
Scope-Bounded Pushdown Languages

Salvatore La Torre1, Margherita Napoli1, and Gennaro Parlato2

1 Dipartimento di Informatica, Università degli Studi di Salerno, Italy
2 School of Electronics and Computer Science, University of Southampton, UK

Abstract. We study the formal language theory of multistack push-
down automata (Mpa) restricted to computations where a symbol can
be popped from a stack S only if it was pushed within a bounded num-
ber of contexts of S (scoped Mpa). We contribute to show that scoped
Mpa are indeed a robust model of computation, by focusing on the cor-
responding theory of visibly Mpa (Mvpa). We prove the equivalence of
the deterministic and nondeterministic versions and show that scope-
bounded computations of an n-stack Mvpa can be simulated, rearrang-
ing the input word, by using only one stack. These results have several
interesting consequences, such as, the closure under complement, the de-
cidability of universality, inclusion and equality, and a Parikh theorem.
We also give a logical characterization and compare the expressiveness
of the scope-bounded restriction with Mvpa classes from the literature.

1 Introduction

Pushdown automata working with multiple stacks (multistack pushdown au-
tomata,Mpa for short) are the automata-theoretic model of concurrent programs
with recursion and shared memory. Within the domain of formal verification of
programs, program executions are analyzed against correctness properties, that
may refer to the stack operations in the model such as for stack inspection prop-
erties and Hoare-like pre/post conditions. Such visibility of stack operations is
captured in the formal languages by the notion of visibly pushdown language [1].

The class of multistack visibly pushdown languages (Mvpl) is defined via
the model of multistack visibly pushdown automaton (Mvpa), that is a Mpa
where the push and pop operations on each stack are made visible in the input
symbols, by a partition of the input alphabet into calls, returns and internals.
Though visibility allows to synchronize the stack usage in the constructions, thus
gaining interesting properties such as the closure under intersection, in general,
it does not limit the expressiveness up to gaining decidability: the language of
the executions (i.e., the sequence of transitions) of a Mpa is a Mvpl, and Mpas
are equivalent to Turing machines already with two stacks.

In this paper, we study the formal language theory of Mvpa restricted to
scoped computations [13]: for a positive integer, a computation is k-scoped if
for each stack i, each popped symbol was pushed within the last k contexts of
i (a context is a continuous portion of the computation where only one stack
is used). The notion of scope-bounded computations was introduced in [12] to

A.M. Shur and M.V. Volkov (Eds.): DLT 2014, LNCS 8633, pp. 116–128, 2014.
c© Springer International Publishing Switzerland 2014

Scope-Bounded Pushdown Languages 117

extend the analysis of Mpa to unboundedly many context switches. The original
notion of scope-bounded is significantly less expressive than the one used in this
paper. The notion of scoped computations naturally extends to infinite words
and temporal logic model checking [13,3]. Also, global reachability was solved for
concurrent collapsible pushdown automata restricted to scoped computations [8].

Our first main contribution is to prove that deterministic and nondetermin-
istic scoped Mvpa are language equivalent. The main notion used in our con-
struction is the switching mask. A switching mask summarizes the states of a
Mvpa at context-switches. We show that for scope-bounded computations also
the switching masks are bounded. The resulting deterministic Mvpa has size
doubly exponential in both the number of stacks and the bound k. By this
construction we gain the closure under complement, and by the effectiveness
of closure under intersection and the decidability of emptiness, we also get the
decidability of universality, inclusion, and equality. In general, Mvpa and most
of the already studied classes of Mvpa are not determinizable [9].

As a second main contribution, we show a sequentialization construction for
scoped Mvpa. Namely, we give a mapping π that rearranges the contexts in
a scoped word w s.t. it can be read by using only one stack (all the calls and
returns of the starting alphabet are interpreted as calls and returns of the only
available stack). We show a construction that starting from a Mvpa A builds a
visibly pushdown automaton Aseq that accepts all the scoped words in π(L(A)).
Sequentialization of concurrent programs is nowadays one of the emerging tech-
niques for building model-checkers for concurrent programs. As a corollary of
this result, we can show a Parikh theorem for scoped Mvpl.

Closure under union and intersection can be shown via standard constructions,
and since the reachability problem is Pspace-complete [13], we also get that
emptiness is Pspace-complete. Decidability of membership is straightforward:
guess and check a run over the input word. We also give an MSO characterization
of scoped Mvpl. To the best of our knowledge this class is the largest subclass
of Mvpl with all the above properties.

As a further result we compare scoped Mvpl with the main Mvpl classes
from the literature and show that it is incomparable with the most expressive
ones, and strictly subsumes the others.

Related Work: In the literature several classes of Mvpl have been studied:
phase [10,11], ordered [6,7], and path-tree [14] are not determinizable and in-
comparable with scoped Mvpl. The class of round Mvpl [9], which is based on
the notion of bounded-context switching [19], has the same properties as scoped
Mvpl (checking emptiness is NP-complete) but it is strictly included in it.

Parikh theorem was originally given for context-free languages in [18]. Vis-
ibility of stack operations was first introduced for input-driven pushdown au-
tomata [22] (see also [17] and references therein). A fixed-point algorithm for
the reachability problem and a sequentialization are given in [15] for Mpa under
the restriction from [12]. The bounded context-switching restriction was pro-
posed in [19] for under-approximate analysis of multi-threaded programs. More
work on decision problems is done in [20,5] for phase Mpa and ordered Mpa [4].

