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An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the

alternative energy resources.The current research and technology based on the third gen-

eration biofuels derived from algal biomass have been considered as the best alternative

bioresource that avoids the disadvantages of first and second generation biofuels. Algal

biomass has been investigated for the implementation of economic conversion processes

producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other

valuable co-products. In the present review, the recent findings and advance developments

in algal biomass for improved biofuel production have been explored.This review discusses

about the importance of the algal cell contents, various strategies for product formation

through various conversion technologies, and its future scope as an energy security.

Keywords: algae, microalgae, biofuels, bioethanol, biogas, biodiesel, biohydrogen

INTRODUCTION

The requirement of energy for the mankind is increasing day by

day. The major source of energy is based on fossil fuels only. Thus,

the scarcity of fossil fuels, rising price of petroleum based fuels,

energy protection, and increased global warming resulted in focus-

ing on renewable energy sources such as solar, wind, hydro, tidal,

and biomass worldwide (Goldemberg and Guardabassi, 2009;

Dragone et al., 2010; Rajkumar et al., 2014).

Different biomass from various sources like agricultural,

forestry, and aquatic have been taken into consideration as the

feedstocks for the production of several biofuels such as biodiesel

(Boyce et al., 2008; Yanqun et al., 2008), bioethanol (Behera et al.,

2014), biohydrogen (Marques et al., 2011), bio-oil (Shuping et al.,

2010), and biogas (Hughes et al., 2012; Singh et al., 2014). How-

ever, the environmental impact raised from burning of fuels has

a great impact on carbon cycle (carbon balance), which is related

to the combustion of fossil fuels. Besides, exhaustion of different

existing biomass without appropriate compensation resulted in

huge biomass scarcity, emerging environmental problems such as

deforestation and loss of biodiversity (Goldemberg, 2007; Li et al.,

2008; Saqib et al., 2013).

Recently, researchers and entrepreneurs have focused their

interest, especially on the algal biomass as the alternative feed-

stock for the production of biofuels. Moreover, algal biomass

has no competition with agricultural food and feed produc-

tion (Demirbas, 2007). The photosynthetic microorganisms like

microalgae require mainly light, carbon dioxide, and some nutri-

ents (nitrogen, phosphorus, and potassium) for its growth, and

to produce large amount of lipids and carbohydrates, which can

be further processed into different biofuels and other valuable co-

products (Brennan and Owende, 2010; Nigam and Singh, 2011).

Interestingly, the low content of hemicelluloses and about zero

content of lignin in algal biomass results in an increased hydrol-

ysis and/or fermentation efficiency (Saqib et al., 2013). Other

than biofuels, algae have applications in human nutrition, animal

feed, pollution control, biofertilizer, and waste water treatment

(Thomas, 2002; Tamer et al., 2006; Crutzen et al., 2007; Hsueh

et al., 2007; Choi et al., 2012). Therefore, the aim of the current

review is to explore the scope of algae for the production of dif-

ferent biofuels and evaluation of its potential as an alternative

feedstock.

ALGAE: SOURCE OF BIOFUELS

Generally, algae are a diverse group of prokaryotic and eukary-

otic organisms ranging from unicellular genera such as Chlorella

and diatoms to multicellular forms such as the giant kelp, a large

brown alga that may grow up to 50 m in length (Li et al., 2008).

Algae can either be autotrophic or heterotrophic. The autotrophic

algae require only inorganic compounds such as CO2, salts, and

a light energy source for their growth, while the heterotrophs are

non-photosynthetic, which require an external source of organic

compounds as well as nutrients as energy sources (Brennan and

Owende, 2010). Microalgae are very small in sizes usually mea-

sured in micrometers, which normally grow in water bodies or

ponds. Microalgae contain more lipids than macroalgae and have

the faster growth in nature (Lee et al., 2014a). There are about more

than 50,000 microalgal species out of which only about 30,000

species have been taken for the research study (Surendhiran and

Vijay, 2012; Richmond and Qiang, 2013; Rajkumar et al., 2014).

The short harvesting cycle of algae is the key advantage for its

importance, which is better than other conventional crops having

harvesting cycle of once or twice in a year (Chisti, 2007; Schenk
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Behera et al. Scope of algae as third generation biofuels

et al., 2008). Therefore, the main focus has been carried out on

algal biomass for its application in biofuel area.

There are several advantages of algal biomass for biofuels pro-

duction: (a) ability to grow throughout the year, therefore, algal oil

productivity is higher in comparison to the conventional oil seed

crops; (b) higher tolerance to high carbon dioxide content; (c)

the consumption rate of water is very less in algae cultivation; (d)

no requirement of herbicides or pesticides in algal cultivation; (e)

the growth potential of algal species is very high in comparison to

others; (f) different sources of wastewater containing nutrients like

nitrogen and phosphorus can be utilized for algal cultivation apart

from providing any additional nutrient; and (g) the ability to grow

under harsh conditions like saline, brackish water, coastal seawa-

ter, which does not affect any conventional agriculture (Spolaore

et al., 2006; Dismukes et al., 2008; Dragone et al., 2010). However,

there are several disadvantages of algal biomass as feedstock such

as the higher cultivation cost as compared to conventional crops.

