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ABSTRACT

We present two techniques that are shown to yield improved Key-

word Spotting (KWS) performance when using the ATWV/MTWV

performance measures: (i) score normalization, where the scores

of different keywords become commensurate with each other and

they more closely correspond to the probability of being correct than

raw posteriors; and (ii) system combination, where the detections

of multiple systems are merged together, and their scores are in-

terpolated with weights which are optimized using MTWV as the

maximization criterion. Both score normalization and system com-

bination approaches show that significant gains in ATWV/MTWV

can be obtained, sometimes on the order of 8-10 points (absolute),

in five different languages. A variant of these methods resulted in

the highest performance for the official surprise language evaluation

for the IARPA-funded Babel project in April 2013.

Index Terms— keyword search, score normalization, system

combination, indexing and search

1. INTRODUCTION

The task of finding words or phrases in audio is related to, but

still quite different from that of speech recognition, where a ver-

batim transcript is desired. However, while word-error-rate has been

viewed as a very appropriate measure for speech recognition per-

formance, a number of alternative measures have been proposed

for keyword spotting. In this paper, we consider the Actual Term

Weighted Value (ATWV) [1] and the Maximum Term Weighted

Value (MTWV) as the measures of interest, mainly because they are

the official measures for the IARPA-funded Babel project. ATWV

is a weighted average of the miss and false alarm probabilities over

the collection of keywords, and, as defined by the Babel project, it

requires that all of the keywords have commensurate scores, a single

decision threshold is used for all keywords.

The traditional method for computing word confidence uses the

measured posterior probability (e.g., from a word lattice) combined

with several other features of the word. However, we find that the

confidences for a particular keyword tend to be biased higher or

lower even though we use other features. If we had a large number

of samples of each keyword in a tuning set, we could learn a separate

confidence model for each keyword. But, in this data, few keywords

have more than 1 or 2 samples in the tuning set, and half have none

at all. So we need methods for normalizing the posterior scores that

do not require a large number of samples of each keyword.

In this paper we demonstrate that one can calibrate the scores

so that all keywords have scores that are comparable to each other.

Building on prior work [2], which showed the benefits of mapping

the raw scores to probability of false alarm, we present a score nor-

malization technique based on a learning framework that aims to es-

timate the probability of correctness of each keyword. Ranking the

keyword detections based on this new score yields significant im-

provements in the ATWV/MTWV performance across several lan-

guages. Note that our proposed technique is very different from

the one proposed in [3], which modifes the scores based on an esti-

mate of the actual log-likelihood ratio, as well as previous techniques

(e.g., [4, 5]).

We also present results with the combination of different sys-

tems (or different modalities of the same system) which improve

ATWV. We also show that the best performance is obtained by nor-

malizing the system outputs before doing system combination. The

intuitive explanation for this observation is that the system-specific

biases (which are not just a simple shift of the scores, but the result

of a rather complicated process) act as nuisance parameters in the

downstream objective of combining the sets of hits and re-ordering

them in order to maximize ATWV/MTWV. Thus, removing (or re-

ducing) these extraneous biases at an earlier stage makes it easier to

focus on the final optimization problem. (Of course, a more compli-

cated approach would be to perform score normalization and system

combination jointly; we leave this for future research.)

The paper is organized as follows: Section 2 contains the task

definition. In Section 3 we list a number of techniques that can

be used for improving keyword spotting. Section 4 describes the

KWS system we implemented, that makes use of score normaliza-

tion and machine learning. Section 5 presents the methodology for

combining outputs from different systems (or different modalities of

the same system). Section 6 presents the experimental framework

and KWS results on 5 languages (Cantonese, Pashto, Tagalog, Turk-

210978-1-4799-2756-2/13/$31.00 ©2013 IEEE ASRU 2013



ish, Vietnamese). Section 7 contains conclusions.

2. TASK DEFINITION

The spoken term detection system has four components: a speech-

to-text engine, an indexer, a detector, and a module that re-ranks

detections according to various features and assigns a score to each.

