{H}_{2} \mathrm{SO}_{4}$, 2-methoxybenzylamine, 3,4-dimethoxyphenethylamine, tert-pentylamine, 2-aminobutane, 1propylamine, cyclohexylamine, tert-butylamine, palladium (II) acetate, copper (II) bromide, cesium acetate, tert-amyl alcohol, iodo-4-methylbenzene, iodobenzene, 1-iodo-4methoxybenzene, 1-bromo-4-iodobenzene, ethyl 4-iodobenzoate, iodoethane, 1,1,1-trifluoro-4-iodobutane, 1-iodo-2-methylpropane, (2-iodoethyl)benzene, benzyl bromide, octyl iodide, iodobutane, iodocyclohexane, iodopentane, aluminum chloride. Mass spectra were performed on a Micromass Ultima Magnetic Sector.

## Synthesis of starting materials

General procedure for the preparation of the picolinamides from amines ${ }^{13}$ _
Picolinic acid ( $35 \mathrm{mmol}, 4.3 \mathrm{~g}$ ) and triethylamine ( $70 \mathrm{mmol}, 9.70 \mathrm{~mL}$ ) were dissolved in dry dichloromethane ( 80 mL ). The solution was cooled to $0^{\circ} \mathrm{C}$ followed by addition of ethyl chloroformate ( $35 \mathrm{mmol}, 3.30 \mathrm{~mL}$ ). The mixture was subsequently stirred for 30 minutes in ice bath. The amine ( 20 mmol ) was added dropwise via a syringe and the suspension was stirred for 1 hour. The solution was warmed to room temperature and stirred for 24 hours. After that, water $(100 \mathrm{~mL})$ was added to the reaction mixture and the layers were separated. The aqueous layer was extracted with dichloromethane ( $2 \times 100 \mathrm{~mL}$ ). The organic layers were combined, dried with $\mathrm{MgSO}_{4}$, concentrated. The residue was purified by a silica gel column chromatography using hexanes/ethyl acetate eluent.

## N-(2-Phenylpropan-2-yl)picolinamide (SM01)-



Picolinic acid ( $35 \mathrm{mmol}, 4.3 \mathrm{~g}$ ), triethylamine ( $70 \mathrm{mmol}, 9.70 \mathrm{~mL}$ ), dichloromethane ( 80 mL ), ethyl chloroformate ( $35 \mathrm{mmol}, 3.30 \mathrm{~mL}$ ), and cumylamine ( $20 \mathrm{mmol}, 2.7 \mathrm{~g}$ ). After chromatography (hexanes/ethyl acetate 70/30), white crystalline material was obtained (4.44 $\mathrm{g}, 93 \%) . \mathrm{R}_{f}=0.40$ (hexanes/ethyl acetate $70 / 30$ ), $\mathrm{mp}=87-88^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.55-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.15-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~m}$, $1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~s}$,
$6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 163.3,150.6,147.9,146.9,137.5,128.5,126.8$, 126.1, 124.9, 122.0, 55.7, 29.3. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v3381, 1682, 15.13, 1570, 1436, 1384, 1365, 1280. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ (240.30 g/mol): C, 74.97; H, 6.71; N, 11.66; Found: C, 75.02; H, 6.71; N, 11.62.
$N$-(1-Phenylethyl)picolinamide (SM02, 11)-


Picolinic acid ( $35 \mathrm{mmol}, 4.3 \mathrm{~g}$ ), triethylamine ( $70 \mathrm{mmol}, 9.70 \mathrm{~mL}$ ), dichloromethane ( 80 mL ), ethyl chloroformate ( $35 \mathrm{mmol}, 3.30 \mathrm{~mL}$ ), and a-methylbenzylamine ( $20 \mathrm{mmol}, 2.60$ mL ). After chromatography (hexanes/ethyl acetate 70/30), white crystals were obtained ( $4.35 \mathrm{~g}, 96 \%$ ). $\mathrm{R}_{f}=0.31$ (hexanes/ethyl acetate $70 / 30$ ). This compound is known. ${ }^{141} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.54-8.52(\mathrm{~m}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=6.31 \mathrm{H}), 8.20-8.18(\mathrm{~m}, 1 \mathrm{H})$, $7.84-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.26$ $(\mathrm{m}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
$N$-Benzylpicolinamide (SM03)-


Picolinic acid ( $35 \mathrm{mmol}, 4.3 \mathrm{~g}$ ), triethylamine ( $70 \mathrm{mmol}, 9.70 \mathrm{~mL}$ ), dichloromethane ( 80 mL ), ethyl chloroformate ( $35 \mathrm{mmol}, 3.30 \mathrm{~mL}$ ), and benzylamine ( $20 \mathrm{mmol}, 2.18 \mathrm{~mL}$ ). After chromatography (hexanes/ethyl acetate 60/40), white crystals were obtained ( $3.81 \mathrm{~g}, 90 \%$ ). $\mathrm{R}_{f}=0.36$ (hexanes/ethyl acetate 60/40). This compound is known. ${ }^{151} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.53-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.83(\mathrm{~m}$, $1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$.
$N$-(Naphthalen-1-yl)picolinamide (SM04, 3)-


1-Naphthylamine ( $7.2 \mathrm{~g}, 50 \mathrm{mmol}$ ) in pyridine $(10 \mathrm{~mL})$ was added dropwise in 15 minutes to a stirred solution of picolinic acid $(6.2 \mathrm{~g}, 50 \mathrm{mmol})$ in pyridine $(14 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$.
Triphenylphosphite ( $13 \mathrm{~mL}, 50 \mathrm{mmol}$ ) was added to the resulting mixture followed by stirring at $110^{\circ} \mathrm{C}$ for 4 hours. The mixture was cooled to room temperature followed by
addition of distilled water $(50 \mathrm{~mL})$ and dichloromethane $(50 \mathrm{~mL})$. The mixture was placed in a 500 mL Erlenmeyer flask and aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}\left(150 \mathrm{~mL}\right.$; concentrated $\mathrm{H}_{2} \mathrm{SO}_{4} /$ water $1 / 1 \mathrm{v} /$ v) was added. The mixture was shaken and the layers were separated. The organic layer was washed with aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \times 100 \mathrm{ml})$. The acidic aqueous layers were combined and neutralized with solid sodium bicarbonate. The tan solids formed were filtered and washed thoroughly with distilled water, then recrystallized from methanol to afford tan needles (10.9 $\mathrm{g}, 87 \%$ ). This compound is known. ${ }^{161} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 10.77$ (s, 1H), $8.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.95-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 4 \mathrm{H})$.

## N -(2-Methoxybenzyl)picolinamide(SM05)-



Picolinic acid ( $35 \mathrm{mmol}, 4.3 \mathrm{~g}$ ), triethylamine ( $70 \mathrm{mmol}, 9.70 \mathrm{~mL}$ ), dichloromethane ( 80 mL ), ethyl chloroformate ( $35 \mathrm{mmol}, 3.30 \mathrm{~mL}$ ), and 2-methoxybenzylamine ( $20 \mathrm{mmol}, 2.74$ g). After chromatography (hexanes/ethyl acetate $60 / 40$ ), white powder was obtained ( 3.2 g , $71 \%$ ). $\mathrm{R}_{f}=0.34$ (hexanes/ethyl acetate 60/40). This compound is known. ${ }^{171} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.53-8.52(\mathrm{~m}, 1 \mathrm{H}), 8.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.21-8.19(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.77(\mathrm{~m}$, $1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.45,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=6.3$ Hz, 2H), 3.88 (s, 3H).

## $N$-(3,4-Dimethoxyphenethyl)picolinamide(SM06)-



Picolinic acid ( $35 \mathrm{mmol}, 4.3 \mathrm{~g}$ ), triethylamine ( $70 \mathrm{mmol}, 9.7 \mathrm{~mL}$ ), dichloromethane ( 80 mL ), ethyl chloroformate ( $35 \mathrm{mmol}, 3.3 \mathrm{~mL}$ ), and 3,4-dimethoxyphenethylamine ( 20 mmol , 3.4 mL ). After chromatography (hexanes/ethyl acetate 60/40), white powder was obtained ( $5.56 \mathrm{~g}, 97 \%$ ). $\mathrm{R}_{f}=0.30$ (hexanes/ethyl acetate $60 / 40$ ). This compound is known. ${ }^{181} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.52-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.21-8.16(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.82(\mathrm{~m}, 1 \mathrm{H})$, $7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 3 \mathrm{H}), 3.87-3.85(\mathrm{~m}, 6 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.87$ ( $\mathrm{m}, 2 \mathrm{H}$ ).
$N$-(tert-Pentyl)picolinamide(SM07)-


Picolinic acid ( $35 \mathrm{mmol}, 4.3 \mathrm{~g}$ ), triethylamine ( $70 \mathrm{mmol}, 9.70 \mathrm{~mL}$ ), dichloromethane ( 80 mL ), ethyl chloroformate ( $35 \mathrm{mmol}, 3.3 \mathrm{~mL}$ ), and tert-pentylamine ( $20 \mathrm{mmol}, 2.19 \mathrm{~mL}$ ). After chromatography (hexanes/ethyl acetate 70/30), colorless liquid was obtained ( 3.77 g , $98 \%$ ). $\mathrm{R}_{f}=0.55$ (hexanes/ethyl acetate 70/30). This compound is known. ${ }^{51}{ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.52-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.19-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}$, $1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 163.4,150.8,147.8,137.4,125.9,121.7,53.7,33.0,26.4$, 8.5.
$N$-(sec-Butyl)picolinamide(SM08)-


Picolinic acid ( $35 \mathrm{mmol}, 4.3 \mathrm{~g}$ ), triethylamine ( $70 \mathrm{mmol}, 9.70 \mathrm{~mL}$ ), dichloromethane ( 80 mL ), ethyl chloroformate ( $35 \mathrm{mmol}, 3.3 \mathrm{~mL}$ ), and 2-aminobutane ( $20 \mathrm{mmol}, 2.01 \mathrm{~mL}$ ). After chromatography (hexanes/ethyl acetate 70/30), white powder was obtained ( $3.27 \mathrm{~g}, 92$ $\%) . \mathrm{R}_{f}=0.35$ (hexanes/ethyl acetate 70/30). This compound is known. ${ }^{4 \mathrm{a} 1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.56-8.55(\mathrm{~m}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.35-$ $7.40(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.08(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H})$.

## N-Propylpicolinamide (SM09)-



Picolinic acid ( $35 \mathrm{mmol}, 4.3 \mathrm{~g}$ ), triethylamine ( $70 \mathrm{mmol}, 9.70 \mathrm{~mL}$ ), dichloromethane ( 80 mL ), ethyl chloroformate ( $35 \mathrm{mmol}, 3.3 \mathrm{~mL}$ ), and 1-propylamine ( $20 \mathrm{mmol}, 1.64 \mathrm{~mL}$ ). After chromatography (hexanes/ethyl acetate 70/30), colorless liquid was obtained ( $3.11 \mathrm{~g}, 95 \%$ ). $\mathrm{R}_{f}=0.31$ (hexanes/ethyl acetate $70 / 30$ ). This compound is known. ${ }^{4 \mathrm{a} 1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.55-8.53(\mathrm{~m}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.86-7.82(\mathrm{~m}$, $1 \mathrm{H}), 7.35-7.40(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

## $N$-CyclohexyIpicolinamide(SM10)-



Picolinic acid ( $35 \mathrm{mmol}, 4.3 \mathrm{~g}$ ), triethylamine ( $70 \mathrm{mmol}, 9.70 \mathrm{~mL}$ ), dichloromethane ( 80 mL ), ethyl chloroformate ( $35 \mathrm{mmol}, 3.3 \mathrm{~mL}$ ), and cyclohexylamine ( $20 \mathrm{mmol}, 2.29 \mathrm{~mL}$ ). After chromatography (hexanes/ethyl acetate 70/30), white needles were obtained ( 4.30 g , $98 \%$ ). $\mathrm{R}_{f}=0.32$ (hexanes/ethyl acetate 70/30). This compound is known. ${ }^{191} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.55-8.53(\mathrm{~m}, 1 \mathrm{H}), 8.22-8.20(\mathrm{~m}, 1 \mathrm{H}), 7.96(\mathrm{~s}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-$ $7.82(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.94(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 2 \mathrm{H})$, $1.68-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.19(\mathrm{~m}, 5 \mathrm{H})$.

N -(2,4,4-Trimethylpentan-2-yl)picolinamide(SM11)-


Picolinic acid ( $35 \mathrm{mmol}, 4.3 \mathrm{~g}$ ), triethylamine ( $70 \mathrm{mmol}, 9.7 \mathrm{~mL}$ ), dichloromethane ( 80 mL ), ethyl chloroformate ( $35 \mathrm{mmol}, 3.3 \mathrm{~mL}$ ), and tert-octylamine ( $20 \mathrm{mmol}, 3.2 \mathrm{~mL}$ ). After column chromatography (hexanes/ethyl acetate 70/30), colorless oil was obtained ( $3.2 \mathrm{~g}, 62$ $\%$ ). $\mathrm{R}_{f}=0.56$ (hexanes/ethyl acetate $70 / 30$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 8.52$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.0, \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.84-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.38(\mathrm{~m}$, $\mathrm{H}), 1.87(\mathrm{~s}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 163.1$, $151.0,148.9,137.4,125.8,121.7,54.7,52.0,31.8,31.6,29.2$. FT-IR (neat, $\left.\mathrm{cm}^{-1}\right) v 2956$, 1681, 1522, 1464, 1432, 1365, 1228. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ ( $234.34 \mathrm{~g} / \mathrm{mol}$ ): C, 71.76; H, 9.46; N, 11.95; Found: C, 71.46; H, 9.29; N, 11.86.

## General procedure for the preparation of the 8 -aminoquinoline amides-A

 round-bottom flask was charged with 8 -aminoquinoline and triethylamine in dichloromethane. The respective benzoyl chloride was added as a solution in dichloromethane ( 35 mL ). The mixture was stirred overnight at room temperature. The reaction mixture was transferred into separatory funnel and washed with water ( $2 \times 35 \mathrm{~mL}$ ). The water layer was extracted with dichloromethane ( $3 \times 30 \mathrm{~mL}$ ). Organic layers were combined, washed with saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, and dried over $\mathrm{MgSO}_{4}$. Filtration and evaporation under reduced pressure gave the product. Amides not reported are known. ${ }^{\text {b }}$4-tert-Butyl- N -(quinolin-8-yl)benzamide (SM12, 12)-


8-Aminoquinoline ( $13.1 \mathrm{mmol}, 1.9 \mathrm{~g}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(15.8 \mathrm{mmol}, 2.2 \mathrm{~mL})$ in dichloromethane $(35 \mathrm{~mL})$, followed by 4-tert-butylbenzoyl chloride ( $13.1 \mathrm{mmol}, 2.6 \mathrm{~g}$ ) in dichloromethane $(25 \mathrm{~mL})$. The mixture was stirred for 24 h at room temperature. After chromatography (hexanes/ethyl acetate 7/1), tan crystalline compound ( $6.92 \mathrm{~g}, 99 \%$ yield) was obtained. $\mathrm{R}_{f}$ $=0.33$ (hexanes/ethyl acetate $7 / 1$ ), $\mathrm{mp}=93-94{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 10.73(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{dd}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.85(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{dd}$, $J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 165.5,155.4,148.3,138.8,136.4,134.8,132.4$, $128.0,127.5,127.2,125.8,121.8,121.6,116.5,35.1,31.3$. FT-IR (neat, cm-1) v3349, 1665, 1531, 1485. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ ( $304.35 \mathrm{~g} / \mathrm{mol}$ ): C, $78.92 ; \mathrm{H}, 6.62 ; \mathrm{N}, 9.20$. Found: C, 78.88; H, 6.68; N, 9.22.
$N$-(Quinolin-8-yl)-3-(trifluoromethyl)benzamide (SM13)-


8-Amino-quinoline ( $13.1 \mathrm{mmol}, 1.9 \mathrm{~g}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(15.8 \mathrm{mmol}, 2.2 \mathrm{~mL})$ in dichloromethane $(35 \mathrm{~mL})$, followed by 3-(trifluoromethyl)benzoyl chloride ( $23.4 \mathrm{mmol}, 3.4 \mathrm{~g}$ ) in dichloromethane ( 25 mL ). The mixture was stirred for 16 h at room temperature. After recrystallization (ethanol/water), tan crystalline compound ( $4.9 \mathrm{~g}, 96 \%$ yield) was obtained. $\mathrm{R}_{f}=0.25$ (toluene/ethyl acetate $50 / 1$ ), $\mathrm{mp}=86-87^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) 10.84(\mathrm{~s}, 1 \mathrm{H}), 8.93$ (dd, $\left.J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.90(\mathrm{dd}, J=4.3,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.37(\mathrm{~s}, 1 \mathrm{H}), 8.33-8.28(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.55(\mathrm{~m}$, $\mathrm{IH}) .{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 164.0,148.5,138.7,136.6,136.0,134.2,131.5(\mathrm{q}$, $\left.J_{C-F}=32.8 \mathrm{~Hz}\right), 130.3,129.5,128.5\left(\mathrm{q}, J_{C-F}=3.6 \mathrm{~Hz}\right), 128.0,127.5,124.6\left(\mathrm{q}, J_{C-F}=3.7\right.$ $\mathrm{Hz}), 122.4,122.2,121.9,116.9$. F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 62.5$ (s). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}(316.28 \mathrm{~g} / \mathrm{mol}): \mathrm{C}, 64.56 ; \mathrm{H}, 3.51$; N, 8.86. Found: C, 64.58; H, 3.45; N, 8.80.

## 4-Methoxy-3-methyl- N -(quinolin-8-yl)benzamide (SM14)—



8-Amino-quinoline ( $10.9 \mathrm{mmol}, 1.6 \mathrm{~g}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(14.7 \mathrm{mmol}, 2.0 \mathrm{~mL})$ in dichloromethane $(20 \mathrm{~mL})$, followed by 4-methoxy-3-methylbenzoyl chloride ( $12 \mathrm{mmol}, 2.2 \mathrm{~g}$ ) in dichloromethane ( 15 mL ). The mixture was stirred for 16 h at room temperature. After recrystallization (ethanol/water), tan crystalline compound ( $3.18 \mathrm{~g}, 99 \%$ yield) was obtained, $\mathrm{mp}=121-123{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 10.64(\mathrm{~s}, \mathrm{IH})$ 8.97 (dd, $J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.83$ (dd, $J=4.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ (dd, $J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.95-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}$, $3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) 165.4, 160.8, 148.2, 138.8, 136.5, 134.9, 129.9, 128.1, 127.6, 127.1, 126.9, 126.7, 121.7, 121.4, 116.4, 109.5, 55.6, 16.5. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} 292.33 \mathrm{~g} / \mathrm{mol}$ ): C, 73.95 ; H, 5.52; N, 9.58. Found: C, 74.00; H, 5.50; N, 9.53.

4-Methoxy- $N$-(quinolin-8-yl)benzamide (SM15)-


8-Aminoquinoline ( $20.8 \mathrm{mmol}, 3.0 \mathrm{~g}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(25 \mathrm{mmol}, 3.50 \mathrm{~mL})$, in dichloromethane ( 35 mL ), followed by 4-methoxybenzoyl chloride ( $21.8 \mathrm{mmol}, 3.7 \mathrm{~g}$ ) in dichloromethane $(20 \mathrm{~mL})$. The mixture was stirred for 24 h at room temperature. A crystalline compound (5.6 $\mathrm{g}, 98 \%$ yield) was obtained, $\mathrm{mp}=117-118{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 10.67(\mathrm{~s}, \mathrm{IH}), 8.92(\mathrm{dd}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.84(\mathrm{dd}, J=4.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ (dd, $J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.01$ (m, 2H), 3.87 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 165.0,162.5,148.3,138.8$, $136.4,134.8,129.2,128.0,127.6,127.5,121.7,121.5,116.4,114.0,55.5$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}(278.31 \mathrm{~g} / \mathrm{mol}): \mathrm{C}, 73.37$; H, 5.07; N, 10.07. Found: C, $73.35 ; \mathrm{H}, 5.09 ; \mathrm{N}, 9.95$.

