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Abstract—Caches are widely used in modern computer
systems to bridge the increasing gap between processor speed
and memory access time. On the other hand, presence of
caches, especially data caches, complicates the static worst
case execution time (WCET) analysis. Access pattern analysis
(e.g., cache miss equations) are applicable to only a specific
class of programs, where all array accesses must have pre-
dictable access patterns. Abstract interpretation-based methods
(must/persistence analysis) determines possible cache conflicts
based on coarse-grained memory access information from
address analysis, which usually leads to significantly pessimistic
estimation. In this paper, we first present a refined persistence
analysis method which fixes the potential underestimation
problem in the original persistence analysis. Based on our new
persistence analysis, we propose a framework to combine access
pattern analysis and abstract interpretation for accurate data
cache analysis. We capture the dynamic behavior of a memory
access by computing its temporal scope (the loop iterations
where a given memory block is accessed for a given data
reference) during address analysis. Temporal scopes as well as
loop hierarchy structure (the static scopes) are integrated and
utilized to achieve a more precise abstract cache state modeling.
Experimental results shows that our proposed analysis obtains
up to 74% reduction in the WCET estimates compared to
existing data cache analysis.

I. INTRODUCTION

Worst-case Execution Time (WCET) is a key metric for
real-time embedded software. Static WCET analysis pro-
vides a safe bound on the maximum execution time of a pro-
gram on a target platform over all possible program inputs.
For cost-sensitive domains like automotive electronics, the
WCET estimation must be tight for cost-effective design and
resource dimensioning. However, modern processors contain
performance enhancing features such as caches and pipeline
whose run-time timing behavior is hard to predict statically.
This makes micro-architectural modeling (building timing
models for micro-architectural features such as caches) a
key component of WCET analysis.

Timing models of instruction caches for WCET analysis
have been well-studied [18]. On the other hand, static timing
analysis of data cache behavior remains a major challenge
for WCET analysis methods and tools. Accurate data cache
modeling is of paramount importance for tight WCET
analysis of data-intensive routines. However, the run-time
computed access address (which data locations are accessed
by different instances of an instruction) and dynamic cache
behavior make it difficult to develop a tight yet flexible and

scalable static analysis. Conservatively assuming that every
memory access results in a cache miss yields a safe but
pessimistic WCET estimate.

Different static data cache analysis techniques have been
developed so far. Access pattern-based techniques (e.g.,
cache miss equation framework in [10]) achieve tight es-
timation, but are applicable to programs that contain only
regular accesses with predictable patterns. On the other hand,
abstract interpretation-based data cache analysis techniques
([9], [16]) work on general programs but suffer from large
over-estimation. In this paper, we seek to combine the
strengths of these two approaches. We observe that the
over-estimation in existing abstract interpretation-based data
cache analysis stems from the globally defined abstract
domain. In particular, a coarse-grained address analysis
is adopted to compute a set of memory blocks possibly
referenced by a memory access, while temporal property
of the access is ignored (e.g., a memory block can be
accessed in only certain iterations of a loop execution).
The approximation in the address analysis causes substantial
over-estimation in WCET estimates. Furthermore, tradition-
ally the abstract interpretation computes fixed point of the
abstract cache state conservatively for the entire program
execution (disregarding cache behavior in specific program
scopes), leading to large over-estimation.

In this work, we propose a general and accurate static
data cache analysis method by combining access pattern
analysis and abstract interpretation. For abstract cache state
computation, we extend the cache behavior categorization of
“persistence” as in the persistence analysis of [9] to capture
the access pattern information. In our new persistence analy-
sis framework, we also fix an error in the original persistence
analysis which may result in underestimation of the cache
misses. Our contributions include the following.

First of all, given a data reference D and its access pattern,
we derive not only the set of possible accessed memory
blocks, but also their temporal scopes. The temporal scope
of a memory block m captures the loop iterations in the
program where m may get accessed. Our proposed data
cache analysis decides whether a memory block is persistent
within its temporal scope. In particular, two memory blocks
accessed in mutually exclusive temporal scopes do not
conflict with each other within their scopes, even though
they are mapped to the same cache set.
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Secondly, we also consider the static scopes in our anal-
ysis. Similar to the multi-level analysis proposed in [2] for
instruction cache, we maintain a copy of abstract data cache
states for each loop nesting level of the program execution.
As a result, certain memory blocks can be classified as
persistent within a local scope of program execution (though
it can not be guaranteed to be persistent globally).

Thirdly, we utilize scope-aware persistence while comput-
ing the number of data cache misses. In original persistence
analysis, a data reference is classified as globally persistent
throughout the program execution. However, our persistence
analysis framework can guarantee that a data reference is
persistent within certain temporal and static scopes.

Last but not the least, we have integrated our proposed
framework into the open-source Chronos WCET analyzer
([13]). The experimental results show that our proposed
scope-aware persistence analysis produces up to 74% tighter
WCET estimation comparing to multi-level persistence anal-
ysis framework without temporal scope information [2].