118 S. La Torre, M. Napoli, and G. Parlato

2 Preliminaries

For i, j ∈ N, we denote with [i, j] = {d ∈ N | i ≤ d ≤ j}, and with [j] = [1, j].

Words over Call-Return Alphabets. Given an integer n > 0, an n-stack
call-return alphabet ˜Σn is (Σint , 〈Σc

h, Σ
r
h〉h∈[n]), where Σ

int , Σc
1, Σ

r
1 , . . . , Σ

c
n, Σ

r
n

are pairwise disjoint finite alphabets; Σint is the set of internals, and for h ∈ [n],
Σr

h is the set of stack-h returns and Σc
h is the set of stack-h calls.

In the following, for an n-stack call-return alphabet ˜Σn, we let Σh = Σc
h ∪

Σr
h ∪Σint , Σc =

⋃

h∈[n]Σ
c
h, Σ

r =
⋃

h∈[n]Σ
r
h and with Σ = Σint ∪Σr ∪Σc.

For a word w = a1 . . . am over ˜Σn, denoting Ch = {i ∈ [m] | ai ∈ Σc
h} and

Rh = {i ∈ [m] | ai ∈ Σr
h}, the matching relation ∼h defined by w is such that

(1) ∼h⊆ Ch × Rh, (2) if i ∼h j then i < j, (3) for each i ∈ Ch and j ∈ Rh s.t.
i < j, there is an i′ ∈ [i, j] s.t. either i′ ∼h j or i ∼h i′, and (4) for each i ∈ Ch

(resp. i ∈ Rh) there is at most one j ∈ [m] s.t. i ∼h j (resp. j ∼h i). When
i ∼h j, we say that positions i and j match in w (they are matching call and
return in w). If i ∈ Ch and i 	∼h j for any j ∈ Rh, then i is an unmatched call.
Analogously, if i ∈ Rh and j 	∼h i for any j ∈ Ch, then i is an unmatched return.

Multi-stack Visibly Pushdown Languages. A multi-stack visibly pushdown
automaton pushes a symbol on stack h when it reads a stack-h call, and pops a
symbol from stack h when it reads a stack-h return. Moreover, it just changes its
state, without reading or modifying any stack, when reading an internal symbol.
A special bottom-of-stack symbol ⊥ is used: it is never pushed or popped, and
is in the stack when computation starts. Fix a call-return alphabet ˜Σn.

Definition 1. (Multi-stack visibly pushdown automaton) A multi-stack

visibly pushdown automaton (Mvpa) over ˜Σn, is a tuple A = (Q,QI , Γ, δ,QF)
where Q is a finite set of states, QI ⊆ Q is the set of initial states, Γ is a finite
stack alphabet containing the symbol ⊥, δ ⊆ (Q × Σc × Q × (Γ\ {⊥})) ∪ (Q ×
Σr × Γ × Q) ∪ (Q × Σint × Q) is the transition function, and QF ⊆ Q is the
set of final states. Moreover, A is deterministic if |QI | = 1, and |{(q, a, q′) ∈
δ}∪{(q, a, q′, γ′) ∈ δ}∪{(q, a, γ, q′) ∈ δ}| ≤ 1, for each q ∈ Q, a ∈ Σ and γ ∈ Γ .

A configuration of an Mvpa A over ˜Σn is a tuple α = 〈q, σ1, . . . , σn〉, where
q ∈ Q and each σh ∈ (Γ \ {⊥})∗.{⊥} is a stack content. Moreover, α is initial
if q ∈ QI and σh =⊥ for every h ∈ [n], and accepting if q ∈ QF . A transition

〈q, σ1, . . . , σn〉 a−→A 〈q′, σ′
1, . . . , σ

′
n〉 is such that one of the following holds:

[Push] a ∈ Σc
h, ∃γ ∈ Γ \ {⊥} such that (q, a, q′, γ) ∈ δ, σ′

h = γ ·σh, and σ′
i = σi

for every i ∈ ([n] \ {h}).
[Pop] a ∈ Σr

h, ∃γ ∈ Γ such that (q, a, γ, q′) ∈ δ, σ′
i = σi for every i ∈ ([n]\{h}),

and either γ 	=⊥ and σh = γ · σ′
h, or γ = σh = σ′

h =⊥.
[Internal] a ∈ Σint , (q, a, q′) ∈ δ, and σ′

h = σh for every h ∈ [n].

For a word w = a1 . . . am in Σ∗, a run of A on w from α0 to αm, denoted
α0

w−→A αm, is a sequence of transitions αi−1
ai−→A αi for i ∈ [m]. Word w is

accepted by A if there is an initial configuration α and an accepting configuration
α′ such that α

w−→A α′. The language accepted by A is denoted with L(A).

Scope-Bounded Pushdown Languages 119

A language L is a multi-stack visibly pushdown language (Mvpl) if it is ac-

cepted by an Mvpa over a call-return alphabet ˜Σn.
A visibly pushdown automaton (Vpa) [1] is an Mvpa with just one stack,

and a visibly pushdown language (Vpl) is an Mvpl accepted by a Vpa.