## 2-(2-Fluoro-[1,1'-biphenyl]-4-yl)-N-(quinolin-8-yl)propan-amide (SM16)-



8-Aminoquinoline ( $7.4 \mathrm{mmol}, 1.1 \mathrm{~g}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(8.2 \mathrm{mmol}, 1.2 \mathrm{~mL}$ ) in dichloromethane ( 25 mL ), followed by 2-(2-fluorobiphenyl-4-yl)propanoyl chloride ( $8.2 \mathrm{mmol}, 2.1 \mathrm{~g}$ ) in dichloromethane ( 20 mL ). The mixture was stirred for 16 h at room temperature. After chromatography (toluene/ethyl acetate 25/1), tan crystalline compound ( $2.6 \mathrm{~g}, 84 \%$ yield) was obtained. $\mathrm{R}_{f}=0.40$ (toluene/ethyl acetate $25 / 1$ ). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ $9.98(\mathrm{~s}, 1 \mathrm{H}), 8.81-8.69(\mathrm{~m}, 2 \mathrm{H}), 8.11(\mathrm{dd}, J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.27(\mathrm{~m}, 11 \mathrm{H}), 4.00-$ $3.92(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$; list of signals, CF coupling not assigned) $\delta 172.1,161.2,158.7,147.4,142.6,142.5,138.5,136.4,135.6$, $134.5,131.3,131.2,129.1,129.0,128.6,128.4,128.1,128.0,127.8,127.4,123.8,123.7$, $121.8,127.7,116.5,115.6,115.4,48.2,18.7$. ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta-117.3$ (m). HRMS electrospray (m/z): [M $\left.\mathrm{M}^{+}+\mathrm{Na}\right]$ calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}, 393.13792$; found, 393.13782, error $=1.16 \mathrm{ppm}$.

Optimization of reaction conditions for arylation of N -(2-phenylpropan-2-yl)picolinamide-A 2-dram screw-cap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11$ mg ), $N$-(2-phenylpropan-2-yl)picolinamide ( $1.0 \mathrm{mmol}, 246 \mathrm{mg}$ ), and 1-iodo-4methylbenzene ( $4.0 \mathrm{mmol}, 896 \mathrm{mg}$ ). The reactants and solvent were added to this mixture (Table 7). The resulting suspension was stirred in an oil bath at the specified temperature. After the designated time, the reaction mixture was cooled, diluted with dichloromethane (4 mL ) and analyzed by GC-MS.

Determination of the GC conversion using internal standard-The GC conversion for the optimization experiments was calculated based on an internal standard (dodecane) as described here. First, a 1:1 molar mixture of dodecane and the pure target compound was dissolved in ethyl acetate and injected into GC to determine detector response ratio $\mathrm{F}=\mathrm{A}_{\mathrm{tc}} / \mathrm{A}_{\mathrm{do}}$ ( $\mathrm{A}_{\mathrm{tc}}$ : area of target compound peak, $\mathrm{A}_{\mathrm{do}}$ : area of dodecane peak). Second, the reaction is set up as usual on 1 mmol scale with the addition of dodecane as internal standard ( 0.3 mmol ). After the completion of reaction, 1 drop of reaction mixture is diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and injected into GC to determine area of dodecane $\left(\mathrm{A}_{\text {dor }}\right)$ and the target compound ( $\mathrm{A}_{\text {tcr }}$ ). The amount of target compound in reaction mixture can be calculated by the following equation: $\mathrm{n}_{\text {tcr }}=0.3 \cdot \mathrm{~A}_{\text {tcr }} /\left(\mathrm{A}_{\text {dor }} \cdot \mathrm{F}\right)$ (mmol). The conversion is derived based on the amount of starting material added $\left(\mathrm{n}_{\mathrm{sm}}\right): \mathrm{C}=\left(\mathrm{n}_{\mathrm{tcr}} / \mathrm{n}_{\mathrm{sm}}\right) * 100 \%$.

Attempted synthesis of $N$-((2,2"-dimethyl-[1,1':3',1"-terphenyl]-2'-yl)methyl)picolinamide-


A 2-dram screw-cap vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%$, 22 mg ), $N$-benzylpicolinamide ( $1.0 \mathrm{mmol}, 224 \mathrm{mg}$ ), 2-iodotoluene ( $4.0 \mathrm{mmol}, 872 \mathrm{mg}$ ), $\mathrm{CsOAc}(4.0 \mathrm{mmol}, 794 \mathrm{mg})$, and tert-amyl alcohol ( 1.0 mL ). The resulting suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 hours. An aliquot of the reaction mixture was diluted with ethyl acetate and passed though a short silica plug. GC-MS analysis indicated that no product was formed.

## Solvent optimization for the alkylation of $N$-(1-phenylethyl)picolinamide-A 2-

dram screw-cap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 6 \mathrm{mg}), \mathrm{N}$-(1-
phenylethyl)picolinamide ( $0.5 \mathrm{mmol}, 134 \mathrm{mg}$ ), iodobutane ( $2 \mathrm{mmol}, 367 \mathrm{mg}$ ), and $\mathrm{K}_{3} \mathrm{PO}_{4}(2$ $\mathrm{mmol}, 424 \mathrm{mg})$. The solvent $(0.50 \mathrm{~mL})$ was added to this mixture (Table 8). The resulting suspension was stirred in an oil bath at $140^{\circ} \mathrm{C}$. After 24 hours, the reaction mixture was cooled and diluted with dichloromethane ( 4 mL ) followed by analysis with GCMS using dodecane as an internal standard as described earlier.

## Optimization of the additive used for the alkylation of N -(1-

 phenylethyl)picolinamide-A 2-dram screw-cap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}$ (5 $\mathrm{mol} \%, 6 \mathrm{mg}$ ), $N$-(1-phenylethyl)picolinamide ( $0.5 \mathrm{mmol}, 134 \mathrm{mg}$ ), iodobutane ( 2 mmol , $367 \mathrm{mg})$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(2.0 \mathrm{mmol}, 424 \mathrm{mg})$. The additive ( $10 \mathrm{~mol} \%$ ) was added to this mixture (Table 9). The resulting suspension was stirred in an oil bath at $120^{\circ} \mathrm{C}$. After 24 hours, the reaction mixture was cooled and diluted with dichloromethane ( 4 mL ) followed by GC-MS analysis using dodecane as an internal standard as described earlier.
## Optimization of the base used for the alkylation of N -(1-

phenylethyl)picolinamide-A 2-dram screw-cap vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(5$ $\mathrm{mol} \%, 6 \mathrm{mg}), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%, 11 \mathrm{mg}) N$-(1-phenylethyl)picolinamide ( $0.5 \mathrm{mmol}, 134$ mg ), iodobutane ( $2 \mathrm{mmol}, 367 \mathrm{mg}$ ), base ( 2 mmol ), and water $(0.30 \mathrm{~mL}$ ). The resulting suspension was stirred in oil bath at $120^{\circ} \mathrm{C}$. After 24 hours, the reaction mixture was cooled and diluted with dichloromethane ( 4 mL ) followed by analysis with GC-MS using dodecane as an internal standard as described earlier.

General procedure for the arylation of $\mathbf{s p}^{\mathbf{2}} \mathbf{C - H}$ bonds of picolinamides-A 2dram screw-cap vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%, 22$ mg ), picolinamide ( 1 mmol ), aryl iodide ( 4 mmol ), $\mathrm{CsOAc}(4 \mathrm{mmol}, 794 \mathrm{mg}$ ), and tert-amyl alcohol ( 0.5 mL ). The resulting suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was then extracted with dichloromethane ( $3 \times 4 \mathrm{~mL}$ ). The extracts were combined, filtered through pad of cotton, concentrated, and then loaded onto a chromatography column with hexanes/ethyl acetate mixture as an eluent and subjected to column chromatography. After concentration of the fractions containing the product, the residue was dried under reduced pressure.

General procedure for the arylation of N -(naphthalen-1-yl)picolinamide using
$\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and AgOAc base-A 2-dram screw-cap via was charged with
$\mathrm{Pd}(\mathrm{OAc})_{2}(2 \mathrm{~mol} \%, 4.4 \mathrm{mg}), \mathrm{AgOAc}(166 \mathrm{mg}, 1 \mathrm{mmol})$, aryl iodide $(2 \mathrm{mmol})$, and N -
(naphthalen-1-yl)picolinamide $(0.5 \mathrm{mmol}, 125 \mathrm{mg})$. The resulting solution was stirred at 140
${ }^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was then diluted with dichloromethane $(2 \mathrm{~mL})$,
filtered through pad of celite, concentrated, then loaded on a chromatography column with
hexane/ethyl acetate mixture as an eluent.
N-(2-(4,4"-Dimethyl-[1,1':3',1"-terphenyl]-2'-yl)propan-2-yl)-picolinamide(Table 2, Entry 1)-A 2-dram screw-cap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg})$, $\mathrm{CuBr}_{2}$ ( $10 \mathrm{~mol} \%, 22 \mathrm{mg}$ ), $N$-(2-phenylpropan-2-yl)picolinamide ( $1 \mathrm{mmol}, 246 \mathrm{mg}$ ), 1-iodo-4-methylbenzene ( $4 \mathrm{mmol}, 896 \mathrm{mg}$ ), CsOAc ( $4 \mathrm{mmol}, 794 \mathrm{mg}$ ), and tert-amyl alcohol $(1.0 \mathrm{~mL})$. The resulting suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 hours. After chromatography (hexane/ethyl acetate $70 / 30$ ), tan powder ( $425 \mathrm{mg}, 99 \%$ yield) was obtained. $\mathrm{R}_{f}=0.45$ (hexanes/ethyl acetate $70 / 30$ ), $\mathrm{mp}=164-165^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 8.21-8.20(\mathrm{~m}, 1 \mathrm{H}), 7.99-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.58$ ( br s, 1H), 7.31-7.28 $(\mathrm{m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H})$, $1.60(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 162.0,150.7,147.1,143.4,141.8,141.7$, $136.9,135.7,132.8,128.7,128.2,125.4,124.9,121.5,57.5,33.4,21.2$. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v$ $3369,1679,1527,1444,1224,1042$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$ ( $420.55 \mathrm{~g} / \mathrm{mol}$ ): C, 82.82; H, 6.71; N, 6.66; Found: C, 82.47; H, 6.69; N, 6.55.

N-([1,1':3',1"-Terphenyl]-2'-yImethyl)picolinamide(Table 2, Entry 2)—A 2-dram screw-cap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%, 22 \mathrm{mg}), N-$ benzylpicolinamide ( $1 \mathrm{mmol}, 212 \mathrm{mg}$ ), iodobenzene ( $4 \mathrm{mmol}, 816 \mathrm{mg}$ ), CsOAc ( 4 mmol , 794 mg ), and $t$-amyl alcohol ( 1.0 mL ). The resulting suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 hours. After chromatography (hexane/ethyl acetate 70/30), white needles ( $360 \mathrm{mg}, 99 \%$ yield) were obtained. $\mathrm{R}_{f}=0.34$ (hexanes/ethyl acetate $70 / 30$ ), $\mathrm{mp}=119-120^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 8.44-8.43(\mathrm{~m}, 1 \mathrm{H}), 7.98-7.96(\mathrm{~m}, 1 \mathrm{H})$, $7.78-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.29(\mathrm{~m}, 14 \mathrm{H}), 4.49(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 162.9,149.8,147.9,143.9,141.2,137.1,132.7,129.8,129.1,128.3,127.5$, 127.4, 125.9, 122.0, 39.4. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v3378, 1678, 1510, 1464, 1435, 1000. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ (364.44 g/mol): C, 82.39; H, 5.53; N, 7.69; Found: C, 82.50; H, 5.45; $\mathrm{N}, 7.68$. When bromobenzene ( $4 \mathrm{mmol}, 628 \mathrm{mg}$ ) was used instead of iodobenzene, product was not detected by GC-MS.

Ethyl 3'-methoxy-2'-(picolinamidomethyl)-[1,1'-biphenyl]-4-carboxylate(Table 2, Entry 3)-A 2-dram screw-cap vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg})$, $\mathrm{CuBr}_{2}(10 \mathrm{~mol} \%, 22 \mathrm{mg}), N$-(2-methoxybenzyl)picolinamide ( $1 \mathrm{mmol}, 247 \mathrm{mg}$ ), ethyl-4iodobenzoate ( $4 \mathrm{mmol}, 1104 \mathrm{mg}$ ), CsOAc ( $4 \mathrm{mmol}, 794 \mathrm{mg}$ ), and $t$-amyl alcohol ( 1.0 mL ). The resulting suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 hours. After chromatography (hexane/ ethyl acetate $60 / 40$ ), white needles ( $353 \mathrm{mg}, 92 \%$ yield) were obtained. $\mathrm{R}_{f}=0.33$ (hexanes/ ethyl acetate $60 / 40$ ), $\mathrm{mp}=163-164^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 8.50-$ $8.48(\mathrm{~m}, 1 \mathrm{H}), 8.33-8.36(\mathrm{~m}, 1 \mathrm{H}), 8.16-8.13(\mathrm{~m}, 1 \mathrm{H}), 8.10-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.76(\mathrm{~m}, 1 \mathrm{H})$, $7.43-7.41$ (m, 2H), $7.38-7.31$ (m, 2H), 6.96 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (dd, $J=7.8,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 166.6,163.4,158.8,150.3,148.1,145.3,143.0$, 137.3, 129.6, 129.5, 128.7, 126.0, 123.6. 122.5, 122.3, 110.2, 61.0, 56.0, 38.6, 14.5. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v3396, 1709, 1668, 1584. 1512, 1462, 1271, 1176, 1023. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ ( $390.43 \mathrm{~g} / \mathrm{mol}$ ): C, 70.75 ; H, 5.68; N, 7.17; Found: C, 70.86 ; H, 5.65; N, 7.16.
$N$-(8-p-TolyInaphthalen-1-yl)picolinamide (Table 2, Entry 4)— $N$-(Naphthalen-1yl)picolinamide ( $5.1 \mathrm{~g}, 20.5 \mathrm{mmol}$ ), 4-iodotoluene ( $17.5 \mathrm{~g}, 80.3 \mathrm{mmol}$ ), $\mathrm{AgOAc}(5.1 \mathrm{~g}, 30.5$ $\mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(101 \mathrm{mg}, 0.45 \mathrm{mmol})$. The resulting suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 h . After column chromatography (hexanes/ethyl acetate 90/10 then hexanes/ethyl acetate $65 / 35$ ), the solvent was evaporated to give light brown crystals ( $6.45 \mathrm{~g}, 91 \%$ yield). $\mathrm{R}_{f}=0.50$ (hexanes/ethyl acetate $65 / 35$ ), $\mathrm{mp}=123-124{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.61(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.18-8.16(\mathrm{~m}, 1 \mathrm{H}), 8.10-8.08$ $(\mathrm{m}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.44$ $(\mathrm{m}, 1 \mathrm{H}), 7.22-7.24(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 162.0,150.0,147.4,139.9,137.8,137.0,136.6,135.6,133.0,130.5,129.2$, 128.9, 128.6, 126.5, 126.0, 125.7, 125.1, 125.0, 122.6, 121.9, 21.2. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v$ 1689, 1493, 1433. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ ( $388.4 \mathrm{~g} / \mathrm{mol}$ ): C, 81.63 ; H, 5.36; $\mathrm{N}, 8.28$; Found: C, 81.54; H, 5.35; N, 8.23.

## N -(8-(4-tert-Butylphenyl)naphthalen-1-yl)picolinamide (Table 2, Entry 5)- N -

 (Naphthalen-1-yl)picolinamide ( $124,0.5 \mathrm{mmol}$ ), 4 - $t$-butyliodobenzene ( $\mathrm{mg}, 2 \mathrm{mmol}$ ), $\mathrm{AgOAc}(166 \mathrm{mg}, 1.0 \mathrm{mmol})$, and $\operatorname{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.01 \mathrm{mmol})$. After column chromatography (hexanes/ethyl acetate 80/20), the solvent was evaporated to give white powder ( $190 \mathrm{mg}, 99 \%$ yield). $\mathrm{R}_{f}=0.34$ (hexanes/ethyl acetate $80 / 20$ ), $\mathrm{mp}=136-137^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 8.32-8.18(\mathrm{~m}, 2 \mathrm{H}), 8.11-8.10$ $(\mathrm{m}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 161.7,149.8,149.7,147.6,139.6,137.8,137.1,135.6,133.1$, 130.7, 128.9, 128.4, 126.3, 126.0, 125.9, 125.2, 124.8, 122.3, 121.9, 34.3, 31.3. Signal for one carbon could not be located. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 1690,1521,1495$. HRMS ( $\mathrm{m} / \mathrm{z}$ ): $\left[\mathrm{M}^{+}\right]$ calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}, 380.1889$; found, 380.1885 , error=-1.1 ppm.
## N-(8-(4-Methoxyphenyl)naphthalen-1-yl)picolinamide (Table 2, Entry 6)—A 2-

 dram screw-cap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%, 22$ mg ), $N$-(naphthalen-1-yl)picolinamide ( $1.0 \mathrm{mmol}, 247 \mathrm{mg}$ ), 1 -iodo-4-methoxybenzene ( 4.0 $\mathrm{mmol}, 936 \mathrm{mg}$ ), CsOAc ( $4.0 \mathrm{mmol}, 794 \mathrm{mg}$ ), and tert-amyl alcohol ( 1.0 mL ). The resulting suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 hours. After chromatography (hexanes/ethyl acetate $50 / 50$ ), a beige powder ( $260 \mathrm{mg}, 73 \%$ yield) was obtained. $\mathrm{R}_{f}=0.31$ (hexane/ethyl acetate $50 / 50), \mathrm{mp}=107-108{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 9.71(\mathrm{~s}, 1 \mathrm{H})$, $8.30-8.28$ (dd, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.20-8.19$ (d, $J=5.0,1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.8,1 \mathrm{H}), 7.86$ (dd, $J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}$, $1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 4 \mathrm{H}), 6.75-6.67(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 162.0,158.9,150.1,147.5,137.4,137.0,135.5,135.1,133.1,130.7$, $130.4,128.6,126.4,126.0,125.8,125.0,122.3,122.0,113.6,55.0$. Signal for one carbon could not be located. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 1683,1494,1515,1433,1243,1176,1036$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ ( $354.40 \mathrm{~g} / \mathrm{mol}$ ): C, $77.95 ; \mathrm{H}, 5.12 ; \mathrm{N}, 7.90$; Found: C, 77.68; H, 5.09; N, 7.78.
## N -(8-(4-Methoxyphenyl)naphthalen-1-yl)picolinamide (Table 2, Entry 6)— N -

(Naphthalen-1-yl)picolinamide ( $127 \mathrm{mg}, 0.5 \mathrm{mmol}$ ), 4-iodoanisole ( $468 \mathrm{mg}, 2 \mathrm{mmol}$ ), $\mathrm{AgOAc}(166 \mathrm{mg}, 1.0 \mathrm{mmol})$, and $\operatorname{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.01 \mathrm{mmol})$. The resulting suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 h . After column chromatography (hexanes/ethyl acetate $70 / 30$ ), the solvent was evaporated to give white powder ( $176 \mathrm{mg}, 98 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.71(\mathrm{~s}, 1 \mathrm{H}), 8.30-8.28(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.20-8.19(\mathrm{~d}, J=5.0,1 \mathrm{H})$, 8.11 (d, $J=7.8,1 \mathrm{H}), 7.86$ (dd, $J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.86 (dd, $J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.56$ $(\mathrm{m}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 4 \mathrm{H}), 6.75-6.67(\mathrm{~m}, 2 \mathrm{H}), 3.59$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 162.0,158.9,150.1,147.5,137.4,137.0$,
$135.5,135.1,133.1,130.7,130.4,128.6,126.4,126.0,125.8,125.0,122.3,122.0,113.6$, 55.0. Signal for one carbon could not be located. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}(354.4 \mathrm{~g} /$ mol): C, 77.95; H, 5.12; N, 7.90; Found: C, 77.68; H, 5.09; N, 7.78.