The speech-to-text engine processes audio files and outputs word lat-

tices and single-best phonetic transcripts. The system uses word lat-

tices instead of single-best transcripts in order to avoid the problem

of missing keyword occurrences that are not in the single best tran-

scription. It estimates the posterior probability of each detection’s

correctness directly from the lattices (or confusion networks). The

indexer creates an index containing a precomputed list of candidate

detection records (a.k.a. hits) for each word in the speech-to-text

lexicon. The index also contains the phonetic transcripts to accom-

modate out-of-vocabulary search terms. The detector processes a list

of search terms (which can be single words or multi-word strings),

generating a sorted, scored list of detection records for each term.

Next, the re-ranker re-assigns scores based on a learned model, us-

ing various features as input. Finally, a decision function assigns a

threshold and all detections with scores above the threshold receive

a Yes decision.

Accuracy is judged relative to a time-marked reference tran-

script. A system detection is considered correct if a corresponding

exact orthographic match of the term appears in the reference tran-

script within 0.5 seconds of the asserted time.

System accuracy on a given collection of query terms is mea-

sured by the Actual Term-Weighted Value (ATWV) metric, defined

in [1] as

ATWV = 1−
1

K

K
∑

w=1

(

#miss(w)

#ref(w)
+ β

#fa(w)

T −#ref(w)

)

(1)

where K is the total number of keywords, #miss(w) is the number

of true tokens of keyword w that are not detected, #fa(w) is the

number of false detections of w, #ref(w) is the number of reference

tokens of w, T is the total number of trials (e.g., seconds in the

audio), and β is a constant, set at 999.91.

Note that ATWV is a function of the threshold used in deciding

whether a detection exists or not. The Maximum Term-Weighted

Value (MTWV) is then defined as the maximum ATWV over all

decision thresholds.

3. TECHNIQUES FOR SCORE NORMALIZATION

Here we summarize some normalization techniques that are most

relevant to our setting.

Similar to [2], we assume that the keywords are given in advance

of any training/decoding of speech. This allows us to perform a more

thorough job of detecting the keywords, by (i) adding the keywords

to the decoding dictionary and learning language models that give

a higher probability to n-grams that contain keywords; (ii) tailoring

the pruning beams of the decoder so that it does not miss many oc-

currences of keywords (whitelisting [2]). The techniques discussed

here work equally well in the more traditional setting where the key-

words are not known until after decoding has been performed. The

1This was set equal to C
V
(Pr−1

kw −1), where C = 0.1 is the cost of a

false detection, V = 1 is the value of a correct detection, and Prkw is the

prior probability of a keyword, which is fixed at 10−4.

models and parameters for normalization and system combination

are learned from a transcribed development set.

3.1. Keyword-specific Thresholding and Exponential Normal-

ization (KST)

In [6], a formula is presented for computing a decision (Yes/No) for

each detection. This “decider” function declares that a detection for

keyword w is present if its posterior score is above threshold

thr(w) =
Ntrue

T/β + β−1
β

Ntrue

(2)

where Ntrue is an estimate of how many true tokens of keyword

w exist in the audio. In the absence of true transcripts, Ntrue can

be approximated by the expected count for that keyword, with an

additional correction (regression) learned from training data. Note

that this allows one to deal with untranscribed audio seamlessly; the

threshold can be decided in an unsupervised fashion, as long as the

expected counts are reasonably estimated.

If the scores are true posterior probabilities, and assuming that

Ntrue is known2 this decision rule can be shown to be optimal3 when

the ATWV metric is used. Basically, while the cost of false alarms is

the same for all keywords, the cost of misses is lower for keywords

with more true occurrences.

The keyword-specific thresholds are used in this paper for nor-

malizing the scores across all keywords in such a way that the de-

cision threshold becomes a constant thr ∈ (0, 1). Specifically, the

formula for transforming the score s of a keyword w has the follow-

ing exponential form [7]

s′ = s

(

log(thr)
log(thr(w))

)

. (3)

Setting thr = 1/e ≈ 0.3679 simplifies the formula to

s′ = s

(

−
1

log(thr(w))

)

, (4)

which is used in the rest of the paper.