Scope-Bounded Matching Relations [12,13]. A stack-h context is a word
in Σ+

h . We say that w has at most k maximal contexts of stack h if w ∈
Σ∗

h (Σ
∗
�=h Σ

∗
h)

k−1 where Σ �=h =
⋃

h′ �=h Σh′ .
For a word w = a1 . . . am ∈ Σ∗ we denote with w[i, j] the subword ai . . . aj .

A word w is k-scoped (according to ˜Σn) if for each h ∈ [n] and i, j ∈ [m] s.t.
i ∼h j, w[i, j] has at most k maximal contexts of stack h, i.e., each matching
call and return of stack h occur within at most k stack-h maximal contexts.

astack 1: aa

bstack 2: dd

c ca

b b b

c c

Fig. 1. A 3-scoped word

In all the examples, we assume Σc
1={a}, Σc

2={b},
Σr

1 = {c}, and Σr
2 = {d}. Consider a sample word

ν1 = a3 bd2 c2a b3 c2. Fig. 1 illustrates its splitting
into contexts and the matching relations with edges.
Note that the only pair of matching b’s and d’s is
in the same stack-2 context. Moreover, the first a
occurs in the first stack-1 context and is matched
by the last c which occurs in the third stack-1 context. Any other matching pair
of a’s and c’s occur within two stack-1 contexts. Therefore, ν1 is k-scoped for
any k ≥ 3 but it is not 2-scoped.

With Scoped(˜Σn, k), we denote the set of all the k-scoped words over ˜Σn. A

language L⊆Σ∗ is a scoped Mvpl (Smvpl) if L=Scoped(˜Σn, k)∩L(A) for some

Mvpa A over the call-return alphabet ˜Σn.

3 Properties of Mvpa Runs over Scoped Words

Fix an integer k > 0 and an Mvpa A = (Q,Q0, Γ, δ, F) over ˜Σn.

k-scoped Splitting. For a word w over ˜Σn and h ∈ [n], a cut of w is w1 :w2

s.t. w = w1w2. Such a cut is consistent with the matching relation ∼h (∼h-
consistent, for short) if in w no call of stack h occurring in the prefix w1 is
matched with a return occurring in the suffix w2.

A (∼h-consistent) splitting of w is defined by a set of (∼h-consistent) cuts of
w, that is, it is an ordered tuple 〈wi〉i∈[d] s.t. w = w1 . . . wd, wi is non-empty for
i ∈ [d] and w1 . . . wi:wi+1 . . . wd is a (∼h-consistent) cut for i ∈ [d− 1].

A context-splitting of w is a splitting 〈wi〉i∈[d] where wi is a stack-hi context
for i ∈ [d]. The canonical context-splitting of w is the only context-splitting
〈wi〉i∈[d] s.t., for each i ∈ [2, d], stack-hi context wi starts with a call or a return,
and hi−1 	= hi. For example, Fig. 1 gives the canonical context-splitting η of ν1
that splits ν1 into: aaa, bdd, cca, bbb, and cc.

The h-projection of a context-splitting χ = 〈wi〉i∈[d] is obtained from χ by
deleting all the wi that are not stack-h contexts. For example, the 2-projection
of η is: bdd, bbb. Note that a h-projection is trivially a context-splitting.

An ordered tuple χ = 〈wi〉i∈[d] of stack-h contexts is k-bounded if there is a
∼h-consistent splitting ξ = 〈vi〉i∈[m] of w1 . . . wd s.t. each vi is the concatenation

120 S. La Torre, M. Napoli, and G. Parlato

of at most k consecutive contexts of χ. In the following, we refer to such a ξ as
a k-bounding splitting for χ and will denote with χvi the ordered tuple of the
contexts from χ that form vi, for i ∈ [m].

A k-scoped splitting χ of w is the canonical context-splitting of w refined with
additional cuts s.t. for h ∈ [n], the h-projection of χ is k-bounded.

aa

bdd

c c aa

b b b

c c a

ddb

c c

Fig. 2. k-scoped splitting

Consider a sample word ν2 = a2bd2c2a2b3c2ad2bc2.
Fig. 2 illustrates a 2-scoped splitting χ that refines
the canonical context-splitting of ν2 by further cut-
ting it at the dashed vertical lines. Thus, χ splits ν2
into: aa,bdd,cc,aa,bbb,cc,a,ddb,cc. We observe that
the dashed lines define a ∼1-consistent splitting of
word a2 c2 a2 c2 a c2 where each portion is the con-
catenation of two contexts of the 1-projection of χ. Moreover, by cutting the
word bd2 b3 d2b at the first dashed line, we get a ∼2-consistent splitting where
each portion has at most two contexts of the 2-projection of χ.

Lemma 1. A word w is k-scoped iff there is a k-scoped splitting of w.

Scope-Bounded Switching-Vector Vpa. Fix h ∈ [n]. We start by recalling
the definition of switching vector [9]. Intuitively, a switching vector summarizes
the computations of an Mvpa across several consecutive stack-h contexts.

Let Ah be the Vpa over Σh obtained by restricting A to use only stack h. For
d > 0, a tuple I = 〈ini, out i〉i∈[d] is a stack-hd-switching vector (d-sv, for short, d is
omittedwhenwe do not need to refer to its size) if there is an ordered tuple 〈wi〉i∈[d]

of stack-h contexts such that, for i ∈ [d], 〈in i, σi−1〉 wi−→Ah 〈out i, σi〉where σ0 =⊥.
We also define st(I) = in1 and cur(I) = outd, and say that 〈wi〉i∈[d] witnesses I.