N -(8-(3-Methoxyphenyl)naphthalen-1-yl)picolinamide (Table 2, Entry 7)— N -(Naphthalen-1-yl)picolinamide ( $125 \mathrm{mg}, 0.5 \mathrm{mmol}$ ), 3 -iodoanisole ( $468 \mathrm{mg}, 2 \mathrm{mmol}$ ), $\mathrm{AgOAc}(166 \mathrm{mg}, 1.0 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.01 \mathrm{mmol})$. After column chromatography (hexanes/ethyl acetate 70/30), the solvent was evaporated to give white powder ( $178 \mathrm{mg}, 99 \%$ yield). $\mathrm{R}_{f}=0.30$ (hexanes/ethyl acetate $70 / 30$ ), $\mathrm{mp}=99-100^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 8.23-8.18(\mathrm{~m}, 2 \mathrm{H}), 8.10-8.08$ $(\mathrm{m}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.47$ (dd, $J=$ $8.2 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.31$ (m, 2H), 7.07-7.04 (m, 2H), 6.91-6.93 (m, 2H), 6.52-6.49 $(\mathrm{m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 162.2,159.4,149.9$, 147.5, 144.2, 137.6, 137.1, 135.5, 132.9, 130.3, 129.2, 128.9, 126.6, 126.0, 125.9, 125.3, 125.0, 123.1, 121.9, 121.7, 114.0, 113.3, 55.2. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 1682,1521,1577,1498,1427$, 1215, 1160, 1041. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ ( $354.4 \mathrm{~g} / \mathrm{mol}$ ): C, $77.95 ; \mathrm{H}, 5.12 ; \mathrm{N}, 7.90$; Found: C, 77.69; H, 5.10; N, 7.83.

## Ethyl 4-(8-(picolinamido)naphthalen-1-yl)benzoate (Table 2, Entry 8)- N -

(Naphthalen-1-yl)picolinamide ( $122 \mathrm{mg}, 0.5 \mathrm{mmol}$ ), ethyl 4 -iodobenzoate ( $122 \mathrm{mg}, 2$ $\mathrm{mmol})$, $\mathrm{AgOAc}(166 \mathrm{mg}, 1.0 \mathrm{mmol})$, and $\operatorname{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.01 \mathrm{mmol})$. After column chromatography (hexanes/ethyl acetate 70/30), the solvent was evaporated to give white powder ( $179 \mathrm{mg}, 92 \%$ yield). $\mathrm{R}_{f}=0.28$ (hexanes/ethyl acetate $70 / 30$ ), $\mathrm{mp}=82-83^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 9.35(\mathrm{~s}, 1 \mathrm{H}), 8.12-8.10(\mathrm{~m}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}$, $1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.22(\mathrm{~m}$, $1 \mathrm{H}), 4.29(\mathrm{q}, J=7.3,2 \mathrm{H}), 1.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 166.3, 162.0, 149.6, 147.7, 147.5, 137.1, 136.8, 135.5, 132.5, 130.2, 129.4, 129.2, 128.8, 126.9, 126.2, 125.9, 125.4, 125.0, 123.8, 122.0, 60.8, 14.5. Signal for one carbon could not be located. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 1710,1682,1495,1266,1102$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ ( $396.4 \mathrm{~g} / \mathrm{mol}$ ): C, $75.74 ; \mathrm{H}, 5.08$; N, 7.07; Found: C, $75.63 ; \mathrm{H}, 5.05 ; \mathrm{N}, 7.00$.

## $N$-(8-(3-Chlorophenyl)naphthalen-1-yl)picolinamide (Table 2, Entry 9)— $N$ -

(Naphthalen-1-yl)picolinamide ( $135 \mathrm{mg}, 0.5 \mathrm{mmol}$ ), 1-chloro-3-iodobenzene ( $476 \mathrm{mg}, 2$ $\mathrm{mmol}), \mathrm{AgOAc}(166 \mathrm{mg}, 1.0 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.01 \mathrm{mmol})$. After column chromatography (hexanes/ethyl acetate 80/20), the solvent was evaporated to give white powder ( $190 \mathrm{mg}, 98 \%$ yield). $\mathrm{R}_{f}=0.30$ (hexanes/ethyl acetate $80 / 20$ ), $\mathrm{mp}=120-121^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.50(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18$ (dd, $J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89$ (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.82-7.76$ (m, 2H), 7.60-7.56 (m, 1H), 7.49-7.47 (m, 2H), 7.37-7.34 (m, 1H), 7.28 (dd, $J=7.4,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.90(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 161.9,149.6,147.5,144.7,137.2,136.2,135.5,134.2,132.6,130.4,129.3$, 129.1, 129.0, 127.8, 126.8, 126.2, 126.1, 125.2, 125.0, 123.3, 122.0. Signal for one carbon could not be located. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 1684,1526,1498,1432$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}(358.8 \mathrm{~g} / \mathrm{mol})$ : C, $73.64 ; \mathrm{H}, 4.21$; N, 7.81; Found: C, 73.89; H, 4.09; N, 7.76.
$N$-(8-(4-Bromophenyl)naphthalen-1-yl)picolinamide (Table 2, entry 10)-A 2dram screw-cap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%, 22$ mg ), $N$-(naphthalen-1-yl)picolinamide ( $1.0 \mathrm{mmol}, 251 \mathrm{mg}$ ), 1 -bromo-4-iodobenzene ( 4.0 mmol, 1.13 g$)$, CsOAc ( $4.0 \mathrm{mmol}, 794 \mathrm{mg}$ ), and tert-amyl alcohol $(1.0 \mathrm{~mL})$. The resulting suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 hours. After chromatography (hexane/ethyl acetate $80 / 20$ ), light brown powder ( $342 \mathrm{mg}, 84 \%$ yield) was obtained. $\mathrm{R}_{f}=0.33$ (hexanes/ethyl
acetate $80 / 20$ ), $\mathrm{mp}=134-135^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $89.56(\mathrm{~s}$, $1 \mathrm{H}), 8.32-8.30(\mathrm{~m}, 1 \mathrm{H}), 8.21-8.20(\mathrm{~m}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=8.3,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H})$, $7.32-7.28(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 162.0,149.5,147.9,141.9,137.2$, $136.4,135.6,132.6,131.3,130.9,130.5,129.2,129.7,126.3,126.2,125.0,123.2,122.0$, 121.4. Signal for one carbon could not be located. FT-IR (neat, $\left.\mathrm{cm}^{-1}\right) v 1687,1498,1433$, 1009. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}$ ( $403.3 \mathrm{~g} / \mathrm{mol}$ ): C, 65.52 ; H, 3.75; N, 6.95; Found: C, 65.10; H, 3.54; N, 6.82.

## $\mathbf{N}$-(8-(4-Bromophenyl)naphthalen-1-yl)picolinamide (Table 2, Entry 10)— N -

(Naphthalen-1-yl)picolinamide ( $121 \mathrm{mg}, 0.5 \mathrm{mmol}$ ), 1-bromo-4-iodobenzene ( $564 \mathrm{mg}, 2$ $\mathrm{mmol}), \mathrm{AgOAc}(166 \mathrm{mg}, 1.0 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.01 \mathrm{mmol})$. The resulting suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 h . After column chromatography (hexanes/ethyl acetate $70 / 30$ ), the solvent was evaporated to give white powder ( $161 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 8.32-8.30(\mathrm{~m}, 1 \mathrm{H}), 8.21-8.20(\mathrm{~m}, 1 \mathrm{H}), 8.12$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H})$, $7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 162.0,149.5,147.9,141.9,137.2,136.4,135.6,132.6,131.3,130.9,130.5,129.2$, 129.7, 126.3, 126.2, 125.0, 123.2, 122.0, 121.4. Signal for one carbon could not be located. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}$ (403.3 g/mol): C, $65.52 ; \mathrm{H}, 3.75$; N, 6.95; Found: C, 65.10; H, 3.54; N, 6.82.

Large Scale Synthesis of $\boldsymbol{N}$-(8-(4-(Trifluoromethyl)phenyl)naphthalen-1yl)picolinamide (Table 2, Entry 11)— $N$-(Naphthalen-1-yl)picolinamide ( $12.4 \mathrm{~g}, 50$ $\mathrm{mmol})$, 4-iodobenzotrifluoride ( $27.2 \mathrm{~g}, 100 \mathrm{mmol}$ ), $\mathrm{AgOAc}(12.45 \mathrm{~g}, 75 \mathrm{mmol}$ ), and $\mathrm{Pd}(\mathrm{OAc})_{2}(224 \mathrm{mg}, 1.0 \mathrm{mmol})$. The flask was sealed with rubber septum and then heated with stirring at $140{ }^{\circ} \mathrm{C}$ for 24 hours. After the reaction was complete, the mixture was cooled and 150 mL of ethyl acetate was added. The mixture was filtered and the filtrate was washed with brine $(150 \mathrm{~mL})$. The layers were separated and the aqueous solution was extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$. The organic layers were combined, dried with $\mathrm{MgSO}_{4}$, and concentrated. The residue was subjected to column chromatography (hexanes/ethyl acetate $65 / 35$ ), and the solvent was evaporated to give light orange crystals ( $16.3 \mathrm{~g}, 84 \%$ yield). $\mathrm{R}_{f}$ $=0.48$ (hexanes/ethylacetate $70 / 30$ ), $\mathrm{mp}=155-156{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.34(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.09-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{dd}, J=8.2$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.52-$ $7.48(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 162.0,149.3,147.6,146.7,137.3,136.3,135.6,132.4,130.5,129.5,129.1,128.7$, 127.0, 126.3, 125.5, 125.1, 124.9, 124.8 (q, $J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}$ ), 124.1, 122.7, 121.9. FT-IR (neat, $\left.\mathrm{cm}^{-1}\right) v 1670,1491,1320,1185,1141,1111,1070,1058,1018$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}$ (392.4 g/mol): C, 70.40; H, 3.85; N, 7.14; Found: C, 70.59; H, 3.65; N, 7.14.

## Large Scale Synthesis of $\boldsymbol{N}$-(1,2'-Binaphthyl-8-yl)picolinamide (Table 2, Entry

 12)— $N$-(Naphthalen-1-yl)picolinamide ( $8.68 \mathrm{~g}, 35 \mathrm{mmol}$ ), 2-iodonaphthalene ( $26.7 \mathrm{~g}, 105$ $\mathrm{mmol}), \mathrm{AgOAc}(8.71 \mathrm{~g}, 52.5 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(392 \mathrm{mg}, 1.75 \mathrm{mmol})$. The flask was sealed with rubber septum and then heated with stirring at $140^{\circ} \mathrm{C}$ for 24 hours. After the reaction was complete, the mixture was cooled and ethyl acetate ( 150 mL ) was added. The mixture was filtered and the filtrate was washed with brine $(150 \mathrm{~mL})$. The layers were separated and the aqueous solution was extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$. The organic layers were combined, dried with $\mathrm{MgSO}_{4}$, and concentrated. The residue was subjected to column chromatography (dichloromethane/ethyl acetate 50/50), and the solvent was evaporated and the residue obtained was recrystallized from methanol to give light brown crystals ( $8.5 \mathrm{~g}, 65 \%$ yield). $\mathrm{R}_{f}=0.32$ (dichloromethane/ethyl acetate $50 / 50$ ), $\mathrm{mp}=155-156$${ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.87(\mathrm{~m}, 3 \mathrm{H}), 7.81(\mathrm{dd}, J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.47(\mathrm{~m}, 6 \mathrm{H})$, 7.41-7.34 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 162.1,149.4,146.8,140.7,137.6$, $136.6,135.5,133.8,133.1,132.7,130.7,129.0,128.1,128.0,127.7,127.6,127.4,126.4$, 126.3, 126.1, 125.8, 125.7, 125.1, 125.0, 122.3, 121.5. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 1692,1496$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ ( $374.4 \mathrm{~g} / \mathrm{mol}$ ): C, 83.40; H, 4.85; N, 7.48; Found: C, 83.19; H, 4.88; N, 7.39.

Ethyl 4',5'-dimethoxy-2'-(2-(picolinamido)ethyl)-[1,1'-biphenyl]-4carboxylate(Table 2, entry 13)—A 2-dram screw-cap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}$ ( $5 \mathrm{~mol} \%, 11 \mathrm{mg}$ ), $\mathrm{CuBr}_{2}(10 \mathrm{~mol} \%, 22 \mathrm{mg}$ ), $N$-(3,4-dimethoxyphenethyl)picolinamide ( 1.0 $\mathrm{mmol}, 265 \mathrm{mg}$ ), ethyl 4-iodobenzoate ( $4.0 \mathrm{mmol}, 1.10 \mathrm{~g}$ ), CsOAc ( $4.0 \mathrm{mmol}, 794 \mathrm{mg}$ ), and tert-amyl alcohol ( 1.0 mL ). The resulting suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 hours. After chromatography (hexane/ethyl acetate $40 / 60$ ), white powder ( $207 \mathrm{mg}, 52 \%$ yield) was obtained. $\mathrm{R}_{f}=0.39$ (hexanes/ethyl acetate 40/60), $\mathrm{mp}=133-134^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.50-8.49(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.06-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.97-$ $7.95(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{q}$, $J=7.3 \mathrm{~Hz}, 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 166.6,164.2,149.9,148.7,148.0$, $147.4,146.2,137.5,133.6,129.6,129.1,128.5,126.3,122.3,113.1,112.7,61,1,56.1,56.0$, $40.6,32.6,14.5$. Signal for one carbon could not be located. $\delta$. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 3364$, 1706, 1666, 1520, 1502, 1440, 1272, 1237, 1212, 1139, 1097, 1032. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$ (434.48 g/mol): C, 69.11; H, 6.03; N, 6.45; Found: C, 69.08; H, 5.95; N, 6.44.

N-(2,6-Di((E)-styryl)benzyl)picolinamide (Table 2, Entry 14)—A 2-dram screw-cap vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%, 22 \mathrm{mg}), N-$ benzylpicolinamide ( $1 \mathrm{mmol}, 194 \mathrm{mg}$ ), ( $E$ )-(2-iodovinyl)benzene ( $4 \mathrm{mmol}, 0.92 \mathrm{~g}$ ), CsOAc ( $4 \mathrm{mmol}, 794 \mathrm{mg}$ ), and tert-amyl alcohol $(0.5 \mathrm{~mL})$. The resulting suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 h . After chromatography (hexanes/ethyl acetate 70/30), tan needles ( 269 mg , $86 \%$ yield) were obtained. $\mathrm{R}_{f}=0.35$ (hexanes/ethyl acetate $70 / 30$ ), $\mathrm{mp}=145-146{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $8.43-8.41(\mathrm{~m}, 1 \mathrm{H}), 8.23-8.21(\mathrm{~m}, 1 \mathrm{H}), 8.14-$ $8.12(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 8 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.02(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \varphi$ 163.9, 149.8, 148.1, 138.3, 137.4, 137.3, 132.5, 132.4, 128.7, 128.5, 127.9, 126.9, 126.2, 126.0, 125.9, 122.4, 37.4. FT-IR (neat, $\left.\mathrm{cm}^{-1}\right) v 3395,1677,1515$. Anal. calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ (416.51g/mol): C, 83.63; H, 5.81; N, 6.73; Found: C, 83.89; H, 5.70; N, 6.57.

General procedure for the hydrolysis of the arylated picolinamides-The N -(8-arylnaphthalen-1-yl)picolinamide was dissolved in ethanolic NaOH solution $(\mathrm{NaOH}$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 10 / 1$ ) and refluxed for 6 hours. The reaction mixture was cooled and diluted with an equal volume of water. The product was extracted with dichloromethane ( $3 \times 60 \mathrm{~mL}$ ). The combined organic layers were combined, dried with $\mathrm{MgSO}_{4}$, and concentrated. The crude compound was subjected to column chromatography and the fractions containing the product were combined and the solvent was evaporated to give pure 8 -arylnaphthalen-1amines.

8- $\boldsymbol{p}$-TolyInaphthalen-1-amine (6)— $N$-(8-p-tolylnaphthalen-1-yl)picolinamide ( 10.1 g , 30 mmol ), ethanolic NaOH solution ( $12 \mathrm{~g} \mathrm{NaOH}, 300 \mathrm{mmol}$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 10 / 1 \mathrm{v} / \mathrm{v}, 120$ mL ). After chromatography (hexane/ethyl acetate/triethylamine 94/5/1), beige crystals were obtained ( 7.0 g , quantitative yield). $\mathrm{R}_{f}=0.16$ (hexane/ethyl acetate/triethylamine 94/5/1), $\mathrm{mp}=73-74^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}$,
$3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 143.8,140.6,138.4,137.3,135.9,129.2,128.8$, 128.6, 128.4, 126.6, 124.7, 121.0, 119.1, 111.4, 21.4. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v3490, 3393. $1615,1579,1522$. Anal. Calcd for $\left.\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N} 233.3 \mathrm{~g} / \mathrm{mol}\right)$ : C, $87.52 ; \mathrm{H}, 6.48 ; \mathrm{N}, 6.00$; Found: C, 87.44; H, 6.42; N, 5.96.

8-(4-(Trifluoromethyl)phenyl)naphthalen-1-amine (7)— $N$-(8-(4-(Trifluoromethyl)-phenyl)-naphthalene-1-yl)picolinamide ( $16.3 \mathrm{~g}, 42 \mathrm{mmol}$ ), $\mathrm{NaOH}(16.8 \mathrm{~g}, 420 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(10 / 1 \mathrm{v} / \mathrm{v}, 200 \mathrm{~mL})$. After chromatography (hexane/ethyl acetate/triethylamine $94 / 5 / 1$ ), beige crystals were obtained ( $9.0 \mathrm{~g}, 75 \%$ ). $\mathrm{R}_{f}=0.21$ (hexane/ethyl acetate/ triethylamine $94 / 5 / 1$ ), mp=108-109 ${ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 7.80$ (dd, $J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, 7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 3 \mathrm{H})$, 7.12 (dd, $J=8.7,1.4,1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 147.3,143.4,136.9,135.9,129.8,129.5,128.5,126.9,125.7,125.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=3.8 \mathrm{~Hz}$ ), 124.7, 123.0, 120.4, 119.4, 111.8. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v3707, 3618, 2973, 2922, 2865, 2844, 1323, 1057, 1032, 1015. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}(287.3 \mathrm{~g} / \mathrm{mol}): \mathrm{C}, 71.07$; H, 4.21; N, 4.88; Found: C, 71.23; H, 4.12; N, 4.82.

1,2'-Binaphthyl-8-amine (8)— $N$-(1,2'-Binaphthyl-8-yl)picolinamide ( $8.23 \mathrm{~g}, 22 \mathrm{mmol}$ ), $\mathrm{NaOH}(8.8 \mathrm{~g}, 220 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(10 / 1 \mathrm{v} / \mathrm{v}, 100 \mathrm{~mL})$. After chromatography (hexane/ dichloromethane 50/50), light brown crystals were obtained ( $5.2 \mathrm{~g}, 88 \%$ yield). $\mathrm{R}_{f}=0.26$ (hexane/dichloromethane 50/50), mp $=113-114{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 7.91-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.81-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.22-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 143.9,141.3,138.3,136.0,132.9,132.6,128.9,128.7,128.2,128.0,127.9,127.6$, 127.5, 126.8, 126.7, 126.4, 124.7, 120.9, 119.1, 111.3. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v3707, 3681, 2972, 2922, 2865, 2844, 1055, 1032, 1014. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}(269.2 \mathrm{~g} / \mathrm{mol}): \mathrm{C}$, 89.19; H, 5.61; N, 5.20; Found: C, 8.39; H, 5.56; N, 5.18.

Cleavage of the picolinic acid auxiliary: [1,1':3',1"-Terphenyl]-2'ylmethanamine (4)—A known procedure was followed. ${ }^{20} \mathrm{~N}$-([1, $1^{\prime}: 3^{\prime}, 1 "-$ Terphenyl $]-2^{\prime}$ ylmethyl)picolinamide ( $0.5 \mathrm{mmol}, 182 \mathrm{mg}$ ), ( $0.5 \mathrm{mmol}, 67 \mathrm{mg}$ ), $n$-butylamine ( $5 \mathrm{mmol}, 0.5$ mL ), and toluene ( 1.5 mL ) were mixed in a 2-dram vial inside glovebox. The mixture was shaken until the contents dissolved. Anhydrous $\mathrm{AlCl}_{3}(0.5 \mathrm{mmol}, 67 \mathrm{mg})$ was then added to the mixture. The vial was capped, taken outside the glovebox, heated and stirred at $90^{\circ} \mathrm{C}$ for 24 h . After the reaction was complete, water ( 2 mL ) was added to the reaction mixture. The mixture was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$. The organic layers were combined, concentrated, and purified by column chromatography in hexanes/ethyl acetate 60/40. The fractions containing the product were combined, concentrated and the solvent was evaporated to give white crystals ( $118 \mathrm{mg}, 91 \%$ yield). $\mathrm{R}_{f}=0.12$ (hexanes/ethyl acetate $60 / 40$ ), mp $=70-72{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 7.44-7.30(\mathrm{~m}, 12 \mathrm{H})$, 7.23-7.22 (m, 1H), $3.71(\mathrm{~s}, 2 \mathrm{H}), 1.01(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 142.6, 141.8, 138.7, 129.8, 129.3, 128.4, 127.2, 126.5, 40.8. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v3060, 3031, 2937, 1603, 1580, 1498, 1454, 1443, 1185, 1157, 1074, 1031. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}$ (259.34 g/mol): C, 87.99; H, 6.61; N, 5.40; Found: C, 87.79; H, 6.70; N, 5.36.

