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Abstract

Some exciting biological questions require quantifying thousands of proteins in single cells. To achieve this goal,

we develop Single Cell ProtEomics by Mass Spectrometry (SCoPE-MS) and validate its ability to identify distinct

human cancer cell types based on their proteomes. We use SCoPE-MS to quantify over a thousand proteins in

differentiating mouse embryonic stem cells. The single-cell proteomes enable us to deconstruct cell populations

and infer protein abundance relationships. Comparison between single-cell proteomes and transcriptomes indicates

coordinated mRNA and protein covariation, yet many genes exhibit functionally concerted and distinct regulatory

patterns at the mRNA and the protein level.

Background

Cellular systems, such as tissues, cancers, and cell cul-

tures, consist of a variety of cells with distinct molecular

and functional properties. Characterizing such cellular

differences is key to understanding normal physiology,

combating cancer recurrence, and enhancing targeted

stem cell differentiation for regenerative therapies [1–5];

it demands quantifying the proteomes of single cells.

However, quantifying proteins in single mammalian cells

has remained confined to fluorescent imaging and anti-

bodies. Fluorescent proteins have proved tremendously

useful but are limited to quantifying only a few proteins

per cell and sometimes introduce artifacts [5, 6]. Mul-

tiple antibody-based methods for quantifying proteins

in single cells have been recently developed, including

CyTOF [7, 8], single-cell Western blots [9], and Proseek

Multiplex, an immunoassay readout by PCR [10]. These

methods can quantify up to a few dozen endogenous

proteins recognized by highly specific cognate anti-

bodies and have enabled exciting research avenues [5].

Still, the throughput and accuracy of antibody-based

methods are limited by cellular permeability, molecular

crowding, epitope accessibility, and the availability of

highly specific antibodies that bind their cognate pro-

teins stoichiometrically [5, 11].

On the other hand, the application of liquid chromatog-

raphy (LC) and tandem mass spectrometry (MS/MS) to

bulk samples comprised of many cells allows for the

confident identification and quantification of thousands of

proteins [12–18]. To develop approaches that may bring

at least some of this power of LC-MS/MS to single mam-

malian cells, we considered all steps of well-established

bulk protocols and how they may be adapted to much

more limited samples. We were motivated by the

realization that most proteins are present at over 50,000

copies per cell [19, 20] while modern MS instruments

have sensitivity to identify and quantify ions present at

hundreds of copies [21, 22]. Thus, if we manage to deliver

even 1% of the protein copies from a single cell as ions for

MS analysis, we may quantify them accurately [22].

Most protocols for bulk LC-MS/MS begin by lysing

the cells with detergents or urea [23]. Since these chemi-

cals are incompatible with MS, they have to be removed

by cleanup procedures. These cleanup procedures can

result in substantial losses of protein, and colleagues

have developed advanced methods, such as SP3 [24] and

iST [25], that minimize cleanup losses and allow for

quantifying thousands of proteins from samples having

just a few micrograms of total protein [23, 26]. Indeed,

the SP3 method has been successfully used for purifying
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and quantifying proteins from single human oocytes

(∼ 100 μm diameter) [27]. Still, most mammalian cells

are smaller (10–15 μm diameter) [19], and we were

not confident that we could clean up their cell lysates

(having about 500 pg of total protein) without incur-

ring large protein losses. Thus, we sought to obviate

cleanup (and therefore eliminate cleanup-related

losses) by replacing chemical lysis with mechanical

lysis by focused acoustic sonication [23, 28].

Before being ionized and sent for MS analysis, pep-

tides have to be separated [12, 15, 16]. The separation

for bulk samples is usually accomplished by nanoliquid

chromatography (nLC). To reduce losses due to proteins

adhering to the large surface area of nLC columns,

low-input samples can also be separated by capillary

electrophoresis [29]. We sought to minimize nLC losses

by mixing labeled peptides from single cells with labeled

carrier peptides so that many of the peptides lost due to

nLC adhesion will be carrier peptides rather than

single-cell peptides. This strategy deviates from standard

protocols for bulk LC-MS/MS.

Once injected into an MS instrument, peptide ions

need at least two rounds of MS analysis for confident se-

quence identification [14, 30, 31]. The first MS scan

(MS1) determines the mass over charge ratio (M/z) for

ions that entered the instrument. Then, selected ions are

accumulated and fragmented, and their fragments are

analyzed by an MS2 scan [12, 31]. The most commonly

used fragmentation methods break peptides at the pep-

tide bonds with efficiency that varies much from bond

to bond [31]. Since some fragments are produced with

low efficiency, they will not be detected if the peptide

ions have low abundance; if not enough fragments are

detected, the peptide cannot be sequenced. We sought

to alleviate this limitation by sending for MS2

analysis-labeled peptide ions having the same M/z (and

thus the same sequence labeled with sample-specific

barcodes) from multiple single cells and from carrier

cells so that a larger number of peptide ions are frag-

mented and used for sequence identification. This strat-

egy is built upon the foundational ideas of isobaric

tandem mass tags (TMT) [31–33]. TMT labels are used

with conventional bulk LC-MS/MS to label samples of

equal total protein amount [15, 31, 34] and offer many

advantages, albeit quantification can be affected by ion

co-isolation [35]; our implementation of TMT, as de-

scribed below, uses a carrier channel with much higher

total protein abundance than the single cells and devi-

ates from the standard protocols.