A stack-h k-scoped switching vector is a sv I that can be witnessed by a
k-bounded ordered tuple of stack-h contexts.

Let χ be a k-bounded ordered tuple of stack-h contexts and ξ = 〈vi〉i∈[m] be
a k-bounding splitting for χ. Denote with I a stack-h k-scoped sv witnessed by
χ. From the definition, I is given by the concatenation I1 . . . Im where each Ii is
a stack-h di-sv witnessed by χvi and di ∈ [k] is the number of contexts of χvi .
Note that not all the concatenations of sv’s with at most k pairs form a k-scoped
sv. In fact, by concatenating two witnesses a call from one could match a return
from the other, thus the resulting tuple could not be k-bounded.

We now define a Vpa Ah
k that if the input is an encoding of a k-bounded

tuple χ of stack-h contexts then it computes all the stack-h k-scoped sv’s of
A witnessed by χ. Essentially, Ah

k nondeterministically guesses any k-bounding
splitting for χ and for each resulting portion, say formed by d ≤ k contexts, it
computes a corresponding d-sv while mimicking the behavior of Ah.

We encode a tuple of stack-h contexts by marking the first symbol of each
context. Namely, for each a ∈ Σ, we add a fresh symbol ā that is a call (resp.
return, internal) if a is a call (resp. return, internal). Let Σ̄h denote the set of
all such new symbols. For a word u = a1a2 . . . ad, we denote with ū the word
ā1a2 . . . ad. We encode a tuple of stack-h contexts u1, . . . , um as ū1ū2 . . . ūm. The
new symbols ā are interpreted as a when mimicking the moves of Ah.

Scope-Bounded Pushdown Languages 121

By assuming the input ū1ū2 . . . ūm, in a typical run,Ah
k starts from any (p, p) ∈

Q2 and on reading the first symbol of ū1, it updates the second component in this
pair according to an Ah move. Now, assume a stored pair (p, p′). On any other
symbol of ū1, for any move of Ah from p′ to p′′ there are two nondeterministic
moves of Ah

k : one updating p′ to p′′ in the stored pair (as before), the other
starting a new sv by storing (p′, p′′) and thus guessing a cut. On the first symbol
of ū2, for any q ∈ Q and for any move of Ah from q to q′, again there are two
nondeterministic moves as before: one updating the stored pair to (p, p′)(q, q′),
the other starting a new sv by replacing the stored pair with (q, q′). Then, the
run continues similarly on the rest of the input.

There are two more aspects that Ah
k needs to take care of.

First, we only store d-sv’s for d ≤ k: when context-switching (i.e., reading a
symbol ā ∈ Σ̄h), appending a new pair to the stored sv I must not be allowed
if I already contains k pairs. By Lemma 1, this is sufficient for our purposes.

Second, we need to ensure that Ah
k uses only the portion of the stack that

has been pushed since the computation of the current sv started; moreover, if
it attempts to pop a symbol that was pushed when computing the previous sv,
then the guessed splitting is clearly wrong (a guessed cut is not consistent with
∼h) and the computation should halt. To ensure this, we store a bit es in the
states of Ah

k and maintain the invariant: es = 1 iff the stack does not contain
symbols pushed after the last guessed cut. Also, since pop transitions on an
empty stack are allowed in Vpas, even if the portion of the stack currently in
use is empty, we should allow them only if the whole stack is also empty. Thus,
we store another bit eg and maintain the invariant: eg = 1 iff the stack is empty.

A state of Ah
k is thus (eg, es, I) where eg, es ∈ {0, 1} and I ∈ (Q × Q)m,

m ∈ [k]. All the states are final and all the states of the form (1, 1, (q, q)) for
q ∈ Q are initial. We leave to the reader the formal definition of the transitions.

Let w be a word over the alphabet Σh ∪ Σ̄h. With Ih
k (w), we denote the set

of the sv’s I ∈ ⋃

d>0(Q ×Q)d s.t. there exists a run ρ of Ah
k on w and I is the

concatenation of I1, . . . , Ij , Ij+1 where: Ij+1 is the sv stored in the state of the
last configuration of ρ and I1, . . . , Ij is the sequence of the sv’s of all the states
occurring at the configurations of ρ from which a transition that starts a new
sv is taken (in the order they appear in ρ).

Lemma 2. I is a stack-h k-scoped switching vector of A iff I ∈ Ih
k (w) for some

w ∈ (Σh ∪ Σ̄h)
∗.

S1

S2

S3

(q0,q1)

(q1,q2)

(q2,q3)

(q3,q4)

(q4,q5) (q5,q6)

(q6,q7)

(q7,q8)

(q8,q9)

(q9,q10)

(q10,q11)

S4

Fig. 3. Sample switching vectors and 3-scoped
switching mask

Let ρ be a run of an Mvpa
A over a 3-stack call-return al-
phabet given as 〈qi−1, σ̄i−1〉 ui−→
〈qi, σ̄i〉 with i∈ [11] and contexts
ui. Let v1= ū1ū7ū9 be accepted
by A1

3, v2 = ū2ū4ū10 by A2
3 and

v3 = ū3ū5ū6ū8ū11 by A3
3. Ac-

cording to ρ, A3
3 computes on v3 the concatenation of the 2-sv S3 over ū3ū5

and the 3-sv S4 over ū6ū8ū11. The 3-sv’s computed on v1 and v2 are respec-
tively S1 and S2 (Fig. 3).