II. RELATED WORK

Abstract interpretation methods have been successfully
applied to instruction cache analysis for WCET estimation
[18], [2]. A globally defined abstract cache state (ACS) is
calculated via fixed-point computation, which conservatively
captures the worst-case cache behavior at each program
point (e.g., basic block boundary). However, existing ap-
proaches using abstract interpretation for data cache analysis
(e.g., must analysis [16] and persistence analysis [9]) suffer
from significant over-estimation. The major source of the
over-estimation arises from the fact that the definition and
computation of ACS are insensitive to local program behav-
ior. In particular, an array reference may access different
memory blocks in different loop iterations, which must be
captured in the analysis for a tight estimation. To over-
come this problem, Sen and Srikant [16] proposes virtual
loop unrolling, which makes the analysis computationally
expensive. Moreover, in the presence of input-dependent
branches, even with loop unrolling, no memory block can be
guaranteed to be loaded to the cache for later reuse by must
analysis. Lesage, Hardy and Puaut [12] applies persistence
analysis to multi-level data caches.

In many real programs the access pattern of an array
follows an uniform affine pattern. The cache miss equation
(CME) framework [10] and Presburger Arithmetic formula-
tion [4] have been applied to analyze array access patterns
for data cache analysis. The CME framework computes
the reuse vector of affine accesses and generates a set of
Diophantine equations to characterize whether a reuse can
be realized, or interfered with due to cache conflict. The
solutions of this equation set are the possible conflict points.
White et al. [19] proposes a framework to detect loop-affine
array accesses at binary code level. Ramaprasad and Mueller
[15] extends the CME framework to analyze scalar accesses

and more general loop-nest. The data cache analysis with
Presburger Arithmetic framework is exact and can handle
certain non-linear access pattern; however, it has super-
exponential complexity in the worst case. Furthermore, these
approaches cannot handle programs with input-dependent
branches and unpredictable data accesses. It is also hard
to combine such frameworks into a comprehensive WCET
analysis considering other micro-architecture features, such
as instruction cache [18] or unified cache analysis [5].

Staschulat and Ernst [17] identifies single data sequence
(SDS) where both control flow and accessed memory blocks
are input independent. In such cases, cache performance
can be determined by simple simulation and no analysis is
needed. For non-SDS data references, persistence analysis
is used to bound the worst-case cache conflicts. Similar to
[9], the persistence analysis does not capture array access
patterns and leads to very pessimistic analysis results.

III. NOTATIONS AND ASSUMPTIONS

In our cache analysis, we consider a memory hierarchy
containing separated L1 instruction and data caches. We
use the following notations to represent the instruction/data
cache configuration and accessibility.
• Capacity C: size of the cache in number of bytes
• Block (line) size B: number of contiguous bytes to be

loaded from memory to cache on each memory access.
• Associativity A: A-way set associative cache means

that information stored at some addresses in memory
could be loaded into any of A locations in the cache
(depends on the cache replacement policy).

• Cache set F = 〈f1, . . . , f(C/B)/A〉: A cache set fi is
a sequence of cache blocks (lines) CL = 〈l1, . . . , lA〉
which contains all the A ways that can be addressed
with the same index. set(m) returns the cache set
memory block m maps to.

We assume LRU (Least Recently Used) replacement pol-
icy is used to determine relative age of a memory block
in the A-way associative cache set. Among common cache
replacement policies, LRU is the most predictable policy
thus more suitable for safety critical real-time systems [6].
Given a concrete cache state c at a program point p, the
concrete set state si describes the state of cache set c[fi] at
p. If si(lx) = m, memory block m has a relative age x in
c[fi] (1 ≤ x ≤ A).

We assume write-through with no-write-allocate policy for
a memory store instruction in our discussion of data cache
analysis. However, our data cache analysis framework is
applicable to different write policies with minor amendments
in the analysis (discussed in Section VI-B). We consider the
static and temporal scope information of data references at
the assembly code level in our analysis. Finally, we would
like to clarify that our proposed persistence analysis (Section
VI) is “multi-level” in the sense that an independent analysis
is performed at each loop nesting level (also referred as the
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static scope), which should not be confused with analysis of
the multi-level caches (e.g., the L2, L3 caches).

IV. PERSISTENCE ANALYSIS IN [8] AND [9]
In this section, we briefly discuss the safety issue and

pessimism of the the original persistence analysis in [8],
[9]. The detailed description and proofs on how to fix the
underestimation error in the original persistence analysis can
be found in the technical report [11].

A. Overview
In persistence analysis, a memory block m is guaranteed

to be persistent if no other memory references can evict
m from the cache during program execution. Therefore, m
incurs one cache miss when it is first accessed, and all future
accesses to it are guaranteed cache hits. In comparison with
reuse-based approaches such as CME [10] and must analysis
[16], persistence analysis does not require first bringing
memory blocks to the cache for subsequent reuse. Hence,
it does not require a detailed access sequence analysis.
Moreover, it can guarantee cache hit in the presence of input-
dependent branches and unpredictable access addresses.

Persistence analysis is based on a fixed-point computation
of the abstract cache state (ACS) ĉ = 〈ŝ1, ..., ŝn/A〉 for each
program execution point, where ŝi is the abstract set states
for cache set fi. In the LRU replacement policy, the abstract
set state captures the upper bound of the positions (the rela-
tive ages) of the memory blocks that can possibly reside in
the corresponding concrete cache set. An abstract line state
ŝi(la) contains memory blocks that have maximal relative
age of a in the abstract set state ŝi, where 1 ≤ a ≤ A.
For example, ŝi(l2) = {ma} denotes that memory blocks
ma could reside in cache set fi with maximal relative
age of 2 at a program execution point. Furthermore, an
additional abstract line state ŝi(l>) is introduced to each
abstract set state to keep track of memory blocks that have
been referenced before but evicted out from the cache by
other later memory references.

