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Abstract

Generalizations of the linear score function, a well-known concept in theo-
retical statistics, are introduced. As the Gaussian density and the classical
Fisher information are closely related to the linear score, nonlinear (respec-
tively fractional) score functions allow to identify generalized Gaussian den-
sities (respectively Lévy stable laws) as the (unique) probability densities for
which the score of a random random variable X is proportional to −X. In
all cases, it is shown that the variance of the relative to the generalized Gaus-
sian (respectively Lévy) score provides an upper bound for L1-distance from
the generalized Gaussian density (respectively Lévy stable laws). Connections
with nonlinear and fractional Fokker–Planck type equations are introduced
and discussed.
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1 Introduction
Let X be a random vector with differential probability density functions f(x), with
x ∈ Rn, n ≥ 1. The Fisher information of X is defined by

I(X) = I(f) =

∫
{f > 0}

|∇f(x)|2

f(x)
dx. (1)
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Likewise, given a pair of random vectorX and Y , with differential probability density
functions f(x) and g(x), the relative to Y Fisher information of X and Y is defined
by

I(X|Y ) = I(f | g) =

∫
{f, g>0}

∣∣∣∣∇f(x)

f(x)
− ∇g(x)

g(x)

∣∣∣∣2 f(x) dx, (2)

Both the Fisher and the relative Fisher information appear to be very useful in many
applications, which range from information theory [13, 23] to probability theory
[3, 4, 15, 16] and kinetic theory [25, 26], where (2), in connection with Fokker–
Planck type equations, is commonly referred as relative entropy production.

These notions are closely linked to the concept of linear score function, mostly
used in theoretical statistics [8, 21]. Given a random vector X with differential
probability density function f(x), its linear score is given by

ρ(X) =
∇f(X)

f(X)
. (3)

Indeed, for a random vector with zero expectation, the Fisher information (1) is just
the variance of ρ(X). Analogously, given the pair of random vectors X and Y , the
linear score function of the pair relative to X is represented by

ρ̃(X) =
∇f(X)

f(X)
− ∇g(X)

g(X)
. (4)

Hence the relative (to Y ) Fisher information betweenX and Y with zero expectation
is just the variance of ρ̃(X). This notion is satisfying because it represents the
variance of some error due to the mismatch between the prior distribution f supplied
to the estimator and the actual distribution g. Obviously, whenever f and g are
identical, then the relative score and the relative Fisher information are equal to
zero.

In connection with the linear score (2), Gaussian variables are easily distinguished
from others. Let zσ(x) denote the Gaussian density in Rn with zero mean and
variance nσ

zσ(x) =
1

(2πσ)n/2
exp

(
−|x|

2

2σ

)
. (5)

Then a Gaussian random vector Z of density zσ is uniquely defined by the identity

ρ(Z) = −Z/σ.

Also, the relative (to X) score function of X and Z takes the simple expression

ρ̃(X) =
∇f(X)

f(X)
+
X

σ
, (6)
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so that the relative to Z Fisher information of X and Z is given by

I(X|Z) = I(f | zσ) =

∫
{f > 0}

∣∣∣∣∇f(x)

f(x)
+
x

σ

∣∣∣∣2 f(x) dx. (7)

This particular property of Gaussian density with respect to the linear score, sug-
gested how to modify the definition to distinguish stable laws from others [27]. The
fractional linear score of a random variable X of density f is defined by

ρλ(X) =
Dλ−1f(X)

f(X)
, (8)

where Dαf(x), 0 < α < 1 is the fractional derivative of order α of f(x) (cf. the
Appendix for the definition). Starting from (8), the definition of relative (to Zλ)
fractional Fisher information of a random variable X follows [27]. Let Zλ denote a
Lévy stable law of density ωλ(x), x ∈ R, expressed by its Fourier transform

ω̂λ(ξ) = e−|ξ|
λ

, (9)

with 1 < λ < 2. For a given random variable X sufficiently close to Zλ, the relative
(to Zλ) fractional Fisher information of X is expressed by the formula

Iλ(X|Zλ) = Iλ(f |ωλ) =

∫
{f>0}

(
Dλ−1f(x)

f(x)
− Dλ−1ωλ(x)

ωλ(x)

)2

f(x) dx, (10)