MS instruments have expanding but limited capacity

for parallel ion processing and analysis [12, 36, 37]. Thus

increase in throughput has been driven in part by de-

creasing the time for each step, reaching low millisecond

ranges for MS scans and for ion accumulation for bulk

LC-MS/MS analysis [15, 36]. On the other hand, nLC elu-

tion peaks have widths on the order of seconds [22, 28].

Thus, if a peptide elutes from the nLC for 8 s and is accu-

mulated (sampled) for only 50 ms by an MS instrument,

the instrument will measure only a small fraction of the

peptide molecules in the sample [22]. This inefficient sam-

pling is compensated for in standard bulk methods by the

large input amount but becomes problematic for

low-input samples; counting noise alone can undermine

quantification [22]. In this work, we sought to alleviate the

sampling limitation by increasing the ion accumulation

(sampling) time at the expense of quantifying fewer pep-

tides per unit time. We have discussed additional strat-

egies for increasing sampling and mitigating its trade-offs

in a recent perspective [22].

Results

Thus, to develop a high-throughput method for Single

Cell ProtEomics by Mass Spectrometry (SCoPE-MS), we

had to alter substantially the LC-MS/MS methods for

bulk samples. In particular, we had to resolve two major

challenges: (i) delivering the proteome of a mammalian

cell to a MS instrument with minimal protein losses and

(ii) simultaneously identifying and quantifying peptides

from single-cell samples. To overcome the first chal-

lenge, we manually picked live single cells under a

microscope and lysed them mechanically (by Covaris

sonication in glass microtubes) (Fig. 1a). This method

was chosen to obviate chemicals that may undermine

peptide separation and ionization or sample cleanup that

may incur significant losses. The proteins from each cell

lysate were quickly denatured at 90 °C and digested with

trypsin at 45 °C overnight (Fig. 1a). Special care was

taken to ensure that each tube contained only one cell.

See “Methods” for full experimental details.

To overcome the second challenge, we made novel use

of tandem mass tags (TMT). This technology was devel-

oped for multiplexing [32, 33], which is usually

employed for cost-effective increase in throughput. Even

more crucial to our application, TMT allows quantifying

the level of each TMT-labeled peptide in each sample

while identifying its sequence from the total peptide

amount pooled across all samples [32, 33]. SCoPE-MS

capitalizes on this capability by augmenting each

single-cell set with a sample comprised of about 200 car-

rier cells that provide enough ions for peptide sequence

identification (Fig. 1a). The carrier cells also help with

the first challenge by reducing losses from single cells,

since most of the peptides lost due to surface adhesion

will likely originate from the carrier cells. Thus, the

introduction of labeled carrier cells into single-cell TMT

sets helps overcome the two major challenges.

Quantification of TMT-labeled peptides relies on re-

porter ions (RI) whose levels reflect both peptide
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abundances and noise contributions, such as coisolation

interference and background noise [31, 33, 35]. The low

protein abundance poses extreme challenges to the

signal-to-noise ratio (SNR) and requires careful evaluation

even of aspects that are well established and validated in

bulk MS measurements. To evaluate the contribution of

background noise to single-cell RI quantification, we esti-

mated the signal-to-noise ratio (SNR) (Additional file 1:

Figure S1). The estimates indicated that RI intensities are

proportional to the amount of labeled single-cell pro-

teomes, and very low for channels left empty. These data

suggest that the signal measured in single cells exceeds

the background noise by 10-fold or more. As an added

SNR control for every TMT set, SCoPE-MS leaves the

130N channel empty, so that 130N RI reflect both isotopic

cross-contamination from channel 131 and the back-

ground noise. We further verified that RI intensities in a

channel are proportional to the protein amount labeled in

that channel for both lowly and highly abundant RIs

(Additional file 1: Figure S1b, c, d).

To evaluate the ability of SCoPE-MS to distinguish dif-

ferent cell types, we prepared three label-swapped and

interlaced TMT sets with alternating single Jurkat and

U-937 cells, two blood cancer cell lines with average cell

diameter of only 11 μm (Fig. 1b). The levels of all 767 pro-

teins quantified in single cells were projected onto their

principal components (PC) [38, 39]. The two-dimensional

projections of single-cell proteomes are clustered by cell

type and in proximity to the projection of bulk samples

from the same cell type (Fig. 1c), suggesting that

SCoPE-MS can identify cell types based on their pro-

teomes. This cell-type stratification is not driven just by

highly abundant proteins since the mean levels of each

protein across the single cells was set to one; thus, highly

and lowly abundant proteins contributed equally to cell

clustering. To further test the quantification of cell-type

specific protein expression, we identified proteins whose

levels vary less within a cell type than between cell types.

Based on a two-sample t-test, we found 107 proteins

showing such trends at FDR < 2%; see representative dis-

tributions for such proteins in Fig. 1d.