## Installation of the propanamide auxiliary: $\mathbf{N}$-(8-p-TolyInaphthalen-1-

 yl)propionamide (9)—8-p-Tolylnaphthalen-1-amine 6 ( $2.02 \mathrm{~g}, 8.7 \mathrm{mmol}$ ) and triethylamine ( $1.34 \mathrm{~mL}, 9.57 \mathrm{~mol}$ ) were dissolved in dichloromethane $(35 \mathrm{~mL})$. The resulting mixture was cooled in ice bath. Propionyl chloride ( $1.55 \mathrm{~mL}, 17.4 \mathrm{mmol}$ ) in dichloromethane ( 10 mL ) was added dropwise. The reaction mixture was warmed to room temperature and stirred for 24 h . The reaction mixture was diluted with water ( 25 mL ) and the layers were separated. The organic layer was dried with $\mathrm{MgSO}_{4}$, concentrated andsubjected to column chromatography (hexane/ethyl acetate 75/25) to give 2.50 g ( $99 \%$ yield) of a white powder. $\mathrm{R}_{f}=0.29$ (hexane/ethyl acetate $75 / 25$ ), $\mathrm{mp}=134-135^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 8.14(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ (dd, $J=8.2$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.25(\mathrm{~m}$, $1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 171.5,140.6,137.7,136.8,135.2,133.3,129.9,129.4,129.0$, $126.1,125.7,124.7,124.0,121.2,30.5,21.3,9.4$. Signal for one carbon could not be located. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 1651,1378,1219$. HRMS electrospray ( $\mathrm{m} / \mathrm{z}$ ): $\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}, 312.13644$; found, 312.13589 , error $=0.87 \mathrm{ppm}$.

## Arylation of naphthyl propanamide: Ethyl 4-(1-propionamido-8-p-

 tolyInaphthalen-2-yl)benzoate (10)—A 2-dram screw-cap via was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 6 \mathrm{mg}) \mathrm{AgOAc}(166 \mathrm{mg}, 1 \mathrm{mmol})$, ethyl 4-iodobenzoate ( $0.52 \mathrm{~g}, 2$ mmol ), $N$-(8-p-tolylnaphthalen-1-yl)propionamide ( $149.9 \mathrm{mg}, 0.5 \mathrm{mmol}$ ), and trifluoroacetic acid $(0.5 \mathrm{~mL})$. The resulting solution was stirred at $110^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was diluted with dichloromethane ( 2 mL ), filtered through pad of Celite ${ }^{\circledR}$ and concentrated. Purification by chromatography (hexanes/ethyl acetate 80/20) gave white powder ( 180 mg , $80 \%$ yield). $\mathrm{R}_{f}=0.09$ (hexanes/ethyl acetate $80 / 20$ ), $\mathrm{mp}=259-260{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.94-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=7.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 4 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H})$, $4.36(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.57$ ( $\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$ ). ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 171.6,166.6,145.7,142.0,138.6$, 138.4, 136.6, 135.1, 131.0, 129.4, 129.3, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.4, 127.9, 125.4, 61.0, 29.1, 21.2, 14.5, 9.0. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v3710, 3680, 2956, 2844, 1716, 1662, 1266, 1055, 1033, 1014. HRMS electrospray ( $\mathrm{m} / \mathrm{z}$ ): $\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Na}, 460.18831$; found, 460.18870 , error= $=0.84 \mathrm{ppm}$.General procedure for the arylation of $\mathbf{s p}^{\mathbf{3}} \mathbf{C - H}$ bonds of picolinamides-A 2dram screw-cap vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%, 22$ mg ), picolinamide ( 1 mmol ), aryl iodide ( 4 mmol ), $\mathrm{CsOAc}(4 \mathrm{mmol}, 794 \mathrm{mg}$ ), and tert-amyl alcohol ( 0.5 mL ). The resulting suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was extracted with dichloromethane ( $3 \times 4 \mathrm{~mL}$ ). The extracts were combined, filtered through pad of cotton, concentrated, and then loaded onto a chromatography column with hexanes/ethyl acetate mixture as eluent and subjected to column chromatography. After concentration of the fractions containing the product, the residue was dried under reduced pressure.

N-(3-(4-Methoxyphenyl)propyl)picolinamide(Table 3, Entry 1)—A 2-dram screwcap vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%, 22 \mathrm{mg}), N-$ propylpicolinamide ( $1 \mathrm{mmol}, 199 \mathrm{mg}$ ), 1-iodo-4-methoxybenzene ( $4 \mathrm{mmol}, 936 \mathrm{mg}$ ), CsOAc ( $4 \mathrm{mmol}, 794 \mathrm{mg}$ ), and tert-amyl alcohol ( 0.5 mL ). The resulting suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 hours. After chromatography (hexane/ethyl acetate 70/30), yellowish oil ( $168 \mathrm{mg}, 56 \%$ yield) was obtained. $\mathrm{R}_{f}=0.19$ (hexanes/ethyl acetate 70/30). This compound is known. ${ }^{4 \mathrm{a}} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.51(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.82-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.94$ (m, 2H).

N-(4-(4-Methoxyphenyl)butan-2-yl)picolinamide (Table 3, Entry 2)—A 2-dram screw-cap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%, 22 \mathrm{mg}), N-$ (2-methylpropan-2-yl)picolinamide ( $1 \mathrm{mmol}, 221 \mathrm{mg}$ ), 1-iodo-4-methoxybenzene ( 4 mmol , $936 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(4 \mathrm{mmol}, 794 \mathrm{mg})$, and tert-amyl alcohol ( 2.0 mL ). The resulting
suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 hours. After chromatography (hexane/ethyl acetate $70 / 30$ ), pale yellow oil ( $255 \mathrm{mg}, 75 \%$ yield) was obtained. $\mathrm{R}_{F}=0.27$ (hexanes/ethyl acetate $70 / 30$ ). This compound is known. ${ }^{4 \mathrm{al}} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.49-8.47(\mathrm{~m}, 1 \mathrm{H})$, $8.17-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{brd}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.09-$ $7.05(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.75(\mathrm{~m}, 2 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.91-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

N-(4-(4-Methoxyphenyl)-2-methylbutan-2-yl)picolinamide (Table 3, Entry 3)—A 2 -dram screw-cap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%, 22$ mg ), $N$-(2-methylpropan- 2 -yl)picolinamide ( $1 \mathrm{mmol}, 198 \mathrm{mg}$ ), 1-iodo-4-methoxybenzene ( 4 $\mathrm{mmol}, 936 \mathrm{mg})$, $\mathrm{CsOAc}(4 \mathrm{mmol}, 794 \mathrm{mg})$, and tert-amyl alcohol ( 0.5 mL ). The resulting suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 hours. After chromatography (hexane/ethyl acetate $70 / 30$ ), pale yellow oil ( $278 \mathrm{mg}, 91 \%$ yield) was obtained. $\mathrm{R}_{f}=0.26$ (hexanes/ethyl acetate $70 / 30) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 8.50-8.49(\mathrm{~m}, 1 \mathrm{H}), 8.17-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.00(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.76(\mathrm{~m}, 2 \mathrm{H}), 3.73$ $(\mathrm{s}, 3 \mathrm{H}), 2.61-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 163.4,157.8,150.7,147.9,137.4,134.4,129.4,126.0,121.8,113.8,55.3,53.5,42.4$, 29.9, 27.2. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 2963,1675,1510,1464,1247,1178,1033$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ (298.38 g/mol): C, 72.46; H, 7.43; N, 9.39; Found: C, 72.15; H, 7.31; N, 9.37.

Ethyl 4-(3-(picolinamido)cyclohexyl)benzoate (Table 3, Entry 4)—A 2-dram screw-cap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%, 22 \mathrm{mg}), N-$ cyclohexylpicolinamide ( $1 \mathrm{mmol}, 194 \mathrm{mg}$ ), ethyl 4 -iodobenzoate ( $4 \mathrm{mmol}, 1.10 \mathrm{~g}$ ), CsOAc ( $4 \mathrm{mmol}, 794 \mathrm{mg}$ ) , and tert-amyl alcohol ( 0.5 mL ). The resulting suspension was stirred at $140^{\circ} \mathrm{C}$ for 24 hr . After chromatography (hexane/ethyl acetate 70/30), light yellow powder ( $269 \mathrm{mg}, 86 \%$ ) was obtained. $\mathrm{R}_{F}=0.35$ (hexanes/ethyl acetate $70 / 30$ ), $\mathrm{mp}=117-118{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.45-8.43(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.97$ ( br d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.12-4.02(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.26(\mathrm{~m} .7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 167.7,163.5,151.4,150.0,148.1,137.5,129.8,128.5,126.9$, 126.2, 122.3, 60.9, 48.7, 43.3, 40.4, 33.1, 32.7, 25.2, 14.4. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v3371, 1713, $1656,1519,1276,1110$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}(352.43 \mathrm{~g} / \mathrm{mol}): \mathrm{C}, 71.57 ; \mathrm{H}, 6.86 ; \mathrm{N}$, 7.95; Found: C, 71.31; H, 6.69; N, 7.73.

## N -(4-(3-Methoxybenzyl)-5-(3-methoxy-phenyl)-2,4-dimethylpentan-2yl)picolinamide (A) and $N$-(5-(3-methoxyphenyl)-2,4,4-trimethylpentan-2yl)picolinamide (B) (Table 3, Entry 5)—A 2-dram screw-cap vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%, 22 \mathrm{mg}), \mathrm{CuBr} 2$ ( $20 \mathrm{~mol} \%, 44 \mathrm{mg}$ ), $N$-(2,4,4-trimethylpentan-2yl)picolinamide ( $1 \mathrm{mmol}, 245 \mathrm{mg}$ ), 1-iodo-4-methoxybenzene ( $4 \mathrm{mmol}, 936 \mathrm{mg}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(6$ $\mathrm{mmol}, 794 \mathrm{mg})$, and tert-amyl alcohol $(0.5 \mathrm{~mL})$. The resulting suspension was stirred at 140 ${ }^{\circ} \mathrm{C}$ for 24 hr . The following products were obtained after column chromatography in hexanes/ethyl acetate 70/30.

Product $\mathbf{A}$ was obtained as a light yellow oil ( $138 \mathrm{mg}, 29 \%$ yield). $\mathrm{R}_{f}=0.69$ (hexanes/ethyl acetate $70 / 30$ ), ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 8.49(\mathrm{~m}, 1 \mathrm{H}), 8.17-8.15(\mathrm{~m}, 2 \mathrm{H}), 7.82-$ $7.791 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 4 \mathrm{H}), 6.68-6.67(\mathrm{~m}, 2 \mathrm{H})$, $3.76(\mathrm{~s}, 6 \mathrm{H}),(\mathrm{d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~d}, J=13.0,2 \mathrm{H}), 2.10(\mathrm{~s}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}), 1.08(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 163.3,159.1,150.8,147.9,140.5,137.5,134.4$, 128.6, 125.9, 123.7, 121.7, 116.9, 111.3, 55.2, 54.7, 48.3, 48.0, 39.0, 29.9, 24.8. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 2955,1679,1582,1521,1488,1263,1154,1043$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3}$ ( $446.58 \mathrm{~g} / \mathrm{mol}$ ): C, $75.31 ; \mathrm{H}, 7.67$; N, 6.27; Found C, 74.96; H, 7.67; N, 6.22.

Product $\mathbf{B}$ was obtained as a colorless oil ( $46 \mathrm{mg}, 13 \%$ ). $\mathrm{R}_{f}=0.64$ (hexane/ethyl acetate $70 / 30$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 8.51-8.49(\mathrm{~m}, 1 \mathrm{H}), 8.18-8.16(\mathrm{~m}, 1 \mathrm{H}), 8.14$ ( br $\mathrm{s}, 1 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.68-$ $6.72(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 163.2,159.0,150.8,147.9,140.62,137.4,128.5,125.9,123.5$, 121.7, 116.9, 111.1, 55.2, 54.7, 51.2, 51.1, 35.5, 29.6, 27.8. FT-IR (neat, $\left.\mathrm{cm}^{-1}\right) v 2916$, 1679, 1583, 1520, 1488, 1463, 1264, 1045. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}(340.46 \mathrm{~g} / \mathrm{mol}): \mathrm{C}$, 74.08; H, 8.29; N, 8.23; Found: C, 73.79; H, 8.28; N, 8.11.

## General procedure for the alkylation of $\mathbf{s p}^{2}$ and $\mathbf{s p}^{\mathbf{3}} \mathbf{C - H}$ bonds of

 picolinamides-A Kontes flask or a 2-dram screw-cap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}$ ( $10 \mathrm{~mol} \%, 22 \mathrm{mg}$ ), $\mathrm{CuBr}_{2}(20 \mathrm{~mol} \%, 44 \mathrm{mg}$ ), picolinamide ( 1 mmol ), alkyl iodide (4-6 $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(4 \mathrm{mmol}, 794 \mathrm{mg})$, and water $(0.30 \mathrm{~mL})$. The resulting suspension was stirred at $120^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with dichloromethane ( 4 mL ) and filtered through a pad of cotton. The residue was then washed with dichloromethane $(2 \times 4 \mathrm{~mL})$. The organic solvents were combined, concentrated, and then loaded onto a chromatography column with hexanes/ethyl acetate mixture as eluent and subjected to column chromatography. After concentration of the fractions containing the product, the residue was dried under reduced pressure.N-(1-(2,6-Dibutylphenyl)ethyl)picolinamide (Table 4, Entry 1)-A 2-dram screwcap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(20 \mathrm{~mol} \%, 22 \mathrm{mg}), N-(1-$ phenylethyl)picolinamide ( $1 \mathrm{mmol}, 239 \mathrm{mg}$ ), $n$-butyl iodide ( $4 \mathrm{mmol}, 736 \mathrm{mg}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(4$ $\mathrm{mmol}, 552 \mathrm{mg})$, and water ( 0.30 mL ). The resulting suspension was stirred at $120^{\circ} \mathrm{C}$ for 24 h. After chromatography (hexanes/ethyl acetate 70/30), light yellow oil ( $336 \mathrm{mg}, 99 \%$ yield) was obtained. $\mathrm{R}_{f}=0.60$ (hexanes/ethyl acetate $70 / 30$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 8.62(b r \mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.52-8.50(\mathrm{~m}, 1 \mathrm{H}), 8.19-8.17(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{td}, J=7.5$, $1.37 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{q}, J=7.3$, $1 \mathrm{H}), 2.98-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.73(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 7 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 163.4,150.1,148.0,141.0,138.3$, 137.4, 128.6, 127.1, 126.1, 122.2, 45.1, 34.5, 34.2, 23.2, 22.2, 14.1. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v$ 2956, 1678, 1511, 1432, 1462, 1374, 1206. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}(338.49 \mathrm{~g} / \mathrm{mol})$ : C, 78.06; H, 8.93; N, 8.28; Found: C, 77.84; H, 8.92; N, 8.19.

When $n$-butyl bromide ( $4 \mathrm{mmol}, 548 \mathrm{mg}$ ) was used as an alkylating agent, no product was detected by GC-MS.

N-(1-(2,6-Bis(4,4,4-trifluorobutyl)phenyl)ethyl)picolinamide (Table 4, Entry 2)A 2-dram screw-cap vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%$, 22 mg ), $N$-( 1 -phenylethyl) picolinamide ( $1 \mathrm{mmol}, 229 \mathrm{mg}$ ), , ,1,1-trifluoro-4-iodobutane ( 4 $\mathrm{mmol}, 948 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(4 \mathrm{mmol}, 552 \mathrm{mg})$, and water ( 0.30 mL ). The resulting suspension was stirred at $120^{\circ} \mathrm{C}$ for 24 h . After chromatography (hexanes/ethyl acetate 70/30), light yellow oil ( $356 \mathrm{mg}, 79 \%$ yield) was obtained. $\mathrm{R}_{f}=0.52$ (hexanes/ethyl acetate $70 / 30$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 8.54-8.51(\mathrm{~m}, 2 \mathrm{H}), 8.17-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 1 \mathrm{H})$, $7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{q}, J=7.3 \mathrm{~Hz}$, 3.10-3.01 (m, 1H), 2.88-2.80 (m, 2H), 2.29-2.16 (m, 4H), 1.95-1.88 (m, 4H). ${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 163.4,149.7,148.1,139.3,138.8,137.6,129.1,127.5,127.2$ (q, $J$ $=276.1 \mathrm{~Hz}), 126.4,122.2,45.1,33.8(\mathrm{q}, J=28.8 \mathrm{~Hz}), 33.1,24.1,22.1 .{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 66.1$. FT-IR (neat, $\left.\mathrm{cm}^{-1}\right) ~ v 1678,1512,1465,1434,1388,1251,1132,1005$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}$ (446.43g/mol): C, 59.19; H, 5.42; N, 6.27; Found: C, 59.28; H, 5.48; N, 6.24.