The fractional score (8) and the relative fractional Fisher information (10) are ob-
tained from (3) (respectively (2)), by substituting the standard derivative with the
fractional derivative of order λ− 1, which is such that 0 < λ− 1 < 1 for 1 < λ < 2.
As the linear score function f ′(X)/f(X) of a random variable X with a (smooth)
probability density f identifies Gaussian variables as the unique random variables
for which the linear score is proportional to −X, Lévy symmetric stable laws of
order λ are now identified as the unique random variables Y for which the new
defined linear fractional score is proportional to −Y (cf. Section 3). Consequently,
the relative (to Zλ) fractional Fisher information (10) can be equivalently written
as

Iλ(X|Zλ) =

∫
{f>0}

(
Dλ−1f(x)

f(x)
+
x

λ

)2

f(x) dx. (11)

The analysis of [27] made evident that, given a suitable score function, the identifi-
cation of the random variables X which possess a score function of the form −CX
allows to obtain a variance of the relative score (a relative Fisher information) with
extremely good properties with respect to convolutions, that provide in addition a
control of various distances between densities (typically L1(Rn)-distance).
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In this paper, we extend the notion of score to cover situations different from
the ones described by Gaussian and Lévy random variables. The new definition
of nonlinear score of Section 2 allows to identify generalized Gaussians, say W , as
the unique random variables for which the nonlinear score is proportional to −W .
Last, in Section 4 we will review various results concerned with relative linear and
nonlinear Fisher information at the light of this connection with the notion of score
functions.

2 Scores and generalized Gaussians
In the rest of this paper, if not explicitly quoted, and without loss of generality,
we will always assume that any random vector X we will consider is centered, i.e.
E(X) = 0, where as usual E(·) denotes mathematical expectation.

Let X be a random vector with a differentiable probability distribution with
density function f(x), x ∈ Rn, n ≥ 1, depending on a parameter θ ∈ Rn. Then the
function

L(θ;x) = fθ(x),

considered as a function of θ, is called the likelihood function (of θ, given the outcome
x of X). For many applications, the natural logarithm of the likelihood function,
(the log-likelihood), is more convenient to work with.

In theoretical statistics, the score or efficient score [8, 21] is the gradient, with
respect to the parameter θ, of the log-likelihood. The score ρL(X) can be found
through the chain rule

ρL(θ,X) =
1

L(θ;X)
∇θL(θ;X). (12)

Thus the score indicates the sensitivity of L(θ;X) (its gradient normalized by its
value). In older literature, the term linear score refers to the score evaluated with
respect to an infinitesimal translation of a given density. In this case, the likelihood
of an observation is given by a density of the form L(θ;X) = f(X + θ). According
to this definition, given a random vector X in Rn, n ≥ 1, distributed with a differ-
entiable probability density function f(x), its linear score ρ (at θ = 0) is expressed
by

ρ(X) =
∇f(X)

f(X)
. (13)

The linear score has zero mean, and its variance is just the Fisher information (1)
of X. It can be easily verified that a Gaussian random vector Z of density zσ given
by (5) satisfies the equality

ρ(Z) = −Z/σ. (14)
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Vice versa, equality (14) uniquely characterizes Gaussian random vectors. Thus,
Gaussian vectors Z are uniquely characterized by a linear score ρ(Z) proportional
to −Z.

Among other possible extensions, one can generalize the notion of linear score
by evaluating it with respect to an x-dependent infinitesimal translation of the
underlying density. In this case, given a (nonnegative) function Φ(x), the likelihood
of an observation takes the form L(θ;X) = f(X + Φ(X) θ). According to this X-
dependent translation, given a random vector X in Rn, n ≥ 1, distributed with a
differentiable probability density function f(x), its Φ-score ρΦ (at θ = 0) reads

ρΦ(X) =
Φ(X)∇f(X)

f(X)
. (15)

A leading example is obtained by choosing Φ(x) = pfp−1(x), with p > (n− 2)/n. In
this case the score ρp, p > 0 takes the form

ρp(X) =
∇fp(X)

f(X)
. (16)

As previously discussed in the classical case, it is natural to look for random vectors
X characterized by a score ρp(X) proportional to −X. Without loss of generality,
let us set the constant of proportionality equal to one. Consequently, we have to look
for random vectors X with smooth probability density f which satisfy the equality