Similarly, harvesting of algae require high energy input, which

is approximately about 20–30% of the total cost of production.

Several techniques such as centrifugation, flocculation, floatation,

sedimentation, and filtration are usually used for harvesting and

concentrating the algal biomass (Demirbas, 2010; Ho et al., 2011).

The algae can be converted into various types of renewable

biofuels including bioethanol, biodiesel, biogas, photobiologically

produced biohydrogen, and further processing for bio-oil and syn-

gas production through liquefaction and gasification, respectively

(Kraan, 2013). The conversion technologies for utilizing algal bio-

mass to energy sources can be categorized into three different ways,

i.e., biochemical, chemical, and thermochemical conversion and

make an algal biorefinery, which has been depicted in Figure 1.

The biofuel products derived from algal biomass using these con-

version routes have been explored in detail in the subsequent

sections.

BIODIESEL PRODUCTION

Biodiesel is a mixture of monoalkyl esters of long chain fatty

acids [fatty acid methyl esters (FAME)], which can be obtained

from different renewable lipid feedstocks and biomass. It can

be directly used in different diesel engines (Clark and Deswarte,

2008; Demirbas, 2009). Studies to explore the microalgae as feed-

stock for the production of liquid fuels had been started for

the mid-1980s. In order to solve the energy crisis, the extrac-

tion of lipids from diatoms was attempted by some German

scientists during the period of World War-II (Cohen et al.,

1995). The higher oil yield in algal biomass as compared to oil

seed crops makes the possibility to convert into the biodiesel

economically using different technologies. A comparative study

between algal biomass and terrestrial plants for the production

FIGURE 1 | Algal biomass conversion process for biofuel production.
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Behera et al. Scope of algae as third generation biofuels

of biodiesel has been depicted in Table 1. The oil productivity

(mass of oil produced per unit volume of the microalgal broth

per day) depends on the algal growth rate and the biomass con-

tent of the species. The species of microalgae such as Kirchneriella

lunaris, Ankistrodesmus fusiformis, Chlamydocapsa bacillus, and

Ankistrodesmus falcatus with high levels of polyunsaturated FAME

are generally preferred for the production of biodiesel (Nasci-

mento et al., 2013). They commonly multiply their biomass with

doubling time of 24 h during exponential growth. Oil content

of microalgae is generally found to be very high, which exceed

up to 80% by weight of its dry biomass. About 5,000–15,000 gal

of biodiesel can be produced from algal biomass per acre per

year, which reflects its potentiality (Spolaore et al., 2006; Chisti,

2007).

However, there are some standards such as International

Biodiesel Standard for Vehicles (EN14214) and American Society

for Testing and Materials (ASTM), which are required to comply

with the algal based biodiesel on the physical and chemical prop-

erties for its acceptance as substitute to fossil fuels (Brennan and

Owende, 2010). The higher degree of polyunsaturated fatty acids

of algal oils as compared to vegetable oils make susceptible for

oxidation in the storage and further limits its utilization (Chisti,

2007). Some researchers have reported the different advantages

of the algal biomass for the biodiesel production due to its high

biomass growth and oil productivity in comparison to best oil

crops (Chisti, 2007; Hossain et al., 2008; Hu et al., 2008; Rosenberg

et al., 2008; Schenk et al., 2008; Rodolfi et al., 2009; Mutanda et al.,

2011).

Algal biodiesel production involves biomass harvesting, drying,

oil extraction, and further transesterification of oil, which have

been described as below.

HARVESTING AND DRYING OF ALGAL BIOMASS

Unicellular microalgae produce a cell wall containing lipids and

fatty acids, which differ them from higher animals and plants.

Harvesting of algal biomass and further drying is important

prior to mechanical and solvent extraction for the recovery of

oil. Macroalgae can be harvested using nets, which require less

energy while microalgae can be harvested by some conventional

processes, which include filtration (Rossignol et al., 1999) floccu-

lation (Liu et al., 2013; Prochazkova et al., 2013), centrifugation

(Heasman et al., 2008), foam fractionation (Csordas and Wang,

2004), sedimentation, froth floatation, and ultrasonic separation

(Bosma et al., 2003). Selection of harvesting method depends on

the type of algal species.

Drying is an important method to extend shelf-life of algal bio-

mass before storage, which avoids post-harvest spoilage (Munir

et al., 2013). Most of the efficient drying methods like spray-

drying, drum-drying, freeze drying or lyophilization, and sun-

drying have been applied on microalgal biomass (Leach et al.,

1998; Richmond, 2004; Williams and Laurens, 2010). Sun-drying

is not considered as a very effective method due to presence of high

water content in the biomass (Mata et al., 2010). However, Prakash

et al. (2007) used simple solar drying device and succeed in dry-

ing Spirulina and Scenedesmus having 90% of moisture content.

Widjaja et al. (2009) showed the effectiveness of drying temper-

ature during lipid extraction of algal biomass, which affects both

concentration of triglycerides and lipid yield. Further, all these

processes possess safety and health issues (Singh and Gu, 2010).