N -(1-(2,6-Diisobutylphenyl)ethyl)picolinamide (Table 4, Entry 3)-A 10-mL
Kontes flask was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%, 22 \mathrm{mg}), \mathrm{CuBr}_{2}(20 \mathrm{~mol} \%, 44 \mathrm{mg}), N-$ (1-phenylethyl)picolinamide ( $1 \mathrm{mmol}, 239 \mathrm{mg}$ ), 1-iodo-2-methylpropane ( $6 \mathrm{mmol}, 1.10 \mathrm{~g}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(4 \mathrm{mmol}, 552 \mathrm{mg})$, and water $(0.30 \mathrm{~mL})$. The resulting suspension was stirred at 120 ${ }^{\circ} \mathrm{C}$ for 24 h . After chromatography (hexane/ethyl acetate 70/30), light yellow oil ( $301 \mathrm{mg}, 84$ \% yield) was obtained. $\mathrm{R}_{f}=0.39$ (hexanes/ethyl acetate $70 / 30$ ). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 8.61(b r d, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) 8.52-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.19-8.17(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{td}, ~ Л .5,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.04(\mathrm{~m}, 2 \mathrm{H}), 5.76(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.91 (dd, $J=13.8,6.87 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{dd}, J=13.8,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 1.67$ (d, $J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}) \delta 163.4,150.1,148.0,139.7,139.2,137.4,129.3,126.4,126.1,122.2,45.2,43.3,29.7$, 23.0, 22.6, 22.3. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 2954,1677,1509,1464,1432,1383$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}$ (338.49 g/mol): C, 78.06; H, 8.93; N, 8.28; Found: C, 78.03; H, 9.11; N, 8.37.
$\mathbf{N}$-(1-(2,6-Diphenethylphenyl)ethyl)picolinamide (Table 4, Entry 4)—A 2-dram screw-cap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%, 22 \mathrm{mg}), \mathrm{CuBr}_{2}(20 \mathrm{~mol} \%, 44 \mathrm{mg})$, $N$-(1-phenylethyl)picolinamide ( $1 \mathrm{mmol}, 228 \mathrm{mg}$ ), (2-iodoethyl)benzene ( $4 \mathrm{mmol}, 984 \mathrm{mg}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(4 \mathrm{mmol}, 552 \mathrm{mg})$, and water $(0.30 \mathrm{~mL})$. The resulting suspension was stirred at 120 ${ }^{\circ} \mathrm{C}$ for 24 hours. After chromatography (hexane/ethyl acetate 70/30), light yellow oil (375 $\mathrm{mg}, 86 \%$ yield) was obtained. $\mathrm{R}_{f}=0.33$ (hexanes/ethyl acetate $70 / 30$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.68(\mathrm{br} \mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.45-8.43(\mathrm{~m}, 1 \mathrm{H}), 8.20-8.18(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{td}$, $J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 9 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 5 \mathrm{H}), 5.88(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-$ $2.99(\mathrm{~m}, 6 \mathrm{H}), 1.68(\mathrm{~d}, J=6.87 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta \square 163.6,150.0$, 148.2, 142.1, 140.2, 138.8, 137.6, 129.2, 128.7, 128.6, 127.5, 126.4, 126.2, 122.4, 45.4, 38.5, 36.6, 22.2. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 1676,1509,1453,1432$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}$ ( $434.57 \mathrm{~g} / \mathrm{mol}$ ): C, 82.91 ; H, 6.96; N, 6.45; Found: C, 82.71; H, 7.22; N, 6.41.
$\mathbf{N}$-(1-(2,6-Dibenzylphenyl)ethyl)picolinamide (Table 4, Entry 5)—A 2-dram screwcap vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%, 22 \mathrm{mg}), N-(1-$ phenylethyl)picolinamide ( $1 \mathrm{mmol}, 228 \mathrm{mg}$ ), benzyl iodide ( $4 \mathrm{mmol}, 872 \mathrm{mg}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 4 $\mathrm{mmol}, 552 \mathrm{mg})$, and water $(0.30 \mathrm{~mL})$. The resulting suspension was stirred at $120^{\circ} \mathrm{C}$ for 24 hours. After chromatography (hexanes/ethyl acetate 70/30), light yellow oil ( $349 \mathrm{mg}, 85 \%$ yield) was obtained. $\mathrm{R}_{f}=0.43$ (hexanes/ethyl acetate $\left.70 / 30\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.50^{\circ} \mathrm{C}, \mathrm{ppm}\right) \delta 8.34(\mathrm{br} \mathrm{d}, J=6.87 \mathrm{~Hz}, 1 \mathrm{H}), 8.30-8.28(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (td, $J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.03(\mathrm{~m}, 13 \mathrm{H}), 5.72(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 163.6,149.8,147.9,141.2,139.9,138.9$ (br), 137.1, 130.7 (br), 129.0, $128.4,127.3,125.9,125.8,121.9,45.6,40.1$ (br), 20.6. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v3381, 1676, 1497, 1462, 1431. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$ ( $406.52 \mathrm{~g} / \mathrm{mol}$ ): C, 82.73; H, 6.45; N, 6.89; Found: C, 82.54; H, 6.44; N, 6.79.

## $\boldsymbol{N}$-(2-(2,6-Dibutylphenyl)propan-2-yl)picolinamide (A) and $\boldsymbol{N}$-(2-(2-butylphenyl)-propan-2-yl)picolinamide (B) (Table 4, Entry 6)—A 2-dram screw-cap vial was

 charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%, 22 \mathrm{mg}), N$-(2-phenylpropan-2yl)picolinamide ( $1 \mathrm{mmol}, 224 \mathrm{mg}$ ), iodobutane ( $6 \mathrm{mmol}, 1.10 \mathrm{~g}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(4 \mathrm{mmol}, 552 \mathrm{mg})$, and water $(0.30 \mathrm{~mL})$. The resulting suspension was stirred at $120^{\circ} \mathrm{C}$ for 24 hours. After chromatography (hexane/ethyl acetate 70/30), two products were obtained.Product $\mathbf{A}$ was obtained as a light yellow oil ( $178 \mathrm{mg}, 54 \%$ yield). $\mathrm{R}_{f}=0.44$ (hexanes/ethyl acetate $70 / 30$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 8.54$ (br s, 1 H ), $8.51-8.49(\mathrm{~m}, 1 \mathrm{H}), 8.15$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{td}, J=9.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 3 \mathrm{H}), 2.90-$ $2.86(\mathrm{~m}, 4 \mathrm{H}), 2.08(\mathrm{~s}, 6 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 4 \mathrm{H}), 0.74(\mathrm{t}, J=7.3 \mathrm{~Hz}$,
$3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 162.1,150.9,147.8,141.9,141.5,137.4,130.5$, $126.5,125.9,121.8,59.1,36.5,35.5,31.0,23.3,14.0$. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v2956, 1678, 1510, 1463. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}(352.51 \mathrm{~g} / \mathrm{mol})$ : C, $78.36 ; \mathrm{H}, 9.15 ; \mathrm{N}, 7.95$; Found: C, 78.12; H, 9.31; N, 7.83.

Product $\mathbf{B}$ was obtained as a light yellow oil ( $38 \mathrm{mg}, 14 \%$ yield). $\mathrm{R}_{f}=0.31$ (hexanes/ethyl acetate $70 / 30$ ). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.51-8.47(\mathrm{~m}, 2 \mathrm{H}), 8.14-8.12(\mathrm{~m}, 1 \mathrm{H})$, 7,82-7.79 (m, 1H), 7.50-7.48 (m, 1H), 7.41-7.37 (m, 1H), 7.23-7.15 (m, 3H), 2.82-2.78 $(\mathrm{m}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 6 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 162.8,150.7,147.8,143.2,140.8,137.4,131.6,127.4$, $127.2,126.0,125.7,121.8,56.3,34.8,33.8,29.0,23.4,13.9$ Signal for one carbon could not be located. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 2930,1678,1511,1463,1432$. HRMS (m/z): $\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}, 296.1889$; found, 296.1883, error=-2.0 ppm.

## N -(2,6-Dicyclohexylbenzyl)picolinamide (A) and N -(2-

 cyclohexylbenzyl)picolinamide (B) (Table 4, Entry 7)—A 2-dram screw-cap vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%, 22 \mathrm{mg}), \mathrm{CuBr}_{2}(20 \mathrm{~mol} \%, 44 \mathrm{mg}), \mathrm{N}-$ benzylpicolinamide ( $1 \mathrm{mmol}, 223 \mathrm{mg}$ ), iodocyclohexane ( $4 \mathrm{mmol}, 840 \mathrm{mg}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 4 $\mathrm{mmol}, 552 \mathrm{mg})$, and water ( 0.30 mL ). The resulting suspension was stirred at $120^{\circ} \mathrm{C}$ for 24 h. After chromatography (hexane/ethyl acetate 80/20), two products were obtained.Product $\mathbf{A}$ was obtained as a light yellow oil ( $42 \mathrm{mg}, 11 \%$ yield). $\mathrm{R}_{f}=0.31$ (hexanes/ethyl acetate $80 / 20$ ). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.45-8.44(\mathrm{~m} .1 \mathrm{H}), 8.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.89-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~d}$, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.83-2.75(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 12 \mathrm{H}), 1.49-1.18(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 163.7,149.9,148.7,147.5,137.4,131.4,128.3,126.2,124.2,122.2$, 40.5, 36.6, 35.0, 27.1, 26.3. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 2925,2850,1673,1521,1568,1433,1242$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}$ ( $376.53 \mathrm{~g} / \mathrm{mol}$ ): C, 79.75 ; H, 8.57; N, 7.44; Found: C, 79.89; H, 8.21; N, 7.48.

Product $\mathbf{B}$ was obtained as a light yellow oil ( $62 \mathrm{mg}, 20 \%$ yield). $\mathrm{R}_{f}=0.50$ (hexanes/ethyl acetate $80 / 20) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.50-8.48(\mathrm{~m}, 1 \mathrm{H}), 8.25-8.19(\mathrm{~m}, 2 \mathrm{H})$, $7.86-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.81-2.74(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 5 \mathrm{H}), 1.49-1.19\left(\mathrm{~m}, 5 \mathrm{H} .{ }^{13} \mathrm{C}\right.$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 164.9,149.9,148.2,146.6,137.4,134.7,129.3,128.2,126.6,126.2,126.0$, 122.3, 41.5, 39.7, 34.5, 27.0, 26.3. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v2926, 2851, 1674, 1568, 1522, 1241. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ (294.39 g/mol): C, $77.52 ; \mathrm{H}, 7.53 ; \mathrm{N}, 9.52$; Found: C, 77.13; H, 7.67; N, 9.40.
$\mathbf{N}$-(2-Cyclohexyl-6-methoxybenzyl)picolinamide (Table 4, Entry 8)—A 2-dram screw-cap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%, 22 \mathrm{mg}), \mathrm{CuBr}_{2}(20 \mathrm{~mol} \%, 44 \mathrm{mg})$, $N$-(2-methoxybenzyl)-picolinamide ( $1 \mathrm{mmol}, 217 \mathrm{mg}$ ), iodocyclohexane ( $4 \mathrm{mmol}, 840 \mathrm{mg}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(4 \mathrm{mmol}, 552 \mathrm{mg})$ and water $(0.30 \mathrm{~mL})$. The resulting suspension was stirred at 120 ${ }^{\circ} \mathrm{C}$ for 24 h . After chromatography (hexanes/ethyl acetate 70/30), light yellow oil ( $47 \mathrm{mg}, 14$ \% yield) was obtained. $\mathrm{R}_{f}=0.39$ (hexanes/ethyl acetate $70 / 30$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 8.49-8.47(\mathrm{~m}, 1 \mathrm{H}), 8.23-8.20(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{td}, J=9.52,2.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.35(\mathrm{~m}$, $1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.74(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=5.49 \mathrm{~Hz}, 2 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.02-2.97(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 5 \mathrm{H}), 1.51-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.21(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 163.7,158.3,150.4,148.4,148.1,137.3,128.7$, $125.9,123.5,122.3,118.8,108.0,55.7,39.9,34.6,34.4,27.0,26.3$. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v$ 2926, 1674, 1582, 1518, 1464, 1249, 1136, 1096. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}(324.42 \mathrm{~g} /$ mol): C, 74.04; H, 7.46; N, 8.64; O, 9.86 Found: C, 73.76; H, 7.50; N, 8.49.
$\mathbf{N}$-(8-OctyInaphthalen-1-yl)picolinamide (Table 4, Entry 9)—A 2-dram screw-cap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%, 22 \mathrm{mg}), N-$ (naphthalen-1-yl)picolinamide ( $1 \mathrm{mmol}, 217 \mathrm{mg}$ ), octyl iodide ( $4 \mathrm{mmol}, 960 \mathrm{mg}$ ), CsOAc ( 3 $\mathrm{mmol}, 594 \mathrm{mg})$, and tert-amyl alcohol $(0.50 \mathrm{~mL})$. The resulting suspension was stirred at $140{ }^{\circ} \mathrm{C}$ for 24 hours. After chromatography (hexane/ethyl acetate 70/30), light yellow oil ( $153 \mathrm{mg}, 49 \%$ yield) was obtained. $\mathrm{R}_{f}=0.33$ (hexanes/ethyl acetate $70 / 30$ ). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \gamma 10.56(\mathrm{~s}, 1 \mathrm{H}), 8.64-8.62(\mathrm{~m}, 1 \mathrm{H}), 8.39-8.36(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.89(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}$, $2 \mathrm{H}), 3.30-3.26(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.13(\mathrm{~m}, 10 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 162.5,150.3,148.1,137.9,137.8,136.3,132.7,126.9$, 128.0, 127.9, 127.5, 126.6, 125.6, 125.2, 122.8, 37.8, 32.9, 31.9, 29.8, 29.6, 29.4, 22.8, 14.3. FTIR (neat, $\mathrm{cm}^{-1}$ ) $v 2926,1686,1522,1498,1431,1339$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$ ( $360.49 \mathrm{~g} / \mathrm{mol}$ ): C, 79.96; H, 7.83; N, 7.77; Found: C, 79.78; H, 7.93; N, 7.79.

N-(2-MethyInonan-2-yl)picolinamide(Table 4, Entry 10)—A 2-dram screw-cap vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%, 11 \mathrm{mg}), \mathrm{CuBr}_{2}(20 \mathrm{~mol} \%, 22 \mathrm{mg}), N$-(tertpentyl)picolinamide ( $1 \mathrm{mmol}, 192 \mathrm{mg}$ ), iodopentane ( $4 \mathrm{mmol}, 792 \mathrm{mg}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(4 \mathrm{mmol}$, 552 mg ), pivalic acid ( $2 \mathrm{mmol}, 202 \mathrm{mg}$ ), and tert-amyl alcohol $(0.7 \mathrm{~mL})$. The resulting suspension was stirred at $110^{\circ} \mathrm{C}$ for 24 h . After chromatography (hexanes/ethyl acetate $80 / 20$ ), colorless oil ( $67 \mathrm{mg}, 27 \%$ yield) was obtained. $\mathrm{R}_{f}=0.31$ (hexanes/ethyl acetate 80/20), ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\gamma 8.53-8.52(\mathrm{~m}, 1 \mathrm{H}), 8.19-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.97(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 7.83(\mathrm{td}, J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 6 \mathrm{H})$, $1.34-1.26(\mathrm{~m}, 10 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \gamma 163.3$, 150.9, 147.8, 137.4, 125.9, 121.7, 53.6, 40.7, 32.0, 30.1, 29.4, 26.9, 24.3, 22.7, 14.2. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 2926,1681,1520,1464,1432,1363,1287$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$ ( $262.39 \mathrm{~g} / \mathrm{mol}$ ): C, 73.24; H, 9.99; N, 10.68; Found: C, 73.04; H, 10.04; N, 10.38.

## General procedure for the alkylation of $\mathbf{s p}^{\mathbf{2}} \mathbf{C - H}$ bonds of 8 -aminoquinoline

amides-A 2- dram screw-capped vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}$ ( 2.5 equiv), substrate, pivalic acid ( $20 \mathrm{~mol} \%$ ), and alkyl bromide or iodide (3-4 equiv). The $t$-amyl alcohol ( $0.7-3.0 \mathrm{~mL}$ ) solvent was added and the resulting mixture was stirred at $100-$ $110^{\circ} \mathrm{C}$ for $12-96 \mathrm{~h}$. The reaction mixture was allowed to cool to room temperature and diluted with ethyl acetate $(10 \mathrm{~mL})$, followed by washing with water $(10 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate ( $3 \times 10 \mathrm{~mL}$ ). The organic layers were combined, dried over $\mathrm{MgSO}_{4}$, and filtered. The filtrate was concentrated under vacuum. The crude product was purified flash column chromatography.

## 2-Benzyl-6-methoxy- N -(quinolin-8-yl)benzamide (Table 5, Entry 1)—Pd(OAc) ${ }_{2}$

 ( $8.3 \mathrm{mg}, 0.037 \mathrm{mmol}$ ), 2-methoxy- $N$-(quinolin-8-yl)benzamide ( $206 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85 \mathrm{mmol})$, pivalic acid ( $14.8 \mathrm{mg}, 0.148 \mathrm{mmol}$ ), and benzyl bromide ( 380 $\mathrm{mg}, 2.22 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 0.7 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 20 h . After column chromatography (toluene/ethyl acetate 70/1), 166 mg ( $61 \%$ yield) of a crystalline material was obtained. $\mathrm{R}_{\mathrm{f}}=0.19$ (toluene/ethyl acetate $70 / 1$ ), $\mathrm{mp}=$ $137-139{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 8.99-8.95$ (dd, 1 H , $J=7.7,1.3 \mathrm{~Hz}), 8.71-8.68(\mathrm{dd}, 1 \mathrm{H}, J=4.0,1.3 \mathrm{~Hz}), 8.17-8.14(\mathrm{dd}, 1 \mathrm{H}, J=8.3,1.2 \mathrm{~Hz})$, $7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17$ $(\mathrm{m}, 2 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.81(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $Y 166.4,156.5,148.1,140.5,140.4,138.5,136.2$, 134.7, 130.3, 129.2, 128.3, 128.0, 127.5, 127.2, 126.0, 122.6, 121.7, 121.5, 116.8, 109.0, 55.9, 38.9. FT-IR (neat, $\left.\mathrm{cm}^{-1}\right) v 3330,1670,1525,1483$. Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ ( $368.43 \mathrm{~g} / \mathrm{mol}$ ): C, 78.24 ; H, 5.47; N, 7.60. Found: C, 78.27; H, 5.54; N 7.46.2,6-Dibenzyl-4-bromo- $\mathbf{N}$-(quinolin-8-yl)benzamide (Table 5, Entry 2)—Pd(OAc) 2 ( $8.3 \mathrm{mg}, 0.037 \mathrm{mmol}$ ), 4-bromo- $N$-(quinolin-8-yl)benzamide ( $242 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $256 \mathrm{mg}, 1.85 \mathrm{mmol}$ ), pivalic acid ( $14.8 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), and benzyl bromide ( $380 \mathrm{mg}, 2.22$ mmol ) were dissolved in $t$-amyl alcohol ( 0.7 mL ). Resulting mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 12 h . After column chromatography (toluene), 285 mg ( $76 \%$ ) of a crystalline material was obtained. $\mathrm{R}_{f}=0.27$ (toluene), $\mathrm{mp}=118-119{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 9.74(\mathrm{~s}, 1 \mathrm{H}), 8.91-8.87(\mathrm{dd}, 1 \mathrm{H}, J=7.4,1.5 \mathrm{~Hz}), 8.63-8.60(\mathrm{dd}, 1 \mathrm{H}, J=4.3,1.5 \mathrm{~Hz})$, 8.17-8.13 (dd, 1H, $J=8.6,1.7 \mathrm{~Hz}), 7.61-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 2 \mathrm{H})$, $7.18-7.11(\mathrm{~m}, 8 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ $167.5,148.2,140.4,139.3,138.4,136.8,136.2,134.0,131.0,129.21,128.6,127.9,127.3$, $126.4,123.5,122.2,121.7,116.8,39.0$. FT-IR (neat, $\left.\mathrm{cm}^{-1}\right) \vee 3358,1677,1524,1485$. Anal. calcd. for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}$ ( $507.42 \mathrm{~g} / \mathrm{mol}$ ): C, $71.01 ; \mathrm{H}, 4.57$; N; 5.52. Found: C, 71.19; H, 4.52; N 5.48.

## 2,6-Dibenzyl-4-tert-butyl- $N$-(quinolin-8-yl)benzamide (Table 5, Entry 3)—

 $\mathrm{Pd}(\mathrm{OAc})_{2}(8.3 \mathrm{mg}, 0.037 \mathrm{mmol}), 4$-tert-butyl- $N$-(quinolin-8-yl)benzamide ( $225 \mathrm{mg}, 0.74$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85 \mathrm{mmol})$, pivalic acid ( $14.8 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), and benzyl bromide ( $380 \mathrm{mg}, 2.22 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 0.7 mL ). Resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for 20 h . After column chromatography (toluene/ethyl acetate $100 / 1$ to $50 / 1), 318 \mathrm{mg}$ ( $88 \%$ yield) of a crystalline material was obtained. $\mathrm{R}_{f}=0.22$ (toluene/ethyl acetate $70 / 1$ ), $\mathrm{mp}=136-137{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.64$ (s, 1 H ), $8.93-8.90$ (dd, $J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.57-8.54$ (dd, $J=4.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.14-8.11$ (dd, $J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 6 \mathrm{H}), 7.10-7.05$ $(\mathrm{m}, 4 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 4 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 168.7, 152.2, 148.0, 140.5, 138.4, 137.6, 136.1, 135.4, 134.4, 129.1, 128.3, 127.9, 127.4, $125.9,125.4,121.9,121.5,116.7,39.6,34.7,31.3$. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v 3363, 1676, 1521, 1485. Anal. calcd. for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}$ ( $507.42 \mathrm{~g} / \mathrm{mol}$ ): C, 84.26; H, 6.66; N, 5.78. Found: C, 84.26; H, 6.68; N 5.82.2-Benzyl- N -(quinolin-8-yl)-5-(trifluoromethyl)benzamide(Table 5, Entry 4)$\mathrm{Pd}(\mathrm{OAc})_{2}(8.3 \mathrm{mg}, 0.037 \mathrm{mmol}), N$-(quinolin-8-yl)-3-(trifluoromethyl)benzamide ( 234 mg , $0.74 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85 \mathrm{mmol})$, pivalic acid ( $14.8 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), and benzyl bromide ( $380 \mathrm{mg}, 2.22 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 0.7 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 20 h . After column chromatography (hexanes/ethyl acetate 10/1), $212 \mathrm{mg}(71 \%)$ of crystalline material was obtained. $\mathrm{R}_{f}=0.27$ (hexanes/ethyl acetate 10/1), $\mathrm{mp}=124-126^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 10.11(\mathrm{~s}, 1 \mathrm{H}), 8.91-8.87$ (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.75-8.72(\mathrm{dd}, J=4.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21-8.17(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.90(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 4 \mathrm{H})$, $7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 196.8,148.4,143.8$, $139.6,138.5,137.6,136.4,134.3,131.5,129.3,128.9$ (q, $\left.J_{\mathrm{C}-\mathrm{F}}=32.0 \mathrm{~Hz}\right), 128.6,128.5$, $128.0,127.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 126.5,124.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 123.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=271.5 \mathrm{~Hz}\right)$, $122.4,121.8,116.9,38.9 .{ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 62.3$ (s). FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 3361,1674,1525,1485$. Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}(406.40 \mathrm{~g} / \mathrm{mol})$ : C, 70.93; H, 4.22; N, 6.89. Found: C, 70.83; H, 4.33; N 6.69 .