The analysis traverses the program’s control flow graph
(CFG) and manipulate the ACSs via update and join func-
tions. The update function takes an input ACS ĉin and a
set of memory blocks M possibly accessed at the current
program location, and produces an output ACS ĉout which
captures the worst-case cache behavior (maximal relative
ages if LRU is used) due to the accesses in M . If a program
point has more than one incoming edges in the CFG, the join
function is applied to compute the input ACS of this point
by combining the output ACSs of all its predecessors. In the
original persistence analysis, the relative age of a memory
block in the joined ACS is set to be the maximum relative
age of all its occurrences in the predecessor’s ACSs.

B. Safety Issue
We first discuss and fix the safety issue for the original

persistence analysis in section IV-B and IV-C. Figure 1
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Figure 1. Underestimation in the original persistence analysis

illustrates an unsafe scenario of the original persistence
analysis. The CFG in Figure 1(a) has six basic blocks
B0...B5 within a loop, where accessed memory blocks
mapped to the same cache set are shown. For example,
memory block a is accessed in B1 and B4. Given cache
associativity A = 2, Figure 1(b) gives the computed ACSs
at fixed-point by original persistence analysis. Since relative
ages of memory block c are both 2 in ŝout

B3 and ŝout
B4 , relative

age of c in ŝin
B5 is also 2 according to the original join

function. The resulted ACSs indicates that memory block c is
persistent in all possible program executions. However, in a
concrete path B0→ B2→ B4→ B5→ B0→ B1→ B3,
c is evicted by a and b. Hence, c is not persistent and the
original analysis is unsafe.

The possible underestimation of relative ages in the orig-
inal analysis is due to an error in the update function. It
wrongly assumes that if memory block b is in ŝin

B5, b is also
in all concrete set states sin

B5. Therefore, the update function
will not age memory blocks with maximum relative age
equal or older than b such as a and c in the ACS. However,
when b is in ŝin

B5, there may exist concrete set states that do
not contain b (e.g. only a and c are in the concrete cache
state corresponds to the path B0 → B2 → B4). In these
concrete set states, access of b will increase the relative ages
of a and c. Therefore, the original persistence analysis may
underestimate the relative ages of a and c. A more detailed
discussion is presented in the technical report [11].

C. Fixing the Persistence Analysis

To fix the underestimation in the original persistence
analysis, we propose to keep track of the memory blocks
that may be younger (more recently accessed) than m for
each memory block m during the analysis. We define the
Younger Set (YS) as follows.

Definition 1: (Younger Set): For an abstract set state ŝ at
program point p, the younger set YS(ŝ, m) of m captures
a superset of all memory blocks that may have smaller
relative ages (younger) than m at p in some possible program
execution that reaches p. �

In our revised persistence analysis, we maintain YS for
all memory blocks at each program execution point. For
an access of memory block m and corresponding abstract
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i<4
int A[16];  int B[4][16];
int D[4]; short int C[4][16];
for ( i=0; i<4; i++) { //L1
    a = A[x];
    for (j=0; j<16; j++) {//L2
        if (a%2==0) b = B[i][j];
        else b = C[i][j];
        sum += D[0] + b;
    }
}

A[x]{m0,m1}; j=0;

j<16

a%2==0

B[i][j]{m2...m9} C[i][j]{m12...m15}

D[0] {m10}; j++

i++
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Figure 2. Motivating example

set state ŝ, the abstract update function computes both the
relative ages and YS . In particular, m should be included in
the YS for each memory block m′ in ŝ. Since m′ can only
be aged by memory blocks in YS(ŝ, m′) in any possible
execution, the new maximum relative age of m′ due to
access of m should be larger than the number of all possible
younger memory blocks, i.e., |YS(ŝ, m′)|+1. Similarly, the
revised join function also merges the YS for each memory
block in the input ACSs, and computes its new relative age
accordingly. Figure 1(c) shows the fixed-point ACSs (and
the YS for each memory block) obtained by our revised
persistence analysis. For example, YS(ŝout

B3 , c) = {a, b},
since both a and b are accessed (in basic block B1 and B3,
respectively) after an access of c (in B2 of the previous
iteration(s)). As a result, our revised persistence analysis
correctly captures the scenario that memory block c could
be possibly evicted during the program execution.

The details of our revised persistence analysis, and its
safety proofs are presented in the technical report [11].

D. Pessimism in Data Cache Persistence Analysis

While our revised persistence analysis fixes the underes-
timation error, it still suffers from the overestimation issues
as in the original persistence analysis in the context of data
cache analysis. Figure 2(a) presents our motivating example
which has four array references in two nested loops L1
(induction variable i) and L2 (induction variable j). We
assume a data cache with block size is 32-Byte (contains
8 ’int’ elements or 16 ’short int’ elements), four cache line
f0...f3, and associativity A = 2. Figure 2(b) gives the
control flow graph (CFG) of the program fragment. For
each array access, we also list the set of memory blocks
possibly referenced. For example, B[i][j] in basic block B6
may access memory blocks {m2...m9}. Figure 2(c) shows
the relation between memory blocks accessed by each data
reference, and the value of loop induction variables i and j.
Given the assumed memory configuration, A[x] may access
m0 or m1 in any iteration of L1 since the value of input-
dependent variable x is unknown at compile time. On the
other hand, the access pattern of B[i][j], C[i][j], and D[0]
could be statically determined. For example, in first iteration
of L1 (i = 0), B[i][j] accesses m2 in first 8 iterations of L2
(0 ≤ j ≤ 7), and m3 in next 8 iterations of L2 (8 ≤ j ≤ 15).
Finally, Figure 2(d) illustrates the cache set mapping.