The motivation behind this formula is that scores of keywords

with generally low scores (low thr(w)) get a boost, if thr(w) is be-

low the global threshold thr. Conversely, keywords with generally

higher scores get attenuated, so that, in the end, all keywords have

the same global threshold. The non-linearity of the formula is useful

in making the scores more distinguishable in the regime of interest.

3.2. Rank Normalization and Mapping Back to Posteriors

In [2], it was shown that significant gains in performance can be

achieved by transforming the raw posteriors through the so-called

“pFA mapping”. This entails computing the false alarm rate (pFA)

corresponding to each raw score, on a per-keyword basis, and then

using 1-pFA as the new (normalized) score. The false alarm rate

is computed by sorting all scores (corresponding to the false alarms

of a keyword, obtained through an alignment of the detections and

the true transcripts on a development set) and then assigning a nor-

malized rank to each hit, starting with the largest posterior values.

2In the case where Ntrue is random and cannot be reliably estimated, one

can try to find the decision rule that minimizes the expected Bayes risk.
3Theoretical optimality is established when all distributions are known in

advance. When there are biases in the data, even using the true number of

references does not necessarily lead to optimum performance; a modification

of the decision threshold that corresponds to these biases may be preferable.
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Note that this does not require having any true tokens of the key-

words in the development set. This allows to learn keyword-specific

mappings4. In the case where there are very few false alarms for

a keyword (less than 5) a “global” map (described below) is used

instead.

In order to use formula (2), one has to have scores which re-

semble posteriors. To do that, we define a global map as the av-

erage posterior value at each rank. Then, after a keyword-specific

map transforms a posterior to a rank, the rank is mapped back to

a posterior-resembling value using this averaged map. That is, for

keyword w, the mapping function is

fw(x) =
1

K

K
∑

v=1

R−1
v (Rw(x)) (5)

where K is the number of keywords, Rk(x) is the keyword specific

map for keyword k (maps a posterior to a rank) and R−1
k (r) is its

inverse function (maps a rank to a posterior). For instance, if a hit in

a keyword-specific list is ranked 5th, then its normalized score is set

equal to the average of the posteriors over all hits which are ranked

5th in their respective keyword-specific lists. Note that these maps

are used with linear interpolation in both directions.

3.3. Sum-to-One Normalization (STO)

A technique for score normalization, sum-to-one, appeared in [8].

It was motivated by a similar technique from Information Re-

trieval (IR) [9]. Simply put, given a query/keyword w with scores

sw,1, . . . , sw,n, the normalized scores become

s′w,i =
sw,i

∑n
j=1 sw,j

, (6)

Similar to the exponential normalization above, this is motivated

by the desire to boost the scores of keywords with generally low

scores (low denominator) and to give lower cost to misses for key-

words with more true tokens.

Note that the global decision threshold has to be adjusted accord-

ing to the ratio of the Dev and Test audio durations. This happens

because the denominator in (6) grows linearly with the duration of

the audio, while the numerator is bounded above by 1. This is less

of a problem in the KST method, as Ntrue and T are linearly related,

and therefore the coefficient of proportionality cancels out.

4. SCORE NORMALIZATION USING MACHINE

LEARNING

In this section we outline the main steps that we follow to perform

score normalization using a machine learning framework that uses

several features.

4.1. Score Normalization Procedure

The score normalization procedure is performed through a series of

steps:

1. The original scores of the detections go through a number of

transformations, such as: rank-normalization, mapping-back to

posteriors, “probability of correct” normalization pcorr(), and

4When transforming the training (tuning) data, a leave-one-out method-

ology is used, in order to avoid exact integer mapped values; this is helpful

in the subsequent learning.

through some non-linear functions such as log(), ()1/2, ()2, sig-

moid, using equation (2), etc. The pcorr() mapping is estimated

by sorting all hits by score, defining bins, and then computing

the probability that a random detection in the bin is correct, i.e.

pcorr(bin) =
# true positives in bin

size of bin
.