122 S. La Torre, M. Napoli, and G. Parlato

Switching Masks. We use the sv’s to summarize the runs of an Mvpa over
scoped words. For a k-scoped splitting χ of a word w over ˜Σn and h ∈ [n],
denote with dh the number of contexts in the h-projection χh of χ. Moreover,
for h, h′ ∈ [n], j ∈ [dh] and j′ ∈ [dh′], we define nextχ(h, j) = (h′, j′) s.t. the

j′-th context of χh′
is the context following in w the j-th context of χh.

For a word w over ˜Σn, a tuple M = (I1, . . . , In) is a k-scoped switching
mask for w if there is a k-scoped splitting χ of w s.t. for h ∈ [n]: (1) Ih =

〈inh
y , out

h
y〉y∈[xh] is a stack-h k-scoped sv of A and (2) outhy = inh′

y′ for each
h, y, h′, y′ for which nextχ(h, y)=(h′, y′). Moreover, we let st(M) = st(Ih1) and
cur(M) = cur(Ihd

), where each wi in χ is a stack-hi context.
In Fig. 3, we give the 3-scoped switching mask according to the sample run ρ

given above. The edges denote the mapping nextχ.
Thus, by the given definitions and Lemmas 1 and 2, the following holds:

Lemma 3. Suppose that A = (Q,Q0, Γ, δ, F) is an Mvpa over ˜Σn and w ∈
Scoped(˜Σn, k). Then w ∈ L(A) if and only if there exists a k-scoped switching
mask M for w such that st(M) ∈ Q0 and cur(M) ∈ F .

4 Determinization, Sequentialization and Parikh
Theorem

Determinization. We show that, when restricting to k-scoped words, deter-
ministic and nondeterministic Mvpas are equivalent.

For an Mvpa A, we define a deterministic MVPA AD that, for a k-scoped
input word w, constructs the set of all switching masks according to any k-
scoped splitting of w. Thus, AD accepts w iff it constructs a switching mask as
in Lemma 3, and by supposing w∈Scoped (˜Σn, k), iff w∈L(A).

For h ∈ [n], let Dh
k = (SD, SD,0, Γ

h
D, δhD, FD) be the deterministic Vpa equiva-

lent to Ah
k = (S, S0, Γ, δ

h, S) and obtained through the construction given in [1].
We recall that, according to that construction, the set of states SD is 2S×S × 2S,
and the second component of a state is updated in a run as in the standard
subset construction for finite automata. For q̂ ∈ SD, denote with R(q̂) the set of
sv’s contained in the Ah

k states stored as the second component of q̂.
We construct AD = (QD, QD

0 , ΓD, δD, FD) building on the cross product of
D1

k, . . . , D
n
k ; a state of AD is (h, q̂1, . . . , q̂n,M), where h > 0 denotes the stack

that is active in the current context, h = 0 denotes the initial state, q̂h is a
state of Dh

k , and M is a set of tuples (I1, . . . In) where for h ∈ [n], Ih is from
R(q̂h). The idea is to accumulate in the M component the tuples corresponding
to the current sv’s that are tracked in the states of A1

k, . . . , A
n
k while mimicking

a run of A on the input word. Therefore, in each tuple (I1, . . . In) in the M
component, on reading input a, we update Ih according to any transition of Ah

k

on a if this is not the first symbol of the context, and on ā, otherwise (when
context-switching into a stack-h context). The components q̂1, . . . , q̂n are up-
dated essentially by mimicking each deterministic automaton Dh

k on the stack-h
contexts of the input word by dealing with the first symbol of each context

Scope-Bounded Pushdown Languages 123

as before. The accepting states are of the form (h, q̂1, . . . , q̂n,M) s.t. there is
(I1, . . . In) ∈ M with cur(Ih) ∈ F .

The tuples in the component M of AD states of a run can be composed by
concatenating the component switching vectors Ih as done for the single Ah

k to
define Ih

k (z). Thus, for each run ρ of AD, we define a set Lρ of tuples obtained
in this way. We can show that Lρ is exactly the set of all the k-scoped switching
masks for the input word. Also, from the above description, we get that for each
switching mask M ∈ Lρ, st(M) ∈ Q0 holds, and if ρ is accepting, then there is at
least a switching mask M ∈ Lρ such that cur(M) ∈ F . Therefore, by Lemma 3:

Theorem 1. For any n-stack call-return alphabet ˜Σn and any Mvpa A over
˜Σn, there exists a deterministic Mvpa AD over ˜Σn such that Scoped(˜Σn, k) ∩
L(AD) = Scoped(˜Σn, k) ∩ L(A). Moreover, the size of AD is exponential in the
number of the states of A and doubly exponential in k and n.

Sequentialization. We show that when restricting to k-scoped words, we can
mimic the computations of an n-stack Mvpa A using only one stack (sequen-
tialization). We start by describing how the input word is rearranged.