In Fig. 1, the cell types of the carrier cells and the sin-

gle cells are matched. If the proteomes of the carrier

cells are significantly different from the proteomes of the

a b

c d e

Fig. 1 Validating SCoPE-MS by classifying single cancer cells based on their proteomes. a Conceptual diagram and work flow of SCoPE-MS.

Individually picked live cells are lysed by sonication, the proteins in the lysates are digested with trypsin, the resulting peptides labeled with TMT labels,

combined and analyzed by LC-MS/MS (Orbitrap Elite). b Design of control experiments used to test the ability of SCoPE-MS to distinguish U-937 cells

from Jurkat cells. Each set was prepared and quantified on a different day to evaluate day-to-day batch artifacts. c Unsupervised principal component

(PC) analysis using data for quantified proteins from the experiments described in panel b stratifies the proteomes of single cancer cells by cell type.

Protein levels from six bulk samples from Jurkat and U-937 cells are also projected and marked with filled semitransparent circles. The two largest PCs

explain over 50% of the variance. Similar separation of Jurkat and U-937 cells is observed when different carrier cells are used (Additional file 1: Figure

S2). d Distributions of protein levels across single U-937 and Jurkat cells indicate cell-type-specific protein abundances. e Adenocarcinoma cells

(MDA-MB-231) expressing mCherry and LifeAct-iRFP670 were sorted by Aria FACS into a 96-well plate, one cell per well. The relative levels of mCherry

and iRFP were estimated by the sorter (from their florescence intensity) and by SCoPE-MS, and the two estimates compared by their Spearman

correlations (ρ)
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single cells, the set of analyzed proteins will change. This

is because in shotgun proteomics, peptide ions sent for

MS/MS are chosen based on their abundance in the

MS1 survey scan. Thus, only peptides with significant

abundance in the carrier channel are likely to be sent for

MS2 analysis and quantified in the single cells. There-

fore, the composition of the carrier channel can affect

the sets of peptides quantified across the single cells, i.e.,

SCoPE-MS samples analyzed by a shotgun method will

preferentially provide relative quantification for proteins

that are abundant in the carrier cells. However, the rela-

tive quantification of a peptide in the single cells, i.e., its

RI intensities in the single-cell channels, should not be

affected by its abundance in the carrier cells. We tested

this expectation with SCoPE-MS sets whose carrier

channels contained only U-937 cells, only Jurkat cells, or

only HEK-293 cells (Additional file 1: Figure S2). These

changes of the carrier cells changed the probability of

quantifying some proteins; those with lower abundance

in the carrier cells, but hundreds of abundant proteins,

were quantified across all cells and carrier channels. Since

most proteins have comparable (within an order of

magnitude) abundances across different cell and tissue

types [16, 40], many cell types can provide useful material

for the carrier channel. This carrier dependence can be

partially mitigated if SCoPE-MS samples are analyzed by

targeted, as opposed to shotgun, LC-MS/MS [22].

Next, we sought to compare SCoPE-MS quantifica-

tion against an orthogonal and reliable method for

quantifying proteins in single cells, the fluorescence

of mCherry and iRFP. To this end, the relative levels

of the two proteins were quantified in each single cell

by a fluorescence-activated cell sorting (FACS) sorter

and by SCoPE-MS (Fig. 1e). For both proteins, the

Spearman correlations between the SCoPE-MS and

FACS measurements exceed 0.7, suggesting that esti-

mates of relative protein levels by SCoPE-MS are

comparable to those derived by FACS.

Given the difficulty of measuring extremely low pro-

tein levels, we further evaluated SCoPE-MS data by

comparing the mean estimates across single cells from

Fig. 1b to the corresponding estimates from bulk

samples for both integrated precursor-ion-areas

(Additional file 1: Figure S3a) and relative (fold-change;

Additional file 1: Figure S3b) protein levels. The correla-

tions between bulk and single-cell estimates indicate

good agreement despite the noise inherent in single-cell

measurements. The relative quantification by SCoPE-MS

was further evaluated by correlating protein fold-changes

estimated from different pairs of Jurkat and U-937 cells

labeled with different TMT tags, demonstrating good

consistency of relative quantification for all cells and

TMT tags (mean correlation ρ > 0.5; Additional file 1:

Figure S3c). To eliminate the contribution of biological

variability and estimate the reproducibility of the MS

measurement alone, we split a SCoPE-MS set in two

and quantified each half separately. Comparisons of

corresponding protein ratios estimated from each half

indicated reliability between 60 and 85% depending on

the magnitude of the fold changes, Additional file 1:

Figure S3d. This reliability is achieved with 1/3 of a

single-cell proteome (about 100–150 ng of total pro-

tein) [19] and compares favorably to reliability for bulk

datasets [40]. Taken together, these estimates of quanti-

fication accuracy and reproducibility demonstrate that

while SCoPE-MS measurements are noisier than bulk

MS measurements, they are accurate and reproducible,

especially for larger fold-changes.