Neither the CME frameworks [10], [15] nor must analysis
[16] works well for this example, due to the input-dependent
accesses (in basic block B2) and branches (in basic block
B5). Furthermore, traditional abstract interpretation-based
analysis techniques ([9], [16]) capture only global properties
of memory accesses, which may lead to significant over-
estimation. In the given example, since more than 2 (the
associativity) memory blocks are mapped to each cache line
within the outer loop L1 (Figure 2(d)), the original persis-
tence analysis cannot guarantee any cache hits - leading to
a large over-estimation.

V. SCOPE-AWARE ADDRESS ANALYSIS

Central to our scope-aware data cache analysis is the
notion of temporal scope that characterizes the behavior of
a data reference over different loop iterations. Furthermore,
we parameterize the definition and operations of temporal
scopes with the static scope information on loop nesting.
We will discuss how our proposed persistence analysis can
utilize such information for more accurate abstract domain
construction in Section VI.

Definition 2: (Temporal scope) A temporal scope for
memory block m which is possibly accessed by a data
reference D is defined as

mD = {Li 7→ [lw, up]|∀Li ∈ reside(D)}

where reside(D) is the set of loops where D resides in. For
each of such loops Li, temporal scope mD[Li] (or m[Li])
maintains a mapping between Li and a closed interval
[lw, up] of Li’s iterations where D may access m. To
simplify the presentation, we use m to denote mD when
there is no ambiguity of the access context. �

For a data reference D, address analysis calculates set
of memory blocks possibly accessed by D. We follow the
register expansion framework in [19] to identify address
expression for each data reference at binary-code level.
For each register used to specify address of load/store
instruction, we recursively perform register expansion to
trace the source registers and the computation performed,
until it traces back to a defined constant c, an unpredictable
value ⊥, or a loop induction variable V . Readers are referred
to [19] for details of address expression detection.

Given the address expression of a data reference D, set
of possibly accessed memory blocks and their corresponding
temporal scopes are automatically derived as follows.
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Figure 3. Address expressions and temporal scopes
• In case the address expression is a constant, it corre-

sponds to a scalar access to a fixed memory block. The
same memory block is accessed in any loop iteration,
so that its temporal scope covers all iterations. In Figure
3(a), address expression of D[0] is evaluated to BaseD,
which corresponds to m10. So the temporal scope m10

is {L1 7→ [0, 3], L2 7→ [0, 15]}.
• If the address expression contains unpredictable value
⊥, the corresponding array access may reference any of
the memory blocks contained in the array. For example
in Figure 3, A[x] is an unpredictable access which may
reference m0 or m1 in any iteration of L1. So temporal
scope m0 = {L1 7→ [0, 3]}.

• If the address expression contains linear expression of
loop-induction variables, it corresponds to loop-affine
access with predictable access pattern, such as B[i][j]
in Figure 3(a). By enumerating possible values of the
loop induction variables i and j, temporal scope of each
memory block that is possibly accessed by B[i][j] can
be automatically calculated. For example, when i = 2
and 0 ≤ j ≤ 7, value of the address expression for
B[i][j] is evaluated to [128 + m2, 128 + 28 + m2],
where m2 is the base address of B[i][j] (BaseB).
Given our assumption that memory block size is 32-
Byte, we obtain that temporal scope m6 = {L1 7→
[2, 2], L2 7→ [0, 7]}.

Given the access intervals defined by our temporal scopes,
two memory blocks mi and mj conflict within a single
complete execution of loop L (between entry and exit of
L) only if they are mapped to the same cache set and
their access intervals overlap during execution of L. The
scope overlapping between two temporal scopes over L is
recursively defined as

overlap(mi, mj , L) ⇐⇒ mi 6= mj

∧ (mi[L] ∩mj [L]) 6= ∅ ∧ overlap(mi, mj , outer(L))
(1)

where outer(L) is the immediate outer loop of L. Thus,
two temporal scopes overlap at loop level L only if the
access intervals for L and all outer loops containing L are
not mutually exclusive.

In Figure 3, since m6[L2] and m7[L2] refer to interval
[0, 7] and [8, 15] of L2’s iterations, they do not overlap. In
another example, m15[L2] and m6[L2] overlap in interval
[0, 7] of L2’s iterations. However, in the parent loop L1,
m15[L1] and m6[L1] are separated intervals. Therefore, the

temporal scope m15 and m6 do not overlap because they
belong to different iterations of the outer loop L1.

VI. PROPOSED DATA CACHE ANALYSIS

To reduce the pessimism of the original data cache per-
sistence analysis as discussed in Section IV-D, we integrate
access pattern analysis into the abstract interpretation frame-
work for accurate WCET analysis. We extend the definition
of memory block persistence in [9]. In our analysis, we
capture memory block persistence at different loop nesting
levels of the program execution (the static scopes), and
utilize the computed temporal scope information for a scope-
aware analysis. Our framework is built on our correct version
of persistence analysis as described in Section IV-C. The
soundness proofs are presented in the technical report [11].