Fix a k-scoped word w over ˜Σn, and let χ = 〈wi〉i∈[d] be a k-scoped splitting

of w. For h ∈ [n], denote with χh = 〈wh
i 〉i∈[xh] the h-projection of χ. Since χ is

k-scoped, χh is k-bounded and let ξh = 〈vhi 〉yh
be a k-bounding splitting for χh.

We define a total order �w over all the vhj according to the position of their

first symbol in w, that is, vhj �w vh
′

j′ iff r ≤ s where r is the position in w of the

first symbol of vhj and s is that of the first symbol of vh
′

j′ .

We denote with πχ(w) the concatenation of all the vhj in the ordering given
by �w. For example, consider the word u and the k-scoped splitting ξ resulting
from the example of Fig. 3. The word πξ(u) is u1u7u9.u2u4u10.u3u5.u6u8u11.

We define π(w) as the set of all words πχ(w) for any possible k-scoped splitting
χ of w. We extend π to languages in the usual way.

We show that L is a k-scoped Mvpl iff π(L) is Vpl (all calls and returns
are interpreted as calls and returns of the unique stack). In fact, since ξh is k-
bounding for χh, we get to process consecutively each set of (at most k) contexts
that share the same stack content. Thus, when entering the next portion, we can
start as the stack were empty (all that is left in the stack is not needed any more).
Moreover, all the stack-h contexts, for a given h, occur in the same order as in
w. Thus, we can process them by using Ah

k , and construct the Vpa Aseq starting
from the cross product of Ah

k for h ∈ [n].
A second main feature of π is that when reading an input word v ∈ π(w),

we can reconstruct w by using only bounded memory: at any time, we keep a
summary of each already processed portion of w (i.e., starting and ending states
of corresponding portions of an A run) and a partial order of all such portions.

Observe that while parsing v, we know neither w nor a run on it. We re-
construct them on-the-fly by making nondeterministic guesses and ruling out
the wrong guesses as soon as we realize it. For simplicity, we illustrate our idea
on our running example by assuming that we know instead the run and the word

124 S. La Torre, M. Napoli, and G. Parlato

u. We refer to in Fig. 4 and for i ∈ [4], Si is as in Fig. 3. The input word to Aseq

is u1u7u9.u2u4u10.u3u5.u6u8u11 ∈ π(u). After parsing u1u7u9, we compute S1

according to the considered run, and store the partial order shown on the edge
from S1 to S2. Now after parsing v2 = u2u4u10, we compute S2. Since u2 follows
u1 and u10 follows u9, by the ordering in v2 and the fact that u7 and u4 are not
consecutive, we get the partial order labeling the edge from S2 to S3, and so on.

S1

in

(q0, q1)

(q6, q7)

(q8, q9)

S2

(q0, q2)

(q6, q7)

(q8, q10)

(q3, q4)

S3

(q0, q5)

(q6, q7)

(q8, q10)

S4

(q0, q11)

Fig. 4. Aseq run for the running example

We succeed in reconstructing w
iff in the end the maintained
partial order collapses to just
one summary (i.e., all the por-
tions get connected). To keep
the size of the stored partial or-
der small, when the computa-
tion of a stack-h d-sv I starts,
we ensure that all the previously computed stack-h sv’s are entirely hidden in
the summaries (i.e., each pair of such sv’s has been glued on both sides to other
pairs) except for at most the second component of the last pair. In this case, we
impose that the first pair of I starts with such a second component (as for S3

and S4 in the running example).
This is indeed sufficient to accept all the words in π(w) for a k-scoped word w.

In fact, assume as input πχ(w) for a k-scoped splitting χ, and also the notation
given in the beginning of this subsection. By definition of πχ, the vhi ’s forming
the k-bounding splittings ξh, for h ∈ [n] and i ∈ [yh], are ordered according to
their first contexts. Thus, when processing a vhi all the vh

′
i′ �w vhi have been

already read by Aseq and hence, the first contexts of all such vh
′

i′ belong to a
prefix of w that has been already processed. Therefore, the computed partial
orders can be restricted to those that have a unique pair that precedes all the
others. Moreover, for each vhi′ �w vhi , since ξh is a splitting of the concatenation
of the stack-h contexts of w (in the order they appear in w), also all the contexts
of vhi′ must be in the already processed prefix of w. Hence, the number of pairs
in the considered class of partial orders is bounded by (n− 1)(k − 1) + 1.

Intuitively, Aseq mimics the cross product of A1
k, . . . , A

n
k and maintains the

partial orders of the summaries (pairs of control states) of the starting Mvpa
A as observed above. The partial orders are updated at any context switch by
using nondeterminism to guess how the next context is related to the summaries
in the partial order. The nondeterminism of each Ah

k is reduced by ruling out all
the moves that are not consistent with the stored partial order. The accepting
states of Aseq are those with a partial order that is a single pair.

We omit the formal definition of Aseq . We only observe further that since
the input of each Ah

k is over Σh ∪ Σ̄h, we first need to transform them into
corresponding Vpas Bh

k over Σh. This is done by modifying Ah
k such that the

starting symbol of each context is now guessed nondeterministically (which is
quite standard). Thus, denoting asBh

k the resultingVpas, we get that w̄1 . . . w̄d ∈
L(Ah

k) iff w1 . . . wd ∈ L(Bh
k). Also, the call-return alphabet of Aseq is ˜Σseq where

Scope-Bounded Pushdown Languages 125

Σc
seq =

⋃

h∈[n]Σ
c
h, Σ

r
seq =

⋃

h∈[n] Σ
r
h and Σint

seq = Σint (recall that the alphabets

from ˜Σn are pairwise disjoint). The following lemma holds:

Lemma 4. For an Mvpa A and a k-scope word w over ˜Σn, π(L(A)) = L(Aseq).
The size of Aseq is exponential in k and n, and polynomial in the size of A.