EXTRACTION OF OIL FROM ALGAL BIOMASS

Unicellular microalgae produce a cell wall containing lipids and

fatty acids, which differ them from higher animals and plants. In

Table 1 | Comparative study between algal biomass and terrestrial plants for biodiesel production.

Feedstock Conditions Biodiesel Reference

ALGAE

Spirulina platensis Reaction temperature 55°C, 60% catalyst concentration, 1:4 algae biomass

to methanol ratio, 450 rpm stirring intensity

60 g/kg lipid Nautiyal et al. (2014)

Nannochloropsis sp. Oil extraction with n-hexane, acidic transesterification 99 g/kg lipid Susilaningsih et al. (2009)

Scenedesmus sp. Alkaline (NaOH), temperature of 70°C 321.06 g/kg lipid Kim et al. (2014)

Acidic (H2SO4) catalyst, temperature of 70°C 282.23 g/kg lipid

Nannochloropsis salina Freeze drying of biomass, extraction with chloroform–methanol (1:1 ratio),

alkali transesterification

180.78 g/kg lipid Muthukumar et al. (2012)

Chlorella marina 100 g/kg lipid

TERRESTRIAL PLANTS

Madhuca indica 0.30–0.35 (v/v) methanol-to-oil ratio, 1% (v/v) H2SO4 as acid catalyst, 0.25

(v/v) methanol, 0.7% (w/v) KOH as alkaline catalyst

186.2 g/kg lipid Ghadge and Raheman (2005)

Pongamia pinnata Transesterification with methanol, NaOH as catalyst, temp. 60°C 253 g/kg lipid Mamilla et al. (2011)

Acid-catalyzed esterification by using 0.5% H2SO4, alkali-catalyzed

transesterification

193.2 g/kg lipid Naik et al. (2008)

Azadirachta indica Reaction time of 60 min, 0.7% H2SO4 as acid catalyst, reaction

temperature of 50°C, and methanol: oil ratio of 3:1

170 g/kg lipid Awolu and Layokun (2013)

Soybean Hydrotalcite as basic catalyst, methanol/oil molar ratio of 20:1, reaction

time of 10 h

189.6 g/kg lipid Martin et al. (2013)

www.frontiersin.org February 2015 | Volume 2 | Article 90 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Marine_Biotechnology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Behera et al. Scope of algae as third generation biofuels

the literature, there are different methods of oil extraction from

algae, such as mechanical and solvent extraction (Li et al., 2014).

However, the extraction of lipids from microalgae is costly and

energy intensive process.

Mechanical oil extraction

The oil from nuts and seeds is extracted mechanically using presses

or expellers, which can also be used for microalgae. The algal bio-

mass should be dried prior to this process. The cells are just broken

down with a press to leach out the oil. About 75% of oil can be

recovered through this method and no special skill is required

(Munir et al., 2013). Topare et al. (2011) extracted oil through

screw expeller by mechanical pressing (by piston) and osmotic

shock method and recovered about 75% of oil from the algae.

However, more extraction time is required as compared to other

methods, which make the process unfavorable and less effective

(Popoola and Yangomodou, 2006).

Solvent based oil extraction

Oil extraction using solvent usually recovers almost all the oil

leaving only 0.5–0.7% residual oil in the biomass. Therefore, the

solvent extraction method has been found to be suitable method

rather than the mechanical extraction of oil and fats (Topare et al.,

2011). Solvent extraction is another method of lipid extraction

from microalgae, which involves two stage solvent extraction sys-

tems. The amount of lipid extracted from microalgal biomass and

further yield of highest biodiesel depends mainly on the solvent

used. Several organic solvents such as chloroform, hexane, cyclo-

hexane, acetone, and benzene are used either solely or in mixed

form (Afify et al., 2010). The solvent reacts on algal cells releas-

ing oil, which is recovered from the aqueous medium. This occurs

due to the nature of higher solubility of oil in organic solvents

rather than water. Further, the oil can be separated from the sol-

vent extract. The solvent can be recycled for next extraction. Out

of different organic solvents, hexane is found to be most effec-

tive due to its low toxicity and cost (Rajvanshi and Sharma, 2012;

Ryckebosch et al., 2012).

In case of using mixed solvents for oil extraction, a known

quantity of the solvent mixture is used, for example, chloro-

form/methanol in the ratio 2:1 (v/v) for 20 min using a shaker

and followed by the addition of mixture, i.e., chloroform/water in

the ratio of 1:1 (v/v) for 10 min (Shalaby, 2011). Similarly, Pra-

toomyot et al. (2005) extracted oil from different algal species

using the solvent system chloroform/methanol in the ratio of 2:1

(v/v) and found different fatty acid content. Ryckebosch et al.

(2012) optimized an analytical procedure and found chloro-

form/methanol in the ratio 1:1 as the best solvent mixture for

the extraction of total lipids. Similarly, Lee et al. (1998) extracted

lipid from the green alga Botryococcus braunii using different

solvent system and obtained the maximum lipid content with

chloroform/methanol in the ratio of 2:1. Hossain et al., 2008 used

hexane/ether in the ratio 1:1 (v/v) for oil extraction and allowed

to settle for 24 h. Using a two-step process, Fajardo et al. (2007)

reported about 80% of lipid recovery using ethanol and hexane in

the two steps for the extraction and purification of lipids. There-

fore, a selection of a most suitable solvent system is required for

the maximum extraction of oil for an economically viable process.