A. Scope-aware Persistence Analysis

The core idea of our scope-aware persistence analysis
is to categorize the persistence of memory blocks in the
calculated temporal scopes (Section V), instead of the glob-
ally defined persistence in [9]. For a data reference D, the
temporal scope mD identifies a set of loops (where D resides
in) and a loop iteration interval for each of the loops where
D may access m. The scope-aware analysis approach allows
us to integrate access pattern into the abstract interpretation
framework, and determine the local behavior of data cache.
In particular, our scope-aware persistence analysis computes
memory block persistence within its temporal scope for each
static scope (loop hierarchy) it may get accessed.

Definition 3: (Scope persistence) Let Iter be the loop
iterations bounded by [mD[L].lw,mD[L].up] where data
reference D may access memory block m during an exe-
cution of loop L (between L’s entry and exit). The temporal
scope mD is persistent at loop level L if and only if within
iterations Iter of L, m is guaranteed to remain in the cache
after the first time it is loaded into cache by D. �

Given above definition of scope persistence, for a memory
block m possibly referenced by data access D to be persis-
tent within loop L, it does not need to stay in the cache for
all iterations of L. If m is not evicted out from cache during
the iteration interval defined by [mD[L].lw,mD[L].up], all
accesses to m from D cause at most one cache miss (the cold
miss) within one complete execution of L. To capture the
scope persistence in the abstract domain of the persistence
analysis framework, we define our scope-aware abstract set
state and abstract cache state as follows.

Definition 4: (Scope-aware abstract set state) An ab-
stract set state ŝ: {l1 . . . lA} ∪ {l>} → 2TS maps cache
lines (including the evicted line l>) to set of all temporal
scopes TS (refer to Figure 4(c) for an example). Ŝ denotes
the set of all abstract set states. �

Definition 5: (Scope-aware abstract cache state) In
analysis at loop level L, abstract cache state ĉ[L]: F → Ŝ
maps cache sets to abstract set states. �
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We have re-designed the persistence analysis framework
to utilize the scope information. By capturing fine-grained
persistence properties, our analysis can accurately model the
local behavior of data cache for WCET estimation.

B. Overall Framework

As described in Section IV-D, a memory block m could be
persistent in the inner loop but not in the outer loop (e.g., m5

is persistent in L2 but non-persistent in L1, in the example
given in Figure 2). We adopt the multi-level persistence
framework from [2] for instruction cache analysis, and
extend it for our data cache analysis. As shown in Figure
4(a), for each loop L, we perform a separate persistence
analysis on the CFG fragment within L, with empty initial
ACS ĉin

Lentry
[L] = ⊥ as input ACS of the L’s entry node

Lentry. Consequently, the analysis will consider only paths
and data accesses within L. As a result, we can determine
the local persistence of a memory block in different loop
levels. In Figure 4 we show the estimation results of our
analysis for the motivating example presented in Figure 2,
and a detailed discussion will be given in Section VI-D.

Algorithm 1 MPA(L) — Multi-level Persistence Analysis
Algorithm. L denotes a loop (or the main procedure) under
analysis.
1: ĉin

Lentry
[L] = ⊥;

2: Queue.insert(Lentry);
3: while !Queue.empty() do
4: n = Queue.remove();
5: ĉin

n [L] = ĴĈ({ĉ
out
n′ [L]|∀n′ ∈ Pred(n) ∧ n′ ∈ L});

6: if reached fixed point( ĉin
n [L]) then continue;

7: ĉout
n [L] = ĉin

n [L];
8: for each data reference D in n do
9: ĉout

n [L] = ÛĈ(ĉ
out
n [L], TSD, L);

10: end for
11: Queue.insert({n′|∀n′ ∈ Succ(n) ∧ n′ ∈ L});
12: end while

Algorithm 1 describes the multi-level persistence analysis
framework which captures the static scope (loop nesting
level) information. ĉin

n [L] and ĉout
n [L] denote the input and

output ACSs of a node n for analysis at loop level L.
Pred(n) and Succ(n) refer to the sets of predecessors and
successors of n within the CFG of loop L currently being
analyzed. We perform a standard fixed-point computation
of the ACSs. The analysis initializes the input ACS of loop
entry node Lentry to empty (line 1) and inserts it to the
processing queue Queue (line 2). For each node n, we
compute the input ACS ĉin

n [L] by joining all the output ACSs
of its predecessors within L (line 5). The scope-aware join
function ĴĈ computes the joined ACS as the union of all
input ACSs. If the input ACS ĉin

n [L] has reached fixed point,
the analysis continue to process the next node in Queue (line
6). Otherwise, for each memory reference D in node n, we
compute ĉout

n [L] from its input ACS and the set TSD of
temporal scopes of D as computed in Section V (line 7-10).
In case where no-write-allocate is used (in write-through or
write-back policy), a store instruction does not modify the

cache state. We consider only load instructions in the cache
analysis. Otherwise for write-allocate policy, all load and
store instructions will be considered in the ACS calculation.
Finally, all successors of n within L are inserted into Queue
to capture the possible changes in ĉout

n [L] (line 11).

C. Scope-aware Update and Join Functions

At loop level L, given a data reference D which accesses
a set of possible address Addr(D) = {m1...mk}. For each
ma ∈ Addr(D), we compute the temporal scope mD

a (or
ma for short) where D may access ma. The access to ma

in scope ma[L] does not age a memory block m in scope
m[L] if their scopes do not overlap (refer to Equation 1 in
Section V). Therefore, to avoid overestimation, the scope-
aware update function only adds ma to the younger set of
m (as in Definition 1) when their temporal scopes overlap.