## 2,6-Dibenzyl-4-methoxy-N-(quinolin-8-yl)benzamide (Table 5, Entry 5)-

$\mathrm{Pd}(\mathrm{OAc})_{2}(8.3 \mathrm{mg}, 0.037 \mathrm{mmol}), 4$-methoxy- N -(quinolin- 8 -yl)benzamide ( $206 \mathrm{mg}, 0.74$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85 \mathrm{mmol})$, pivalic acid ( $14.8 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), and benzyl bromide ( $380 \mathrm{mg}, 2.22 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 0.7 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 15 h . After column chromatography (toluene/ethyl acetate 40/1), 198 mg ( $58 \%$ ) of crystalline material was obtained. $\mathrm{R}_{f}=0.33$ (toluene/ethyl acetate 40/1), $\mathrm{mp}=137-138{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.74(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{dd}, J=$
$7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{dd}, J=4.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.51(\mathrm{~m}$, $2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{~s}$, $2 \mathrm{H}), 4.09(\mathrm{~s}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 168.5,159.9,148.0$, $140.1,140.0,138.4,136.1,134.4,131.1,129.2,128.4,127.9,127.4,126.1,121.8,121.5$, 116.6, 113.5, 55.2, 39.4. FT-IR (neat, $\mathrm{cm}^{1}$ ) $v 3344,1669,1521,1485$. Anal. calcd. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$ (458.55 g/mol): C, 81.20; H, 5.72; N, 6.11. Found: C, 80.94; H, 5.73; N 6.10.

2,6-Dibenzyl-4-methoxy-3-methyl- N -(quinolin-8-yl)benzamide (Table 5, Entry 6) $-\mathrm{Pd}(\mathrm{OAc})_{2}(8.3 \mathrm{mg}, 0.037 \mathrm{mmol}), 4-$ methoxy-3-methyl- $N$-(quinolin-8-yl)benzamide ( 216 $\mathrm{mg}, 0.74 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85 \mathrm{mmol})$, pivalic acid ( $14.8 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), and benzyl bromide ( $380 \mathrm{mg}, 2.22 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 1.0 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h . After column chromatography (toluene/ethyl acetate $40 / 1), 258 \mathrm{mg}(74 \%)$ of crystalline material was obtained. $\mathrm{TLC} \mathrm{R}_{f}=0.35$ (toluene/ethyl acetate $40 / 1$ ), $\mathrm{mp}=138-139^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.70(\mathrm{~s}$, $1 \mathrm{H}), 8.87$ (dd, $J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.53 (dd, $J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.09$ (dd, $J=8.2,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 5 \mathrm{H}), 7.07-$ $6.96(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 169.2,158.3,147.9,140.6,140.0,138.4,136.6,136.3,136.0$, $134.4,132.1,129.1,128.4,128.3,128.3,127.8,127.3,126.0,125.6,124.5,121.7,121.4$, 116.5, 110.2, 55.5, 39.5, 36.9, 11.9. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 3353,1671,1521,1482$. HRMS $(\mathrm{m} / \mathrm{z})$ : $\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}, 472.2151$; found, 472.2152 , error= 0.2 ppm .

4-tert-Butyl-2,6-diethyl-N-(quinolin-8-yl)benzamide (Table 5, Entry 7)—Pd(OAc) ${ }_{2}$ ( $8.3 \mathrm{mg}, 0.037 \mathrm{mmol}$ ), 4-tert-butyl- $N$-(quinolin- 8 -yl)benzamide ( $225 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $256 \mathrm{mg}, 1.85 \mathrm{mmol}$ ), pivalic acid ( $14.8 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), and iodoethane ( 346 mg , $2.22 \mathrm{mmol})$ were dissolved in $t$-amyl alcohol $(1.0 \mathrm{~mL})$. Resulting mixture was stirred at 110 ${ }^{\circ} \mathrm{C}$ for 20 h . After column chromatography (toluene/ethyl acetate 50/1), $240 \mathrm{mg}(90 \%)$ of crystalline material was obtained. $\mathrm{R}_{f}=0.33$ (toluene/ethyl acetate $50 / 1$ ), $\mathrm{mp}=125-127^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 9.94(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{dd}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 8.72 (dd, $J=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19-8.15$ (dd, $J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.45-$ $7.41(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.71(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 169.3,152.2,148.3,140.4,138.6,136.3,134.6$, $134.5,128.1,127.5,123.3,121.8,121.7,116.8,34.8,31.4,26.9,16.2$. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v$ 3341, 1673, 1520, 1487. Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$ ( $360.49 \mathrm{~g} / \mathrm{mol}$ ): C, 79.96; H, 7.83; N, 7.77. Found: C, 79.81; H, 7.88; N 7.66.

## 4-tert-Butyl-2,6-diisobutyl- $\mathbf{N}$-(quinolin-8-yl)benzamide (Table 5, Entry 8)—

$\mathrm{Pd}(\mathrm{OAc})_{2}(8.3 \mathrm{mg}, 0.037 \mathrm{mmol})$, 4-tert-butyl- $N$-(quinolin- 8 -yl)benzamide ( $225 \mathrm{mg}, 0.74$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85 \mathrm{mmol})$, pivalic acid ( $14.8 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), and 1-iodo-2methylpropane ( $408 \mathrm{mg}, 2.22 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 1.0 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 40 h . After column chromatography (toluene/ethyl acetate $50 / 1), 229 \mathrm{mg}(75 \%)$ of crystalline material was obtained. $\mathrm{R}_{f}=0.37$ (toluene/ethyl acetate $50 / 1), \mathrm{mp}=114-116{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.98$ (dd, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.71$ (dd, $J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18$ (dd, $J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-$ $7.54(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}) 2.59(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 2 \mathrm{H})$, $1.35(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 169.3,151.1$, 148.2, 138.6, 137.8, 136.3, 135.7, 134.6, 128.1, 127.5, 124.7, 121.7, 121.6, 116.7, 43.0, 34.6, 31.3, 30.1, 22.7. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 3348,1677,1519,1483$. Anal. calcd. for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}$ (416.60 g/mol): C, 80.73; H, 8.71; N, 6.72. Found: C, 80.66; H, 8.68; N 6.69.

4-tert-Butyl-2,6-diphenethyl-N-(quinolin-8-yl)benzamide (Table 5, Entry 9)— $\mathrm{Pd}(\mathrm{OAc})_{2}(8.3 \mathrm{mg}, 0.037 \mathrm{mmol}), 4$-tert-butyl- $N$-(quinolin-8-yl)benzamide ( $225 \mathrm{mg}, 0.74$
$\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ( $256 \mathrm{mg}, 1.85 \mathrm{mmol}$ ), pivalic acid ( $14.8 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), and ( $2-$ iodoethyl)benzene ( $515 \mathrm{mg}, 2.22 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 0.7 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 20 h . After column chromatography (toluene/ ethyl acetate $50 / 1$ ), $350 \mathrm{mg}(92 \%)$ of crystalline material was obtained. $\mathrm{R}_{f}=0.30$ (toluene/ ethyl acetate $50 / 1$ ), $\mathrm{mp}=160-161{ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.98$ ( $\mathrm{s}, 1 \mathrm{H}), 9.04(\mathrm{dd}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{dd}, J=4.1,1.7, \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{dd}, J=8.4,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 6 \mathrm{H}), 7.03$ $(\mathrm{s}, 2 \mathrm{H}), 3.05-2.98(\mathrm{~m}, 8 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 169.0,151.8$, $148.3,141.8,138.5,138.0,136.4,135.0,134.5,128.6,128.3,128.1,127.5,125.8,124.7$, 122.0, 121.7, 116.9, 38.3, 36.3, 34.6, 31.3. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 3350,1670,1519,1484$. Anal. calcd. for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}(512.68 \mathrm{~g} / \mathrm{mol})$ : C, $84.34 ; \mathrm{H}, 7.08$; N, 5.46. Found: C, 84.35; H, 7.10; N 5.56.

## Diethyl 7,7'-(5-(tert-butyl)-2-(quinolin-8-ylcarbamoyl)-1,3-

 phenylene)diheptanoate (Table 5, Entry 10)—Pd(OAc) $)_{2}(8.3 \mathrm{mg}, 0.037 \mathrm{mmol}), 4-$ tert-butyl- $N$-(quinolin-8-yl)benzamide ( $225 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $256 \mathrm{mg}, 1.85 \mathrm{mmol}$ ), pivalic acid ( $14.8 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), and ethyl 7-iodoheptanoate ( $630 \mathrm{mg}, 2.22 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 1.0 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 20 h . After column chromatography (toluene/ethyl acetate $40 / 1$ to $200 / 1$ ), 353 mg ( $77 \%$ ) of a yellow oil was obtained. TLC $\mathrm{R}_{f}=0.08$ (toluene/ethyl acetate $40 / 1$ ). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ (dd, $J$ $=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 2 \mathrm{H}), 4.11-4.04(\mathrm{~m}, 4 \mathrm{H})$, $2.72-2.66(\mathrm{~m}, 4 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H})$, 1.33-1.18 (m, 14H). ${ }^{13} \mathrm{C}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 173.8,169.2,151.9,148.3,139.0$, $138.5,136.3,134.8,134.5,128.1,127.5,123.9,121.8,121.7,116.7,60.1,34.7,34.2,33.8$, 31.7, 31.4, 29.3, 28.9, 24.8, 14.3. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 3344,1734,1519,1482$. Anal. calcd. for $\mathrm{C}_{38} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{5}(616.83 \mathrm{~g} / \mathrm{mol})$ : C, $73.99 ; \mathrm{H}, 8.50 ; \mathrm{N}, 4.54$. Found: C, $73.75 ; \mathrm{H}, 8.61$; N, 4.43.
## 4-(tert-Butyl)-2,6-bis(2-chlorobenzyl)- N -(quinolin-8-yl)benzamide (Table 5,

 Entry 11)— $\mathrm{Pd}(\mathrm{OAc})_{2}(8.3 \mathrm{mg}, 0.037 \mathrm{mmol}), 4$-tert-butyl- N -(quinolin- 8 -yl)benzamide ( 225 $\mathrm{mg}, 0.74 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85 \mathrm{mmol})$, pivalic acid ( $14.8 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), and 1-(bromomethyl)-2-chlorobenzene ( $456 \mathrm{mg}, 2.22 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 0.7 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 20 h . After column chromatography (toluene/ethyl acetate $50 / 1$ to $25 / 1$ ), $286 \mathrm{mg}\left(70 \%\right.$ ) of crystalline material was obtained. $\mathrm{R}_{f}$ $=0.38$ (toluene/ethyl acetate $50 / 1$ ), $\mathrm{mp}=140-141^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 8.14 (dd, $J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 4 \mathrm{H})$, 7.12-6.99 (m, 6H), $4.25(\mathrm{~s}, 4 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 168.4$, $152.3,148.0,138.5,138.2,136.2,136.1,135.6,134.3,134.2,131.4,129.3,127.9,127.6$, $127.4,126.8,125.3,121.9,121.5,116.8,36.8,34.7,31.1$. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v3341, 1670, 1524,1486 . Anal. calcd. for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ ( $553.52 \mathrm{~g} / \mathrm{mol}$ ): C, $73.78 ; \mathrm{H}, 5.46$; N, 5.06 ;. Found: C, 73.58; H, 5.57; N 5.05.
## Dimethyl 3,3'-((5-(tert-butyl)-2-(quinolin-8-ylcarbamoyl)-1,3-phenylene)bis-

 (methylene))-dibenzoate (Table 5, Entry 12)—Pd(OAc) $2(8.3 \mathrm{mg}, 0.037 \mathrm{mmol}), 4$ -tert-butyl- $N$-(quinolin- 8 -yl)benzamide ( $225 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $256 \mathrm{mg}, 1.85 \mathrm{mmol}$ ), pivalic acid ( $14.8 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), and methyl 3-(bromomethyl)benzoate ( $508 \mathrm{mg}, 2.22$ $\mathrm{mmol})$ were dissolved in $t$-amyl alcohol ( 1.0 mL ). Resulting mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 20 h . After column chromatography (toluene/ethyl acetate $25 / 1$ to $15 / 1$ ), 318 mg ( $94 \%$ ) of crystalline material was obtained. $\mathrm{R}_{f}=0.18$ (toluene/ethyl acetate 25/1), $\mathrm{mp}=110-112$ ${ }^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 9.43(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{dd}, J=7.4,1.6 \mathrm{~Hz}$,$1 \mathrm{H}), 8.44(\mathrm{dd},, J=4.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 2 \mathrm{H}), 7.63-7.60$ $(\mathrm{m}, 2 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{~s}$, $4 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.3,166.9,152.5$, 147.9, 140.7, 138.2, 137.2, 136.0 (q, $\mathrm{Hz}=187.8$ ), 135.4, 134.0, 133.6, 130.1, 130.0, 128.4, $127.8,127.3,127.2,125.7,121.9,121.5,116.7,51.9,39.5,34.8,31.2$. FT-IR (neat, $\left.\mathrm{cm}^{-1}\right) v$ $3328,1673,1520,1484$. Anal. calcd. for $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5}$ ( $600.70 \mathrm{~g} / \mathrm{mol}$ ): C, $75.98 ; \mathrm{H}, 6.04 ; \mathrm{N}$, 4.66. Found: C, 75.86; H, 6.08; N 4.67.

4-(tert-Butyl)-N-(quinolin-8-yl)-2,6-bis(4-(trifluoromethoxy)benzyl)benzamide (Table 5, Entry 13)—Pd(OAc) $)_{2}(8.3 \mathrm{mg}, 0.037 \mathrm{mmol}), 4$-tert-butyl- $N$-(quinolin- 8 yl)benzamide ( $225 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85 \mathrm{mmol})$, pivalic acid ( 14.8 mg , 0.15 mmol ), and 1-(bromomethyl)-4-(trifluoromethoxy)benzene ( $566 \mathrm{mg}, 2.22 \mathrm{mmol}$ ) were dissolved in 1.0 ml of $t$-amyl alcohol. Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 20 h . After column chromatography (toluene/ethyl acetate $25 / 1$ ), $433 \mathrm{mg}(90 \%$ ) of a crystalline material was obtained. $\mathrm{R}_{f}=0.27$ (toluene/ethyl acetate $70 / 1$ ), $\mathrm{mp}=118-119^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 9.52(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{dd}, J=7.1,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 8.50 (dd, $J=4.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37$ $(\mathrm{m}, 1 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 6 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 4 \mathrm{H}), 4.08(\mathrm{~s}, 4 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v3335, 1670, 1523, 1485. ${ }^{13} \mathrm{C}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 168.3,152.6,148.1$, $147.5,139.2,138.1,137.2,136.2,135.4,134.0,130.1,127.9,127.2,125.7,122.1,121.6$, 120.8, 119.1, 116.5, 39.0, 34.8, 31.2. ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) d57.9. Anal. calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}(652.63 \mathrm{~g} / \mathrm{mol})$ : C, $66.25 ; \mathrm{H}, 4.63 ; \mathrm{N}, 4.29$. Found: C, $66.51 ; \mathrm{H}$, 4.58; N 4.33.

## 4-(tert-Butyl)-2,6-bis(3-nitrobenzyl)-N-(quinolin-8-yl)benzamide (Table 5, Entry

 14)- $\mathrm{Pd}(\mathrm{OAc})_{2}(8.3 \mathrm{mg}, 0.037 \mathrm{mmol}), 4$-tert-butyl- $N$-(quinolin- 8 -yl)benzamide ( 225 mg , $0.74 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85 \mathrm{mmol})$, pivalic acid ( $14.8 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), and 1-(bromomethyl)-3-nitrobenzene ( $479 \mathrm{mg}, 2.22 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 0.7 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 20 h . After column chromatography (toluene/ethyl acetate $40 / 1$ to $30 / 1$ ), $365 \mathrm{mg}(86 \%)$ of a yellow solid was obtained. $\mathrm{R}_{f}=$ 0.31 (toluene/ethyl acetate $40 / 1$ ), $\mathrm{mp}=122-123^{\circ} \mathrm{C}$ (hexanes). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}) \delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{q}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{q}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{q}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.97-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.557 .51(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-$ $7.37(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 167.8,153.2,148.1,148.1,142.4,138.0,136.5,136.3,135.6$, $135.2,133.5,129.2,127.8,127.3,126.3,123.7,122.4,121.7,121.2,116.6,39.5,34.9,31.3$. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 3369,1671,1517,1481$. Anal. calcd. for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5}(574.63 \mathrm{~g} / \mathrm{mol})$ : C, 71.07; H, 5.26; N, 9.75. Found: C 71.02, H 5.27, N 9.74.
## 4-(tert-Butyl)-2,6-bis(6-(1,3-dioxoisoindolin-2-yl)hexyl)- N -(quinolin-8-

 yl)benzamide (Table 5, Entry 15)—Pd(OAc) $)_{2}(8.3 \mathrm{mg}, 0.037 \mathrm{mmol})$, 4-tert-butyl- $N$ -(quinolin-8-yl)benzamide ( $225 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85 \mathrm{mmol})$, pivalic acid ( $14.8 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), and 2-(6-iodohexyl)isoindoline-1,3-dione ( $792 \mathrm{mg}, 2.22 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 3.0 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 40 h . After column chromatography (toluene/ethyl acetate $30 / 1$ to 20/1), 420 mg ( $74 \%$ ) of a yellow oil was obtained. $\mathrm{R}_{f}=0.13$ (toluene/ethyl acetate $30 / 1$ ). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 9.88 (s, 1H), 8.96 (dd, $J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.13$ (dd, $J=8.4$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H})$, $7.11(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.63(\mathrm{t}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.65(\mathrm{q}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.53-$ $1.47(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.31-1.19(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 169.2$, $168.4,151.8,148.2,138.9,138.5,136.3,134.8,134.5,133.8,132.2,128.0,127.5,124.0$, 123.2, 121.8, 121.6, 116.8, 38.0, 34.7, 33.8, 31.8, 31.4, 29.3, 28.5, 26.7. FT-IR (neat, $\mathrm{cm}^{-1}$ )$v 3370,1674,1519,1482$. Anal. calcd. for $\mathrm{C}_{48} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{5}(762.93 \mathrm{~g} / \mathrm{mol}): \mathrm{C}, 75.57 ; \mathrm{H}, 6.61$; N, 7.34. Found: C, 75.29; H, 6.74; N 7.27.

4-(tert-Butyl)-2,6-bis(3-methylbut-2-en-1-yl)-N-(quinolin-8-yl)benzamide (Table 5, Entry 16)—Pd(OAc) ${ }_{2}(8.3 \mathrm{mg}, 0.037 \mathrm{mmol}), 4$-tert-butyl- $N$-(quinolin- 8 -yl)benzamide ( $225 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85 \mathrm{mmol}$ ), pivalic acid ( $14.8 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), and 1-bromo-3-methylbut-2-ene ( $330 \mathrm{mg}, 2.22 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 1.0 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 96 h . After column chromatography (hexanes/ethyl acetate $15 / 1), 72 \mathrm{mg}(22 \%)$ of yellow oil was obtained. $\mathrm{R}=0.31$ (hexanes/ ethyl acetate $15 / 1$ ). ${ }^{1} f \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 9.02-8.98(\mathrm{~m}, 1 \mathrm{H})$, 8.73-8.69 (m, 1H), 8.19-8.14 (m, 1H), 7.61-7.52 (m, 2H), 7.45-7.43 (m, 1H), 7.15 (s, 2H), $5.33-5.27(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}), 1.46(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 169.1,152.2,148.1,138.5,138.2,136.3,134.9,134.8$, 132.4, 127.9, 127.5, 124.2, 123.3, 121.7, 121.6, 116.7, 34.7, 32.6, 31.3, 25.6, 17.8. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v3339, 1675, 1520, 1482. HRMS ( $\mathrm{m} / \mathrm{z}$ ): $\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}, 440.2828$; found, 440.2827 , error $=0.2 \mathrm{ppm}$.