Lee et al. (2009) compared the performance of various disrup-

tion methods, including autoclaving, bead-beating, microwaves,

sonication, and using 10% NaCl solution in the extraction of

Botryococcus sp., Chlorella vulgaris, and Scenedesmus sp, using a

mixture of chloroform and methanol (1:1).

TRANSESTERIFICATION

This is a process to convert algal oil to biodiesel, which involves

multiple steps of reactions between triglycerides or fatty acids and

alcohol. Different alcohols such as ethanol, butanol, methanol,

propanol, and amyl alcohol can be used for this reaction. How-

ever, ethanol and methanol are used frequently for the commercial

development due to its low cost and its physical and chemical

advantages (Bisen et al., 2010; Surendhiran and Vijay, 2012). The

reaction can be performed in the presence of an inorganic cata-

lyst (acids and alkalies) or lipase enzyme. In this method, about

3 mol of alcohol are required for each mole of triglyceride to

produce 3 mol of methyl esters (biodiesel) and 1 mol of glyc-

erol (by-product) (Meher et al., 2006; Chisti, 2007; Sharma and

Singh, 2009; Surendhiran and Vijay, 2012; Stergiou et al., 2013)

(Figure 2). Glycerol is denser than biodiesel and can be periodi-

cally or continuously removed from the reactor in order to drive

the equilibrium reaction. The presence of methanol, the co-solvent

that keeps glycerol and soap suspended in the oil, is known to cause

engine failure (Munir et al., 2013). Thus, the biodiesel is recovered

by repeated washing with water to remove glycerol and methanol

(Chisti, 2007).

The reaction rate is very slow by using the acid catalysts for

the conversion of triglycerides to methyl esters, whereas the alkali-

catalyzed transesterification reaction has been reported to be 4000

times faster than the acid-catalyzed reaction (Mazubert et al.,

2013). Sodium and potassium hydroxides are the two commer-

cial alkali catalysts used at a concentration of about 1% of oil.

FIGURE 2 |Transesterification of oil to biodiesel. R1–3 are hydrocarbon groups.
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Behera et al. Scope of algae as third generation biofuels

However, sodium methoxide has become the better catalyst rather

than sodium hydroxide (Singh et al., 2006).

Kim et al. (2014) used Scenedesmus sp. for the biodiesel pro-

duction through acid and alkali transesterification process. They

reported 55.07 ± 2.18%, based on lipid by wt of biodiesel con-

version using NaOH as an alkaline catalyst than using H2SO4

as 48.41 ± 0.21% of biodiesel production. In comparison to acid

and alkalies, lipases as biocatalyst have different advantages as the

catalysts due to its versatility, substrate selectivity, regioselectivity,

enantioselectivity, and high catalytic activity at ambient tempera-

ture and pressure (Knezevic et al., 2004). It is not possible by some

lipases to hydrolyze ester bonds at secondary positions, while some

other group of enzymes hydrolyzes both primary and secondary

esters. Another group of lipases exhibits fatty acids selectivity, and

allow to cleave ester bonds at particular type of fatty acids. Luo et al.

(2006) cloned the lipase gene lipB68 and expressed in Escherichia

coli BL21 and further used it as a catalyst for biodiesel produc-

tion. LipB68 could catalyze the transesterification reaction and

produce biodiesel with a yield of 92% after 12 h, at a temperature

of 20°C. The activity of the lipase enzyme with such a low temper-

ature could provide substantial savings in energy consumption.

However, it is rarely used due to its high cost (Sharma et al., 2001).

Extractive transesterification

It involves several steps to produce biodiesel such as drying, cell

disruption, oils extraction, transesterification, and biodiesel refin-

ing (Hidalgo et al., 2013). The main problems are related with

the high water content of the biomass (over 80%), which overall

increases the cost of whole process.

In situ transesterification

This method skips the oil extraction step. The alcohol acts as an

extraction solvent and an esterification reagent as well, which

enhances the porosity of the cell membrane. Yields found are

higher than via the conventional route, and waste is also reduced.

Industrial biodiesel production involves release of extraction sol-

vent, which contributes to the production of atmospheric smog

and to global warming. Thus, simplification of the esterification

processes can reduce the disadvantages of this attractive bio-based

fuel. The single-step methods can be attractive solutions to reduce

chemical and energy consumption in the overall biodiesel pro-

duction process (Patil et al., 2012). A comparison of direct and

extractive transesterification is given in Table 2.

BIOETHANOL PRODUCTION

Several researchers have been reported bioethanol production

from certain species of algae, which produce high levels of carbo-

hydrates as reserve polymers. Owing to the presence of low lignin

and hemicelluloses content in algae in comparison to lignocellu-

losic biomass, the algal biomass have been considered more suit-

able for the bioethanol production (Chen et al., 2013). Recently,

attempts have been made (for the bioethanol production) through

the fermentation process using algae as the feedstocks to make it

as an alternative to conventional crops such as corn and soyabean

(Singh et al., 2011; Nguyen and Vu, 2012; Chaudhary et al., 2014).