∇fp(X)

f(X)
=

p

p− 1
∇fp−1(X) = −X = −1

2
∇|X|2. (17)

Equality (17) is satisfied if and only if, for a given constant D

fp−1(X) +
p− 1

2p
|X|2 = D2. (18)

Let p < 1. Then, the nonnegative function

zp(x) =
1(

D2 + p−1
2p
|x|2
)1/(1−p) , p < 1 (19)

is a solution to (18). Clearly, since p > (n − 2)/n this function has a bounded
integral over Rn, that decreases with respect to D2 from +∞ to zero. Hence, (19)
is a probability density function for a suitable choice of the constant D.

If now p > 1, let us consider a random vector X such that, for a given constant
D > 0, |X| ≤

√
2p/(p− 1)D. In this case, equality (18) can be equivalent to (17)

only on the set of values assumed by X. On this set the function

f(x) =

(
D2 − p− 1

2p
|x|2
)1/(p−1)
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solves both (18) and (17). For a given function h(x) let h+(x) define the positive
part of h, that is h+(x) = max{h(x), 0}. Then, for a suitable value of the positive
constant D the function

zp(x) =

(
D2 − p− 1

2p
|x|2
)1/(p−1)

+

, p > 1 (20)

is a nonnegative probability density function solving (17) on the set of values as-
sumed by the random vector X. Therefore, if Wp is a random vector with density
zp, it holds

∇zpp(Wp)

zp(Wp)
= −Wp. (21)

Analogously to the linear case, given the pair of random vectors X and Y , the (non
linear) score function of the pair relative to X is now represented by

ρ̃p(X) =
∇fp(X)

f(X)
− ∇g

p(X)

g(X)
. (22)

In this case the relative (to Y ) generalized Fisher information between X and Y ,
namely the variance of ρ̃p(X) is given by

Ip(X|Y ) = Ip(f | g) =

∫
{f, g>0}

∣∣∣∣∇fp(x)

f(x)
− ∇g

p(x)

g(x)

∣∣∣∣2 f(x) dx. (23)

If p < 1, the previous computations show that that, with respect to the generalized
Gaussian Wp, the relative Fisher information takes the simple form

Ip(X|Wp) = Ip(f | zp) =

∫
{f > 0}

∣∣∣∣∇fp(x)

f(x)
+ x

∣∣∣∣2 f(x) dx. (24)

This generalized Fisher information was at the basis of the study of convergence
towards equilibrium of the solution of nonlinear diffusion equations [7, 10].

3 Fractional scores and Lévy densities
The concept of linear score has been extended in [27] to cover fractional derivatives.
Given a random variable X in R distributed with a probability density function f(x)
that has a well-defined fractional derivative of order α, with 0 < α < 1, its linear
fractional score, denoted by ρα+1 is given by

ρα+1(X) =
Dαf(X)

f(X)
. (25)
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Thus the linear fractional score indicates the non local (fractional) sensitivity of
f(X + θ) at θ = 0 (its fractional derivative normalized by its value). The fractional
score of X is linear in X if and only if X is a Lévy distribution of order α + 1.
Indeed, for a given positive constant C, the identity

ρα+1(X) = −CX,

is verified if and only if, on the set {f > 0}

Dαf(x) = −Cxf(x). (26)

Passing to Fourier transform, this identity yields

iξ|ξ|α−1f̂(ξ) = −iC ∂f̂(ξ)

∂ξ
,

and from this follows
f̂(ξ) = f̂(0) exp

{
− |ξ|α+1

C(α + 1)

}
. (27)

Finally, by choosing C = (α+ 1)−1, and imposing that f(x) is a probability density
function (i.e. by fixing f̂(ξ = 0) = 1), we obtain that the Lévy stable law of order
α + 1 is the unique probability density solving (26).

It is important to remark that, unlike in the case of the linear score, the variance
of the fractional score is in general unbounded. One can easily realize this by looking
at the variance of the fractional score in the case of a Lévy variable. For a Lévy
variable, in fact, the variance of the fractional score coincides with a multiple of
its variance, which is unbounded [12, 17]. For this reason, a consistent definition
in this case is represented by the relative fractional score (10). Thanks to (27), a
Lévy random variable of density zλ, with 1 < λ < 2 is uniquely defined by a linear
fractional score function

ρλ(Zλ) = −Zλ
λ
.