Protein covariation across differentiating ES cells

Using SCoPE-MS, we quantified single-cell proteome

heterogeneity and dynamics during ES cell differenti-

ation. To initiate differentiation, we withdrew leukemia

inhibitor factor (LIF) from ES cell cultures and transi-

tioned to suspension culture; LIF withdrawal results in

complex and highly heterogeneous differentiation of epi-

blast lineages in embryoid bodies (EB). We used

SCoPE-MS to quantify over a thousand proteins at FDR

= 1%, and their pair-wise correlations (averaging across

single cells) in days 3, 5, and 8 after LIF withdrawal

(Fig. 2a); data are available at MassIVE [38] and at Pro-

teomeXchange [39]. Cells from different days were proc-

essed together to minimize batch biases [41]. To explore

the protein covariation across the differentiating single

cells, we computed and clustered all pairwise

protein-protein correlations, Fig. 2a. The clustered cor-

relation matrices exhibit clusters of correlation vectors,

and we sought to evaluate their similarity across days.

To do so, we computed the correlations between corre-

sponding correlation vectors (i.e., the vector of pair-wise

correlations of the ith protein from 1 day was correlated

to the ith vector of pair-wise correlations from another

day); see ref. [42] for more details. The results shown in

Fig. 2b indicate that most correlation vectors from day 3

are positively correlated to the corresponding correlation

vectors from days 5 and 8. The corresponding correl-

ation vectors from days 5 and 8 are substantially more

similar to each other (Fig. 2b), perhaps reflecting the

more advanced differentiation changes on those days.

As cells differentiated and became more distinct from

each other, so did the clusters of correlation vectors

(Fig. 2a). Gene set enrichment analysis of the clusters in-

dicated that functionally related proteins are

over-represented. As expected, proteins forming protein

complexes are strongly correlated to each other. For ex-

ample, most ribosomal proteins (RPs) correlate positively

to each other (Fig. 2c). A small subset of RPs covaries as

a distinct cluster in the bottom right corner of Fig. 2c,
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and this might reflect ribosome specialization, i.e., vari-

ation among the RP stoichiometry across the cell line-

ages that contributes to specialized translation functions

[43–45]. Alternatively, the cluster might reflect

extra-ribosomal functions [46], and these possibilities

need to be evaluated more directly with isolated ribo-

somes [34, 45]. The subunits from other complexes, e.g.,

the proteasome and the electron transport complex, also

covary as indicated by the positive correlations within

these complexes (Fig. 2d). A similar pattern of covari-

ation is observed for sets of lineage-specific proteins, in-

cluding proteins with functions specific to neuronal,

blood, and muscle cells (Fig. 2d). Proteins functioning in

mRNA translation, metabolism, and cell division also co-

vary, most likely reflecting differences in cell growth and

division among the single cells as they differentiate and

slow their growth rate.

Principal component analysis of differentiating ES cells

To estimate the abundance of proteins quantified in sin-

gle cells, we compared the distributions of abundances

for over 10,000 proteins quantified in a bulk sample [17]

and for the subset of these proteins quantified in

SCoPE-MS sets (Fig. 3a). Most of the proteins quantified

in the single cells tend to be abundant, mostly above the

median of the bulk sets, which corresponds to about

50,000 copies per cell [19]. This is expected given that

we used shotgun MS, but combining improvements in

SCoPE-MS and targeted MS approaches will enable

quantifying substantially less-abundant proteins [22].

Next, we sought to classify single cells using all pro-

teins identified and quantified by SCoPE-MS in single

ES and EB cells. We projected the proteomes of single

cells from all days (190 cells) onto their PCs (Fig. 3b).

The cells partially cluster by time of differentiation; in-

deed, the loadings of the first three PCs correlate to the

days post LIF withdrawal (Fig. 3c). However, the cluster-

ing by time of differentiation is incomplete, at least in

part because of asynchrony in the differentiation [47].

Similar to single-cell RNA-seq, SCoPE-MS did not quan-

tify each gene in each cell. The number of genes with

missing quantification varies from cell to cell for

single-cell RNAseq methods and this variation is one of

the primary sources of variance in the estimated RNA

levels [41]. To test if this is the case for SCoPE-MS, we

computed the fraction of proteins with missing data for

each cell and correlated that fraction to the PCs. The

correlations shown in Fig. 3c suggest that the degree of

missing data contributes to the variance but less than

what has been described for some RNA datasets [41].

The degree of missing data can be substantially reduced

by using targeted MS [22] or its influence mitigated by

a

c d

b

Fig. 2 Identifying protein covariation across differentiating ES cells. a Clustergrams of pairwise protein-protein correlations in cells differentiating for 3,

5, and 8 days after LIF withdrawal. The correlation vectors were hierarchically clustered based on the cosine of the angles between them. All single-cell

sets used the same carrier channel which was comprised of cells mixed from different time points. b The similarity between the correlation matrices

shown in panel a is quantified by the distribution of correlations between corresponding correlation vectors, as we previously described [42]. Medians

are marked with green squares and means with red pluses. c All pairwise Pearson correlations between ribosomal proteins (RPs) were computed by

averaging across cells. The correlation matrix was clustered, using the cosine between the correlation vectors as a similar measure. d To evaluate the

similarity in the relative levels of functionally related proteins, we computed the Pearson correlations within sets of functionally related proteins as

defined by the gene ontology (GO). These sets included protein complexes, lineage-specific proteins, and proteins functioning in cell growth and

division. The distribution of correlations for all quantified proteins is also displayed and used as a null distribution. To remove a positive bias from the

null distribution, we subtracted the contribution of the first pair of singular vectors from the matrix of protein levels since this pair often concentrates

global effects, which include batch effects and other system-wide trends [42, 54]. The difference between the distributions of correlations for the

protein clusters and the null distribution is present in the raw data before this normalization
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simply filtering out the proteins with the most missing

data or perhaps by more sophisticated normalization ap-

proaches. Since the mechanisms generating missing data

differ between RNAseq and SCoPE-MS, we expect that

the effects of missing data and their management will be

different as well.