A comparative study of algal biomass and terrestrial plants for the

production of bioethanol has been given in Table 3. There are

Table 2 | Comparison of extractive transesterification and in situ

methods (Haas and Wagner, 2011).

Sl. no. Extractive transesterification In situ transesterification

1 Low heating value Heating value is high

2 Product yield is low Higher product yield

3 Process is complex and time

taking

Quick and simple operation

process

4 Lipid loss during process Avoided potential lipid loss

5 Waste water pollutes the

environment

Reduced waste water pollutants

6 Production cost is high Absence of harvesting and

dewatering lowers the cost

different micro and macroalgae such as Chlorococcum sp., Prym-

nesium parvum, Gelidium amansii, Gracilaria sp., Laminaria sp.,

Sargassum sp., and Spirogyra sp., which have been used for the

bioethanol production (Eshaq et al., 2011; Rajkumar et al., 2014).

These algae usually require light, nutrients, and carbon dioxide,

to produce high levels of polysaccharides such as starch and cellu-

lose. These polysaccharides can be extracted to fermentable sugars

through hydrolysis and further fermentation to bioethanol and

separated through distillation as shown in Figure 3.

PRE-TREATMENT AND SACCHARIFICATION

It has been reported that, the cell wall of some species of green algae

like Spirogyra and Chlorococcum contain high level of polysaccha-

rides. Microalgae such as C. vulgaris contains about 37% of starch

on dry weight basis, which is the best source for bioethanol with

65% conversion efficiency (Eshaq et al., 2010; Lam and Lee, 2012).

Such polysaccharide based biomass requires additional process-

ing like pre-treatment and saccharification before fermentation

(Harun et al., 2010). Saccharification and fermentation can also

be carried out simultaneously using an amylase enzyme producing

strain for the production of ethanol in a single step. Bioethanol

from microalgae can be produced through the process, which is

similar to the first generation technologies involving corn based

feedstocks. However, there is limited literature available on the

fermentation process of microalgae biomass for the production of

bioethanol (Schenk et al., 2008; John et al., 2011).

The pre-treatment is an important process, which facilitates

accessibility of biomass to enzymes to release the monosaccha-

rides. Acid pre-treatment is widely used for the conversion of

polymers present in the cell wall to simple forms. The energy

consumption in the pre-treatment is very low and also it is an effi-

cient process (Harun and Danquah, 2011a,b). Yazdani et al. (2011)

found 7% (w/w) H2SO4 as the promising concentration for the

pre-treatment of the brown macroalgae Nizimuddinia zanardini

to obtain high yield of sugars without formation of any inhibitors.

Candra and Sarinah (2011) studied the bioethanol production

using red seaweed Eucheuma cottonii through acid hydrolysis. In

this study, 5% H2SO4 concentration was used for 2 h at 100°C,

which yielded 15.8 g/L of sugars. However, there are other alter-

natives to chemical hydrolysis such as enzymatic digestion and

gamma radiation to make it more sustainable (Chen et al., 2012;

Yoon et al., 2012; Schneider et al., 2013).
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Table 3 | Comparative study between algal biomass and terrestrial plants for bioethanol production.

Feedstock Conditions Bioethanol Reference

ALGAE

Chlorococcum infusionum Alkaline pre-treatment, temp. 120°C, S. cerevisiae 260 g ethanol/kg algae Harun et al. (2011)

Spirogyra Alkaline pre-treatment, synthetic media growth, saccharification

of biomass by Aspergillus niger, fermentation by S. cerevisiae

80 g ethanol/kg algae Eshaq et al. (2010)

Chlorococcum humicola Acid pre-treatment, temp. 160°C, S. cerevisiae 520 g ethanol/kg

microalgae

Harun and Danquah (2011a)

TERRESTRIAL PLANTS

Madhuca latifolia Strain Zymomonas mobilis MTCC 92, immobilized in Luffa

cylindrical sponge disks, temp. 30°C

251.1 ± 0.012 g ethanol/kg

flowers

Behera et al. (2011)

Manihot esculenta Enzyme termamyl and amyloglucosidase, 1 N HCl,

Saccharomyces cerevisiae, ca-alginate immobilization

189 ± 3.1 g ethanol/kg flour

cassava

Behera et al. (2014)

Sugarcane bagasse Acid (H2SO4) hydrolysis, Kluyveromyces sp. IIPE453,

Fermentation at 50°C

165 g ethanol/kg bagasse Kumar et al., 2014

Rice straw Cellulase, β-glucosidase, solid state fermentation, strain

Trichoderma reesei RUT C30, and Aspergillus niger MTCC 7956

93 g ethanol/kg pretreated

rice straw

Sukumaran et al. (2008)

Similar to starch, there are certain polymers such as alginate,

mannitol, and fucoidan present in the cell wall of various algae,

which requires additional processing like pre-treatment and sac-

charification before fermentation. Another form of storage car-

bohydrate found in various brown seaweeds and microalgae is

laminarin, which can be hydrolyzed by β-1,3-glucanases or lam-

inarinases (Kumagai and Ojima, 2010). Laminarinases can be

categorized into two groups such as exo- and endo-glucanases

based on the mode of hydrolysis, which usually produces glucose

and smaller oligosaccharides as the end product. Both the enzymes

are necessary for the complete digestion of laminarin polymer (Lee

et al., 2014b).