The mapping from score to pcorr is smoothed using linear inter-

polation during lookup.
2. For each detection, the transformed scores, together with vari-

ous additional features, e.g., keyword training count, keyword

length, conversation-aggregated scores, are concatenated to-

gether into a feature vector f .
3. This vector, together with a target variable denoting whether the

detection is a “true positive” or a “false alarm”, is given as in-

put to Powell’s method [10], which learns a linear model using

MTWV as the maximizing criterion. Powell’s method learns a

weight vector w for these features. The score assigned to a fea-

ture vector is then given by the inner product s(f) = 〈w,f〉.
This is subsequently converted to a number in [0, 1] using an-

other pcorr() mapping.
4. (Optional) The pcorr-mapped values are given next as input to

the threshold determination and normalization module of Sec-

tion 3.1, and a per-keyword detection threshold thr(w) is then

determined. This thus makes all keywords consistent with each

other, as they all have exactly the same decision threshold 1/e.
5. Further correction/calibration of the global threshold is (option-

ally) done by selecting a value that maximizes ATWV on some

training data.

5. SYSTEM COMBINATION

The goal of system combination is to take as input the detections of

several systems, and then come up with a new list of hits which has

performance that exceeds that of any individual system. We present

a procedure that combines several hit lists together.

System combination exploits the diversity among the different

outputs. Even a single decoding run, when appropriately diversified

through the generation of different modalities, can offer gains. Obvi-

ously, the biggest gains are obtained when the different systems are

radically different (e.g., GMM-based and DNN-based HMMs).

5.1. Algorithm for System Combination

The algorithm for doing system combination consists of the follow-

ing steps:

1. Perform score normalization, including pcorr() mapping, of the

scores of the different systems.
2. Rank the systems in terms of MTWV performance, and merge

their hits incrementally (two at a time) into a new list. The merg-

ing is done so that if there is an overlap of at least 10% of the

smallest of the two intervals corresponding to the two hits, the

new hit has start/end times of the hit of the better of the two sys-

tems. If the overlap is smaller (or, there is no overlap) the two

hits are added into the new list without modification. The above

merging creates a feature vector per merged hit, with the scores

of the systems being the elements of the vector. When there is

no score for a system, a score of zero is assigned.
3. An initial set of weights is chosen, based on which the vector

scores are linearly combined. The weights are given by the for-

mula

w(s) = 2MTWV(s)−MTWVbest , (7)
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where MTWVbest is the MTWV of the best system among those

combined. Note that the exponent is expressed in terms of per-

cent scores (e.g., 45, rather than 0.45).

4. The initial weights are further optimized using Powell’s method

using MTWV as the optimization criterion.

5. After the hits are re-ranked using the optimized weights, the new

(weighted) scores are further conditioned using another pcorr()
mapping (trained on the Dev data), so that the resulting scores

resemble probabilities (and can be used as input in another stage

of system combination).

6. EXPERIMENTS

Here we list all experiments we have run on a variety of languages

and conditions.

6.1. Audio corpora and keyword sets

The audio corpora and keyword sets that we considered in our re-

search were provided by the IARPA Babel program (FullLP re-

leases). The languages were Cantonese (release babel101b-v0.4c),

Pashto (release babel104b-v0.4bY), Tagalog (release babel105b-

v0.4), Turkish (release babel106b-v0.2g) and Vietnamese (release

babel107b-v0.7). The condition we report in this paper is the so-

called Automatically Adapted condition, where the keywords are

supposed to be known in advance of the decoding of the audio, and

their knowledge is used to improve the search. This should be con-

trasted with the more well-known form of keyword search where the

audio is pre-indexed without knowledge of the keywords/queries.