Parikh’s Theorem. The Parikh mapping associates a word with the vector of
the numbers of the occurrences of each symbol in the word. Formally, the Parikh
image of a word w, over the alphabet {a1, . . . , a�}, is Φ(w) = (#a1, . . . ,#a�)
where #ai is the number of occurrences of ai in w. This mapping extends to
languages in the natural way: Φ(L) = {Φ(w)|w ∈ L}.

Parikh’s theorem [18] states that for each context-free language L a regular
language L′ can be effectively found such that Φ(L) = Φ(L′). Lemma 4 gives an
effective way to translate a k-scoped Mvpl to a Vpl, and thus we get:

Theorem 2. For every k-scoped Mvpl L over ˜Σn, there is a regular language
L′ over Σ such that Φ(L′) = Φ(L). Moreover, L′ can be effectively computed.

5 Closure Properties, Decision Problems and
Expressiveness

Closure Properties and Decision Problems. Language union and inter-
section are defined for languages over a same call-return alphabet. The closure
under these set operations can be shown with standard constructions and by
exploiting that the stacks are synchronized over the input symbols. Complemen-
tation is defined w.r.t. the set Scoped(˜Σn, k) for a call-return alphabet ˜Σn, that

is the complement of L is Scoped(˜Σn, k)\L. The closure under complementation
follows from determinizability (Theorem 1).

The membership problem can be solved in nondeterministic polynomial time
by simply guessing the transitions on each symbol and then checking that they
form an accepting run. A matching lower bound can be given by a reduction
from the satisfiability of 3-CNF Boolean formulas: for a formula with k variables,
we construct a k-stack Mvpa that nondeterministically guesses a valuation by
storing the value of each variable in a separate stack, then starts evaluating the
clauses (when evaluating a literal the guessed value is popped and then pushed
into the stack to be used for next evaluations); partial evaluations are kept in
the finite control (each clause has just three literals and we evaluate one at each
time; for the whole formula we only need to store if we have already witnessed
that it is false or that all the clauses evaluated so far are all true); thus each stack
is only used to store the variable evaluation, and since for each stack h, each
pushed symbol is either popped in the next stack-h context or is not popped at
all, the input word is 2-scoped.

Checking emptiness is known to be Pspace-complete for Smvpl [12,13].
Note that Lemma 4 reduces this problem to checking the emptiness for Vpas,
and thus provides an alternative decision algorithm. Decidability of universal-
ity, inclusion and equivalence follows from the effectiveness of the closure under

126 S. La Torre, M. Napoli, and G. Parlato

Table 1. Summary of the main results on Mvpls (new results are in bold). In the
table, NP-c stands for NP-complete, and so on.

Closure properties Decision Problems
∪ ∩ Compl. Determin. Membership Emptiness Univ./ Equiv./Incl.

Vpl [1] Yes Yes Yes Yes Ptime-c Ptime-c Exptime-c
CFL Yes No No No Ptime-c Ptime-c Undecidable

Rmvpl [9] Yes Yes Yes Yes NP NP-c 2Exptime
Smvpl Yes Yes Yes Yes NP-c Pspace-c 2Exptime

Tmvpl [14] Yes Yes Yes No NP-c Etime-c 2Exptime
Pmvpl [10,14] Yes Yes Yes No NP-c 2Etime-c 3Exptime
Omvpl [2,14] Yes Yes Yes No NP-c 2Etime-c 3Exptime

CSL Yes Yes Yes Unknown NLinspace Undecidable Undecidable

complementation and intersection, and the decidability of emptiness. This yields
a double exponential upper bound. The best known lower bound is single expo-
nential and comes from Vpls.

Comparisons with Known Mvpl Classes. The class of Smvpl is incompa-
rable with the main classes of Mvpls from the literature. In particular, we have
compared it to Rmvpl [19,9] (restricted to words with a bounded number of
contexts), Pmvpl [10] (restricted to words with a bounded number of phases
where in each phase only the returns from one stack can occur), Omvpl [6,7,14]
(restricted to words where a matched return of a stack i cannot occur between
matching calls and returns of any stack j, for j < i), and Pmvpl [14] (restricted
to words with a bounded tree decomposition of the form of a stack tree).

Theorem 3. 1) Rmvpl ⊂ Smvpl∩Pmvpl. 2) Tmvpl ⊃ Pmvpl∪Omvpl. 3)
Rmvpl and Omvpl are incomparable. 4) Smvpl and Tmvpl are incomparable.
5) Smvpl, Omvpl, Pmvpl are pairwise incomparable.

A Logical Characterization. We show that monadic second order logic
(MSOμ) on scoped words has the same expressiveness of scoped Mvpas. Here a
word w ∈ Σ∗ is a structure over the universe {1, . . . , |w|}. The logic has in its
signature a predicate Pa for each a ∈ Σ where Pa(i) is true if the i-th symbol of
w is a, and n predicates μh with h ∈ [n], such that μh(i, j) holds true iff i ∼h j.