Then, the relative (to X) fractional score function of X and Zλ assumes the simple
expression

ρ̃λ(X) =
Dλ−1f(X)

f(X)
+
X

λ
, (28)

which induces a (relative to the Lévy) fractional Fisher information (in short λ-
Fisher relative information)

Iλ(X|Zλ) = Iλ(f) =

∫
{f>0}

(
Dλ−1f(x)

f(x)
+
x

λ

)2

f(x) dx. (29)
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The fractional Fisher information is always greater or equal than zero, and it is
equal to zero if and only if X is a Lévy symmetric stable distribution of order
λ. At difference with the relative standard relative Fisher information, Iλ is well-
defined any time that the the random variable X has a probability density function
which is suitably closed to the Lévy stable law (typically lies in a subset of the
domain of attraction). If Pλ denotes the set of probability density functions such
that Iλ(f) < +∞, we showed in [27] that Pλ is not empty, and contains important
classes of densities, like Linnik’s probability density [19, 20].

4 Relative scores and L1-distances
The discussion of the previous sections enlightens an interesting property of score
functions. As it happens for the standard linear score in Rn, where ρ(X) is propor-
tional to −X only when X is a Gaussian random vector, all the previously defined
generalized score functions identify uniquely a density f̄ which is such that the cor-
responding score evaluated at the random variable X̄ of density f̄ is proportional
to −X̄. In these cases, for a given positive constant γ the vanishing of the relative
score function

ρ̃(X) = ρ(X) + γX (30)

uniquely identifies the densities X̄ with score proportional to −X̄. Consequently,
and only for these densities, the variance of ρ̃(X) is equal to zero.

For any other density, the size of the (positive) variance of (30) intuitively fur-
nishes a measure of how the probability density f of X differs from the density f̄ of
X̄. In many cases, indeed, it has been proven that the variance of the relative score
(30), namely the generalized relative (to X̄) Fisher information of X bounds from
above the L1-distance between f and f̄ .

In the case of the generalized Gaussian described in Section 2, these results have
been usually derived by studying the convergence towards equilibrium of nonlinear
diffusion equations by entropy methods, an idea which was developed first in [7, 10],
and subsequently improved in a number of papers [1, 2, 5, 6, 11]. In short, consider
the solution of the nonlinear Fokker–Planck equation in Rn with exponent p ∈ (0, 1),
p > (n− 2)/n, given by

∂u

∂t
= ∇ · [∇up + xu] t > 0 , (31)

with initial datum a probability density function u(t = 0, ·) = u0. Since equation
(31) can be rewritten in the equivalent form

∂u

∂t
= ∇ ·

[
u

(
∇up

u
+ x

)]
, (32)
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the vanishing of the (nonlinear) relative score

∇up(X)

u(X)
+ X

identifies the stationary solution to (31). Let u∞ be the unique stationary solution
such that

∫
Rd u dx =

∫
Rd u∞ dx = 1. Then, by the result of Section 2 u∞(x) = zp(x),

where zp is given by (19).
It has been established in [1, 2] that, if u is a solution of (31), the relative entropy

(or free energy)

Fp[u|u∞] :=
1

p− 1

∫
Rd

[
up − up∞ − p up−1

∞ (u− u∞)
]
dx

decays according to
d

dt
Fp[u(·, t)|u∞] = −Ip(u(·, t)|u∞)

where Ip is the entropy production term or relative Fisher information, given by
(24). If m ∈ [n/(n + 2), 1), according to [2], these two functionals are related by a
Gagliardo-Nirenberg interpolation inequality, namely

Fp[u|u∞] ≤ 1

4
Ip[u|u∞] . (33)

The same inequality holds when p > 1 [7, 10]. On the other hand, Csiszar-Kullback
type inequalities [7, 10] imply that, for a suitable universal constant C > 0

Fp[u|u∞] ≥ C‖u− u∞‖2
L1 . (34)

Therefore, considering that u∞(x) = zp(x), one concludes with the bound

‖u− zp‖2
L1 ≤ CIp[u|zp]. (35)

This shows that, at least for generalized Gaussians and p > n/(n+ 2), the variance
of the relative score bounds the L1- distance between a general density f and the
density of the generalized Gaussian. It is remarkable that this bound is obtained
by resorting to the study of the time decay of the relative entropy in a nonlinear
Fokker–Planck equation.