We also used these same methods for the more traditional Pre-

Indexed condition and found similar results. In addition, we have

experimented with a two-pass approach in which we use the Pre-

Indexed approach to find likely keywords and then rescore only those

hits with high scores.

The training data for each language were of the order of 100

hours, and the data on which we report performance are: (i) Dev set

of each language, about 10 hours each, (ii) Test set of each language,

with durations 5 hours (Cantonese, Pashto, Tagalog and Turkish)

and 15 hours (Vietnamese). The test sets were supplied by NIST

as “unsequestered” parts of the official evaluation sets used in the

March/April 2013 Babel evaluations. The keyword sets on which

we report results are the official lists provided by NIST for the eval-

uations; their sizes are 3762 for Cantonese, 3842 for Pashto, 3171

for Turkish, 3805 for Tagalog, and 4065 for Vietnamese.

6.2. System Descriptions

(i) BBN GMM System

The BBN Byblos system uses Hidden Markov Models (HMMs),

with State-Clustered-Tied Mixture (SCTM) crossword quinphone

models. The parameters for these models are estimated using the

Minimum Phone Error (MPE) objective criterion. The acoustic fea-

tures are based on a 6-layer stacked bottleneck neural network archi-

tecture [11].

Recognition is performed using the BBN two-pass decoder.

The forward pass uses a State Tied Mixture (STM) model, and

an approximate bigram LM to produce word-ending scores. The

backward pass then uses the word-ending scores and associated

scores from the forward pass to perform a detailed search using

within-word state-clustered tied-mixture (SCTM) quinphone acous-

tic models and a trigram language LM to produce a lattice. Finally,

lattice rescoring using a state clustered cross-word quinphone model

is done.

(ii) BBN Deep Neural Network System

The BBN DNN system has a topology of 4 hidden layers, each with

2000 hidden units. The network uses the same set of clustered states

from the HMM/GMM system for the output layer, and is trained

using state-alignments derived from an MPE-trained HMM/GMM.

Discriminative pre-training is used to initialize the network weights

[12]. This entails starting with one randomly initialized hidden layer,

and then pretraining it using back-propagation with the minimum

cross-entropy criterion. The softmax output layer is subsequently re-

placed with another randomly initialized hidden layer, and the whole

procedure is repeated until a desired number of hidden layers are

trained. GPU machines are used to speed up the training of the DNN

system.

For recognition, HMM decoding is first done with a speaker-

independent model. This is followed by speaker-adaptive decoding

and the DNN decoder is applied in the backward pass to produce

lattice outputs, which are then fed into the keyword search system.

The observation probability in the HMM is set equal to the ratio of

DNN state posterior to its prior, as in [12].

(iii) Different Modalities of BBN Systems

Word lattices are converted to word and phone based confusion

networks, as in [13, 14]. Additionally, character-based confusion

networks are generated for Cantonese, and syllable-based confusion

networks are generated for Vietnamese. The whole-word raw

scores are the actual arc posteriors (both for lattices and confusion

networks), whereas the phone based results are computed via the

product and geometric mean of the scores of the individual phones

that constitute the pronunciation of the keyword. Each one of these

tokenizations produces a different set of hits that are normalized and

combined together using the algorithms mentioned earlier.

(iv) BUT GMM System

The BUT STK HMM system uses cross-word tied-state triphones

(approx. 2000 tied states). Feature extraction is done based on

the concatenation of three feature streams: (i) PLP-HLDA (39

dimensions): HLDA transformation of a feature vector consisting

of mean-and-variance-normalized cepstral coefficients, including

delta, double and triple delta coefficients. (ii) Stacked Bottleneck

Neural Network (30 dimensions) [15], which is a hierarchical

composition of two Neural Networks. (iii) F0 with delta and double

delta coefficients (3 dimensions); the implementation of F0 and

probability of voicing estimation follows [16]. The concatenated

feature vector (72 dimensions) is further processed by two different

RDT transforms [17], used in a first-pass and a speaker-adapted

decoding, respectively.