The clusters of lineage-specific proteins in Fig. 2 sug-

gest that we have quantified proteomes of distinct cell

lineages; thus, we attempted to identify cell clusters by

projecting the proteomes of cells from day 8 onto their

PCs and identifying sets of proteins that are concertedly

regulated in each cluster (Fig. 3d, e). The projection re-

sulted in clusters of cells, whose identity is suggested by

the dominant proteins in the singular vectors. We iden-

tified biological functions over-represented [40] within

the distribution of PC loadings and colorcoded each cell

based on the average levels of proteins annotated to

these functions. These results suggest that SCoPE-MS

data can meaningfully classify cell identity for cells from

complex and highly heterogeneous populations.

Coordinated mRNA and protein covariation in single cells

Klein et al. [47] recently quantified mRNA heterogeneity

during ES differentiation, and we used their inDrop data

to simultaneously analyze mRNA and protein covariation

and to directly test whether genes coexpressed at the

mRNA level are also coexpressed at the protein level. To

this end, we computed all pairwise correlations between

RNAs (Fig. 4a) and proteins (Fig. 4b) for all genes quanti-

fied at both levels in cells undergoing differentiation for 7

and 8 days. Clustering hierarchically the correlation matri-

ces results in three clusters of genes. To compare these

clusters, we computed the pairwise Jaccard coefficients,

defined as the number of genes present in both classes di-

vided by the number of genes present in either class, i.e.,

intersection/union. The results (Fig. 4c) indicate that the

largest (green) cluster is 55% identical and the medium

(blue) cluster is 33% identical. This cluster stability is also

reflected in a positive correlation between corresponding

mRNA and protein correlations (Fig. 4d). The magnitude

of this correlation is comparable to protein-mRNA corre-

lations from bulk datasets [16, 40] and testifies to the

quantitative accuracy of both inDrop and SCoPE-MS.

Having established a good overall concordance be-

tween mRNA and protein covariation, we next explored

whether and how much this concordance varies between

genes with different biological functions. The covariation

concordance of a gene was estimated as the similarity of

its mRNA and protein correlations, using as a similarity

metric the correlation between the corresponding

a b

dc e

Fig. 3 Principal component analysis of differentiating ES cells. a Distributions of protein abundances for all proteins quantified from 107 differentiating

ES cells [17] or in at least one single-cell SCoPE-MS set at FDR 1%. The probability of quantifying a protein by SCoPE-MS is close to 100% for the most

abundant proteins quantified in bulk samples and decreases with protein abundance, for a total of 1526 quantified proteins. b The proteomes of all

single EB cells were projected onto their PCs, and the marker of each cell color-coded by day. The single-cell proteomes cluster partially based on the

days of differentiation. c A tabular display of the variance explained by the principal components from panel c and their correlations to the days of

differentiation and the missing data points for each cell. d, e The proteomes of cells differentiating for 8 days were projected onto their PCs, and the

marker of each cell color-coded based on the normalized levels of all proteins from the indicated gene-ontology groups
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correlation vectors as we have done previously [42, 48].

The median concordance of ribosomal proteins of both

the 60S (RPL) and 40S (RPS) is significantly higher than

for all genes (Fig. 4e). This result indicates that RPL and

RPS genes have significantly (p < 10− 20) more similar

gene-gene correlations at the mRNA and the protein

levels than the other quantified genes. In contrast to RPs,

genes functioning in tissue morphogenesis, proteolysis,

and development have significantly (p < 10− 3) lower con-

cordance at the mRNA and protein levels than all genes

(Fig. 4e). This difference may reflect both differences in

the degree of post-transcriptional regulation or measure-

ment noise for the different sets of genes [40].

Discussion

Until now, the power of LC-MS/MS proteomics has

been circumscribed to samples comprised of many cells.

Indeed, the TMT manufacturer recommends 100 μg of

protein per channel, almost 106 more than the protein

content of a typical mammalian cell [19]. SCoPE-MS

bridged this gap by clean sample preparation and by

introducing TMT-labeled carrier cells. These innova-

tions open the gates to many further improvements (e.g.,

increased multiplexing) that will make single-cell MS

proteomics increasingly powerful [22].

Answering exciting biological questions demands quan-

tifying proteins in many thousands of single cells, and we

believe that the ideas described and demonstrated here

will make such throughput practical and affordable [22].