At loop level L, the scope-aware update function for a
given input ACS ĉ and set of temporal scopes TSD accessed
by D can be defined as:

ÛĈ(ĉ, TSD = {m1...mk}, L) = ĉ[fi 7→ ÛŜ(ĉ[fi], Xfi , L)]
for all fi ∈ {set(m1)..set(mk)}

where Xfi = {my|my ∈ {m1...mk}, set(my) = fi}

The scope-aware update function ÛĈ divides the accessed
temporal scopes {m1...mk} into Xfi

, the set of accessed
temporal scopes for each cache set fi. For each input abstract
set state ŝin, the set update function ÛŜ computes the output
abstract set state ŝout, via updating the younger set and the
maximal relative age of each temporal scope m ∈ (ŝin∪Xfi)

ÛŜ(ŝ
in, Xfi

, L) = ŝout with :

ŝout(lx) = {m|m ∈ ŝin ∪Xfi ,

x = min(|YS(ŝout, m)|+ 1,>)}
where ∀m ∈ ŝin ∪Xfi ,YS(ŝout, m) =

∅ if m /∈ ŝin

∅ else if m ∈ Xfi ∧ ¬overlap(m, ma, L),
∀ma ∈ TSD

YS(ŝin, m) ∪ {ma|ma ∈ Xfi
∧ overlap(m, ma, L)}

Otherwise.

where overlap(m, ma, L) is true when the temporal scopes
m and ma overlap in loop level L according to Equation 1.

In our set update function, the maximal relative age of
a memory block in the output abstract set state is set to
be larger than the number of all possible younger memory
blocks of it, i.e., |YS(ŝout, m)|+1. To find the younger set
YS(ŝout, m), we have the following situations.
• If temporal scope m is not in ŝin, and m is newly

accessed in Xfi , m has no younger memory block and
its maximal relative age is set to be 1.

• Else if m is in ŝin and it is also accessed in Xfi
.

If there is no other temporal scope in TSD overlaps
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Figure 4. Multi-level analysis and results for the motivating example in Figure 2

with m, then the data reference D accesses only m
in the temporal scope defined by m. As a result, data
reference D must renew the relative age of m in ŝin,
and we can set its younger set to be empty.

• Otherwise, relative age of a memory block m can be
interfered by any memory block ma accessed by D that
maps to the same cache set, where the temporal scopes
of m and ma overlap at loop level L (according to
Equation 1). We add all possible memory blocks ma

to the younger set YS(ŝout, m).

Figure 5(a) illustrates our scope-aware persistence analy-
sis in loop L2 of the running example in Figure 2. While m4,
m8, and m12 are all mapped to cache set f0, the temporal
scopes m4, m8, and m12 do not overlap. Hence, they do not
age each other. On the other hand, in cache set f1, as shown
in Figure 2, B[i][j] accesses m5 when i = 1 and j = 8..15,
while C[i][j] accesses m13 when i = 1 and j = 0..15.
Therefore, the temporal scope m5 overlaps with m13. Hence
m13 will age m5 and become a younger memory block of
m5 in scope m5[L2], as shown in Figure 5(b).

At any program point p in loop level L, the join function
ĴĈ (line 5 in Algorithm 1) computes an ACS from all
the output ACSs of p’s control flow predecessors. For
each temporal scope m in ĉ, the scope-aware join function
unionizes the younger set of m in both output ACSs from
the control flow predecessors to form the younger set of
m at p. Therefore, YS(ŝ, m) always contains all possible
younger memory blocks of m in scope m at p. Formally,
our scope-aware join function is defined as follows.

JĈ(ĉ1, ĉ2) = ĉ[si 7→ JŜ(ĉ1[si], ĉ2[si])]
JŜ(ŝ1, ŝ2) = ŝ with:
ŝ(lx) = {m|m ∈ ŝ1∪ ∈ ŝ2, x = min(|YS(ŝ, m)|+ 1,>)}
where ∀m ∈ ŝ1 ∪ ŝ2

YS(ŝ, m) =



YS(ŝ1, m) ∪ YS(ŝ2, m)
if m ∈ ŝ1 ∧m ∈ ŝ2

YS(ŝ1, m)
if m ∈ ŝ1 ∧m /∈ ŝ2

YS(ŝ2, m)
if m /∈ ŝ1 ∧m ∈ ŝ2

D. ACS Computation of the Motivating Example

Figure 4(b), (c) and (d) shows the fixed-point ACSs com-
puted by the original persistence analysis (at basic block B4,
exit of L1), the proposed scope-aware multi-level analysis
for loop L1 (at basic block B4) and L2 (at basic block B8)
for the motivating example in Figure 2, respectively. Given
a 2-way associative cache with 4 cache sets, no memory
block accessed by B[i][j] and C[i][j] can be categorized
as persistence in the original persistence analysis. On the
other hand, our proposed analysis produces much tighter
estimation results on the worst-case cache behavior. For
example, m4 accessed by B[i][j] is guaranteed to be scope
persistent at both loop levels, resulting in at most 1 cold miss
globally. m5 is scope persistent only in L2. Thus, accesses
to m5 in each complete execution of L2 (between entry to
exit) incurs at most 1 cold miss.

VII. CACHE MISS COMPUTATION

In abstract interpretation-based approaches, the cache
analysis results are used to classify the cache behavior of
each data reference D in the program. Typical worst case
categories are (1) All Hit (AH): all data accesses of D
result in cache hit; (2) All Miss (AM): all data accesses
of D result in cache miss; (3) Persistent (PS): all possible
accessed memory blocks of D are persistent (D has at most
one cold miss for each persistent memory block); and (4)
Non Classified (NC): the cache behavior of D could not be
classified (all accesses of D are considered to be misses).