(v) BUT DNN System

An initial HMM/GMM system was used to produce SAT features,

triphone alignments and the triphone-clustering tree. After splicing

together 11 frames of fMLLR features (440 dims), an unsupervised

pre-training of a DNN layer-wise is done by stacking 6 RBMs, using

the contrastive-divergence optimization. The dimension of the hid-

den layers is 2048. The topology of the network was not tuned, but

re-used a standard recipe tested on Switchboard.

After pre-training, the final layer of the DNN is added, which has

≈4.5k outputs (same as the number of GMM PDFs (tied states)), and

the whole network is trained optimizing frame-level cross-entropy

using mini-batch Stochastic Gradient Descent. This is followed by

realignment, and a second iteration of cross-entropy training.
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Finally, the DNN is re-trained optimizing the sMBR criterion,

which is done by Stochastic Gradient Descent with per-utterance up-

dates [18]. A development set is used to check which sMBR iteration

gives the best WER.

The KWS is done based on exact match in the lattices, using

the word representation of the terms. The posterior of a term

is computed using a forward/backward procedure. In case of

overlapping detections of the same term, the posteriors are summed

together.

(vi) LIMSI-Vocapia Systems

The LIMSI-Vocapia speech-to-text (STT) systems for all languages

make use of BBN voice activity detection and BUT features.

The acoustic models are tied-state, left-to-right 3-state HMMs

with Gaussian mixture observation densities (typically 32 compo-

nents). The triphone-based phone models are word-independent, but

position-dependent. The states are tied by means of a decision tree.

For the Cantonese, Pashto, Tagalog and Vietnamese languages a 2-

pass decoding was used with system combination (cross adaptation

or Rover) of systems with different acoustic units (phone, initial-

final, graphemic). A single-pass decoding was used for Turkish.

Tone is explicitly represented in the phone sets for both the Can-

tonese and Vietnamese languages. Case sensitive language models

were used for the Tagalog and Turkish languages.

The KWS systems are based on the multi-hypotheses produced

by a consensus network (CN) decoding, using a character-based CN

decoding for both Cantonese and Vietnamese. The KWS hits are

ranked using a geometric mean score, prior to further normalization

and calibration by BBN’s system.

6.3. Score Normalization Results

Table 1 contains normalization results on the five languages for the

BBN GMM system mentioned earlier (best tokenization per lan-

guage). The column headings correspond to language abbreviations.

Each of the methods discussed in Sections 3 and 4, corresponds to

a different row. The row “Raw” shows the results obtained with-

out any normalization whatsoever (raw posteriors). The row “ML”

corresponds to the machine learning approach mentioned in Section

4.

As is clear from these results, all of the normalization meth-

ods improve significantly over the raw posteriors. In comparing the

methods, (i) the sum-to-1 method is generally the weakest, (ii) the

machine learning method is generally the best, (iii) the KST-norm

method is almost as good as the best method (which is a bit surpris-

ing, given that it is very simple to implement and does not involve

learning).

6.4. System Combination Results

We performed combination experiments with two different BBN

systems (the GMM and DNN systems) mentioned above, to

show the interplay between normalization and combination.

We also present results with a wider set of systems used in the

BABELON team in the March/April 2013 Babel project evaluations.

(i) Results with the BBN GMM and DNN systems

As mentioned above, we used several tokenizations/modalities for

the two systems (GMM and DNN) under consideration. In all, we

created at least 10 different sets of hits per language (with Cantonese

having the most, as, because of its ideographic nature, it allows to

use character-based matching).

Ca Pa Tu Ta Vi

Raw 43.9% 38.1% 43.5% 45.0% 46.1%

STO 52.5% 45.2% 52.6% 52.1% 58.0%

Rank 52.7% 45.7% 53.4% 52.5% 58.9%

KST 53.1% 45.9% 53.7% 52.9% 58.9%

ML 54.5% 46.4% 54.4% 53.3% 59.3%

(a) MTWV Results on the Dev data for the HMM system.