Markou et al. (2013) saccharified the biomass of Spirulina

(Arthrospira platensis), fermented the hydrolyzate and obtained

the maximum ethanol yield of 16.32 and 16.27% (gethanol/gbiomass)

produced after pre-treatment with 0.5 N HNO3 and H2SO4,

respectively. Yanagisawa et al. (2011) investigated the content of

polysaccharide materials present in three types of seaweeds such

as sea lettuce (Ulva pertusa), chigaiso (Alaria crassifolia), and agar

weed (Gelidium elegans). These seaweeds contain no lignin, which

is a positive signal for the hydrolysis of polysaccharides with-

out any pre-treatment. Singh and Trivedi (2013) used Spirogyra

biomass for the production of bioethanol using Saccharomyces

cerevisiae and Zymomonas mobilis. In a method, they followed

acid pre-treatment of algal biomass and further saccharified using

α-amylase producing Aspergillus niger. In another method, they

directly saccharified the biomass without any pre-treatment. The

direct saccharification process resulted in 2% (w/w) more alco-

hol in comparison to pretreated and saccharified algal biomass.

This study revealed that the pre-treatment with different chemicals

are not required in case of Spyrogyra, which reflects its economic

importance for the production of ethanol. Also, cellulase enzyme

has been used for the saccharification of algal biomass contain-

ing cellulose. However, this enzyme system is more expensive

than amylases and glucoamylases, and doses required for effective

cellulose saccharification are usually very high. Trivedi et al. (2013)

applied different cellulases on green alga Ulva for saccharification

and found highest conversion efficiency of biomass into reducing

sugars by using cellulase 22119 rather than viscozyme L, cellulase

22086 and 22128. In this experiment, they found a maximum yield

of sugar 206.82 ± 14.96 mg/g with 2% (v/v) enzyme loading for

36 h at a temperature of 45°C.

FERMENTATION

There are different groups of microorganisms like yeast, bacteria,

and fungi, which can be used for the fermentation of the pre-

treated and saccharified algal biomass under anaerobic process for

the production of bioethanol (Nguyen and Vu, 2012). Nowadays,

S. cerevisiae and Z. mobilis have been considered as the bioethanol

fermenting microorganisms. However, fermentation of mannitol,

a polymer present in certain algae is not possible in anaerobic

condition using these well known microorganisms and requires

supply of oxygen during fermentation, which is possible only by

Zymobacter palmae (Horn et al., 2000).

Certain marine red algae contain agar, a polymer of galactose

and galactopyranose, which can be used for the production of

bioethanol (Yoon et al., 2010). The biomass of red algae can be

depolymerized into different monomeric sugars like glucose and

galactose. In addition to mannitol and glucose, brown seaweeds

contain about 14% of extra carbohydrates in the form of alginate

(Wargacki et al., 2012). Horn et al. (2000) reported the presence

of alginate, laminaran, mannitol, fucoidan, and cellulose in some

brown seaweeds, which are good source of sugars. They fermented

brown seaweed extract having mannitol using bacteria Z. palmae

and obtained an ethanol yield of about 0.38 g ethanol/g mannitol.

In the literature, there are many advantages supporting

microalgae as the promising substrate for bioethanol produc-

tion. Hon-Nami (2006) used Chlamydomonas perigranulata algal

culture and obtained different by-products such as ethanol and

butanediol. Similarly, Yanagisawa et al. (2011) obtained glucose
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FIGURE 3 | Process for bioethanol production from microalgae.

and galactose through the saccharification of agar weed (red

seaweed) containing glucan and galactan and obtained 5.5% of

ethanol concentration through fermentation using S. cerevisiae

IAM 4178. Harun et al. (2010) obtained 60% more ethanol in

case of lipid extracted microalgal biomass rather than intact algal

biomass of Chlorococcum sp. This shows the importance of algal

biomass for the production of both biodiesel and bioethanol.

BIOGAS PRODUCTION

Recently, biogas production from algae through anaerobic diges-

tion has received a remarkable attention due to the presence of

high polysaccharides (agar, alginate, carrageenan, laminaran, and

mannitol) with zero lignin and low cellulose content. Mostly, sea-

weeds are considered as the excellent feedstock for the production

of biogas. Several workers have demonstrated the fermentation of

various species of algae like Scenedesmus, Spirulina, Euglena, and

Ulva for biogas production (Samson and Leduy, 1986; Yen and

Brune, 2007; Ras et al., 2011; Zhong et al., 2012; Saqib et al., 2013).

The production of biogas using algal biomass in comparison to

some terrestrial plants is shown in Table 4.