At the moment, the cost per cell is about $15–30, but it

can be reduced to $1–2 per cell if Covaris tubes are

washed and reused and the MS analysis is done on an

in-house MS instrument. We expect that automation and

improvements in sample preparation as well as increased

number of tandem mass tags can reduce the cost well

below $1 per cell. Also, the fraction of missing data can be

substantially reduced by using targeted MS approaches

[22] and by using retention time (RT) evidence to increase

the confidence in correct peptide-spectrum matches [49].

The floor of protein detectability and quantification

with SCoPE-MS (as well as any other bottom-up MS

method) depends not only on the abundance of a pro-

tein but also on its sequence, i.e., the number of peptides

produced upon digestion and their propensities to be

well separated by the chromatography and efficiently

ionized by the electrospray. The implementation of

SCoPE-MS in this work allowed us to quantify mostly

abundant proteins present at ≥ 105 copies/cell and only

a few proteins present at ≥ 104 copies/cell (those produ-

cing the most flyable peptides); see the distribution of

abundances of the quantified proteins shown in Fig. 3a.

However, we are confident that the core ideas underpin-

ning SCoPE-MS can extend the sensitivity to most pro-

teins in a mammalian cell, down to proteins present at

∼ 1000 copies/cell. Such extension requires more effi-

cient delivery of proteins to the MS instruments, and we

Fig. 4 Coordinated mRNA and protein covariation in differentiating ES cells. a Clustergram of pairwise correlations between mRNAs with 2.5

or more reads per cell as quantified by inDrop in single EB cells [47]. b Clustergram of pairwise correlations between proteins quantified by

SCoPE-MS in 12 or more single EB cells. c The overlap between corresponding RNA from a and protein clusters from b indicates similar clustering

patterns. d Protein-protein correlations correlate to their corresponding mRNA-mRNA correlations. Only genes with significant mRNA-mRNA

correlations were used for this analysis. e The concordance between corresponding mRNA and protein correlations (computed as the correlation

between corresponding correlations [42]) is high for ribosomal proteins (RPL and RPS) and lower for developmental genes; distribution medians

are marked with red pluses. Only the subset of genes quantified at both RNA and protein levels were used for all panels
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described specific approaches that can increase the effi-

ciency by orders of magnitude [22]. These approaches

include reduced lysis volume and thus protein loss [50],

and increased sampling of the elution peaks. Such in-

creased sampling is very practical in the context of

SCoPE-MS samples analyzed by MS targeting proteins

of interest, e.g., transcription factors. Since proteins are

substantially more abundant than mRNAs, estimates of

their abundance are less likely to be undermined by

sampling (counting) noise. Thus, we believe that build-

ing upon this work, future developments in single-cell

MS have the potential to accurately quantify most pro-

teins in single mammalian cells, including lowly abun-

dant ones [22].

Conclusion
SCoPE-MS enabled us to classify cells and explore the re-

lationship between mRNA and protein levels in single

mammalian cells. This first foray into single mammalian

proteomes demonstrates that mRNA covariation is pre-

dictive of protein covariation even in single cells. It further

establishes the promise of SCoPE-MS to quantitatively

characterize single-cell gene regulation and classify cell

types based on their proteomes.

Methods

Cell culture

Mouse embryonic stem cells (E14 10th passage) were

grown as adherent cultures in 10-cm plates with 10 ml

Knockout DMEM media supplemented with 10%

ES-certified FBS, nonessential amino acids (NEAA supple-

ment), 2 mM L-glutamine, 110 μM β-mercapto-ethanol,

1% penicillin and streptomycin, and leukemia inhibitory

factor (mLIF; 1000 U LIF/ml). ES cells were passaged

every 2 days using StemPro Accutase on gelatin-coated

tissue culture plates. ES differentiation was triggered by

passaging the ES cells into media lacking mLIF in low ad-

herence plates and growing the cells as suspension cul-

tures. Jurkat and U937 cells were grown as suspension

cultures in RPMI medium (HyClone 16777-145) supple-

mented with 10% FBS and 1% pen/strep. Cells were pas-

saged when a density of 106 cells/ml was reached,

approximately every 2 days.

Harvesting cells for SCoPE-MS

To harvest cells, embryoid bodies were dissociated by treat-

ment with StemPro Accutase (Thermo Fisher #A1110501)

and gentle pipetting. Cell suspensions of differentiating ES

cells, Jurkat cells, or U-937 cells were pelleted and washed

quickly with cold phosphate buffered saline (PBS). The

washed pellets were diluted in PBS at 4 °C. The cell density

of each sample was estimated by counting at least 150 cells

on a hemocytometer, and an aliquot corresponding to 200

cells was placed in a Covaris microTUBE-15, to be used for

the carrier channel. For picking single cells, two 200-μl

pools of PBS were placed on a cooled glass slide. Into

one of the pools, 2 μl of the cell dilution was placed

and mixed, to further dilute the solution. A single cell

was then picked under a microscope into a micropip-

ette from this solution. Then, to verify that only one

cell was picked, the contents of the micropipette were

ejected into the other pool of PBS, inspected, then

taken back into the pipette and placed in a chilled Cov-

aris microTUBE-15. Cell samples in Covaris microtubes

were frozen as needed before cell lysis and labeling.