Ca Pa Tu Ta Vi

Raw 46.8% 35.9% 48.1% 43.5% 41.8%

STO 57.1% 42.7% 57.5% 53.3% 51.9%

Rank 55.8% 42.0% 57.6% 53.2% 52.3%

KST 57.3% 44.1% 58.7% 54.6% 52.9%

ML 57.9% 44.3% 58.5% 55.0% 53.0%

(b) ATWV Results on the Test data for the HMM system.

Table 1. Score normalization results. The best result in each column

is shown in bold.

We compare two different pipelines for normalization and com-

bination. (i) Pipeline 1 first performs combination of the modalities

of the systems based on their raw scores. The resulting combined hit

list is subsequently normalized with the machine learning method

mentioned earlier. (ii) Pipeline 2 first performs normalization of the

different modalities, and then combines the normalized lists of hits

(and performs one more normalization at the end).

Table 2 shows the results obtained with the two pipelines

(rows “P1”, “P2”). We also implemented methods CombSUM,

CombMNZ and WCombMNZ from [8], and show the results ob-

tained with the best of the three methods, as determined by the

MTWV on the Dev data (row “P2-c”).

As can be easily seen, the procedure that first normalizes the

different outputs and subsequently combines the resulting hits lists

(pipeline 2) gives better Dev and Eval scores in all languages, even

by as much as 2.9 points compared to pipeline 1. This can be ex-

plained by the fact that normalization outputs scores which are more

commensurate across systems and can thus be combined more effi-

ciently. Interestingly, in many cases the performance of pipeline 1

does not even reach the normalized performance of the best system

(compare the “P1” rows with the corresponding best results of Table

1).

(ii) Results with the BABELON systems

Table 3 shows official results obtained with the BABELON systems

used in the NIST Evaluation in March and April of 2013 (row “Best”

shows the best system among those combined, and “P2” shows the

system combination with the P2 pipeline). As mentioned earlier,

the normalization/combination techniques presented benefit equally

well the automatically-adapted (“-AA” rows) and the pre-indexed

(“-PI” rows) conditions; however, the final ATWV is (as expected)

better in the automatically-adapted condition. As can be easily seen,

system combination achieves several points gain on top of the best

normalized single system. The significant diversity between the dif-

ferent systems contributes greatly to the large gains.

7. CONCLUDING REMARKS

We have shown that a machine-learning framework that utilizes

many features can result in improved KWS performance when com-
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Ca Pa Tu Ta Vi

P1 54.1% 46.4% 54.2% 54.0% 60.4%

P2 57.1% 47.8% 55.6% 54.7% 62.9%

P2-c 55.7% 47.0% 54.9% 53.8% 59.9%

(a) MTWV Results on the Dev data.

Ca Pa Tu Ta Vi

P1 58.6% 43.5% 57.5% 54.9% 51.2%

P2 59.6% 43.8% 58.4% 55.5% 54.0%

P2-c 59.1% 43.3% 58.1% 55.7% 55.1%

(b) ATWV Results on the Test data.

Table 2. System combination results. P1 and P2 stand for Pipeline 1

and 2, respectively. The best result in each column is shown in bold.

Ca Pa Tu Ta Vi

Best-PI 56.0% 43.1% 57.6% 50.8% 52.7%

P2-PI 61.3% 46.9% 62.0% 57.5% 62.5%

Best-AA 61.4% 45.6% 63.7% 57.0% 55.6%

P2-AA 63.2% 49.2% 65.4% 60.4% 64.7%

Table 3. BABELON system combination results using pipeline P2.

pared to using raw posteriors, or even using the “decider” formula

(2)5. Our focus has been on improving ATWV/MTWV, and most

of our innovations are designed specifically for these measures. We

showed gains in both measures for the five languages used in the

first year of the Babel program, namely, Cantonese, Pashto, Tagalog,

Turkish and Vietnamese. Furthermore, a system combination frame-

work that merges the detections from multiple systems and then uses

Powell’s method to learn how to weight the different scores results

in significant ATWV/MTWV gains.
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