Biogas is produced through the anaerobic transformation of

organic matter present in the biodegradable feedstock such as

marine algae, which releases certain gases like methane, carbon

dioxide, and traces of hydrogen sulfide. The anaerobic conver-

sion process involves basically four main steps. In the first step, the

insoluble organic material and higher molecular mass compounds

such as lipids, carbohydrates, and proteins are hydrolyzed into sol-

uble organic material with the help of enzyme released by some

obligate anaerobes such as Clostridia and Streptococci. The second

step is called as acidogenesis, which releases volatile fatty acids

(VFAs) and alcohols through the conversion of soluble organics

with the involvement of enzymes secreted by the acidogenic bacte-

ria. Further, these VFAs and alcohols are converted into acetic acid

and hydrogen using acetogenic bacteria through the process of ace-

togenesis, which finally metabolize to methane and carbon dioxide

by the methanogens (Cantrell et al., 2008;Vergara-Fernandez et al.,

2008; Brennan and Owende, 2010; Romagnoli et al., 2011).

Sangeetha et al. (2011) reported the anaerobic digestion of

green alga Chaetomorpha litorea with generation of 80.5 L of bio-

gas/kg of dry biomass under 299 psi pressure. Vergara-Fernandez

et al. (2008) evaluated digestion of the marine algae Macrocys-

tis pyrifera and Durvillaea antarctica marine algae in a two-phase

anaerobic digestion system and reported similar biogas produc-

tions of 180.4 (±1.5) mL/g dry algae/day with a methane con-

centration around 65%. However, in case of algae blend, same

methane content was observed with low biogas yield. Mussgnug

et al. (2010) reported biogas production from some selected green

algal species like Chlamydomonas reinhardtii and Scenedesmus

obliquus and obtained 587 and 287 mL biogas/g of volatile solids,

respectively. Further, there are few studies, which have been

conducted with microalgae showing the effect of different pre-

treatment like thermal, ultrasound, and microwave for the high

production of biogas (Gonzalez-Fernandez et al., 2012a,b; Passos

et al., 2013).

However, there are different factors, which limit the biogas pro-

duction such as requirement of larger land area, infrastructure,

and heat for the digesters (Collet et al., 2011; Jones and Mayfield,

2012). The proteins present in algal cells increases the ammonium

production resulting in low carbon to nitrogen ratio, which affects

biogas production through the inhibition of growth of anaerobic

microorganisms. Also, anaerobic microorganisms are inhibited by

the sodium ions. Therefore, it is recommended to use the salt toler-

ating microorganisms for the anaerobic digestion of algal biomass

(Yen and Brune, 2007; Brennan and Owende, 2010; Jones and

Mayfield, 2012).

BIOHYDROGEN PRODUCTION

Recently, algal biohydrogen production has been considered to be

a common commodity to be used as the gaseous fuels or electric-

ity generation. Biohydrogen can be produced through different

processes like biophotolysis and photo fermentation (Shaishav

et al., 2013). Biohydrogen production using algal biomass is com-

parative to that of terrestrial plants (Table 5). Park et al. (2011)

found Gelidium amansii (red alga) as the potential source of

biomass for the production of biohydrogen through anaerobic
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Table 4 | Comparative study between algal biomass and terrestrial plants for biogas production.

Feedstock Conditions Biogas Reference

ALGAE

Blue algae pH-6.8, microcystin (MC) biodegradation 189.89 mL/g of VS Yuan et al. (2011)

Chlamydomonas reinhardtii Drying as the pre-treatment, batch fermentation, temp. 38°C 587 mL/g of VS Mussgnug et al. (2010)

Scenedesmus obliquus 287 mL/g of VS

Ulva sp. Batch reactor, Co-digestion with bovine slurry, temp. 35°C 191 mL/g of VS Vanegas and Bartlett (2013)

Laminaria digitata 246 mL/g of VS

Saccorhiza polyschides 255 mL/g of VS

Saccharina latissima 235 mL/g of VS

TERRESTRIAL PLANTS

Banana stem Pre-treatment: 6% NaOH in 55°C for 54 h. 37 ± 1°C for 40 days, batch 357.9 mL/g of VS Zhang (2013)

Saline creeping wild ryegrass 35°C for 33 days, batch 251 mL/g of VS Zheng (2009)

Rice straw Pre-treatment: ammonia conc. 4% and moisture content 70%, temp.

35 ± 2°C, 65 days,120 rpm, batch

341.35 mL/g of VS Yuan (2014)

Date palm tree wastes Pre-treatment: alkaline, particle size 2–5 mm, temp. 40°C 342.2 mL/g of VS Al-Juhaimi (2014)

Table 5 | Comparative study between algal biomass and terrestrial plants for biohydrogen production.

Feedstock Conditions Biohydrogen Reference

ALGAE

Gelidium amansii Hydrolysis at 150°C 53.5 mL of H2/g of dry algae Park et al. (2011)

Laminaria japonica Mesophilic condition (35 ± 1°C), pH of 7.5, anaerobic sequencing

batch reactor, hydraulic retention time (HRT) of 6 days

71.4 mL H2/g of dry algae Shi et al. (2011)

TERRESTRIAL PLANTS

Bagasse Strain Klebsiella oxytoca HP1, temp. 37.5°C, pH-7 107.8 ± 7.5 mL H2/g bagasse Wu et al. (2010)

Corn stalk Temp. 55°C, pH-7.4 61.4 mL/g of cornstalk Cheng and Liu (2011)

Pretreated wheat straw Strain Caldicellulosiruptor saccharolyticus, Temp. 70°C, pH-7.2 44.7 mL/g of dry wheat straw Ivanova et al. (2009)

Wheat straw Acid pre-treatment, simultaneous saccharification and

fermentation (SSF)

141 mL/g VS Nasirian et al. (2011)

fermentation. Nevertheless, they found 53.5 mL of H2 from 1 g of

dry algae with a hydrogen production rate of 0.518 L H2/gVSS/day.