We convert MSO sentences to automata using standard techniques that rely
on the closure under Boolean operations and projection (see [21]). We get:

Theorem 4. Let k, n be two positive integers, ˜Σn be a call-return alphabet, and
L ⊆ Scoped(˜Σn, k). L is k-scoped Mvpl iff there is an MSOμ sentence ϕ over
˜Σn with Lk(ϕ) = L.

6 Conclusions

We have shown that the class of Smvpl is closed under all the Boolean opera-
tions, it has a logical characterization, the Parikh theorem holds and the main

Scope-Bounded Pushdown Languages 127

decision problems are decidable (see Table 1 for a summary of the results on
closure properties and decision problems). Moreover, the class of scoped Mvpas
is determinizable and sequentializable (sequentialization is an effective technique
for model-checking concurrent programs, see tools as CSeq, Microsoft Corral).
We extend the results from [15,16] to a larger class of languages: there, only
computations under a bounded number of round-robin scheduling are allowed
and thus only scoped words with a bounded number of contexts between any
two consecutive contexts of a same stack can be captured. Our sequentialization
construction also suggests a tree-decomposition of the multiply nested words
corresponding to scoped words with bags of O(nk) size. Thus, also for the more
expressive definition considered here, we get that the class of graphs defined by
scoped words (and thus computations of scoped Mpa) has bounded tree-width.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC, pp. 202–211.
ACM (2004)

2. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata is
2ETIME-complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp.
121–133. Springer, Heidelberg (2008)

3. Atig, M.F., Bouajjani, A., Kumar, K.N., Saivasan, P.: Linear-time model-checking
for multithreaded programs under scope-bounding. In: Chakraborty, S., Mukund,
M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 152–166. Springer, Heidelberg (2012)

4. Atig, M.F., Kumar, K.N., Saivasan, P.: Adjacent ordered multi-pushdown systems.
In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 58–69. Springer,
Heidelberg (2013)

5. Bollig, B., Kuske, D., Mennicke, R.: The complexity of model checking multi-stack
systems. In: LICS, pp. 163–172. IEEE Computer Society (2013)

6. Breveglieri, L., Cherubini, A., Citrini, C., Crespi-Reghizzi, S.: Multi-push-down
languages and grammars. Int. J. Found. Comput. Sci. 7(3), 253–292 (1996)

7. Carotenuto, D., Murano, A., Peron, A.: 2-visibly pushdown automata. In: Harju,
T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 132–144.
Springer, Heidelberg (2007)

8. Hague, M.: Saturation of Concurrent Collapsible Pushdown Systems. In: FSTTCS.
LIPIcs, vol. 24, pp. 313–325 (2013)

9. La Torre, S., Madhusudan, P., Parlato, G.: The language theory of bounded
context-switching. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp.
96–107. Springer, Heidelberg (2010)

10. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS, pp. 161–170. IEEE Computer Society (2007)

11. La Torre, S., Madhusudan, P., Parlato, G.: An infinite automaton characterization
of double exponential time. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS,
vol. 5213, pp. 33–48. Springer, Heidelberg (2008)

12. La Torre, S., Napoli, M.: Reachability of multistack pushdown systems with scope-
bounded matching relations. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011.
LNCS, vol. 6901, pp. 203–218. Springer, Heidelberg (2011)

13. La Torre, S., Napoli, M.: A temporal logic for multi-threaded programs. In: Baeten,
J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 225–239.
Springer, Heidelberg (2012)

128 S. La Torre, M. Napoli, and G. Parlato

14. La Torre, S., Napoli, M., Parlato, G.: A Unifying Approach for Multistack Push-
downAutomata. In:Csuhaj-Varjú, E.,Dietzfelbinger,M., Ésik, Z. (eds.)MFCS2014,
Part I. LNCS, vol. 8634, pp. 373–384. Springer, Heidelberg (2014),
http://users.ecs.soton.ac.uk/gp4/papers/MVPL14.pdf

15. La Torre, S., Parlato, G.: Scope-bounded multistack pushdown systems: Fixed-
point, sequentialization, and tree-width. In: FSTTCS. LIPIcs, vol. 18, pp. 173–184
(2012)

16. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: POPL, pp.
283–294. ACM (2011)

17. Okhotin, A., Piao, X., Salomaa, K.: Descriptional Complexity of Input-Driven
Pushdown Automata. In: Bordihn, H., Kutrib, M., Truthe, B. (eds.) Languages
Alive 2012. LNCS, vol. 7300, pp. 186–206. Springer, Heidelberg (2012)

18. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)
19. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.

In: Halbwachs, N., Zuck, L. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

20. Seth, A.: Global reachability in bounded phase multi-stack pushdown systems. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 615–628.
Springer, Heidelberg (2010)

21. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages,
vol. 3, pp. 389–455. Springer (1997)

22. Melhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435.
Springer, Heidelberg (1980)

http://users.ecs.soton.ac.uk/gp4/papers/MVPL14.pdf

	Scope-Bounded Pushdown Languages
	1Introduction
	2Preliminaries
	3Properties of Mvpa Runs over Scoped Words
	4Determinization, Sequentialization and Parikh Theorem
	5Closure Properties, Decision Problems and Expressiveness
	6Conclusions
	References