In [28] a similar strategy has been applied to obtain a lower bound for the relative
fractional Fisher information (11). To this extent, the time decay of the relative (to
Zλ) Shannon entropy, defined by

H(X|Zλ) = H(f |ωλ) =

∫
R
f(x) log

f(x)

ωλ(x)
dx, (36)
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was studied along the solution to the Fokker–Planck equation with fractional diffu-
sion

∂u

∂t
=

∂

∂x

(
Dλ−1u+

x

λ
u
)
, (37)

where 1 < λ < 2, with an initial datum uo(x) belonging to the domain of normal
attraction of the Lévy stable law ωλ. In consequence of the (explicit) time decay of
the relative entropy (36), a new inequality relating the relative (to Zλ) Shannon en-
tropy in terms of the relative (to Zλ) fractional Fisher information and the standard
Fisher information was obtained (the analogous of (33)). This new inequality reads

H(X|Zλ) ≤ λ 21/λ min{I(X), I(Zλ)}1/2 Iλ(X|Zλ)1/2. (38)

As before, Csiszar-Kullback inequality [9, 14]

‖f − ωλ‖2
L1 ≤ 2H(f |ωλ),

allows to bound from above the L1-distance of f and ωλ in terms of the relative
Shannon entropy. Hence, inequality (38) shows that the relative (to Zλ) fractional
Fisher information of a random variableX with density f in the domain of attraction
of Iλ provides a L1-bound for the L1-distance between f and ωλ.

5 Conclusions
In this note, we emphasized the notion of relative score functions, in connection with
their applications as possible estimators of L1-distances between densities. The main
result here is that the variance of the relative score ρ̃(X) = ρ(X) + γX provides in
significant cases explicit bounds on the L1-distance between the probability density
of X and the (unique) density for which the relative score vanishes. A collection
of previous results, mainly connected with the study of convergence to equilibrium
of linear and nonlinear Fokker–Planck equation shows that this property holds true
for generalized Gaussians and Lévy stable laws. In the linear score case, however,
further results are available. In fact, it can be proven directly, without resorting to
methods directly linked to the standard Fokker–Planck equation, that the relative
(to the Gaussian) Fisher information bounds from above the Hellinger distance
between the Gaussian density and a density f (cf. [16] and the references therein).
Then, since Hellinger distance between probability densities is stronger than the
L1-distance, inequality (35) follows with p = 1. This property of the linear score
leads to conjecture that there are other possible alternative proofs to obtain for the
nonlinear score both lower bounds as in (35), and moreover, stronger bounds in
terms of the Hellinger distance.
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6 Appendix
In this short appendix we summarize the mathematical notations and the meaning
of the fractional derivative. Given a probability density f(x), x ∈ Rn, we define its
Fourier transform F(f) by

F(f)(ξ) = f̂(ξ) :=

∫
Rn
e−i ξ·xf(x) dx, ∀ξ ∈ Rn.

Let us set n = 1. Then, the one-dimensional derivative Dα is defined as follows. For
0 < α < 1 we let Rα be the one-dimensional normalized Riesz potential operator
defined for locally integrable functions by [22, 24]

Rα(f)(x) = S(α)

∫
R

f(y) dy

|x− y|1−α
.

The constant S(α) is chosen to have

R̂α(f)(ξ) = |ξ|αf̂(ξ). (39)

Since for 0 < α < 1 it holds [18]

F|x|α−1 = |ξ|−απ1/2Γ

(
1− α

2

)
Γ
(α

2

)
, (40)

where, as usual Γ(·) denotes the Gamma function, the value of S(α) is given by

S(α) =

[
π1/2Γ

(
1− α

2

)
Γ
(α

2

)]−1

.

Note that S(α) = S(1− α).
We then define the fractional derivative of order α of a real function f as (0 <

α < 1)
dαf(x)

dxα
= Dαf(x) =

d

dx
R1−α(f)(x). (41)

Thanks to (39), in Fourier variables

D̂αf(ξ) = i
ξ

|ξ|
|ξ|αf̂(ξ). (42)
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