Sorting cells by FACS

Adenocarcinoma cells (MDA-MB-231) expressing

mCherry and LifeAct- iRFP670 were sorted by Aria

FACS into PCR strip-tubes, one cell per tube. Each tube

contained 2 μl of water and had a max volume of 200 μl.

The fluorescence of each protein was measured and the

protein abundance estimated after compensation for the

spectral overlap between mCherry and iRFP.

Cell lysis and digestion

Each sample—containing a single cell or carrier cells—

was lysed by sonication in a Covaris S220 instrument

(Woburn, MA) [28]. Samples were sonicated for 180 s at

125 W power with 10% peak duty cycle, in a degassed

water bath at 6 °C. During the sonication, samples were

shaken to coalesce droplets and bring them down to the

bottom of the tube. After lysis, the samples were heated

for 15 min at 90 °C to denature proteins. Then, the sam-

ples were spun at 3000 rpm for 1 min, and (50 ng/μl)

trypsin was added: 0.5 μl to single cells and 1 μl to car-

rier cells. The samples were digested overnight, shaking

at 45 °C. Once the digest was completed, each sample

was labeled with 1 μl of 85 mM TMT label (TMT10 kit,

Thermo Fisher, Germany). The samples were shaken for

1 h in a tray at room temperature. The unreacted TMT

label in each sample was quenched with 0.5 μl of 5% hy-

droxylamine for 15 min according to the manufacturer’s

protocol. The samples corresponding to one TMT10

plex were then mixed in a single-glass HPLC vial and

dried down to 10 μl in a speed vacuum (Eppendorf,

Germany) at 35 °C.

Bulk set

The six bulk samples of Jurkat and U-937 cells con-

tained 2500 cells per sample. The cells were harvested,

lysed, and processed using the same procedure as for the

single cells but with increased amount of trypsin and

TMT labels. The samples were labeled, mixed, and run

as a 6-plex TMT set.
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Mass spectrometry analysis

Each TMT labeled set of samples was submitted for sin-

gle LC-MS/MS experiment that was performed on a

LTQ Orbitrap Elite (Thermo Fisher) equipped with a

Waters (Milford, MA) NanoAcquity HPLC pump.

Peptides were first trapped and washed onto a 5 cm ×

150 μm inner diameter microcapillary trapping column

packed with C18 Reprosil resin (5 μm, 10 nm, Dr.

Maisch GmbH, Germany). The peptides were separated

on an analytical column 20 cm × 75 μm of C18 TPP

beads (1.8 μm, 20 nm, Waters, Milford, MA) that was

heated to 60 °C. Separation was achieved through apply-

ing an active gradient from 7 to 27% ACN in 0.1% for-

mic acid over 170 min at 200 nl/min. The active

gradient was followed by a 10-min 27–97% ACN wash

step. Electrospray ionization was enabled through apply-

ing a voltage of 1.8 kV using a homemade electrode

junction at the end of the microcapillary column and

sprayed from fused silica pico-tips (20 μm ID, 15 μm tip

end New Objective, MA). The LTQ Orbitrap Elite was

operated in data-dependent mode for the mass spec-

trometry methods. The mass spectrometry survey scan

(MS1) was performed in the Orbitrap in the range of

395–1,800 m/z at a resolution of 6 × 104, followed by

the selection of up to 20 most intense ions (TOP20) for

HCD-MS2 fragmentation in the Orbitrap using the fol-

lowing parameters: precursor isolation width window of

1 or 2 Th, AGC setting of 100,000, a maximum ion ac-

cumulation time of 150 ms or 250 ms, and 6 × 104 re-

solving power. Singly charged and 4+ charge ion species

were excluded from HCD fragmentation. Normalized

collision energy was set to 37 V and an activation time

of 1 ms. Ions in a 7.5-ppm m/z window around ions se-

lected for MS2 were excluded from further selection for

fragmentation for 20 s.

Analysis of raw MS data

Raw data were searched by MaxQuant [14, 51] 1.5.7.0

against a protein sequence database including all entries

from a SwissProt database and known contaminants

such as human keratins and common lab contaminants.

The SwissProt databases were the human SwissProt

database for the U-937 and the Jurkat cells and the

mouse SwissProt database for the differentiating ES cells.

MaxQuant searches were performed using the standard

work flow [52]. We specified trypsin specificity and

allowed for up to two missed cleavages for peptides

having from 5 to 26 amino acids. Methionine oxidation

(+ 15.99492 Da) was set as a variable modification. All

peptide-spectrum matches (PSMs) and peptides found

by MaxQuant were exported in the msms.txt and the

evidence.txt files.

In addition to a standard search with the full SwissProt

databases, we also searched the MS data with custom

sequence databases since such searches have advantages

when the sequences can be better tailored to the pep-

tides analyzed by MS [18, 53]. In the case of SCoPE-MS,

we can remove sequences for lowly abundant proteins

since their peptides are very unlikely to be sent for MS2.

Indeed, searches with the full databases did not identify

peptides from the least abundant proteins Fig. 2a.