In the presence of data cache, different executions of the
same data reference may access various memory blocks
and result in different cache behavior. In our motivating
example shown in Figure 2, data reference B[i][j] may
access m4, m5, and m6 in the temporal scopes m4, m5,
and m6 respectively. As illustrated in Figure 4(c) and Figure
4(d), memory blocks may have distinct cache behaviors in
different loop nesting levels. Scope persistence of the above-
mentioned memory blocks are shown in Figure 6. In Figure
4, because temporal scope m4 is not aged to evicted line l>
in both L1 and L2, m4 is persistent in both scope m4[L1]
and m4[L2]. Therefore, we annotate the iterations of L1
and L2 bounded by m4 with PS. On the other hand, m5

is not persistent in outer loop L1 (annotated as ¬PS) but
is persistent in inner loop L2, so m5 is persistent in scope
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Figure 5. Scope-aware ACS computation for L2 of the motivating example in Figure 2
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m5[L2] but not m5[L1]. m6 is not persistent in any of the
loop levels. Pessimistically categorizing all data accesses
from B[i][j] as Non Classified (as in the original persistence
analysis) introduces significant over-estimation on the total
number of data misses, which can be avoided in our scope-
aware data cache analysis.

Our multi-level analysis computes a fixed-point abstract
cache states ĉin

n [L] (ĉout
n [L]) for entry (exit) of each CFG

node n in each loop level L. If m is persistent in scope m[L]
(or mD[L]) of loop level L, accesses to m by data reference
D incurs only one cold miss for each complete execution of
L (between entry and exit). Let Lps be the outer-most loop
level where m is persistent. Hence, accesses to m incur 1
cold miss for each execution of Lps (including all its inner
loops). The following function blockMiss(D,m) computes
the maximum number of cache misses D may incur due to
accesses of m during the entire program execution.

blockMiss(D,m) =



∏
(m[Li].up−m[Li].lw + 1)
∀Li ∈ reside(D), if Lps == ∅

1 if outer(Lps) == ∅∏
(m[Li].up−m[Li].lw + 1)
∀Li ∈ outer(Lps), otherwise.

with m = mD

where outer(Lps) is the set of all outer loops of Lps. In
other words, blockMiss(D,m) computes the number of
times Lps executed (in its outer loops) given the temporal
scope where m may get accessed by D. In case m is not
persistent in any loop level (Lps == ∅), each access to m
within its temporal scope results into 1 miss. On the other
hand, if Lps is outer-most loop of the program (globally
persistent), all accesses to m incur only 1 cold miss.

As illustrated in Figure 6, L1 is the outer most loop where
m4 is persistent. Since L1 is the outermost loop, m4 causes
at most one cold miss globally. m5 is only persistent in
L2. Therefore, accesses to m5 from B[i][j] causes one cold
miss for each iteration of L1 in the interval [1, 1] defined by
m5[L1]. m6 is not persistent in any level, so all occurrences
of B[i][j] in the scope result in cache misses. The temporal
scope m6 covers interval [2, 2] of L1 and [0, 7] of L2, so
m6 causes at most 1× 1× 8 = 8 misses to B[i][j].

Finally, the maximal possible cache misses incurred by
D, miss(D), is the summation of blockMiss(D,m) over
all memory blocks in AddrSet(D) which D may access.

miss(D) =
∑

blockMiss(D,m),∀m ∈ AddrSet(D)

In our motivating example, B[i][j] accesses 8 memory
blocks ({m2, . . . ,m9}). According to our scope-aware anal-
ysis results shown in Figure 4, m6 is non-persistent in both
L1 and L2, m5 is persistent only in L2, and other 6 memory
blocks are persistent in both loops. According to our cache
miss estimation, maximal number of cache misses from
B[i][j] is 8 + 1 + 1 × 6 = 15 misses, compared to the
original pessimistic analysis which considers all accesses to
B[i][j] lead to totally 64 cache misses.
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Table I
BENCHMARK DESCRIPTIONS AND WCET ESTIMATION RESULT

Benchmark Benchmark description Array Size Simulation
(cycle)

Our Analysis
(cycle)

Analysis
Time

Edn Finite Impulse Response (FIR) filter calculations. 2048 2,542,444 2,628,150 0.28s
Fdct Fast Discrete Cosine Transform. 2048 917,636 926,468 0.92s
Cnt Counts non-negative numbers in a matrix. 32× 32 21,611 22,826 0.02s

Matmult Matrix multiplication. 24× 24 374,887 441,916 0.04s
Bsort100 Bubblesort program. 1024 15,945,200 17,350,300 0.02s
InsertSort Insertion sort on a reversed array. 1024 14,900,732 16,279,600 0.58s
Jfdctint Discrete-cosine transformation of pixel blocks. 256× 64 1,485,075 1,497,910 2.62s

Lms LMS adaptive signal enhancement. 1024 1,425,585 1,580,200 0.04s
Adpcm Adaptive pulse code modulation algorithm. 2048 193,525 298,632 0.14s