The authors found an inhibitor, namely, 5-hydroxymethylfurfural

(HMF) produced through the acid hydrolysis of G. amansii that

decreases about 50% of hydrogen production due to the inhibition.

Thus, optimization of the pre-treatment method is an important

step to maximize biohydrogen production, which will be useful

for the future direction (Park et al., 2011; Shi et al., 2011). Saleem

et al. (2012) reduced the lag time for hydrogen production using

microalgae Chlamydomonas reinhardtii by the use of optical fiber

as an internal light source. In this study, the maximum rate of

hydrogen production in the presence of exogenic glucose and opti-

cal fiber was reported to be 6 mL/L culture/h, which is higher than

other reported values.

Some of microalgae like blue green algae have glycogen instead

of starch in their cells. This is an exception, which involves oxi-

dation of ferrodoxin by the hydrogenase enzyme activity for the

production of hydrogen in anaerobic condition. However, another

function of this enzyme is to be involved in the detachment of

electrons. Therefore, different researchers have focused for the

identification of these enzyme activities having interactions with

ferrodoxin and the other metabolic functions for microalgal pho-

tobiohydrogen production. They are also involved with the change

of these interactions genetically to enhance the biohydrogen pro-

duction (Gavrilescu and Chisti, 2005; Hankamer et al., 2007;

Wecker et al., 2011; Yacoby et al., 2011; Rajkumar et al., 2014).

BIO-OIL AND SYNGAS PRODUCTION

Bio-oil is formed in the liquid phase from algal biomass in anaer-

obic condition at high temperature. The composition of bio-oil

varies according to different feedstocks and processing conditions,

which is called as pyrolysis (Iliopoulou et al., 2007; Yanqun et al.,

2008). There are several parameters such as water, ash content,

biomass composition, pyrolysis temperature, and vapor residence

time, which affect the bio-oil productivity (Fahmi et al., 2008).

However, due to the presence of water, oxygen content, unsatu-

rated and phenolic moieties, crude bio-oil cannot be used as fuel.

Therefore, certain treatments are required to improve its quality
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(Bae et al., 2011). Bio-oils can be processed for power genera-

tion with the help of external combustion through steam and

organic rankine cycles, and stirling engines. However, power can

also be generated through internal combustion using diesel and

gas-turbine engines (Chiaramonti et al., 2007). In literature, there

are limited studies on algae pyrolysis compared to lignocellulosic

biomass. Although, high yields of bio-oil occur through fluidized-

bed fast pyrolysis processes, there are several other pyrolysis modes,

which have been introduced to overcome their inherent disadvan-

tages of a high level of carrier gas flow and excessive energy inputs

(Oyedun et al., 2012). Demirbas (2006) investigated suitability

of the microalgal biomass for bio-oil production and found the

superior quality than the wood. Porphy and Farid (2012) produced

bio-oil from pyrolysis of algae (Nannochloropsis sp.) at 300°C after

lipid extraction, which composed of 50 wt% acetone, 30 wt%

methyl ethyl ketone, and 19 wt% aromatics such as pyrazine and

pyrrole. Similarly, Choi et al. (2014) carried out pyrolysis study on

a species of brown algae Saccharina japonica at a temperature of

450°C and obtained about 47% of bio-oil yield.

Gasification is usually performed at high temperatures (800–

1000°C), which converts biomass into the combustible gas mixture

through partial oxidation process, called syngas or producer gas.

Syngas is a mixture of different gases like CO, CO2, CH4, H2,

and N2, which can also be produced through normal gasification

of woody biomass. In this process, biomass reacts with oxygen

and water (steam) to generate syngas. It is a low calorific gas,

which can be utilized in the gas turbines or used directly as fuel.

Different variety of biomass feedstocks can be utilized for the pro-

duction of energy through the gasification process, which is an

added advantage (Carvalho et al., 2006; Prins et al., 2006; Lv et al.,

2007).

CONCLUSION AND FUTURE PERSPECTIVES

Recently, it is a challenge for finding different alternative resources,

which can replace fossil fuels. Due to presence of several advan-

tages in algal biofuels like low land requirement for biomass

production and high oil content with high productivity, it has

been considered as the best resource, which can replace the liq-

uid petroleum fuel. However, one of its bottlenecks is the low

biomass production, which is a barrier for industrial production.

Also, another disadvantage includes harvesting of biomass, which

possesses high energy inputs. For an economic process develop-

ment in comparison to others, a cost-effective and energy efficient

harvesting methods are required with low energy input. Producing

low-cost microalgal biofuels requires better biomass harvesting

methods, high biomass production with high oil productivity

through genetic modification, which will be the future of algal

biology. Therefore, use of the standard algal harvesting technique,

biorefinery concept, advances in photobioreactor design and other

downstream technologies will further reduce the cost of algal bio-

fuel production, which will be a competitive resource in the near

future.
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