General procedure for alkylation of 8-aminoquinoline amide $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bondsA 2-dram screw-cap vial was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv), substrate, pivalic acid (2 equiv), and alkyl bromide or iodide (4 equiv). $t$-Amyl alcohol solvent $(0.5-1.0 \mathrm{~mL})$ was added and the resulting mixture was stirred and heated at $110^{\circ} \mathrm{C}$ for $12-96 \mathrm{~h}$. The conversion was monitored by TLC. After completion of reaction, ethyl acetate was added to reaction mixture followed by extraction with water. Aqueous layer was washed with ethyl acetate ( $3 \times 5 \mathrm{~mL}$ ). Combined organic extracts were dried over $\mathrm{MgSO}_{4}$. Filtration and evaporation under reduced pressure followed by purification by flash chromatography gave pure product.
$\mathbf{N}$-(Quinolin-8-yl)pentanamide (Table 6, Entry 1)—Pd(OAc) $2(8.3 \mathrm{mg}, 0.037 \mathrm{mmol})$, $N$-(quinolin- 8 -yl)propionamide ( $148 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85 \mathrm{mmol})$, pivalic acid ( $151 \mathrm{mg}, 1.48 \mathrm{mmol}$ ), and iodoethane ( $461 \mathrm{mg}, 2.96 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 0.5 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h . After column chromatography (toluene/ethyl acetate 20/1), $133 \mathrm{mg}(78 \%)$ of a yellow oil was obtained. $\mathrm{R}_{f}=0.20$ (toluene/ethyl acetate 20/1). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 9.80(\mathrm{~s}, 1 \mathrm{H})$, $8.77-8.82(\mathrm{~m}, 2 \mathrm{H}), 8.13(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.55(\mathrm{~m}, 3 \mathrm{H}), 2.56(\mathrm{t}, 7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.76-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.51(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 172.1,148.2,138.4,136.5,134.7,128.0,127.5,121.7,121.4,116.5,38.1$, $27.9,22.6,14.0$. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 3355,1688,1524,1486$. This compound is known. ${ }^{21}$
$\mathbf{N}$-(Quinolin-8-yl)heptanamide (Table 6, Entry 2)—Pd(OAc $)_{2}(8.3 \mathrm{mg}, 0.037 \mathrm{mmol})$, $N$-(quinolin- 8 -yl)propionamide ( $148 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85 \mathrm{mmol})$, pivalic acid ( $151 \mathrm{mg}, 1.48 \mathrm{mmol}$ ), and 1 -iodobutane ( $544 \mathrm{mg}, 2.96 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 0.6 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h . After column chromatography (toluene/ethyl acetate 20/1), $101 \mathrm{mg}(53 \%)$ of yellow oil was obtained. $\mathrm{R}_{f}$ $=0.56$ (toluene/ethyl acetate 20/1). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 8.79-$ $8.77(\mathrm{~m}, 2 \mathrm{H}), 8.13(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.41(\mathrm{~m}, 3 \mathrm{H}), 2.54(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.84-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.31(\mathrm{~m}, 4 \mathrm{H}), 0.91-0.87(\mathrm{~m}, 3 \mathrm{H})$. This compound is known. ${ }^{22}$
$\boldsymbol{N}$-(Quinolin-8-yl)undecanamide (Table 6, Entry 3)—Pd(OAc) $)_{2}(8.3 \mathrm{mg}, 0.037$ mmol ), $N$-(quinolin- 8 -yl)propionamide ( $148 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85 \mathrm{mmol})$, pivalic acid ( $151 \mathrm{mg}, 1.48 \mathrm{mmol}$ ), and 1-iodooctane ( $710 \mathrm{mg}, 2.96 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 0.5 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h . After column
chromatography (toluene/ethyl acetate 25/1), $126 \mathrm{mg}(52 \%)$ of yellow oil was obtained. $\mathrm{R}_{f}$ $=0.46$ (toluene/ethyl acetate 20/1). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 8.77-$ $8.82(\mathrm{~m}, 2 \mathrm{H}), 8.13(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.55(\mathrm{~m}, 3 \mathrm{H}), 2.52-2.59(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.82(\mathrm{q}, J=15.0,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.19-1.46(\mathrm{~m}, 14 \mathrm{H}), 0.84-0.91(\mathrm{~m}, 3 \mathrm{H})$. This compound is known. ${ }^{4 b}$

5-Phenyl-N-(quinolin-8-yl)pentanamide (Table 6, Entry 4)— $\mathrm{Pd}(\mathrm{OAc})_{2}(8.3 \mathrm{mg}$, 0.037 mmol ), $N$-(quinolin-8-yl)propionamide ( $148 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $256 \mathrm{mg}, 1.85$ mmol ), pivalic acid ( $151 \mathrm{mg}, 1.48 \mathrm{mmol}$ ), and ( 2 -iodoethyl)benzene ( $686 \mathrm{mg}, 2.96 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 0.5 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h . After column chromatography (toluene/ethyl acetate 20/1), 138 mg ( $64 \%$ ) of yellow oil was obtained. $\mathrm{R}_{f}=0.45$ (toluene/ethyl acetate 20/1). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.72$ (s, $1 \mathrm{H}), 8.75-8.81(\mathrm{~m}, 2 \mathrm{H}), 8.13$ (dd, $J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.29$ (m, $5 \mathrm{H}), 2.68(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.81(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 171.7,148.2,142.3,138.4,136.5,134.61,128.6$, $128.4,128.0,127.5,125.9,121.7,121.5,116.5,38.2,35.9,31.2,25.5$. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v$ $3353,1687,1524,1485$. HRMS electrospray ( $\mathrm{m} / \mathrm{z}$ ): $\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$, 327.14733 ; found, 327.14703 , error $=0.75 \mathrm{ppm}$.

6-Methyl-N-(quinolin-8-yl)hept-5-enamide (Table 6, Entry 5)—Pd(OAc) ${ }_{2}$ ( 8.3 mg , 0.037 mmol ), $N$-(quinolin-8-yl)propionamide ( $148 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85$ mmol ), pivalic acid ( $151 \mathrm{mg}, 1.48 \mathrm{mmol}$ ), and 1-bromo-3-methylbut-2-ene ( $441 \mathrm{mg}, 2.96$ $\mathrm{mmol})$ were dissolved in $t$-amyl alcohol $(0.5 \mathrm{~mL})$. Resulting mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 24 h . After column chromatography (toluene/ethyl acetate 25/1) $58 \mathrm{mg}(29 \%)$ of yellow oil was obtained. $\mathrm{R}_{f}=0.43$ (toluene/ethyl acetate $25 / 1$ ). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \boldsymbol{\delta}$ $9.79(\mathrm{~s}, 1 \mathrm{H}), 8.76-8.81(\mathrm{~m}, 2 \mathrm{H}), 8.15(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.55(\mathrm{~m}, 3 \mathrm{H}), 5.12-$ $5.19(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 172.1,148.3,138.5,136.5$, 134.7, 132.8, 128.1, 127.6, 123.8, 121.7, 121.5, 116.6, 37.8, 27.6, 25.9, 25.9, 17.9. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 3357,1687,1524,1486$. HRMS electrospray $(\mathrm{m} / \mathrm{z}):\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}, 291.14734$; found, 291.14693 , error $=0.48 \mathrm{ppm}$.

5-Methyl- N -(quinolin-8-yl)hexanamide (Table 6, Entry 6)— $\mathrm{Pd}(\mathrm{OAc})_{2}(8.3 \mathrm{mg}$, 0.037 mmol ), $N$-(quinolin-8-yl)propionamide ( $148 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $256 \mathrm{mg}, 1.85$ mmol ), pivalic acid ( $151 \mathrm{mg}, 1.48 \mathrm{mmol}$ ), and l-iodo-2-methylpropane ( $544 \mathrm{mg}, 2.96 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol $(0.5 \mathrm{~mL})$. Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h . After column chromatography (toluene/ethyl acetate $10 / 1$ ), $133 \mathrm{mg}(78 \%)$ of yellow oil was obtained. $\mathrm{R}_{f}=0.45$ (toluene/ethyl acetate $10 / 1$ ). ${ }^{1} \mathrm{fH} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.81$ $(\mathrm{s}, 1 \mathrm{H}), 8.83-8.76(\mathrm{~m}, 2 \mathrm{H}), 8.14(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.41(\mathrm{~m}, 3 \mathrm{H}), 2.55(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.27(\mathrm{~m}, 2 \mathrm{H}), 0.94-0.88(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 6 \mathrm{H})$. This compound is known. ${ }^{4 \mathrm{~b}}$

## 4-(2-Bromophenyl)- $\mathbf{N}$-(quinolin-8-yl)butanamide (Table 6, Entry 7)—Pd(OAc) 2

 ( $8.3 \mathrm{mg}, 0.037 \mathrm{mmol}$ ), $N$-(quinolin-8-yl)propionamide ( $148 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 256 $\mathrm{mg}, 1.85 \mathrm{mmol})$, pivalic acid ( $151 \mathrm{mg}, 1.48 \mathrm{mmol}$ ), and 1-bromo-2-(bromomethyl)benzene ( $739 \mathrm{mg}, 2.96 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 0.5 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h . After column chromatography (toluene/ethyl acetate 15/1), 166 $\mathrm{mg}(60 \%)$ of yellow oil was obtained. $\mathrm{R}_{f}=0.41$ (toluene/ethyl acetate $\left.15 / 1\right) .{ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 8.82-8.76(\mathrm{~m}, 2 \mathrm{H}), 8.14(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-$ $7.40(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.20-2.11(\mathrm{~m}, \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 171.4,148.3,140.9$, $138.4,136.5,134.6,132.9,130.7,128.0,127.9,127.6,127.5,124.6,121.7,121.5,116.6$,37.4, 35.5, 25.6. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 3344,1688,1524,1486$. HRMS electrospray ( $\mathrm{m} / \mathrm{z}$ ): $\left[\mathrm{M}^{+}+\mathrm{Na}\right.$ ] calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}, 391.04221$; found, 391.04175 , error= $=0.27 \mathrm{ppm}$.

2-Ethyl- $\boldsymbol{N}$-(quinolin-8-yl)undecanamide (Table 6, Entry 8)- $\mathrm{Pd}(\mathrm{OAc})_{2}(8.3 \mathrm{mg}$, 0.037 mmol ), 2-methyl- $N$-(quinolin- 8 -yl)butanamide ( $169 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 256 $\mathrm{mg}, 1.85 \mathrm{mmol}$ ), pivalic acid ( $151 \mathrm{mg}, 1.48 \mathrm{mmol}$ ), and 1 -iodooctane ( $710 \mathrm{mg}, 2.96 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol $(0.7 \mathrm{~mL})$. Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h . After column chromatography (hexanes/ethyl acetate 12/1), $101 \mathrm{mg}(40 \%$ ) of yellow oil was obtained. $\mathrm{TLC} \mathrm{R}_{f}=0.54$ (hexanes /ethyl acetate $12 / 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}) \delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 8.87-8.78(\mathrm{~m}, 2 \mathrm{H}), 8.15(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.41(\mathrm{~m}, 3 \mathrm{H})$, $2.43-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.12(\mathrm{~m}, 14 \mathrm{H}), 1.03-0.96(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 175.1,148.3$, $138.6,136.5,134.7,128.1,127.6,121.7,121.5,116.6,51.2,33.1,32.0,29.9,29.7,29.6$, 29.4, 27.8, 26.4, 22.8, 14.3, 13.0. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v 3356,2926,2854,1689,1524,1486$, 1324. HRMS electrospray ( $\mathrm{m} / \mathrm{z}$ ): $\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}, 393.13792$; found, 393.13782, error=1.16 ppm.

2-(2-Fluoro-[1,1'-biphenyl]-4-yl)-N-(quinolin-8-yl)undecanamide (Table 6, Entry 9)- $\mathrm{Pd}(\mathrm{OAc})_{2}(8.3 \mathrm{mg}, 0.037 \mathrm{mmol})$, 2-(2-fluoro-[1,1'-biphenyl]-4-yl)- $N$-(quinolin- 8 yl)propanamide ( $274 \mathrm{mg}, 0.74 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85 \mathrm{mmol}$ ), pivalic acid ( 151 mg , 1.48 mmol ), and 1 -iodooctane ( $710 \mathrm{mg}, 2.96 \mathrm{mmol}$ ) were dissolved in $t$-amyl alcohol ( 0.7 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h . After column chromatography (hexanes/ethyl acetate $7 / 1$ ), $162 \mathrm{mg}(45 \%)$ of yellow oil was obtained. $\mathrm{R}_{f}=0.29$ (hexanes/ ethyl acetate $7 / 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 8.81-8.74(\mathrm{~m}, 2 \mathrm{H}), 8.13$ (dd, $J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.29(\mathrm{~m}, 11 \mathrm{H}), 3.77-3.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.25(\mathrm{~m}$, $1 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.15(\mathrm{~m}, 14 \mathrm{H}), 0.89-0.82(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 400 $\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$; list of signals, C-F coupling not assigned) $\delta 171.7,161.2,158.7,148.3$, $141.6,141.5,138.5,136.4,135.7,134.5,131.1,131.0,129.1,129.0,128.5,128.0,127.9$, 127.7, 127.5, 124.2, 124.1, 121.8, 121.7, 116.5, 115.8, 115.6, 54.6, 33.6, 32.0, 29.7, 29.6, 29.4, 27.9, 22.8, 14.2. ${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 117.3$. FT-IR (neat, $\mathrm{cm}^{-1}$ ) $v$ $2927,2854,1688,1525,1484,1424,1325$. HRMS electrospray ( $\mathrm{m} / \mathrm{z}$ ): [ $\left.\mathrm{M}^{+}+\mathrm{Na}\right]$ calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}, 393.13792$; found, 393.13782, error $=1.16 \mathrm{ppm}$.

## 2-Octyl-N-(quinolin-8-yl)cyclohexanecarboxamide (Table 6, Entry 10)-

 $\mathrm{Pd}(\mathrm{OAc})_{2}(8.3 \mathrm{mg}, 0.037 \mathrm{mmol}), N$-(quinolin- 8 -yl)cyclohexanecarboxamide ( $188 \mathrm{mg}, 0.74$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(256 \mathrm{mg}, 1.85 \mathrm{mmol})$, pivalic acid ( $151 \mathrm{mg}, 1.48 \mathrm{mmol}$ ), and 1-iodooctane $(710 \mathrm{mg}, 2.96 \mathrm{mmol})$ were dissolved in $t$-amyl alcohol ( 0.7 mL ). Resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h . After column chromatography (hexanes/ethyl acetate $12 / 1$ ), 42 mg ( $15 \%$ ) of yellow oil was obtained. TLC $\mathrm{R}_{f}=0.29$ (hexanes/ethyl acetate $12 / 1$ ). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.85-8.79(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57-7.43(\mathrm{~m}, 3 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.05(\mathrm{~m}, 20 \mathrm{H}), 1.04-0.92$ $(\mathrm{m}, 1 \mathrm{H}), 0.83-0.78(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) $\delta 175.2,148.3$, $138.6,136.5,134.8,128.1,127.6,121.7,121.4,116.6,54.2,39.5,35.0,32.0,31.3,31.1$, 30.0, 29.7, 29.4, 26.7, 26.1, 26.0, 22.8, 14.3. FT-IR (neat, $\mathrm{cm}^{-1}$ ) v3354, 2924, 2855, 1685, $1523,1485,1327,1160$. HRMS electrospray (m/z): [ $\left.\mathrm{M}^{+}+\mathrm{Na}\right]$ calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}$, 389.25689 ; found, 389.25660 , error $=0.69 \mathrm{ppm}$.Cleavage of the 8-aminoquinoline auxiliary: 5-Phenylpentanoic acid-5-Phenyl-$N$-(quinolin- 8 -yl)pentanamide ( $1.0 \mathrm{mmol}, 304 \mathrm{mg}$ ), $\mathrm{NaOH}(2.5 \mathrm{mmol}, 100 \mathrm{mg}$ ), and ethanol $(2.0 \mathrm{~mL})$ were mixed in a 2 -dram vial. The vial was capped, heated and stirred at $70^{\circ} \mathrm{C}$ for 3 h. After the reaction was complete, the contents of the vial was transferred to flask and water $(10 \mathrm{~mL})$ was added to the reaction mixture. The mixture was acidified with $\mathrm{HCl}(20 \%$
aqueous solution) to $\mathrm{pH}=1$. The product was extracted with ethyl acetate $(5 \times 5 \mathrm{~mL})$. The organic layers were combined, concentrated and subjected to column chromatography in hexanes/ethyl acetate 80/20. After concentration of the fractions containing the product, the residue was dried under reduced pressure. Product was obtained as tan crystals ( $155 \mathrm{mg}, 87$ $\%$ yield). $\mathrm{R}_{f}=0.30$ (hexanes/ethyl acetate 80/20). This compound is known. ${ }^{231} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 11.82($ br s, 1H) $7.33-7.14(\mathrm{~m}, 5 \mathrm{H}), 2.52-2.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.10-2.04(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.54(\mathrm{~m}, 4 \mathrm{H})$.

## Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

## Acknowledgments

This research was supported by the Welch Foundation (Grant E-1571), NIGMS (Grant R01GM077635), and Camille and Henry Dreyfus Foundation.