VIII. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our
proposed scope-based persistence analysis using the data-
intensive routines taken from the WCET Benchmarks ([1]).
We assume the benchmarks are executed on a processor
architecture with 5-stage pipeline, in-order execution, perfect
branch prediction, separate L1 instruction cache and data
cache. Both instruction and data caches have cache size 2
KB , block size 32 B, cache associativity 2, and perfect LRU
replacement policy. Cache hit latency is 1 cycle, and cache
miss latency is 6 cycles. We use SimpleScalar tool ([3]) to
obtain simulation results. We extend SimpleScalar simula-
tion to make it consistent with the assumptions made in our
analysis. The cache analysis results on maximum number of
data cache misses for each data reference are integrated as
linear constraints into Chronos ([13]), an ILP-based WCET
analysis tool for static WCET estimation. In our current
implementation, we assume a processor architecture without
timing anomalies [7]. However, the resulted cache modeling
can be integrated with pipeline analysis as presented in [14]
for architectures with timing anomalies.

Table I shows the set of benchmarks used in our evalu-
ation. We have enlarged the array sizes (and corresponding
loop bounds) to introduce more data cache conflicts and
amplify the effect of data cache performance on overall pro-
gram execution time. Array Size shows the array size used
in our simulation and analysis for each of the benchmarks.
Simulation shows the observed WCET from SimpleScalar
simulation in CPU clock cycles. Note that the simulation
results may be smaller than the actual WCET values for
benchmarks with input-dependent branches/accesses (e.g,
Cnt, Bsort100, InsertSort and Adpcm). Finally, we report
the WCET results obtained with our scope-aware persistence
data cache analysis, as well as the time spent for the analysis
(on a Intel(R) Xeon(TM) 2.20 Ghz with 2.5 GB RAM).

We have implemented the revised persistence analysis
(Section IV-C), multi-level persistence framework [2] (using
the revised persistence analysis), and the must analysis with
loop unrolling as proposed in [16] to compare with our
proposed scope-aware analysis. Figure 7 shows the per-
centage of overestimation from various data cache analysis

approaches, compared to the normalized observed WCET
results from SimpleScalar simulation (shown in Table I).
Given the array size in our experiment, since the entire array
does not fit into the data cache for any of the benchmarks,
no memory block can be categorized as persistent in the
persistence analysis. Without the temporal scope informa-
tion, multi-level persistence analysis [2] cannot give tighter
estimation, except for the Lms benchmark, where only
small arrays are accessed in different loop nesting levels.
As a result, the estimated WCET results without temporal
scope are up to 83% higher than the observed WCET (for
InsertSort). We also compare the estimated WCET results
using must analysis with 20% and 50% virtual unrolling
of the loop nest ([16]), where the analysis is repeatedly
performed for each unrolled loop iteration. As shown in
Figure 7, even when 50% of the loop nest is unrolled, must
analysis [16] still reports up to 65% higher WCET estimate
compared to the observed simulation time (for Adpcm). Must
analysis requires loop unrolling to bring memory blocks to
the data cache and to capture subsequent reuse. Therefore,
in the remaining portion of the loop nest where unrolling is
not applied, they can not capture any cache reuse.

On the other hand, our proposed analysis always obtains
tighter WCET estimates compared to existing approaches.
In most of the benchmarks, our WCET estimates are less
than 10% higher than the simulation results (except for
Matmult and Adpcm). We observe that many data references
in these benchmarks have sequential array access patterns.
They traverse array elements in sequential order, according
to the row-major arrangement of array in the memory. Our
scope-aware approach fully captures the temporal locality
of such data accesses to bound the worst-case data cache
performance. Our proposed analysis achieves 5% to 74%
tighter WCET estimates compared to the original persistence
analysis without temporal scope information, and 5% to 35%
compared to must analysis with 50% unrolling.

Matmult contains a column array access in addition to
sequential array accesses. In our analysis, a temporal scope
captures the lower and upper bound of loop iterations where
a memory block may get accessed. For column array access,
array elements contained in a single memory block are
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usually accessed in non-contiguous loop iterations, which
leads to over-estimation in the computed temporal scopes.
However, as shown in Figure 7, our estimated WCET is only
18% higher than the observed WCET, and is 17% to 46%
tighter than other approaches.

Adpcm is a complex benchmark with input-dependent
branches and accesses, so our simulation result may un-
derestimate the real WCET. Due to the presence of input-
dependent branches and accesses, must analysis cannot
guarantee a memory block to be loaded into the cache for
subsequent reuse even with unrolling. In our scope-aware
persistence analysis, by guaranteeing the scope persistence
of memory blocks, we can achieve 30% tighter WCET esti-
mate compared to must analysis (with 50% loop unrolling).

IX. CONCLUDING REMARKS

In this paper, we have presented a novel data cache mod-
eling approach for static WCET analysis. Our analysis effec-
tively exploits regular data access patterns, while retaining
the strength and applicability of the abstract interpretation
approach. We define temporal scopes to capture the local
behavior of memory references (when a particular memory
block is accessed). These temporal scopes are automatically
calculated during address analysis.

Our scope-aware multi-level data cache analysis extends
the cache persistence analysis framework to compute fine-
grained scope-based persistence information, which leads
to substantially tighter worst-case cache miss estimation.
While we have presented our analysis for LRU-based cache
replacement policy, it can also be extended to handle other
deterministic cache replacement policies like FIFO and
MRU. In particular, the abstract cache update function has
to be changed to cope with the chosen replacement policy.
Finally, the proposed analysis has been integrated into the
open-source Chronos WCET analyzer ([13] version 4.1).
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