Excluding such proteins from the search can narrow

down the search space and increase the statistical power

for identifying the correct peptide-spectrum matches

[18, 53]. To take advantage of this approach, we

searched the MS data with custom databases comprised

from all proteins for which MaxQuant had identified at

least one peptide across many single-cell and small-bulk

sets in searches against the full SwissProt databases.

These reduced fasta databases contained 5267 proteins

for mouse and 4961 proteins for human. Searches with

them slightly increased the number of identified peptides

from SCoPE-MS sets but such customized databases are

not essential for SCoPE-MS.

The shotgun approach results in identifying different

peptides in different SCoPE-MS sets at different levels of

confidence. Because of the lower protein levels in

SCoPE-MS sets compared to bulk sets, fewer fragment

ions are detected in the MS2 spectra and thus peptide

identification is more challenging than with bulk data-

sets. As a result, the 1% FDR threshold that is optimal

for bulk MS data may not be optimal for SCoPE-MS

datasets. To determine the FDR threshold that is optimal

for single-cell data, we plotted the number of identified

peptides at all levels of posterior error probability (PEP)

(Additional file 1: Figure S4a). This analysis suggests that

a slight increase in the arbitrary FDR threshold or 1% re-

sults in a significant increase in the peptides that can be

usefully analyzed across single cells while still keeping

false positives low. Thus, peptides from SCoPE-MS sets

were filtered to 3% FDR computed as the mean of the

PEP of all peptides below the PEP cutoff threshold [40].

To validate the protein ratios derived from peptides hav-

ing PEP ∈ (0.01, 0.03], we correlated them to the corre-

sponding protein ratios derived from peptides having

PEP < 0.01 (Additional file 1: Figure S4b). The positive

correlation in Additional file 1: Figure S4b indicates that

peptides identified with lower confidence carry quantita-

tive information. Still, this correlation is lower than the

correlations between ratios derived from two subsets of

peptides having PEP < 0.01 (Additional file 1: Figure S4c).

This may be due at least in part to the fact that factors re-

ducing the confidence of identification, such as lower

abundance or higher co-isolation, are also likely to under-

mine quantification. All razor peptides were used for

quantifying the proteins to which they were assigned by

MaxQuant. The average number of identified peptides per

TMT set is a shown for a few SCoPE-MS sets in
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Additional file 1: Figure S4a as a technical benchmark but

it has much less practical significance than the number of

proteins that are quantified across enough single cells to

be useful for analysis [22]. This number of genes quanti-

fied across multiple sets is the standard measure for

single-cell RNA sequencing methods [47], and we have

adopted it for SCoPE-MS as the more meaningful meas-

ure of the proteins whose levels can be analyzed across

multiple single cells.

Data analysis

We estimated relative peptide/protein levels from the

TMT reporter ions (RI), and protein abundances from

the precursor areas distributed according to the RI

levels. While such estimates are well validated with bulk

samples, extremely low input amounts pose unique chal-

lenges that may result in artifacts, e.g., RI intensities may

reflect only background noise or the isotopic impurities

of TMT tags may cross contaminate TMT channels. We

evaluated the degree of background noise and found it

significantly below the signal coming from the labeled

peptides (see Additional file 1: Figure S1). To compen-

sate for different amounts of total protein per channel or

other channel-specific variability, the median RI inten-

sities in each channel was set to one by diving all RI in-

tensities by their median. In the FACS experiment, the

normalization for mCherry was performed using iRFP as

a control, analogous to loading controls in western blots.

After this column normalization, the vector of RI inten-

sities for each peptide was divided by its mean or me-

dian, to remove the large differences in abundances

between different peptides. The relative level of each

quantified razor protein was estimated as the median of

the relative levels of its peptides. All analysis relied on

relative levels, i.e., the level of protein in a cell relative to

its mean or median level across all cells in which the pro-

tein is quantified. Missing peptide and protein levels were

imputed using the k-nearest neighbors algorithm, with k

being set to 1 and the similarity measure for distance be-

ing the cosine of the angle between the proteome vectors.

Relative quantification across SCoPE-MS sets

SCoPE-MS allows quantifying only eight cells per set

(Fig. 1), but combining multiple sets can quantify the

proteomes of hundreds and thousands of cells. We were

able to successfully combine relative protein levels

across SCoPE-MS sets in two different ways: (i) When

the carrier material used across sets is the same (Fig. 1b),

we used the carrier channel as a reference as established

with bulk TMT samples [15]. (ii) When the carrier

material differed across carrier channels (Additional file 1:

Figure S2), we excluded the carrier channel from the

analysis and normalized the relative levels of each pep-

tide to a mean 1 across the eight single cells in each set,

four Jurkat and four U-937 cells. Approach (ii) worked

well in this case because the single-cell composition of

the different SCoPE-MS sets was balanced. Combining

SCoPE-MS sets based on a reference channel that is

kept the same across all sets is a more versatile strategy

that generalizes to any experimental design and

single-cell distribution across sets.

Additional file

Additional file 1: Figure S1. Contribution of background noise to

quantification of peptides in single cells. Figure S2. Relative

quantification is independent from the carrier channel. Figure S3.

Accuracy of SCoPE-MS quantification. Figure S4. Confidence of peptide

identification and its effect on quantification. (PDF 805 kb)
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