## REFERENCES

1. (a) Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110:624. Reviews: [PubMed: 19438203] (b) Ackermann L. Chem. Rev. 2011; 111:1315. [PubMed: 21391562] (c) Chen X, Engle KM, Wang D-H, Yu J-Q. Angew. Chem., Int. Ed. 2009; 48:5094.(d) Daugulis O, Do H-Q, Shabashov D. Acc. Chem. Res. 2009; 42:1074. [PubMed: 19552413] (e) Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107:174. [PubMed: 17212475] (f) Nakamura E, Yoshikai N. J. Org. Chem. 2010; 75:6061. [PubMed: 20521762] (g) Yeung CS, Dong VM. Chem. Rev. 2011; 111:1215. [PubMed: 21391561] (h) Sun C-L, Li B-J, Shi Z-J. Chem. Commun. 2010:677.(i) Li C-J. Acc. Chem. Res. 2009; 42:335. [PubMed: 19220064] (j) Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem.-Eur. J. 2010; 16:2654. [PubMed: 20143359] (k) Catellani M, Motti E, Della Ca N. Acc. Chem. Res. 2008; 41:1512. [PubMed: 18680317] (1) Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem., Int. Ed. 2012; 51:8960.(m) McMurray L, O'Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40:1885. [PubMed: 21390391]
2. (a) Neufeldt SR, Sanford MS. Acc. Chem. Res. 2012; 45:936. [PubMed: 22554114] (b) Messaoudi S, Brion J-D, Alami M. Eur. J. Org. Chem. 2010:6495.(c) Bellina F, Rossi R. Tetrahedron. 2009; 65:10269.(d) Engle KM, Mei T-S, Wasa M, Yu J-Q. Acc. Chem. Res. 2012; 45:788. [PubMed: 22166158] (e) Guo X, Li C-J. Org. Lett. 2011; 13:4977. [PubMed: 21879711] (f) Tran LD, Daugulis O. Org. Lett. 2010; 12:4277. [PubMed: 20825168] (g) Yao T, Hirano K, Satoh T, Miura M. Chem. - Eur. J. 2010; 16:12307. [PubMed: 20853292] (h) Chen Q, Ilies L, Nakamura E-I. J. Am. Chem. Soc. 2011; 133:428. [PubMed: 21158468] (i) Ackermann L, Hofmann N, Vicente R. Org. Lett. 2011; 13:1875. [PubMed: 21388178] (j) Ren P, Salihu I, Scopelliti R, Hu X. Org. Lett. 2012; 14:1748. [PubMed: 22404524] (k) Xiao B, Liu Z-J, Liu L, Fu Y. J. Am. Chem. Soc. 2013; 135:616. [PubMed: 23282325] (1) Hofmann N, Ackermann L. J. Am. Chem. Soc. 2013; 135:5877. [PubMed: 23534668] (m) Neufeldt SR, Seigerman CK, Sanford MS. Org. Lett. 2013; 15:2302. [PubMed: 23597105] (n) Tauchert ME, Incarvito CD, Rheingold AL, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2012; 134:1482. [PubMed: 22257031] (o) Lee D-H, Kwon K-H, Yi CS. J. Am. Chem. Soc. 2012; 134:7325. [PubMed: 22494241] (p) Tredwell MJ, Gulias M, Gaunt Bremeyer N, Johansson CCC, Collins BSL, Gaunt M. J. Angew. Chem., Int. Ed. 2011; 50:1076.
3. (a) Dyker G. Angew. Chem., Int. Ed. Engl. 1994; 33:103.(b) Barder TE, Walker SD, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2005; 127:4685. [PubMed: 15796535] (c) Chaumontet M, Piccardi R, Audic N, Hitce J, Peglion J-L, Clot E, Baudoin O. J. Am. Chem. Soc. 2008; 130:15157. [PubMed: 18928284] (d) Chaumontet M, Piccardi R, Baudoin O. Angew. Chem., Int. Ed. 2009; 48:179.(e) Lafrance M, Gorelsky SI, Fagnou K. J. Am. Chem. Soc. 2007; 129:14570. [PubMed: 17985911] (f) Liégault B, Fagnou K. Organometallics. 2008; 27:484.(g) Giri R, Maugel N, Li J-J, Wang D-H, Breazzano SP, Saunders LB, Yu J-Q. J. Am. Chem. Soc. 2007; 129:3510. [PubMed: 17335217] (h) Wang D-H, Wasa M, Giri R, Yu J-Q. J. Am. Chem. Soc. 2008; 130:7190. [PubMed: 18479089] (i) Watanabe T, Oishi S, Fujii N, Ohno H. Org. Lett. 2008; 10:1759. [PubMed: 18393521] (j) Chen X, Goodhue CE, Yu J-Q. J. Am. Chem. Soc. 2006; 128:12634. [PubMed:

17002342] (k) Wasa M, Engle KM, Yu J-Q. J. Am. Chem. Soc. 2009; 131:9886. [PubMed: 19580277] (1) Wasa M, Chan KSL, Zhang X-G, He J, Miura M, Yu J-Q. J. Am. Chem. Soc. 2012; 134:18570. [PubMed: 23116159] (m) Stowers KJ, Fortner KC, Sanford MS. J. Am. Chem. Soc. 2011; 133:6541. [PubMed: 21476513] (n) Rodríguez N, Romero-Revilla JA, Fernández-Ibáñez MÀ, Carretero JC. Chem. Sci. 2013; 4:175.(o) Baudoin O, Herrbach A, Gueritte F. Angew. Chem., Int. Ed. 2003; 42:5736.(p) Renaudat A.; Ludivine J-G, Rodolphe J, Kefalidis CE, Clot E, Baudoin O. Angew. Chem., Int. Ed. 2010; 49:7261.(q) Leskinen MV, Yip K-T, Valkonen A, Pihko PM. J. Am. Chem. Soc. 2012; 134:5750. [PubMed: 22424139]
4. (a) Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127:13154. [PubMed: 16173737] (b) Shabashov D, Daugulis O. J. Am. Chem. Soc. 2010; 132:3965. [PubMed: 20175511] (c) Tran LD, Daugulis O. Angew. Chem., Int. Ed. 2012; 51:5188.(d) Nadres ET, Daugulis O. J. Am. Chem. Soc. 2012; 134:7. [PubMed: 22206416] (e) Tran LD, Popov I, Daugulis O. J. Am. Chem. Soc. 2012; 134:18237. [PubMed: 23102009] (f) Tran LD, Roane J, Daugulis O. Angew. Chem., Int. Ed. 2013; 52:6043.(g) Truong T, Klimovica K, Daugulis O. J. Am. Chem. Soc. 2013; 135:9342. [PubMed: 23758609] (h) Lazareva A, Daugulis O. Org. Lett. 2006; 8:5211. [PubMed: 17078680]
5. (a) Reddy BVS, Reddy LR, Corey EJ. Org. Lett. 2006; 8:3391. [PubMed: 16836413] (b) Feng Y, Chen G. Angew. Chem., Int. Ed. 2010; 49:958.(c) Li BTY, White JM, Hutton CA. Aust. J. Chem. 2010; 63:438.(d) Gutekunst WR, Baran PS. J. Am. Chem. Soc. 2011; 133:19076. [PubMed: 22066860] (e) Gutekunst WR, Gianatassio R, Baran PS. Angew. Chem., Int. Ed. 2012; 51:7507.(f) Fang Y, Wang Y, Landgraf B, Liu S, Chen G. Org. Lett. 2010; 12:3414. [PubMed: 20583778] (g) Zhao Y, Chen G. Org. Lett. 2011; 13:4850. [PubMed: 21853967] (h) Zhao Y, He G, Nack WA, Chen G. Org. Lett. 2012; 14:2948. [PubMed: 22670792] (i) Ano Y, Tobisu M, Chatani N. Org. Lett. 2012; 14:354. [PubMed: 22148889] (j) Ano Y, Tobisu M, Chatani N. J. Am. Chem. Soc. 2011; 133:12984. [PubMed: 21790123] (k) Huang L, Li Q, Wang C, Qi C. J. Org. Chem. 2013; 78:3030. [PubMed: 23425227] (1) Zhang S-Y, He G, Nack WA, Zhao Y, Li Q, Chen G. J. Am. Chem. Soc. 2013; 135:2124. [PubMed: 23350845] (m) He G, Chen G. Angew. Chem., Int. Ed. 2011; 50:5192. (n) Shang R, Ilies L, Matsumoto A, Nakamura E.-i. J. Am. Chem. Soc. 2013; 135:6030. [PubMed: 23581730] (o) Rouquet G, Chatani N. Chem. Sci. 2013; 4:2201.(p) Aihara Y, Chatani N. J. Am. Chem. Soc. 2013; 135:5308. [PubMed: 23495861] (q) Nishino M, Hirano K, Satoh T, Miura M. Angew. Chem., Int. Ed. 2013; 52:4457.(r) Suess AM, Ertem MZ, Cramer CJ, Stahl SS. J. Am. Chem. Soc. 2013; 135:9797. [PubMed: 23750607] (s) Aihara Y, Chatani N. Chem. Sci. 2013; 4:664.
6. (a) Canty A. J. Acc. Chem. Res. 1992; 25:83.(b) Racowski JM, Dick AR, Sanford MS. J. Am. Chem. Soc. 2009; 131:10974. [PubMed: 19459631] (c) Sobanov AA, Vedernikov AN, Dyker G, Solomonov BN. Mendeleev Commun. 2002; 1:14.(d) Amatore C, Catellani M, Deledda S, Jutand A, Motti E. Organometallics. 2008; 27:4549.(e) Guo R, Portscheller JL, Day VW, Malinakova HC. Organometallics. 2007; 26:3874.(f) Powers DC, Geibel MAL, Klein JEMN, Ritter T. J. Am. Chem. Soc. 2009; 131:17050. [PubMed: 19899740] (g) Deprez NR, Sanford MS. J. Am. Chem. Soc. 2009; 131:11234. [PubMed: 19621899]
7. Ittel SD, Johnson LK, Brookhart M. Chem. Rev. 2000; 100:1169. [PubMed: 11749263]
8. Lazareva A, Daugulis O. Org. Lett. 2006; 8:5211. [PubMed: 17078680]
9. Bon E, Bigg DCH, Bertrand G. J. Org. Chem. 1994; 59:4035.
10. Shabashov D, Daugulis O. J. Org. Chem. 2007; 72:7720. [PubMed: 17824657]
11. Beesley RM, Ingold CK, Thorpe JF. J. Chem. Soc., Trans. 1915; 107:1080.
12. Marsh CC, Schuna AA, Sundstrom WR. Pharmacotherapy. 1986; 6:10. [PubMed: 2937024]
13. Shinji C, Maeda S, Imai K, Yoshida M, Hashimoto Y, Miyachi H. Bioorg. Med. Chem. 2006; 14:7625. [PubMed: 16877001]
14. Suttsuo F, Kato K, Mukaiyama T. Chem. Lett. 2008; 37:506.
15. Yu H, Ballard CE, Wang B. Tetrahedron Lett. 2001; 42:1835.
16. Nag S, Butcher RJ, Bhattacharya S. Eur. J. Inorg. Chem. 2007:1251.
17. Arvapalli VS, Chen G, Kosarev S, Tan ME, Xie D, Yet L. Tetrahedron Lett. 2010; 51:284.
18. Hermange P, Lindhardt AT, Taaning RH, Bjerglund K, Lupp D, Skrydstrup T. J. Am. Chem. Soc. 2011; 133:6061. [PubMed: 21446732]
19. Gürbüz N, Özdemir I, Çetinkaya B. Tetrahedron Lett. 2005; 46:2273.
20. Bon E, Bigg DCH, Bertrand G. J. Org. Chem. 1994; 59:4035.
21. Lee JC Jr. Peris E, Rheingold AL, Crabtree RH. J. Am. Chem. Soc. 1994; 116:11014.
22. Heuer, HW.; Wehrmann, R.; Elschner, A. Elektrolumineszierende Anordnungen unter Verwendung von Bor-Chelaten von 8-Aminochinolin-Derivaten DE 19829949 A1. 05-01-2000
23. Klemm LH, Bower GM. J. Org. Chem. 1958; 23:344.


## Scheme 1.

Auxiliary-Assisted Arylation


Scheme 2.
Auxiliary-Assisted, Palladium-Catalyzed Arylation and Alkylation of $\mathrm{sp}^{2}$ and $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ Bonds


Scheme 3.
Directing Group Removal


Scheme 4.
Introduction of Second Aryl Group

## Table 1

Arylation Optimization ${ }^{a}$



| entry | reaction conditions | conv, $\%$ |
| :--- | :--- | :--- |
| 1 | $\mathrm{K}_{3} \mathrm{PO}_{4}$, toluene $/ \mathrm{CH}_{3} \mathrm{CN}$, <br> $140^{\circ} \mathrm{C}, 16 \mathrm{~h}$ | 15 |
| 2 | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, toluene $/ \mathrm{CH}_{3} \mathrm{CN}$, <br> $140^{\circ} \mathrm{C}, 16 \mathrm{~h}$ | 15 |
| 3 | CsOAc, toluene $/ \mathrm{CH}_{3} \mathrm{CN}$, <br> $140^{\circ} \mathrm{C}, 16 \mathrm{~h}$ | 30 |
| 4 | $\mathrm{CsOAc}, t$-amyl alcohol, 140 <br> ${ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$ | 90 |
| 5 | $\mathrm{CsOAc}, 10 \% \mathrm{CuBr}_{2}, t$-amyl <br> alcohol, $110{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$ | $75(70)^{b}$ |
| 6 | $\mathrm{CsOAc}, 10 \% \mathrm{CuBr}_{2}, t$-amyl <br> alcohol, $1400^{\circ} \mathrm{C}, 24 \mathrm{~h}$ | $>99(99)^{b}$ |

${ }^{a}$ conversion measured by GC with internal standard. Please see Experimental Section for details.
$b_{\text {Isolated yield. }}$

Table 2
Arylation of Benzylpicolinamide ${ }^{a}$



$9^{c} \quad 3$


98\%

98\%


84\%


| entry | Picolinamide | Aryl Iodide | Arylated Picolinamide |
| :--- | :--- | :--- | :--- | :--- |
| $12^{c, f}$ | 3 |  | Yield |







86\%

[^1]Table 3
Arylation of Alkyl Picolinamides ${ }^{a}$



[^2]Table 4
Alkylation of aryl and alkylpicolinamides ${ }^{a}$





$n$ BuI




20\%
$7^{e}$



$14 \%$

J Org Chem. Author manuscript; available in PMC 2014 October 04.

${ }^{a}$ Picolinamide ( 1 mmol ), RI ( 4 mmol ), $\mathrm{Pd}(\mathrm{OAc}) 2(10 \mathrm{~mol} \%), \mathrm{CuBr}_{2}(20 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(4 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}$ solvent, 24 h at $120^{\circ} \mathrm{C}$. Yields are isolated yields. Please see Experimental Section for details.
$b_{\text {Palladium acetate }}(5 \mathrm{~mol} \%), \mathrm{CuBr}_{2}(10 \mathrm{~mol} \%)$.
${ }^{c}$ Six equiv RI.
${ }^{d}$ Monoalkylation product also isolated (14\%).
${ }^{e}$ Dialkylation product also isolated (11\%).



Table 5
Alkylation of 8-Aminoquinoline Benzamides




${ }^{\mathrm{a}} \mathrm{Pd}(\mathrm{OAc}) 2(5 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}$ ( 2.5 equiv), substrate ( 0.74 mmol ), pivalic acid ( $2 \mathrm{~mol} \%$ ), alkyl bromide or iodide (3-4 equiv), $t$-amyl- OH solvent, $12-96 \mathrm{~h}$ at $110-{ }^{\circ} \mathrm{C}$. Yields are isolated yields. Please see Experimental section for details.

Table 6
Alkylation of 8-Aminoquinoline Amide sp ${ }^{3} \mathrm{C}$-H Bonds



| Entry | Amide | Alkyl Halide | Product | Yield |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 13 |  |  |  |  |

7


8

$n \mathrm{OctI}$

40\%

 15\%

[^3]Table 7
Optimization of Picolinamide Arylation ${ }^{a}$

|  |  |  |
| :---: | :---: | :---: |
| Entry | Reaction conditions | \% GC Yield (isolated) |
| 1 | $4 \mathrm{eq} \mathrm{NaOAc}, 2 \mathrm{~mL} \mathrm{MeCN}, 6{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$ | 0 |
| 2 | $4 \mathrm{eq} \mathrm{NaOAc}, 2 \mathrm{~mL}$ toluene, $140{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$ | 10 |
| 3 | $4 \mathrm{eq} \mathrm{CsOAc}, 1.6 \mathrm{~mL}$ toluene, $0.4 \mathrm{~mL} \mathrm{MeCN}, 140^{\circ} \mathrm{C}, 16 \mathrm{~h}$ | 30 |
| 4 | $2 \mathrm{eq} \mathrm{K}_{3} \mathrm{PO}_{4}, 1.6 \mathrm{~mL}$ toluene, $0.4 \mathrm{~mL} \mathrm{MeCN}, 140^{\circ} \mathrm{C}, 16 \mathrm{~h}$ | 15 |
| 5 | $2 \mathrm{eq} \mathrm{Cs}_{2} \mathrm{CO}_{3}, 1.6 \mathrm{~mL}$ toluene, $0.4 \mathrm{~mL} \mathrm{MeCN}, 140{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$ | 15 |
| 6 | $3 \mathrm{eq} \mathrm{K} 3_{3} \mathrm{PO}_{4}, 1.6 \mathrm{~mL} t$-amyl alcohol, $0.4 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 90^{\circ} \mathrm{C}, 16 \mathrm{~h}$ | 70 |
| 7 | $3 \mathrm{eq} \mathrm{K}_{2} \mathrm{CO}_{3}, 2 \mathrm{~mL} t$-amyl alcohol, $90{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}$ | 80 |
| 8 | $4 \mathrm{eq} \mathrm{K}_{2} \mathrm{CO}_{3}, 2 \mathrm{~mL} t$-amyl alcohol, $110^{\circ} \mathrm{C}, 24 \mathrm{~h}$ | 90 (86) |
| 9 | $4 \mathrm{eq} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}, 2 \mathrm{~mL} t$-amyl alcohol, $140^{\circ} \mathrm{C}, 24 \mathrm{~h}$ | 80 |
| 10 | $4 \mathrm{eq} \mathrm{CsOAc}, 1 \mathrm{~mL} t$-amyl alcohol, $110^{\circ} \mathrm{C}, 24 \mathrm{~h}$ | 85 |
| 11 | $4 \mathrm{eq} \mathrm{CsOAc}, 1 \mathrm{~mL}$ t-amyl alcohol, $140^{\circ} \mathrm{C}, 24 \mathrm{~h}$ | 90 |
| 12 | $10 \% \mathrm{CuBr}_{2}, 4 \mathrm{eq} \mathrm{CsOAc}, 1 \mathrm{~mL}$ t-amyl alcohol, $110^{\circ} \mathrm{C}, 24 \mathrm{hr}$ | 75 (70) |
| 13 | $10 \% \mathrm{CuBr}_{2}, 4 \mathrm{eq}$ CsOAc, 1 mL t-amyl alcohol, $140^{\circ} \mathrm{C}, 24 \mathrm{~h}$ | 99 (99) |

[^4]Table 8
Alkylation of Picolinamides - Optimization of Solvent ${ }^{a}$

${ }^{a}$ Dodecane internal standard, amide ( 1 mmol ), BuI ( 4 mmol )

Table 9
Alkylation of Picolinamides - Optimization of Additives ${ }^{a}$


| Entry | Additive | \% GC Yield |  |
| :---: | :---: | :---: | :---: |
|  |  |  | B |
| 1 | No additive | 45 | 15 |
| 2 | $\mathbf{1 0} \% \mathrm{CuBr}_{2}$ | 95 | 5 |
| 3 | $20 \% \mathrm{CuBr}_{2}$ | 76 | 14 |
| 4 | $10 \% \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ | 65 | 17 |
| 5 | $20 \% \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ | 95 | 4 |
| 6 | $10 \% \mathrm{CuCl}_{2}$ | 55 | 20 |
| 7 | $10 \% \mathrm{CuCO}_{3}$ | 58 | 19 |
| 8 | $10 \% \mathrm{CuOAc}$ | 84 | 10 |
| 9 | $10 \% \mathrm{MnO}_{2}$ | 70 | 17 |

${ }^{a}$ Dodecane internal standard; amide ( 0.5 mmol ), BuI ( 4 mmol ).

Table 10
Alkylation of Picolinamides - Optimization of Base ${ }^{a}$

${ }^{a}$ Dodecane internal standard; amide ( 0.5 mmol ), BuI ( 4 mmol ).


[^0]:    olafs@uh.edu.
    $\dagger$ Deceased
    Supporting Information Available. Spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

[^1]:    ${ }^{a}$ For CsOAc base: $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc}) 2,10 \mathrm{~mol} \% \mathrm{CuBr} 2$ additive, 4 equiv $\mathrm{CsOAc}, \mathrm{tAmOH}$ solvent, 4 equiv ArI , 1 mmol scale. For AgOAc base: 2 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc}) 2$, 2 equiv AgOAc , no solvent, 4 equiv ArI, 0.5 mmol scale. Yields are isolated yields. Please see Experimental Section for details.
    ${ }^{b}$ CsOAc base.
    ${ }^{c}$ AgOAc base.
    $d_{20 \mathrm{mmol} \text { scale, }} 1.5$ equiv AgOAc.
    $e_{50} \mathrm{mmol}$ scale, 2 equiv ArI, 1.5 equiv AgOAc .
    $f_{35} \mathrm{mmol}$ scale, 3 equiv ArI, 1.5 equiv AgOAc.

[^2]:    ${ }^{a}$ Palladium acetate ( $5 \mathrm{~mol} \%$ ), $10 \mathrm{~mol} \% \mathrm{CuBr}_{2}$ additive, 4 equiv $\mathrm{CsOAc}, t$-amyl alcohol solvent, 4 equiv ArI, 1 mmol scale. Yields are isolated yields. Please see Experimental Section for details.
    

[^3]:    ${ }^{\mathrm{a}} \mathrm{Pd}(\mathrm{OAc}) 2$ ( $5 \mathrm{~mol} \%$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 2.5 equiv), substrate ( 0.74 mmol ), pivalic acid (2 equiv), alkyl bromide or iodide (4 equiv), $t$-amyl alcohol solvent, 24 h at $110^{\circ} \mathrm{C}$. Yields are isolated yields. Please see Experimental section for details.

[^4]:    ${ }^{a}$ Dodecane as internal standard; amide $(0.5 \mathrm{mmol})$, ArI $(4 \mathrm{mmol})$.

